§10.3: Fourier Series, Cont.

§10.3: Fourier Series, Cont.

O. Costin: Fourier Series, §10.2-3

Any smooth enough (we'll see what is needed) periodic function of period $2 L$ can be written as a Fourier series,

$$
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L}
$$

Any smooth enough (we'll see what is needed) periodic function of period $2 L$ can be written as a Fourier series,

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{1}
\end{equation*}
$$

where the coefficients can be calculated explicitly, (as scalar products)

Any smooth enough (we'll see what is needed) periodic function of period $2 L$ can be written as a Fourier series,

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{1}
\end{equation*}
$$

where the coefficients can be calculated explicitly, (as scalar products)

$$
a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x, m \geq 0
$$

Any smooth enough (we'll see what is needed) periodic function of period $2 L$ can be written as a Fourier series,

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{1}
\end{equation*}
$$

where the coefficients can be calculated explicitly, (as scalar products)

$$
\begin{align*}
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x, m \geq 0 \tag{2}\\
& b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x, m \geq 1
\end{align*}
$$

Any smooth enough (we'll see what is needed) periodic function of period $2 L$ can be written as a Fourier series,

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{1}
\end{equation*}
$$

where the coefficients can be calculated explicitly, (as scalar products)

$$
\begin{align*}
& a_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x, m \geq 0 \tag{2}\\
& b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x, m \geq 1
\end{align*}
$$

When is this decomposition possible?
O. Costin: Fourier Series, §10.2-3

Piecewise differentiable functions

Piecewise differentiable functions : Essentially given by a "by cases formula", " $f=E_{1}$ " if $x<-1$, " $f=E_{2}$ " if $x \geq-1$ etc, where each piece is differentiable.

Piecewise differentiable functions : Essentially given by a "by cases formula", " $f=E_{1}$ " if $x<-1$, " $f=E_{2}$ " if $x \geq-1$ etc, where each piece is differentiable. Def. f and f^{\prime} are continuous with the possible exception of finitely many points, and at those points both f and f^{\prime} have left and right limits, $f\left(x_{+}\right), f\left(x_{-}\right), f^{\prime}\left(x_{+}\right), f^{\prime}\left(x_{-}\right)$.

Note that $f\left(x_{+}\right)=f\left(x_{-}\right)=f(x)$ if f is continuous at x.

Note that $f\left(x_{+}\right)=f\left(x_{-}\right)=f(x)$ if f is continuous at x. Theorem 1. 1. Assume f is periodic with period $2 L$, and that

Note that $f\left(x_{+}\right)=f\left(x_{-}\right)=f(x)$ if f is continuous at x.
Theorem 1. 1. Assume f is periodic with period $2 L$, and that
2. f is piecewise continuous and differentiable on an interval strictly containing $[-L, L]$

Note that $f\left(x_{+}\right)=f\left(x_{-}\right)=f(x)$ if f is continuous at x.
Theorem 1. 1. Assume f is periodic with period $2 L$, and that
2. f is piecewise continuous and differentiable on an interval strictly containing $[-L, L]$

Then

$$
\frac{1}{2}\left(f\left(x_{+}\right)+f\left(x_{-}\right)\right)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L}
$$

Note that $f\left(x_{+}\right)=f\left(x_{-}\right)=f(x)$ if f is continuous at x.
Theorem 1. 1. Assume f is periodic with period $2 L$, and that
2. f is piecewise continuous and differentiable on an interval strictly containing $[-L, L]$

Then

$$
\begin{equation*}
\frac{1}{2}\left(f\left(x_{+}\right)+f\left(x_{-}\right)\right)=\frac{a_{0}}{2}+\sum_{m=1}^{\infty} a_{m} \cos \frac{m \pi x}{L}+\sum_{m=1}^{\infty} b_{m} \sin \frac{m \pi x}{L} \tag{3}
\end{equation*}
$$

at all points. Note again that $\frac{1}{2}\left(f\left(x_{+}\right)+f\left(x_{-}\right)\right)$is simply $f(x)$ at all ordinary points. Furthermore, a_{m}, b_{m} are given by (2).
O. Costin: Fourier Series, §10.2-3

