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Extension of functions defined on [0, L]

If we only want to calculate a sufficiently nice function on, say[0, L], it does not have to be periodic. We can just extend itperiodically. Eg, we extend it by zero on [−L, 0] and then repeatit periodically.
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Better suited, especially if we want a pure sine decomposition isthe odd extension:
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But maybe your function, in reality, followed the blue pathinstead. The Fourier series, calculated by this method, will givethe red function, nonetheless.
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PDEs
The Heat Equation.

(picture from Wikipedia) We start by considering the followingphysical problem: a rod of length L is placed between two icecubes, so that the temperature u at the endpoints is zero.At t = 0 u(x, 0) = f (x) in the rod, on (0, L) Say the whole rodwas at 20oC. What is the temperature distribution at time t?
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Note that now there are two variables, t and x. Whateverequation is applicable, it has to involve both x and t . It is adifferential equation, and since there are two independentvariables, it involves partial derivatives.
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Note that now there are two variables, t and x. Whateverequation is applicable, it has to involve both x and t . It is adifferential equation, and since there are two independentvariables, it involves partial derivatives. It is thus a PDE.
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Note that now there are two variables, t and x. Whateverequation is applicable, it has to involve both x and t . It is adifferential equation, and since there are two independentvariables, it involves partial derivatives. It is thus a PDE.The applicable PDE is the heat conduction equation, in short theheat equation,
ut = α2uxx
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The whole problem is
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)
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The whole problem is
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

Note that there are three specifications, the analog of initialconditions for ODEs.
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Note that there are three specifications, the analog of initialconditions for ODEs. These are the constraints written in blue.
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The whole problem is
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

Note that there are three specifications, the analog of initialconditions for ODEs. These are the constraints written in blue.This is a boundary value problem (u(0, t) = u(L, t) = 0) for theheat equation, with an initial condition: u(x, 0) = f (x).
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The whole problem is
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

Note that there are three specifications, the analog of initialconditions for ODEs. These are the constraints written in blue.This is a boundary value problem (u(0, t) = u(L, t) = 0) for theheat equation, with an initial condition: u(x, 0) = f (x).
α2 is a constant, depending only on the material of the rod, andit is called thermal diffusivity. See textbook for common valuesof α.
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The whole problem is
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

Note that there are three specifications, the analog of initialconditions for ODEs. These are the constraints written in blue.This is a boundary value problem (u(0, t) = u(L, t) = 0) for theheat equation, with an initial condition: u(x, 0) = f (x).
α2 is a constant, depending only on the material of the rod, andit is called thermal diffusivity. See textbook for common valuesof α. This is a linear PDE.
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One simple way to solve really simple, linear PDEs isseparation of variables.
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One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
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One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
It consists in seeking solutions in the form

u(x, t) = X(x)T(t)
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One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
It consists in seeking solutions in the form

u(x, t) = X(x)T(t)
that is in a product form, product of two functions each solelydepending on one variable.

O. Costin: §10.4-5 JJ J � I II Î →



11

One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
It consists in seeking solutions in the form

u(x, t) = X(x)T(t)
that is in a product form, product of two functions each solelydepending on one variable. In this sense the variables areseparated. But we cannot hope to find the solution to the wholeproblem in exactly this form.
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One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
It consists in seeking solutions in the form

u(x, t) = X(x)T(t)
that is in a product form, product of two functions each solelydepending on one variable. In this sense the variables areseparated. But we cannot hope to find the solution to the wholeproblem in exactly this form. Why should the variation intemperature not depend on x?
O. Costin: §10.4-5 JJ J � I II Î →



11

One simple way to solve really simple, linear PDEs isseparation of variables. This is a different from the same namedmethod in ordinary differential equations.
It consists in seeking solutions in the form

u(x, t) = X(x)T(t)
that is in a product form, product of two functions each solelydepending on one variable. In this sense the variables areseparated. But we cannot hope to find the solution to the wholeproblem in exactly this form. Why should the variation intemperature not depend on x?It must be faster near theendpoints and slower in the middle, farther from the ice cubes.
O. Costin: §10.4-5 JJ J � I II Î →
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous.
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous. Thus, like in ODEs, if u1, u2 aresolutions, then u1 + u2 is a solution too (check!)
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous. Thus, like in ODEs, if u1, u2 aresolutions, then u1 + u2 is a solution too (check!) Here again,
homogeneity is essential.
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous. Thus, like in ODEs, if u1, u2 aresolutions, then u1 + u2 is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutionsin nonlinear or nonhomogeneous equations.
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous. Thus, like in ODEs, if u1, u2 aresolutions, then u1 + u2 is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutionsin nonlinear or nonhomogeneous equations.Now, we can hope to find sufficiently many solutions u1, u2, etc.so that, when we add u1 +u2 +u3 + ... we get the actual solution.
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But the problem
ut = α2uxx, u(0, t) = u(L, t) = 0

