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Partial differential equations, distinctive features; simple
examples.Possibly the simplest PDE that we can imagine is

∂u(x, t)
∂t = 0

The general solution is
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Partial differential equations, distinctive features; simple
examples.Possibly the simplest PDE that we can imagine is

∂u(x, t)
∂t = 0

The general solution is
u(x, t) = f (x)

for any function f !Solutions of PDEs always have “functional degree of freedom”(as opposed to free constants in the case of ODEs).
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Another simple example:
∂u(x, t)
∂t = ∂u(x, t)

∂x (1)
Claim: the general solution is
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Another simple example:
∂u(x, t)
∂t = ∂u(x, t)

∂x (1)
Claim: the general solution is f (x + t), for any differentiablefunction f . Indeed, by the chain rule

∂f (x + t)
∂t = f ′(x + t) = ∂f (x + t)

∂x
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Another simple example:
∂u(x, t)
∂t = ∂u(x, t)

∂x (1)
Claim: the general solution is f (x + t), for any differentiablefunction f . Indeed, by the chain rule

∂f (x + t)
∂t = f ′(x + t) = ∂f (x + t)

∂x

Exercise: Show that there are no other solutions!
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Another simple example:
∂u(x, t)
∂t = ∂u(x, t)

∂x (1)
Claim: the general solution is f (x + t), for any differentiablefunction f . Indeed, by the chain rule

∂f (x + t)
∂t = f ′(x + t) = ∂f (x + t)

∂x

Exercise: Show that there are no other solutions!What do weneed to specify to determine the particular solution we areinterested in? Since we have functional degree of freedom, weneed to specify, say an initial function.
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∂u(x, t)
∂t = ∂u(x, t)

∂x
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x).

O. Costin: §10.4-5 JJ J � I II Î →



3

∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x),
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x), that is f = sin3,
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x), that is f = sin3, that is u(x, t) = sin3(x + t).

ut = α2uxx
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x), that is f = sin3, that is u(x, t) = sin3(x + t).

ut = α2uxxThis involves now two derivatives in x, more information isneeded. For instance
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x), that is f = sin3, that is u(x, t) = sin3(x + t).

ut = α2uxxThis involves now two derivatives in x, more information isneeded. For instance
u(x, 0); and u(0, t) and u(0, L)
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∂u(x, t)
∂t = ∂u(x, t)

∂x (2)For instance (2) can be solved uniquely if we specify
u(x, 0) = U(x). Say, we give u(x, 0) = sin3(x). Then indeed, the
general solution f (x + t) must satisfy the condition
f (x + 0) = sin3(x), that is f = sin3, that is u(x, t) = sin3(x + t).

ut = α2uxxThis involves now two derivatives in x, more information isneeded. For instance
u(x, 0); and u(0, t) and u(0, L)
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For instance
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)
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For instance
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

un(x, t) = cnexp(−n2α2π2t/L2)sin(nπx/L)is a particular solution for any n, and any constant cn.
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For instance
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

un(x, t) = cnexp(−n2α2π2t/L2)sin(nπx/L)is a particular solution for any n, and any constant cn. What wemean by un being a solution of the PDE is precisely that(un(x, t))t = α2(un(x, t))xx for any t and x.
1. ut = −(n2α2π2/L2) exp(−n2α2π2t/L2)cnsin(nπx/L)
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For instance
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

un(x, t) = cnexp(−n2α2π2t/L2)sin(nπx/L)is a particular solution for any n, and any constant cn. What wemean by un being a solution of the PDE is precisely that(un(x, t))t = α2(un(x, t))xx for any t and x.
1. ut = −(n2α2π2/L2) exp(−n2α2π2t/L2)cnsin(nπx/L)
2. α2uxx = cnα2(−(nπ/L)2 sin(nπx/L))exp(−n2α2π2t/L2)
O. Costin: §10.4-5 JJ J � I II Î →



4

For instance
ut = α2uxx, u(0, t) = u(L, t) = 0, u(x, 0) = f (x)

un(x, t) = cnexp(−n2α2π2t/L2)sin(nπx/L)is a particular solution for any n, and any constant cn. What wemean by un being a solution of the PDE is precisely that(un(x, t))t = α2(un(x, t))xx for any t and x.
1. ut = −(n2α2π2/L2) exp(−n2α2π2t/L2)cnsin(nπx/L)
2. α2uxx = cnα2(−(nπ/L)2 sin(nπx/L))exp(−n2α2π2t/L2)
3. So: ut = α2uxx for all x and t .
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un(x, t) = cnexp(−n2α2π2t/L2)sin(nπx/L)
4. Boundary conditions? Check: u(0, t) = u(L, t) = 0.
5. Initial condition? u(x, 0) = cn sin(nπx/L). This is not generalenough. We need more solutions.
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Separation of variables.
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Separation of variables.
ut = α2uxx

