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Partial differential equations, distinctive features; simple
examples.

Possibly the simplest PDE that we can imagine is

ou(x, t)
ot

— 0

The general solution is
u(x, f) = f(x)

for any function f!

Solutions of PDEs always have “functional degree of freedom”
(as opposed to free constants in the case of ODEs).
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Claim: the general solution is f(x + t), for any differentiable
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Exercise: Show that there are no other solutions!
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Another simple example:

Ou(x,t) Ou(x,t)
ot  ox

Claim: the general solution is f(x + t), for any differentiable
function f. Indeed, by the chain rule

of (x + t)
ot

of (x + t)
0x

= flx+1) =

Exercise: Show that there are no other solutions!\What do we
need to specify to determine the particular solution we are
interested in? Since we have functional degree of freedom, we
need to specify, say an initial function.

O. Costin: §10.4-5



ou(x, t) _ ou(x, t)

O. Costin: §10.4-5



ou(x, t) _ ou(x, t)

ot ox
For instance (2) can be solved uniquely if we specify

u(x,0) = Ulx).
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ou(x,t) oulx,t)

ot  ox
For instance (2) can be solved uniquely if we specify

u(x,0) = Ulx). Say, we give ulx,0) = sin°(x). Then indeed, the
general solution f(x + t) must satisfy the condition
f(x + 0) = sin®(x),

2)
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ou(x,t) oulx,t)
ot  ox
For instance (2) can be solved uniquely if we specify
u(x,0) = Ulx). Say, we give ulx,0) = sin°(x). Then indeed, the
general solution f(x + t) must satisfy the condition

f(x + 0) = sin®(x), that is f = sin’,

2)
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ou(x,t) oulx,t)
ot  Ox
For instance (2) can be solved uniquely if we specify
u(x,0) = Ulx). Say, we give ulx,0) = sin°(x). Then indeed, the
general solution f(x + t) must satisfy the condition
f(x + 0) = sin®(x), that is f = sin’, that is u(x, t) = sin’(x + t).

2)
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ou(x,t) oulx,t)
ot  ox
For instance (2) can be solved uniquely if we specify
u(x,0) = Ulx). Say, we give ulx,0) = sin°(x). Then indeed, the
general solution f(x + t) must satisfy the condition
f(x + 0) = sin®(x), that is f = sin’, that is u(x, t) = sin’(x + t).

2)

This involves now two derivatives in x, more information is
needed. For instance
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For instance (2) can be solved uniquely if we specify
u(x,0) = Ulx). Say, we give ulx,0) = sin°(x). Then indeed, the
general solution f(x + t) must satisfy the condition
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2)

This involves now two derivatives in x, more information is
needed. For instance

u(x,0); and wu(0,t) and u(0,L)
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For instance

ur = @?Uye, ul0,t) = u(L,t) =0, ulx,0) = f(x)
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For instance

ur = @?Uye, ul0,t) = u(L,t) =0, ulx,0) = f(x)

up(x, t) = cpexp(—namx?t/L?)sin(nsx/L)

is a particular solution for any n, and any constant c,,.
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For instance

ur = @?Uye, ul0,t) = u(L,t) =0, ulx,0) = f(x)

up(x, t) = cpexp(—namx?t/L?)sin(nsx/L)
is a particular solution for any n, and any constant c¢,,. What we

mean by u, being a solution of the PDE is precisely that
(un(x, 1)) = a’(uy(x, ), for any t and x.

1. uy = —(n®a?m1?/L?) exp(—na?m?t/L?)cpsin(nirx/L)
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For instance

ur = @?Uye, ul0,t) = u(L,t) =0, ulx,0) = f(x)

up(x, t) = cpexp(—namx?t/L?)sin(nsx/L)
is a particular solution for any n, and any constant c¢,,. What we

mean by u, being a solution of the PDE is precisely that
(un(x, 1)) = a’(uy(x, ), for any t and x.