Example.

$$
f(x)= \begin{cases}-1 / 2 & x \in(-\pi, 0) \\ 1 / 2 & x \in(0, \pi)\end{cases}
$$

Example.

$$
f(x)= \begin{cases}-1 / 2 & x \in(-\pi, 0) \tag{4}\\ 1 / 2 & x \in(0, \pi)\end{cases}
$$

[^0]$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (0 x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1
$$
\[

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (0 x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1 \\
a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (m x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (m x) d x=0
\end{gathered}
$$
\]

$$
\begin{gathered}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (0 x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1 \\
a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (m x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (m x) d x=0 \\
b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d x=\frac{1-(-1)^{m}}{\pi m}
\end{gathered}
$$

$$
\begin{gather*}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (0 x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1 \tag{4}\\
a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (m x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (m x) d x=0 \\
b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d x=\frac{1-(-1)^{m}}{\pi m}
\end{gather*}
$$

Thus

$$
f=\frac{2}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\cdots\right)
$$

$$
\begin{gather*}
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (0 x) d x=\frac{1}{\pi} \int_{0}^{\pi} 1 d x=1 \tag{4}\\
a_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (m x) d x=\frac{1}{\pi} \int_{0}^{\pi} \cos (m x) d x=0 \\
b_{m}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin (m x) d x=\frac{1-(-1)^{m}}{\pi m}
\end{gather*}
$$

Thus

$$
f=\frac{2}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\cdots\right)
$$

$$
\begin{equation*}
f=\frac{2}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\cdots\right) \tag{5}
\end{equation*}
$$

O. Costin: Fourier Series, $\S 10.2-3$

Note that there is overshoot at the jumps. This is the Gibbs phenomenon. It always occurs at discontinuities and it is about 8%.

Note that there is overshoot at the jumps. This is the Gibbs phenomenon. It always occurs at discontinuities and it is about 8%.

Note that the series converges to 0 in the middle.

Note that there is overshoot at the jumps. This is the Gibbs phenomenon. It always occurs at discontinuities and it is about 8%.

Note that the series converges to 0 in the middle.
But wherefrom the 8% discrepancy?

Note that there is overshoot at the jumps. This is the Gibbs phenomenon. It always occurs at discontinuities and it is about 8%.

Note that the series converges to 0 in the middle.
But wherefrom the 8% discrepancy? The theorem tells us the series converges everywhere to f except at disconts, where it converges to $1 / 2\left(f_{+}+f_{-}\right)=0$ in our case!

Note that there is overshoot at the jumps. This is the Gibbs phenomenon. It always occurs at discontinuities and it is about 8%.

Note that the series converges to 0 in the middle.
But wherefrom the 8% discrepancy? The theorem tells us the series converges everywhere to f except at disconts, where it converges to $1 / 2\left(f_{+}+f_{-}\right)=0$ in our case! Note that the overshoot is associated to no point!!!
O. Costin: Fourier Series, $\S 10.2-3$

Odd and even functions The formulas can be substantially simplified if the functions are even, or if they are odd.

A function is even if $f(x)=f(-x)$

Odd and even functions The formulas can be substantially simplified if the functions are even, or if they are odd.

A function is even if $f(x)=f(-x)$

A function is odd if $f(x)=-f(-x)$.

O. Costin: Fourier Series, §10.2-3

Properties

1. odd plus odd is odd

Properties

1. odd plus odd is odd
2. even plus even is even
O. Costin: Fourier Series, §10.2-3

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
O. Costin: Fourier Series, §10.2-3

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
O. Costin: Fourier Series, §10.2-3

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
5. $\int_{-L}^{L} \operatorname{Odd}(x) d x=\int_{-L}^{0} \operatorname{Odd}(x) d x+\int_{0}^{L} \operatorname{Odd}(x) d x=0$

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
5. $\int_{-L}^{L} \operatorname{Odd}(x) d x=\int_{-L}^{0} \operatorname{Odd}(x) d x+\int_{0}^{L} \operatorname{Odd}(x) d x=0$ (check by changing variable to $x=-x^{\prime}$ in the first integral).

