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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek tosolve
ut = α2uxx, u(0, t) = T1, u(L, t) = T2, u(x, 0) = f (x)
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Other Heat Equation settings

Nonhomogeneous boundary conditions. Here, we seek tosolve
ut = α2uxx, u(0, t) = T1, u(L, t) = T2, u(x, 0) = f (x)

that is, we have different temperatures at the endpoints. As innonhomogeneous ODEs, the solution is essentially any solution
of the nonhomogeneous equation plus the general solution
of the homogeneous one.
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Indeed if u0 satisfies the eq, boundary conditions but notnecessarily the initial condition,
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Indeed if u0 satisfies the eq, boundary conditions but notnecessarily the initial condition, we write u = u0 + v and then(u0)t + vt = α2(u0)xx + α2vxx
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Indeed if u0 satisfies the eq, boundary conditions but notnecessarily the initial condition, we write u = u0 + v and then(u0)t + vt = α2(u0)xx + α2vxx or vt + ((u0)t − α2(u0)xx)︸ ︷︷ ︸=0,by construction = α2vxx .
We need v(0, t) + u0(0, t) = T1 but u0(0, t) = T1, by construction,so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,with homogeneous boundary values, and initial condition

v(x, 0) + u0(x, 0) = f (x) Ñ
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Indeed if u0 satisfies the eq, boundary conditions but notnecessarily the initial condition, we write u = u0 + v and then(u0)t + vt = α2(u0)xx + α2vxx or vt + ((u0)t − α2(u0)xx)︸ ︷︷ ︸=0,by construction = α2vxx .
We need v(0, t) + u0(0, t) = T1 but u0(0, t) = T1, by construction,so: v(0, t) = 0. Likewise, v(L, t) = 0. v satisfies the same problem,with homogeneous boundary values, and initial condition

v(x, 0) + u0(x, 0) = f (x) Ñ v(x, 0) = f (x)− u0(x, 0)
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find.
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find. Look, for instance for solutions that don’tdepend on t . Then
uxx = 0,
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find. Look, for instance for solutions that don’tdepend on t . Then
uxx = 0, Ñ u = Ax + B;
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find. Look, for instance for solutions that don’tdepend on t . Then
uxx = 0, Ñ u = Ax + B; A0 + B = T1, AL + B = T2
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find. Look, for instance for solutions that don’tdepend on t . Then
uxx = 0, Ñ u = Ax + B; A0 + B = T1, AL + B = T2

B = T1, A = (T2 − T1)/L;
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A particular solution of
ut = α2uxx, u(0, t) = T1, u(L, t) = T2

is easy to find. Look, for instance for solutions that don’tdepend on t . Then
uxx = 0, Ñ u = Ax + B; A0 + B = T1, AL + B = T2

B = T1, A = (T2 − T1)/L; u0 = x(T2 − T1)/L + T1 (1)
Then, the problem for v becomes
vt = α2vxx, v(0, t) = 0, v(L, t) = 0, v(x, 0) = f (x)−[x(T2−T1)/L+T1]
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vt = α2vxx, v(0, t) = 0, v(L, t) = 0, v(x, 0) = f (x)−[x(T2−T1)/L+T1]
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vt = α2vxx, v(0, t) = 0, v(L, t) = 0, v(x, 0) = f (x)−[x(T2−T1)/L+T1]
We have studied this equation in §10.5. The solution is

v(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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vt = α2vxx, v(0, t) = 0, v(L, t) = 0, v(x, 0) = f (x)−[x(T2−T1)/L+T1]
We have studied this equation in §10.5. The solution is

v(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)

where now cn are the Fourier sine coeffs. of v(x, 0),
cn = 2

L

∫ L

0 v(x, 0) sin(nπx/L)dx;
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vt = α2vxx, v(0, t) = 0, v(L, t) = 0, v(x, 0) = f (x)−[x(T2−T1)/L+T1]
We have studied this equation in §10.5. The solution is

v(x, t) = ∞∑
n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)