1. us = —(n%a®m?/L?) exp(—n’a®m*t/L?)cpsin(nirx/L)

2. APUyr = cp®(—(nst/L)? sin(nsrx/L))exp(—n?a?m?t/L?)
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For instance

ur = @?Uye, ul0,t) = u(L,t) =0, ulx,0) = f(x)

up(x, t) = cpexp(—namx?t/L?)sin(nsx/L)
is a particular solution for any n, and any constant c¢,,. What we

mean by u, being a solution of the PDE is precisely that
(un(x, 1)) = a’(uy(x, ), for any t and x.

1. us = —(n%a®m?/L?) exp(—n’a®m*t/L?)cpsin(nirx/L)

2. APUry = cpa’(—(nsr/L)? sin(nsrx/L))exp(—n?a?m*t/L?)

2

3. SO: uy = a“u,, for all x and t.
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upl(x, t) = cpexp(—na’mx?t/L%)sin(nsx/L)
4. Boundary conditions? Check: u(0, t) = u(L, t) = 0.

5. Initial condition? u(x,0) = ¢, sin(nstx/L). This is not general
enough. We need more solutions.
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Separation of variables.
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Separation of variables.
Ut — CXQUII

Find all solutions of the form

u(x, t) = X(x)T(t) :
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Separation of variables.
Ut — CXQUII
Find all solutions of the form

u(x, t) = X(x)T(t) :

uy = X(x)T'(t); uxx = X"(2)T(8).
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Separation of variables.
Ut — CXQUII
Find all solutions of the form

u(x, t) = X(x)T(t) :

ur = X(x)T'(t);, uyer = X"(x)T(t). Thus

X(x)T'(t) = a®X"(x)T(t)
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Separation of variables.

Ut — CXQUII

Find all solutions of the form
u(x, t) = X(x)T(t) :
ur = X(x)T'(t);, uyer = X"(x)T(t). Thus

depends on t alone depends on x alone
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T'(f) X" (x)

a?T(t) X(x)
N — N——
depends on t alone depends on x alone
X”(I)
Thus is simply a constant, say —A.
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T'(f) X" (x)

a?T(t) X(x)
N — N——
depends on t alone depends on x alone
X" (x) T'(t)

Thus X} is simply a constant, say —A. Then is equal to

the same constant.

a?T(t)
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T'(f) X" (x)

a?T(t) X(x)
N — N——
depends on t alone depends on x alone
X" (x) T'(t)

is simply a constant, say —A. Then

Thus X} is equal to

the same constant.

a?T(t)

We arrive at a pair of ODEs:

T'(t)

a®T(t) -
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T'(f) X" (x)

a?T(t) X(x)
N—— N——
depends on t alone depends on x alone
X" T'(t
Thus v g; is simply a constant, say —A. Then " 1(1 (>1‘) is equal to
the same constant.
We arrive at a pair of ODEs:
T(t)
= —A 3
a?T(t) (5)
X//<I>
= —A A
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a2T(t) 4
X”(I)
X(x) -

The boundary value problem (6) is an eigenvalue problem
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a2T(t) 4 )
X”(I)
X(x) - )

The boundary value problem (6) is an eigenvalue problem

X"x) = —AX(x); X(0)=0, X(L)=0
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a2T(t) 4 )
X//<I>
X(x) - ©

The boundary value problem (6) is an eigenvalue problem
X"(x) = =AX(x); X(0)=0, X(L)=0 (7)

where we seek nonzero solutions.

O. Costin: §10.4-5



X"(x) = =AX(x); X(0)=0, X(L)=0
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X”(I> _
We studied (8) before.

