§10.5-10.6 Partial differential

 equations, separation of variables.
§10.5-10.6 Partial differential equations, separation of variables.

O. Costin: §10.4-5

Partial differential equations, distinctive features; simple

 examples.Possibly the simplest PDE that we can imagine is

$$
\frac{\partial u(x, t)}{\partial t}=0
$$

The general solution is

Partial differential equations, distinctive features; simple

 examples.Possibly the simplest PDE that we can imagine is

$$
\frac{\partial u(x, t)}{\partial t}=0
$$

The general solution is

$$
u(x, t)=f(x)
$$

for any function f !
Solutions of PDEs always have "functional degree of freedom" (as opposed to free constants in the case of ODEs).

Another simple example:

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{1}
\end{equation*}
$$

Claim: the general solution is

Another simple example:

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{1}
\end{equation*}
$$

Claim: the general solution is $f(x+t)$, for any differentiable function f. Indeed, by the chain rule

$$
\frac{\partial f(x+t)}{\partial t}=f^{\prime}(x+t)=\frac{\partial f(x+t)}{\partial x}
$$

Another simple example:

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{1}
\end{equation*}
$$

Claim: the general solution is $f(x+t)$, for any differentiable function f. Indeed, by the chain rule

$$
\frac{\partial f(x+t)}{\partial t}=f^{\prime}(x+t)=\frac{\partial f(x+t)}{\partial x}
$$

Exercise: Show that there are no other solutions!

Another simple example:

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{1}
\end{equation*}
$$

Claim: the general solution is $f(x+t)$, for any differentiable function f. Indeed, by the chain rule

$$
\frac{\partial f(x+t)}{\partial t}=f^{\prime}(x+t)=\frac{\partial f(x+t)}{\partial x}
$$

Exercise: Show that there are no other solutions! What do we need to specify to determine the particular solution we are interested in? Since we have functional degree of freedom, we need to specify, say an initial function.

$$
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x}
$$

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$.

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$,

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$, that is $f=\sin ^{3}$,

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$, that is $f=\sin ^{3}$, that is $u(x, t)=\sin ^{3}(x+t)$.

$$
u_{t}=\alpha^{2} u_{x x}
$$

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$, that is $f=\sin ^{3}$, that is $u(x, t)=\sin ^{3}(x+t)$.

$$
u_{t}=\alpha^{2} u_{x x}
$$

This involves now two derivatives in x, more information is needed. For instance

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$, that is $f=\sin ^{3}$, that is $u(x, t)=\sin ^{3}(x+t)$.

$$
u_{t}=\alpha^{2} u_{x x}
$$

This involves now two derivatives in x, more information is needed. For instance

$$
u(x, 0) ; \text { and } u(0, t) \text { and } u(0, L)
$$

$$
\begin{equation*}
\frac{\partial u(x, t)}{\partial t}=\frac{\partial u(x, t)}{\partial x} \tag{2}
\end{equation*}
$$

For instance (2) can be solved uniquely if we specify $u(x, 0)=U(x)$. Say, we give $u(x, 0)=\sin ^{3}(x)$. Then indeed, the general solution $f(x+t)$ must satisfy the condition $f(x+0)=\sin ^{3}(x)$, that is $f=\sin ^{3}$, that is $u(x, t)=\sin ^{3}(x+t)$.

$$
u_{t}=\alpha^{2} u_{x x}
$$

This involves now two derivatives in x, more information is needed. For instance

$$
u(x, 0) ; \text { and } u(0, t) \text { and } u(0, L)
$$

For instance

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x)
$$

For instance

$$
\begin{gathered}
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x) \\
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
\end{gathered}
$$

$$
\text { is a particular solution for any } n \text {, and any constant } c_{n} \text {. }
$$

For instance

$$
\begin{gathered}
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x) \\
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
\end{gathered}
$$

is a particular solution for any n, and any constant c_{n}. What we mean by u_{n} being a solution of the PDE is precisely that $\left(u_{n}(x, t)\right)_{t}=\alpha^{2}\left(u_{n}(x, t)\right)_{x x}$ for any t and x.

1. $u_{t}=-\left(n^{2} \alpha^{2} \pi^{2} / L^{2}\right) \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) c_{n} \sin (n \pi x / L)$

For instance

$$
\begin{gathered}
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x) \\
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
\end{gathered}
$$

is a particular solution for any n, and any constant c_{n}. What we mean by u_{n} being a solution of the PDE is precisely that $\left(u_{n}(x, t)\right)_{t}=\alpha^{2}\left(u_{n}(x, t)\right)_{x x}$ for any t and x.