Find all solutions of the form
u(x, t) = X(x)T(t) :
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Separation of variables.
ut = α2uxx

Find all solutions of the form
u(x, t) = X(x)T(t) :

ut = X(x)T ′(t); uxx = X′′(x)T(t).
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Separation of variables.
ut = α2uxx

Find all solutions of the form
u(x, t) = X(x)T(t) :

ut = X(x)T ′(t); uxx = X′′(x)T(t). Thus
X(x)T ′(t) = α2X′′(x)T(t)
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Separation of variables.
ut = α2uxx

Find all solutions of the form
u(x, t) = X(x)T(t) :

ut = X(x)T ′(t); uxx = X′′(x)T(t). Thus
X(x)T ′(t) = α2X′′(x)T(t) so T ′(t)

α2T(t)︸ ︷︷ ︸depends on t alone
= X′′(x)

X(x)︸ ︷︷ ︸depends on x alone
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T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ.
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T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ. Then T ′(t)

α2T(t) is equal tothe same constant.
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T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ. Then T ′(t)

α2T(t) is equal tothe same constant.We arrive at a pair of ODEs:
T ′(t)
α2T(t) = −λ
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T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ. Then T ′(t)

α2T(t) is equal tothe same constant.We arrive at a pair of ODEs:
T ′(t)
α2T(t) = −λ (3)
X′′(x)
X(x) = −λ (4)
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T ′(t)
α2T(t) = −λ
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T ′(t)
α2T(t) = −λ (5)
X′′(x)
X(x) = −λ
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T ′(t)
α2T(t) = −λ (5)
X′′(x)
X(x) = −λ (6)

The boundary value problem (6) is an eigenvalue problem
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T ′(t)
α2T(t) = −λ (5)
X′′(x)
X(x) = −λ (6)

The boundary value problem (6) is an eigenvalue problem
X′′(x) = −λX(x); X(0) = 0, X(L) = 0

O. Costin: §10.4-5 JJ J � I II Î →



8

T ′(t)
α2T(t) = −λ (5)
X′′(x)
X(x) = −λ (6)

The boundary value problem (6) is an eigenvalue problem
X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (7)

where we seek nonzero solutions.

O. Costin: §10.4-5 JJ J � I II Î →



9

X′′(x) = −λX(x); X(0) = 0, X(L) = 0
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before.
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before. The eigenvalues for this problem are
λn = n2π2/L2, n = 1, 2, 3, ...
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before. The eigenvalues for this problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before. The eigenvalues for this problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)

For each of them, we have the T(t) equation,
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before. The eigenvalues for this problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)

For each of them, we have the T(t) equation,
T ′n(t)
α2Tn(t) = −λn that is T ′n(t) = (−n2π2/L2)α2Tn(t), n = 1, 2, 3, ...
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X′′(x) = −λX(x); X(0) = 0, X(L) = 0 (8)We studied (8) before. The eigenvalues for this problem are
λn = n2π2/L2, n = 1, 2, 3, ...

and the eigenfunctions are
Xn = (cn) sin(nπx/L)

For each of them, we have the T(t) equation,
T ′n(t)
α2Tn(t) = −λn that is T ′n(t) = (−n2π2/L2)α2Tn(t), n = 1, 2, 3, ...
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which gives immediately
Tn(t) = exp(−n2α2π2t/L2)
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which gives immediately
Tn(t) = exp(−n2α2π2t/L2)

Putting Xn and Tn together –remember,
un(x, t) = Xn(x)Tn(t) we have:

un(x, t) = cn exp(−n2α2π2t/L2) sin(nπx/L)

O. Costin: §10.4-5 JJ J � I II Î →



11

Now we really have many solutions, as desired.
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Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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Now we really have many solutions, as desired. Then, by thelinearity and homogeneity of the equation
u(x, t) = ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (9)
is also a solution of the problem. (We’ll deal with convergence:later.)