is linear homogeneous. Thus, like in ODEs, if u1, u2 aresolutions, then u1 + u2 is a solution too (check!) Here again,
homogeneity is essential. We cannot simply add up solutionsin nonlinear or nonhomogeneous equations.Now, we can hope to find sufficiently many solutions u1, u2, etc.so that, when we add u1 +u2 +u3 + ... we get the actual solution.This really works for the heat equation and other simple linearproblems and it is known as the method of separation ofvariables.
O. Costin: §10.4-5 JJ J � I II Î →
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Now back to work.
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Now back to work.
ut = α2uxxtry

u(x, t) = X(x)T(t)Then ut = X(x)T ′(t); uxx = X′′(x)T(t).
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Now back to work.
ut = α2uxxtry

u(x, t) = X(x)T(t)Then ut = X(x)T ′(t); uxx = X′′(x)T(t). Thus
X(x)T ′(t) = α2X′′(x)T(t)
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Now back to work.
ut = α2uxxtry

u(x, t) = X(x)T(t)Then ut = X(x)T ′(t); uxx = X′′(x)T(t). Thus
X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)

α2T(t)︸ ︷︷ ︸depends on t alone
= X′′(x)

X(x)︸ ︷︷ ︸depends on x alone
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X(x)T ′(t) = α2X′′(x)T(t)
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X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)
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X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

How can a function of x exactly match a function of t?
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X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

How can a function of x exactly match a function of t? Theseare independent variables.
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= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

How can a function of x exactly match a function of t? Theseare independent variables. Thus they can be changedindependently.
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X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

How can a function of x exactly match a function of t? Theseare independent variables. Thus they can be changedindependently. One is fixed, say t and we change x.
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X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

How can a function of x exactly match a function of t? Theseare independent variables. Thus they can be changedindependently. One is fixed, say t and we change x. If X′′(x)
X(x)changes, then we have a contradiction, since T ′(t)

α2T(t) does notchange, since it does not depend on x.
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Thus X′′(x)
X(x) is simply a constant, say −λ.
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Thus X′′(x)
X(x) is simply a constant, say −λ. But then T ′(t)

α2T(t) isequal to the same constant, and it is a constant too.
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Thus X′′(x)
X(x) is simply a constant, say −λ. But then T ′(t)

α2T(t) isequal to the same constant, and it is a constant too.We arrive at a pair of ODEs:
T ′(t)
α2T(t) = −λ
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Thus X′′(x)
X(x) is simply a constant, say −λ. But then T ′(t)

α2T(t) isequal to the same constant, and it is a constant too.We arrive at a pair of ODEs:
T ′(t)
α2T(t) = −λ (1)
X′′(x)
X(x) = −λ
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Thus X′′(x)
X(x) is simply a constant, say −λ. But then T ′(t)

α2T(t) isequal to the same constant, and it is a constant too.We arrive at a pair of ODEs:
T ′(t)
α2T(t) = −λ (1)
X′′(x)
X(x) = −λ (2)

Now, (1) is an initial value problem (since T(0) is given), while(2) is a boundary value problem since it is subject to theconditions X(0) = 0, X(L) = 0 (where the ice cubes lie).
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T ′(t)
α2T(t) = −λ
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T ′(t)
α2T(t) = −λ (3)
X′′(x)
X(x) = −λ
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T ′(t)
α2T(t) = −λ (3)
X′′(x)
X(x) = −λ (4)

Note that the boundary value problem (4) is an eigenvalueproblem!
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T ′(t)
α2T(t) = −λ (3)
X′′(x)
X(x) = −λ (4)

Note that the boundary value problem (4) is an eigenvalueproblem! Indeed, it is
X′′(x) = −λX(x); X(0) = 0, X(L) = 0
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T ′(t)
α2T(t) = −λ (3)
X′′(x)
X(x) = −λ (4)