1. $u_{t}=-\left(n^{2} \alpha^{2} \pi^{2} / L^{2}\right) \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) c_{n} \sin (n \pi x / L)$
2. $\alpha^{2} u_{x x}=c_{n} \alpha^{2}\left(-(n \pi / L)^{2} \sin (n \pi x / L)\right) \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right)$

For instance

$$
\begin{gathered}
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=u(L, t)=0, u(x, 0)=f(x) \\
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
\end{gathered}
$$

is a particular solution for any n, and any constant c_{n}. What we mean by u_{n} being a solution of the PDE is precisely that $\left(u_{n}(x, t)\right)_{t}=\alpha^{2}\left(u_{n}(x, t)\right)_{x x}$ for any t and x.

1. $u_{t}=-\left(n^{2} \alpha^{2} \pi^{2} / L^{2}\right) \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) c_{n} \sin (n \pi x / L)$
2. $\alpha^{2} u_{x x}=c_{n} \alpha^{2}\left(-(n \pi / L)^{2} \sin (n \pi x / L)\right) \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right)$
3. So: $u_{t}=\alpha^{2} u_{x x}$ for all x and t.

$$
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
$$

4. Boundary conditions? Check: $u(0, t)=u(L, t)=0$.
5. Initial condition? $u(x, 0)=c_{n} \sin (n \pi x / L)$. This is not general enough. We need more solutions.

Separation of variables.
O. Costin: §10.4-5

Separation of variables.

$$
u_{t}=\alpha^{2} u_{x x}
$$

Find all solutions of the form

$$
u(x, t)=X(x) T(t):
$$

Separation of variables.

$$
u_{t}=\alpha^{2} u_{x x}
$$

Find all solutions of the form

$$
\begin{gathered}
u(x, t)=X(x) T(t): \\
u_{t}=X(x) T^{\prime}(t) ; \quad u_{x x}=X^{\prime \prime}(x) T(t) .
\end{gathered}
$$

Separation of variables.

$$
u_{t}=\alpha^{2} u_{x x}
$$

Find all solutions of the form

$$
u(x, t)=X(x) T(t):
$$

$$
u_{t}=X(x) T^{\prime}(t) ; u_{x x}=X^{\prime \prime}(x) T(t) . \text { Thus }
$$

$$
X(x) T^{\prime}(t)=\alpha^{2} X^{\prime \prime}(x) T(t)
$$

Separation of variables.

$$
u_{t}=\alpha^{2} u_{x x}
$$

Find all solutions of the form

$$
u(x, t)=X(x) T(t):
$$

$u_{t}=X(x) T^{\prime}(t) ; u_{x x}=X^{\prime \prime}(x) T(t)$. Thus

$$
X(x) T^{\prime}(t)=\alpha^{2} X^{\prime \prime}(x) T(t) \text { so } \underbrace{\frac{T^{\prime}(t)}{\alpha^{2} T(t)}}_{\text {depends on } t \text { alone }}=\underbrace{\frac{X^{\prime \prime}(x)}{X(x)}}_{\text {depends on } x \text { alone }}
$$

Thus $\frac{X^{\prime \prime}(x)}{X(x)}$ is simply a constant, say $-\lambda$.

Thus $\frac{X^{\prime \prime}(x)}{X(x)}$ is simply a constant, say $-\lambda$. Then $\frac{T^{\prime}(t)}{\alpha^{2} T(t)}$ is equal to the same constant.

$$
\underbrace{\frac{T^{\prime}(t)}{\alpha^{2} T(t)}}_{\text {depends on } t \text { alone }}=\underbrace{\frac{X^{\prime \prime}(x)}{X^{X(x)}}}_{\text {depends on } x \text { alone }}
$$

Thus $\frac{X^{\prime \prime}(x)}{X(x)}$ is simply a constant, say $-\lambda$. Then $\frac{T^{\prime}(t)}{\alpha^{2} T(t)}$ is equal to the same constant.