O. Costin: §10.4-5 JJ J � I II Î →



12

u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (10)

Initial condition We have
u(x, 0) = ∞∑

n=1 cn sin(nπx/L) (11)
Can this be now made to fit any initial temperature distribution,
u(x, 0) = U(x)? Yes, by the Fourier theorem.
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u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (10)

Initial condition We have
u(x, 0) = ∞∑

n=1 cn sin(nπx/L) (11)
Can this be now made to fit any initial temperature distribution,
u(x, 0) = U(x)? Yes, by the Fourier theorem. We are lookinghere for a Fourier sine decomposition of U on [0, L]
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u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (10)

Initial condition We have
u(x, 0) = ∞∑

n=1 cn sin(nπx/L) (11)
Can this be now made to fit any initial temperature distribution,
u(x, 0) = U(x)? Yes, by the Fourier theorem. We are lookinghere for a Fourier sine decomposition of U on [0, L] whichmeans we have to take the odd extension of U , on [−L, L].
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u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (10)

Initial condition We have
u(x, 0) = ∞∑

n=1 cn sin(nπx/L) (11)
Can this be now made to fit any initial temperature distribution,
u(x, 0) = U(x)? Yes, by the Fourier theorem. We are lookinghere for a Fourier sine decomposition of U on [0, L] whichmeans we have to take the odd extension of U , on [−L, L].Thatis, define U1(x) = −U(−x) if x < 0 and U1(x) = U(x) if x ≥ 0.
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U1(x) = −U(−x) if x < 0 and U1(x) = U(x) if x ≥ 0That ensures that
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U1(x) = −U(−x) if x < 0 and U1(x) = U(x) if x ≥ 0That ensures that (1) U1 has a pure sine FS.
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U1(x) = −U(−x) if x < 0 and U1(x) = U(x) if x ≥ 0That ensures that (1) U1 has a pure sine FS. (2) U1=U on theinterval of interest, [0, L].
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f (x) = ∞∑
n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑

n=1 cn sin(nπx/L)
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f (x) = ∞∑
n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑

n=1 cn sin(nπx/L)
In our example U(x) = 20, thus the function to be worked withis
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f (x) = ∞∑
n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑

n=1 cn sin(nπx/L)
In our example U(x) = 20, thus the function to be worked withis

U1(x) = {
−20 for x ∈ (−L, 0)20 for x ∈ (0, L)
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f (x) = ∞∑
n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑

n=1 cn sin(nπx/L)
In our example U(x) = 20, thus the function to be worked withis

U1(x) = {
−20 for x ∈ (−L, 0)20 for x ∈ (0, L) (12)

Since this is indeed an odd function, the coefficients cn aregiven by
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f (x) = ∞∑
n=1 cn exp(−n2π2α20/L2) sin(nπx/L) = ∞∑

n=1 cn sin(nπx/L)
In our example U(x) = 20, thus the function to be worked withis

U1(x) = {
−20 for x ∈ (−L, 0)20 for x ∈ (0, L) (12)

Since this is indeed an odd function, the coefficients cn aregiven by
1
L

∫ L

0 U1 sin(nπx/L)dx = 1
L

∫ L

0 20 sin(nπx/L)dx = 40 1− (−1)n
nπ
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0 U1 sin(nπx/L)dx = 1
L

∫ L

0 20 sin(nπx/L)dx = 40 1− (−1)n
nπ
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The complete solution is thus

u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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The complete solution is thus

u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (13)

u(x, t) = 40 ∞∑
n=1

1− (−1)n
nπ exp(−n2π2α2t/L2) sin(nπx/L)
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The complete solution is thus

u(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L) (13)

u(x, t) = 40 ∞∑
n=1

1− (−1)n
nπ exp(−n2π2α2t/L2) sin(nπx/L) (14)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek tosolve
ut = α2uxx, u(0, t) = T1, u(L, t) = T2, u(x, 0) = f (x)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek tosolve
ut = α2uxx, u(0, t) = T1, u(L, t) = T2, u(x, 0) = f (x)

that is, we have different temperatures at the endpoints. As innonhomogeneous ODEs, the solution is essentially any solution
of the nonhomogeneous equation plus the general solution
of the homogeneous one.
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Indeed if u0 satisfies the eq, boundary conditions but notnecessarily the initial condition, then if we write u = u0 + v wehave (u0)t + vt = α2(u0)xx + vxx or vt + ((u0)t − (u0)xx)︸ ︷︷ ︸=0,by construction = α2vxx
We need v(0, t) + u0(0, t) = T1 but u0(0, t) = T1, by construction,so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,with homogneous boundary values, and initial condition
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2is easy to find. Look, for instance for solutions that don’tdepend on t . Then

uxx = 0,
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