Note that the boundary value problem (4) is an eigenvalueproblem! Indeed, it is
X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (5)

where we seek nonzero solutions! (a zero solution would nothelp much here).
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (6)We studied (6) before.
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (6)We studied (6) before. Look at that section.
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (6)We studied (6) before. Look at that section. The general solutionis sine+cosine of √λ; only sin(0)=0, thus it is a pure sine, but tovanish at L we need √λL = nπ and thus all the eigenvalues forthis problem are
λn = n2π2/L2, n = 1, 2, 3, ...
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (6)We studied (6) before. Look at that section. The general solutionis sine+cosine of √λ; only sin(0)=0, thus it is a pure sine, but tovanish at L we need √λL = nπ and thus all the eigenvalues forthis problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (6)We studied (6) before. Look at that section. The general solutionis sine+cosine of √λ; only sin(0)=0, thus it is a pure sine, but tovanish at L we need √λL = nπ and thus all the eigenvalues forthis problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)

We found infinitely many solutions!
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For each of them, we have the T(t) equation,
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For each of them, we have the T(t) equation,
T ′n(t)
α2Tn(t) = −λn that is T ′n(t) = (−n2π2/L2)α2Tn(t), n = 1, 2, 3, ...
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For each of them, we have the T(t) equation,
T ′n(t)
α2Tn(t) = −λn that is T ′n(t) = (−n2π2/L2)α2Tn(t), n = 1, 2, 3, ...

which gives immediately
Tn(t) = exp(−n2α2π2t/L2)
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For each of them, we have the T(t) equation,
T ′n(t)
α2Tn(t) = −λn that is T ′n(t) = (−n2π2/L2)α2Tn(t), n = 1, 2, 3, ...

which gives immediately
Tn(t) = exp(−n2α2π2t/L2)

Putting Xn and Tn together –remember,
un(x, t) = Xn(x)Tn(t) we have:

un(x, t) = cn exp(−n2α2π2t/L2) sin(nπx/L)
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Now we really have many solutions, as desired.

O. Costin: §10.4-5 JJ J � I II Î →



19

Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (7)
is also a solution of the problem.
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Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (7)
is also a solution of the problem.Indeed, u(0, t) = u(L, t) = 0,
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Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (7)
is also a solution of the problem.Indeed, u(0, t) = u(L, t) = 0,How about the initial condition, u(x, 0) = f (x) = 20 on (0, L)?Can it be fitted by (9)?
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Let’s try.
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Let’s try.
f (x) = ∞∑

n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑
n=1 cn sin(nπx/L)
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Let’s try.
f (x) = ∞∑

n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑
n=1 cn sin(nπx/L)

But this is a Fourier sine decomposition, on [−L, L] (because of“nπx/L”, the argument of sin.
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n=1 cn sin(nπx/L)

But this is a Fourier sine decomposition, on [−L, L] (because of“nπx/L”, the argument of sin. So, we will extend f , initiallydefined on (0, L) as an odd function (to be able to get a puresine Fourier series).
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Let’s try.
f (x) = ∞∑

n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑
n=1 cn sin(nπx/L)

But this is a Fourier sine decomposition, on [−L, L] (because of“nπx/L”, the argument of sin. So, we will extend f , initiallydefined on (0, L) as an odd function (to be able to get a puresine Fourier series). The function to be worked with is thus:
f (x) = {

−20 for x ∈ (−L, 0)20 for x ∈ (0, L)
O. Costin: §10.4-5 JJ J � I II Î →



20

Let’s try.
f (x) = ∞∑

n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑
n=1 cn sin(nπx/L)

But this is a Fourier sine decomposition, on [−L, L] (because of“nπx/L”, the argument of sin. So, we will extend f , initiallydefined on (0, L) as an odd function (to be able to get a puresine Fourier series). The function to be worked with is thus:
f (x) = {

−20 for x ∈ (−L, 0)20 for x ∈ (0, L) (8)
Since this is indeed an odd function, the coefficients cn are
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given by
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given by
1
L

∫ L

0 f (x) sin(nπx/L)dx = 1
L

∫ L

0 20 sin(nπx/L)dx = 40 1− (−1)n
nπ
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given by
1
L

∫ L

0 f (x) sin(nπx/L)dx = 1
L

∫ L

0 20 sin(nπx/L)dx = 40 1− (−1)n
nπ

The complete solution is thus

u(x, t) = 40 ∞∑
n=1

1− (−1)n
nπ exp(−n2π2α2t/L2) sin(nπx/L)
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The complete solution is thus
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