We arrive at a pair of ODEs:

$$
\frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda
$$

$$
\underbrace{\frac{T^{\prime}(t)}{\alpha^{2} T(t)}}_{\text {depends on } t \text { alone }}=\underbrace{\frac{X^{\prime \prime}(x)}{X^{X(x)}}}_{\text {depends on } x \text { alone }}
$$

Thus $\frac{X^{\prime \prime}(x)}{X(x)}$ is simply a constant, say $-\lambda$. Then $\frac{T^{\prime}(t)}{\alpha^{2} T(t)}$ is equal to the same constant.

We arrive at a pair of ODEs:

$$
\begin{align*}
\frac{T^{\prime}(t)}{\alpha^{2} T(t)} & =-\lambda \tag{3}\\
\frac{X^{\prime \prime}(x)}{X(x)} & =-\lambda \tag{4}
\end{align*}
$$

$$
\frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda
$$

O. Costin: §10.4-5

$$
\begin{equation*}
\frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda \tag{5}
\end{equation*}
$$

O. Costin: §10.4-5

$$
\begin{align*}
& \frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda \tag{5}\\
& \frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \tag{6}
\end{align*}
$$

The boundary value problem (6) is an eigenvalue problem

$$
\begin{align*}
& \frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda \tag{5}\\
& \frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \tag{6}
\end{align*}
$$

The boundary value problem (6) is an eigenvalue problem

$$
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0
$$

$$
\begin{align*}
& \frac{T^{\prime}(t)}{\alpha^{2} T(t)}=-\lambda \tag{5}\\
& \frac{X^{\prime \prime}(x)}{X(x)}=-\lambda \tag{6}
\end{align*}
$$

The boundary value problem (6) is an eigenvalue problem

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, X(L)=0 \tag{7}
\end{equation*}
$$

where we seek nonzero solutions.
O. Costin: §10.4-5

$$
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, X(L)=0
$$

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before.
O. Costin: §10.4-5

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before. The eigenvalues for this problem are

$$
\lambda_{n}=n^{2} \pi^{2} / L^{2}, n=1,2,3, \ldots
$$

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before. The eigenvalues for this problem are

$$
\lambda_{n}=n^{2} \pi^{2} / L^{2}, n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
X_{n}=\left(c_{n}\right) \sin (n \pi x / L)
$$

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before. The eigenvalues for this problem are

$$
\lambda_{n}=n^{2} \pi^{2} / L^{2}, n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
X_{n}=\left(c_{n}\right) \sin (n \pi x / L)
$$

For each of them, we have the $T(t)$ equation,

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before. The eigenvalues for this problem are

$$
\lambda_{n}=n^{2} \pi^{2} / L^{2}, n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
X_{n}=\left(c_{n}\right) \sin (n \pi x / L)
$$

For each of them, we have the $T(t)$ equation,

$$
\frac{T_{n}^{\prime}(t)}{\alpha^{2} T_{n}(t)}=-\lambda_{n} \quad \text { that is } T_{n}^{\prime}(t)=\left(-n^{2} \pi^{2} / L^{2}\right) \alpha^{2} T_{n}(t), n=1,2,3, \ldots
$$

$$
\begin{equation*}
X^{\prime \prime}(x)=-\lambda X(x) ; \quad X(0)=0, \quad X(L)=0 \tag{8}
\end{equation*}
$$

We studied (8) before. The eigenvalues for this problem are

$$
\lambda_{n}=n^{2} \pi^{2} / L^{2}, n=1,2,3, \ldots
$$

and the eigenfunctions are

$$
X_{n}=\left(c_{n}\right) \sin (n \pi x / L)
$$

For each of them, we have the $T(t)$ equation,

$$
\frac{T_{n}^{\prime}(t)}{\alpha^{2} T_{n}(t)}=-\lambda_{n} \quad \text { that is } T_{n}^{\prime}(t)=\left(-n^{2} \pi^{2} / L^{2}\right) \alpha^{2} T_{n}(t), n=1,2,3, \ldots
$$

which gives immediately

$$
T_{n}(t)=\exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right)
$$

O. Costin: §10.4-5
which gives immediately

$$
T_{n}(t)=\exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right)
$$

Putting X_{n} and T_{n} together -remember,

$$
\begin{gathered}
u_{n}(x, t)=X_{n}(x) T_{n}(t) \quad \text { we have: } \\
u_{n}(x, t)=c_{n} \exp \left(-n^{2} \alpha^{2} \pi^{2} t / L^{2}\right) \sin (n \pi x / L)
\end{gathered}
$$

Now we really have many solutions, as desired.
O. Costin: §10.4-5

Now we really have many solutions, as desired. Then, by the linearity and homogeneity of the equation

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L)
$$

Now we really have many solutions, as desired. Then, by the linearity and homogeneity of the equation

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{9}
\end{equation*}
$$

is also a solution of the problem. (We'll deal with convergence: later.)