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
5. $\int_{-L}^{L} \operatorname{Odd}(x) d x=\int_{-L}^{0} \operatorname{Odd}(x) d x+\int_{0}^{L} \operatorname{Odd}(x) d x=0$ (check by changing variable to $x=-x^{\prime}$ in the first integral).
6. $\int_{-L}^{L} \operatorname{Even}(x) d x=\int_{-L}^{0} \operatorname{Even}(x) d x+\int_{0}^{L} \operatorname{Even}(x) d x=2 \int_{0}^{L} \operatorname{Even}(x) d x$

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
5. $\int_{-L}^{L} \operatorname{Odd}(x) d x=\int_{-L}^{0} \operatorname{Odd}(x) d x+\int_{0}^{L} \operatorname{Odd}(x) d x=0$ (check by changing variable to $x=-x^{\prime}$ in the first integral).
6. $\int_{-L}^{L} \operatorname{Even}(x) d x=\int_{-L}^{0} \operatorname{Even}(x) d x+\int_{0}^{L} \operatorname{Even}(x) d x=2 \int_{0}^{L} \operatorname{Even}(x) d x$ (check by changing variable to $x=-x^{\prime}$ in the first integral).
O. Costin: Fourier Series, §10.2-3

Properties

1. odd plus odd is odd
2. even plus even is even
3. odd times even is odd
4. odd times odd is even.
5. $\int_{-L}^{L} \operatorname{Odd}(x) d x=\int_{-L}^{0} \operatorname{Odd}(x) d x+\int_{0}^{L} \operatorname{Odd}(x) d x=0$ (check by changing variable to $x=-x^{\prime}$ in the first integral).
6. $\int_{-L}^{L} \operatorname{Even}(x) d x=\int_{-L}^{0} \operatorname{Even}(x) d x+\int_{0}^{L} \operatorname{Even}(x) d x=2 \int_{0}^{L} \operatorname{Even}(x) d x$ (check by changing variable to $x=-x^{\prime}$ in the first integral).
O. Costin: Fourier Series, §10.2-3

7. and so on...

O. Costin: Fourier Series, §10.2-3

7. and so on... CHECK THESE PROPERTIES!

O. Costin: Fourier Series, §10.2-3

7. and so on... CHECK THESE PROPERTIES!

Applications

Assume first f is periodic and odd. Then $f(x) \cos (a x)$ is odd (odd \times even)

7. and so on... CHECK THESE PROPERTIES!

Applications

Assume first f is periodic and odd. Then $f(x) \cos (a x)$ is odd (odd \times even)
and $f(x) \sin (a x)$ and is even (odd \times odd)

7. and so on... CHECK THESE PROPERTIES!

Applications

Assume first f is periodic and odd. Then $f(x) \cos (a x)$ is odd (odd \times even)
and $f(x) \sin (a x)$ and is even (odd \times odd)

$$
\int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x=0 ; \quad a_{m}=0
$$

7. and so on... CHECK THESE PROPERTIES!

Applications

Assume first f is periodic and odd. Then $f(x) \cos (a x)$ is odd (odd \times even)
and $f(x) \sin (a x)$ and is even (odd \times odd)

$$
\begin{gather*}
\int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x=0 ; \quad a_{m}=0 \tag{6}\\
b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x ;
\end{gather*}
$$

7. and so on... CHECK THESE PROPERTIES!

Applications

Assume first f is periodic and odd. Then $f(x) \cos (a x)$ is odd (odd \times even)
and $f(x) \sin (a x)$ and is even (odd \times odd)

$$
\begin{gather*}
\int_{-L}^{L} f(x) \cos \frac{m \pi x}{L} d x=0 ; \quad a_{m}=0 \tag{6}\\
b_{m}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{m \pi x}{L} d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x ; \tag{7}
\end{gather*}
$$

The sawtooth function

O. Costin: Fourier Series, §10.2-3

The sawtooth function

This is $f(x)=x, \quad x \in(-\pi, \pi)$ and extended periodically. (More generally, the period can be L, arbitrary).