O. Costin: §10.4-5

—AX(x); X(0)



X"(x) = —AX(x); X(0) =0, X(L)=0 (8)

We studied (8) before. The eigenvalues for this problem are

Ay = n°m?/L% n =1,2,3, ...
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X"(x) = —AX(x); X(0) =0, X(L) =0 (8)

We studied (8) before. The eigenvalues for this problem are
An = n*7%/L%,n =1,2,3, ...
and the eigenfunctions are

X, = (cp) sin(nsrx /L)
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We studied (8) before. The eigenvalues for this problem are
An = n*7%/L%,n =1,2,3, ...
and the eigenfunctions are

X, = (cp) sin(nsrx /L)

For each of them, we have the T(f) equation,
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X"(x) = —AX(x); X(0) =0, X(L) =0 (8)

We studied (8) before. The eigenvalues for this problem are
An = n*7%/L%,n =1,2,3, ...
and the eigenfunctions are

X, = (cp) sin(nsrx /L)

For each of them, we have the T(f) equation,

Th(1)
a’Ty(t)

— —Ap thatis T(t) = (—n°m?/L3)a®T,(t),n = 1,2,5, ...
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X"(x) = —AX(x); X(0) =0, X(L) =0 (8)

We studied (8) before. The eigenvalues for this problem are
An = n*7%/L%,n =1,2,3, ...
and the eigenfunctions are

X, = (cp) sin(nsrx /L)

For each of them, we have the T(f) equation,

Th(1)
a’Ty(t)

— —Ap thatis T(t) = (—n°m?/L3)a®T,(t),n = 1,2,5, ...
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which gives immediately

T,(t) = exp(—n?a?mt/L?)
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which gives immediately
T,(t) = exp(—n?a?mt/L?)
Putting X,, and T, together -remember,
un(x, t) = X,p(x)Ty(f) we have:

unlx, t) = ¢, exp(—n?a’m?t/L?) sin(nsx/L)
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Now we really have many solutions, as desired.
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Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n?m2a’t/L?) sin(nwx/L)
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Now we really have many solutions, as desired. Then, by the
linearity and homogeneity of the equation

ch exp(—n®m?a®t/L?) sin(nx/L) (9)

is also a solution of the problem. (We'll deal with convergence:
later.)
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ch exp(—n?ma’t/L?) sin(nsx/L)
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ch exp(—n?ma’t/L?) sin(nsx/L) (10)

Initial condition We have

_ icn sin(nsrx/L) (11)

Can this be now made to {fit any initial temperature distribution,
u(x,0) = U(x)? Yes, by the Fourier theorem.
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ch exp(—n?ma’t/L?) sin(nsx/L) (10)

Initial condition We have

_ icn sin(nsrx/L) (11)

Can this be now made to {fit any initial temperature distribution,
u(x,0) = U(x)? Yes, by the Fourier theorem. We are looking
here for a Fourier sine decomposition of U on [0, L]
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ch exp(—n?ma’t/L?) sin(nsx/L) (10)

Initial condition We have

_ icn sin(nsrx/L) (11)

Can this be now made to {fit any initial temperature distribution,
u(x,0) = U(x)? Yes, by the Fourier theorem. We are looking
here for a Fourier sine decomposition of U on [0, L] which
means we have to take the odd extension of U, on [—L, L]|.



ch exp(—n?ma’t/L?) sin(nsx/L) (10)

Initial condition We have

_ icn sin(nsrx/L) (11)

Can this be now made to {fit any initial temperature distribution,
u(x,0) = U(x)? Yes, by the Fourier theorem. We are looking
here for a Fourier sine decomposition of U on [0, L] which
means we have to take the odd extension of U, on [—L, L].That

is, define Uj(x) = —U(—x) if x < 0 and Uy(x) = Ulx) if x > 0.