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L)
$$

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{10}
\end{equation*}
$$

Initial condition We have

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \tag{11}
\end{equation*}
$$

Can this be now made to fit any initial temperature distribution, $u(x, 0)=U(x)$? Yes, by the Fourier theorem.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{10}
\end{equation*}
$$

Initial condition We have

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \tag{11}
\end{equation*}
$$

Can this be now made to fit any initial temperature distribution, $u(x, 0)=U(x)$? Yes, by the Fourier theorem. We are looking here for a Fourier sine decomposition of U on $[0, L]$

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{10}
\end{equation*}
$$

Initial condition We have

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \tag{11}
\end{equation*}
$$

Can this be now made to fit any initial temperature distribution, $u(x, 0)=U(x)$? Yes, by the Fourier theorem. We are looking here for a Fourier sine decomposition of U on $[0, L]$ which means we have to take the odd extension of U, on $[-L, L]$.

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{10}
\end{equation*}
$$

Initial condition We have

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L) \tag{11}
\end{equation*}
$$

Can this be now made to fit any initial temperature distribution, $u(x, 0)=U(x)$? Yes, by the Fourier theorem. We are looking here for a Fourier sine decomposition of U on $[0, L]$ which means we have to take the odd extension of U, on $[-L, L]$.That is, define $U_{1}(x)=-U(-x)$ if $x<0$ and $U_{1}(x)=U(x)$ if $x \geq 0$.

$$
U_{1}(x)=-U(-x) \text { if } x<0 \text { and } U_{1}(x)=U(x) \text { if } x \geq 0
$$

That ensures that

$$
U_{1}(x)=-U(-x) \text { if } x<0 \text { and } U_{1}(x)=U(x) \text { if } x \geq 0
$$

That ensures that (1) U_{1} has a pure sine FS.

$$
U_{1}(x)=-U(-x) \text { if } x<0 \text { and } U_{1}(x)=U(x) \text { if } x \geq 0
$$

That ensures that (1) U_{1} has a pure sine FS. (2) $U_{1}=U$ on the interval of interest, $[0, L]$.

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

In our example $U(x)=20$, thus the function to be worked with is

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

In our example $U(x)=20$, thus the function to be worked with is

$$
U_{1}(x)=\left\{\begin{array}{l}
-20 \text { for } x \in(-L, 0) \\
20 \text { for } x \in(0, L)
\end{array}\right.
$$

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

In our example $U(x)=20$, thus the function to be worked with is

$$
U_{1}(x)=\left\{\begin{array}{l}
-20 \text { for } x \in(-L, 0) \tag{12}\\
20 \text { for } x \in(0, L)
\end{array}\right.
$$

Since this is indeed an odd function, the coefficients c_{n} are given by

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

In our example $U(x)=20$, thus the function to be worked with is

$$
U_{1}(x)=\left\{\begin{array}{l}
-20 \text { for } x \in(-L, 0) \tag{12}\\
20 \text { for } x \in(0, L)
\end{array}\right.
$$

Since this is indeed an odd function, the coefficients c_{n} are given by

$$
\frac{1}{L} \int_{0}^{L} U_{1} \sin (n \pi x / L) d x=\frac{1}{L} \int_{0}^{L} 20 \sin (n \pi x / L) d x=40 \frac{1-(-1)^{n}}{n \pi}
$$

$$
f(x)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} 0 / L^{2}\right) \sin (n \pi x / L)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x / L)
$$

In our example $U(x)=20$, thus the function to be worked with is

$$
U_{1}(x)=\left\{\begin{array}{l}
-20 \text { for } x \in(-L, 0) \tag{12}\\
20 \text { for } x \in(0, L)
\end{array}\right.
$$

Since this is indeed an odd function, the coefficients c_{n} are given by

$$
\frac{1}{L} \int_{0}^{L} U_{1} \sin (n \pi x / L) d x=\frac{1}{L} \int_{0}^{L} 20 \sin (n \pi x / L) d x=40 \frac{1-(-1)^{n}}{n \pi}
$$

The complete solution is thus

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L)
$$

The complete solution is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{13}
\end{equation*}
$$

$$
u(x, t)=40 \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n \pi} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L)
$$