The sawtooth function

This is $f(x)=x, \quad x \in(-\pi, \pi)$ and extended periodically. (More generally, the period can be L, arbitrary).

The sawtooth function

This is $f(x)=x, \quad x \in(-\pi, \pi)$ and extended periodically. (More generally, the period can be L, arbitrary).

We have: f is odd.
Thus

$$
\begin{equation*}
a_{m}=0 ; \quad b_{m}=\frac{2}{\pi} \int_{0}^{\pi} x \sin (m \pi x) d x=\frac{2}{m}(-1)^{m+1} \tag{8}
\end{equation*}
$$

```
> assume(m,integer);
> F:=(x+Pi)/Pi/2-floor((x+Pi)/Pi/2)-1/2;
    F : = \frac { 1 } { 2 } \frac { x + \pi } { \pi } - \text { floor (} \frac { 1 } { 2 } \frac { x + \pi } { \pi } ) - \frac { 1 } { 2 }
> plot(F,x=-3*Pi..3*Pi,discont=true);
> cm:=2/Pi*int(F*sin(m*x),x=0..Pi);
\[
\begin{equation*}
c m:=\frac{(-1)^{1+m \sim}}{\pi m \sim} \tag{2}
\end{equation*}
\]
\(>\mathrm{S}:=\operatorname{sum}(\mathrm{cm} * \sin (\mathrm{~m} * \mathrm{x}), \mathrm{m}=1 \ldots 10)\);
\(S:=\frac{\sin (x)}{\pi}-\frac{1}{2} \frac{\sin (2 x)}{\pi}+\frac{1}{3} \frac{\sin (3 x)}{\pi}-\frac{1}{4} \frac{\sin (4 x)}{\pi}+\frac{1}{5} \frac{\sin (5 x)}{\pi}\)
\[
\begin{equation*}
-\frac{1}{6} \frac{\sin (6 x)}{\pi}+\frac{1}{7} \frac{\sin (7 x)}{\pi}-\frac{1}{8} \frac{\sin (8 x)}{\pi}+\frac{1}{9} \frac{\sin (9 x)}{\pi}-\frac{1}{10} \frac{\sin (10 x)}{\pi} \tag{3}
\end{equation*}
\]
\(>\operatorname{plot}(S, x=0\). Pi);
\(>\)
```

O. Costin: Fourier Series, §10.2-3

Extension of functions defined on $[0, L]$

Extension of functions defined on [0, L]
Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$.

Extension of functions defined on $[0, L]$
Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$.We then have to extend f periodically on $[-L, L]$ We can

Extension of functions defined on $[0, L]$
Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$. We then have to extend f periodically on $[-L, L]$ We can

1. Even-extend it: $g(x)=f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.

Extension of functions defined on $[0, L]$
Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$. We then have to extend f periodically on $[-L, L]$ We can

1. Even-extend it: $g(x)=f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.
2. Odd-extend it: $g(x)=-f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.

Extension of functions defined on $[0, L]$
Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$. We then have to extend f periodically on $[-L, L]$ We can

1. Even-extend it: $g(x)=f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.
2. Odd-extend it: $g(x)=-f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.
3. Extend it in many other number of ways.

Extension of functions defined on $[0, L]$

Often in PDEs f is defined only on $[0, L]$, but we want to work on $[-L, L]$.We then have to extend f periodically on $[-L, L]$ We can

1. Even-extend it: $g(x)=f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.
2. Odd-extend it: $g(x)=-f(-x)$ for $x<0$ and $g(x)=f(x)$ for $x \geq 0$.
3. Extend it in many other number of ways.
4. Then, the Fourier series, calculated on $[-L, L]$ will converge to f
O. Costin: Fourier Series, §10.2-3
on $[0, L]$ by the general theorem (and to whatever we extended it with elsewhere).

[^0]: O. Costin: Fourier Series, §10.2-3