Uplx) = —U(—x) if x <0 and Us(x) = Ulx) if x > 0

That ensures that
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Uplx) = —U(—x) if x <0 and Us(x) = Ulx) if x > 0

That ensures that (1) U; has a pure sine FS.
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Uplx) = —U(—x) if x <0 and Us(x) = Ulx) if x > 0

That ensures that (1) U; has a pure sine FS. (2) U;=U on the
interval of interest, |0, L|.
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ch exp(—n?m?a?0/L?) sin(nsx/L) = Z cp sin(nsrx/L)

O. Costin: §10.4-5



ch exp(—n?m?a?0/L?) sin(nsx/L) = Z cp sin(nsrx/L)

In our example U(x) = 20, thus the function to be worked with
1S
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ch exp(—n?m?a?0/L?) sin(nsx/L) = Z cp sin(nsrx/L)

In our example U(x) = 20, thus the function to be worked with
1S )
—20 for x € (L, 0)

Usi(x) = -
1 20 for x € (0, 1)
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ch exp(—n?m?a?0/L?) sin(nsx/L) = Z cp sin(nsrx/L)

In our example U(x) = 20, thus the function to be worked with
1S i

—20 for x € (—L,0
Uilx) - Lo 12
120 for x € (0, L)

Since this is indeed an odd function, the coefficients ¢, are
given by
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ch exp(—n?m?a?0/L?) sin(nsx/L) = Z cp sin(nsrx/L)

In our example U(x) = 20, thus the function to be worked with
1S i

—20 for x € (—L,0
Uilx) - Lo 12
120 for x € (0, L)

Since this is indeed an odd function, the coefficients ¢, are
given by

1 1

i, L 1 L (___1)11
= / Uj sin(nsrx/L)dx = — / 20 sin(nsrx/L)dx = 40
0 0

nit

L L
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The complete solution is thus

ch exp(—n®m?a’t/L?) sin(nx/L)
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The complete solution is thus

ch exp(—n®m?a’t/L?) sin(nx/L) (13)

u(x, t) = 4021 _n<7_T1) exp(—n?ma’t/L?) sin(nsx/L)
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The complete solution is thus

ch exp(—n®m?a’t/L?) sin(nx/L) (13)

u(x, t) = 402 exp (—n?m?a’t/L?) sin(nmx/L)  (14)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to
solve

Uy = Uy, ul0,t) = Ty, ull, t) = Ty, ulx,0) = f(x)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to
solve

Uy = Uy, ul0,t) = Ty, ull, t) = Ty, ulx,0) = f(x)

that is, we have different temperatures at the endpoints. As in
nonhomogeneous ODEs, the solution is essentially any solution
of the nonhomogeneous equation plus the general solution
of the homogeneous one.



Indeed if ug satisfies the eq, boundary conditions but not

necessarily the initial condition, then if we write u = ug + v we

have (uO)t + Vi = GQ(UO)JCI + Vyx OF V¢ + ((u0>t — (uO)xx> — OSQVxx

N 7

=0,by construction

We need v(0, t) + ug(0, t) = Ty but up(0, t) = Ty, by construction,
so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,
with homogneous boundary values, and initial condition

v(x,0) + uplx,0) = flx) =

O. Costin: §10.4-5



Indeed if ug satisfies the eq, boundary conditions but not

necessarily the initial condition, then if we write u = ug + v we

have (uO)t + Vi = a2(u0)xx + Vyx OF V¢ + ((u0>t — (uO)xx> — OSQVxx

N 7

=0,by construction

We need v(0, t) + ug(0, t) = Ty but up(0, t) = Ty, by construction,
so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,
with homogneous boundary values, and initial condition

v(x,0) + uolx,0) = flx) = vix,0) = f(x) — uolx, 0)
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on t. Then

uxx — O,
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on t. Then
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on t. Then

Uy =0 =u=Ax+B AO+B=T,AL+B=1T,
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on t. Then

Uy =0 =u=Ax+B AO+B=T,AL+B=1T,
B=T,A= (T, —T)/L;
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A particular solution of
ur = Uy, ul0,t) = Ty, ull,t) = Ty

is easy to find. Look, for instance for solutions that don't
depend on t. Then

Uy =0 =u=Ax+B AO+B=T,AL+B=1T,
B=T,A = (TQ — T1>/L, Uy = I(TQ — T1>/L + T (15)

Then, the problem for v becomes

v = a?vyey, v(0,t) =0,v(L, t) =0,v(x,0) = flx)—[x(To—T4)/L+T]
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