The complete solution is thus

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} c_{n} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
u(x, t)=40 \sum_{n=1}^{\infty} \frac{1-(-1)^{n}}{n \pi} \exp \left(-n^{2} \pi^{2} \alpha^{2} t / L^{2}\right) \sin (n \pi x / L) \tag{14}
\end{equation*}
$$

O. Costin: §10.4-5

Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to solve

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}, u(x, 0)=f(x)
$$

Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek to solve

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}, u(x, 0)=f(x)
$$

that is, we have different temperatures at the endpoints. As in nonhomogeneous ODEs, the solution is essentially any solution of the nonhomogeneous equation plus the general solution of the homogeneous one.

Indeed if u_{0} satisfies the eq, boundary conditions but not necessarily the initial condition, then if we write $u=u_{0}+v$ we have $\left(u_{0}\right)_{t}+v_{t}=\alpha^{2}\left(u_{0}\right)_{x x}+v_{x x}$ or $v_{t}+\underbrace{\left(\left(u_{0}\right)_{t}-\left(u_{0}\right)_{x x}\right)}_{=0, \text { by construction }}=\alpha^{2} v_{x x}$

We need $v(0, t)+u_{0}(0, t)=T_{1}$ but $u_{0}(0, t)=T_{1}$, by construction, so: $v(0, t)=0$. Likewise, $v(L, t)=0 . v$ satisfies the same problem, with homogneous boundary values, and initial condition

$$
v(x, 0)+u_{0}(x, 0)=f(x) \Longrightarrow
$$

Indeed if u_{0} satisfies the eq, boundary conditions but not necessarily the initial condition, then if we write $u=u_{0}+v$ we have $\left(u_{0}\right)_{t}+v_{t}=\alpha^{2}\left(u_{0}\right)_{x x}+v_{x x}$ or $v_{t}+\underbrace{\left(\left(u_{0}\right)_{t}-\left(u_{0}\right)_{x x}\right)}_{=0, \text { by construction }}=\alpha^{2} v_{x x}$

We need $v(0, t)+u_{0}(0, t)=T_{1}$ but $u_{0}(0, t)=T_{1}$, by construction, so: $v(0, t)=0$. Likewise, $v(L, t)=0 . v$ satisfies the same problem, with homogneous boundary values, and initial condition

$$
v(x, 0)+u_{0}(x, 0)=f(x) \Longrightarrow v(x, 0)=f(x)-u_{0}(x, 0)
$$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
u_{x x}=0,
$$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
u_{x x}=0, \Rightarrow u=A x+B
$$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
u_{x x}=0, \Rightarrow u=A x+B ; \quad A 0+B=T_{1}, A L+B=T_{2}
$$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
\begin{aligned}
& u_{x x}=0, \Rightarrow u=A x+B ; \quad A 0+B=T_{1}, A L+B=T_{2} \\
& B=T_{1}, A=\left(T_{2}-T_{1}\right) / L ;
\end{aligned}
$$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
\begin{aligned}
u_{x x}=0, \Rightarrow & u=A x+B ; \quad A 0+B=T_{1}, A L+B=T_{2} \\
& B=T_{1}, A=\left(T_{2}-T_{1}\right) / L ; u_{0}=x\left(T_{2}-T_{1}\right) / L+T_{1}
\end{aligned}
$$

Then, the problem for v becomes
$v_{t}=\alpha^{2} v_{x x}, \quad v(0, t)=0, v(L, t)=0, v(x, 0)=f(x)-\left[x\left(T_{2}-T_{1}\right) / L+T_{1}\right]$

A particular solution of

$$
u_{t}=\alpha^{2} u_{x x}, \quad u(0, t)=T_{1}, u(L, t)=T_{2}
$$

is easy to find. Look, for instance for solutions that don't depend on t. Then

$$
\begin{aligned}
u_{x x}=0, \Rightarrow & u=A x+B ; \quad A 0+B=T_{1}, A L+B=T_{2} \\
& B=T_{1}, A=\left(T_{2}-T_{1}\right) / L ; u_{0}=x\left(T_{2}-T_{1}\right) / L+T_{1}
\end{aligned}
$$

Then, the problem for v becomes
$v_{t}=\alpha^{2} v_{x x}, \quad v(0, t)=0, v(L, t)=0, v(x, 0)=f(x)-\left[x\left(T_{2}-T_{1}\right) / L+T_{1}\right]$