where now cn are the Fourier sine coeffs. of v(x, 0),
cn = 2

L

∫ L

0 v(x, 0) sin(nπx/L)dx; v(x, 0) = f (x)− [x(T2 − T1)/L + T1]
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Thus, since u(x, t) = u0(x, t) + v(x, t) we obtain
u(x, t) = x(T2 − T1)/L + T1 + ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
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Thus, since u(x, t) = u0(x, t) + v(x, t) we obtain
u(x, t) = x(T2 − T1)/L + T1 + ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
Example:
ut = uxx , u(0, t) = 20, u(30, t) = 50, u(x, 0) = 60− 2x Particularsolution:

u0(x) = x(50− 20)/30 + 20 = x + 20

O. Costin: §10.6-7 JJ J � I II Î →



5

Thus, since u(x, t) = u0(x, t) + v(x, t) we obtain
u(x, t) = x(T2 − T1)/L + T1 + ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
Example:
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vt = vxx; v(0, t) = 0, v(30, t) = 0;
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Thus, since u(x, t) = u0(x, t) + v(x, t) we obtain
u(x, t) = x(T2 − T1)/L + T1 + ∞∑

n=1 cn exp(−n2π2α2t/L2) sin(nπx/L)
Example:
ut = uxx , u(0, t) = 20, u(30, t) = 50, u(x, 0) = 60− 2x Particularsolution:

u0(x) = x(50− 20)/30 + 20 = x + 20 (2)Homogeneous problem:
vt = vxx; v(0, t) = 0, v(30, t) = 0;

v(x, 0) = 60− 2x − u0(x) = 60− 2x − x − 20 = 40− 3x (3)
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vt = vxx; v(0, t) = 0, v(30, t) = 0;
v(x, 0) = 60− 2x − u0(x) = 60− 2x − x − 20 = 40− 3x
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vt = vxx; v(0, t) = 0, v(30, t) = 0;
v(x, 0) = 60− 2x − u0(x) = 60− 2x − x − 20 = 40− 3x (4)

general sol
u(x, t) = x + 20︸ ︷︷ ︸(2) + ∞∑

n=1 cn exp(−n2π2t/900) sin(nπx/30)
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vt = vxx; v(0, t) = 0, v(30, t) = 0;
v(x, 0) = 60− 2x − u0(x) = 60− 2x − x − 20 = 40− 3x (4)

general sol
u(x, t) = x + 20︸ ︷︷ ︸(2) + ∞∑

n=1 cn exp(−n2π2t/900) sin(nπx/30) (5)
cn = 230

∫ 30
0 (40− 3x)︸ ︷︷ ︸4 sin(nπx/30)dx = 20(4 + 5(−1)m)

mπ

O. Costin: §10.6-7 JJ J � I II Î →



7

0

5

10

15

0

x20

10

25

20

20

t

30

30
25

35

40
50

40

30

45

50

O. Costin: §10.6-7 JJ J � I II Î →



8

Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperaturedifference (gradient, ux). If there is no conduction at theendpoints, then ux = 0 at the endpoints
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperaturedifference (gradient, ux). If there is no conduction at theendpoints, then ux = 0 at the endpoints . Then, the problembecomes

ut = α2uxx, ux(0, t) = 0, ux(L, t) = 0, u(x, 0) = f (x)
This can be solved by separation of variables as well.
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Remark. In the book the problem is solved anew.
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This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note thatthis can be reduced to our first problem in the following way:
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperaturedifference (gradient, ux). If there is no conduction at theendpoints, then ux = 0 at the endpoints . Then, the problembecomes

ut = α2uxx, ux(0, t) = 0, ux(L, t) = 0, u(x, 0) = f (x)
This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note thatthis can be reduced to our first problem in the following way:By taking one x derivative, we get: utx = α2uxxx that is(ux)t = α2(ux)xx . Let ux = v. Then vt = α2vxx
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperaturedifference (gradient, ux). If there is no conduction at theendpoints, then ux = 0 at the endpoints . Then, the problembecomes

ut = α2uxx, ux(0, t) = 0, ux(L, t) = 0, u(x, 0) = f (x)
This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note thatthis can be reduced to our first problem in the following way:By taking one x derivative, we get: utx = α2uxxx that is(ux)t = α2(ux)xx . Let ux = v. Then vt = α2vxx ,
v(0, t) = 0, v(L, t) = 0, v(x, 0) = f ′(x)
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Another example of separation of variables: rod with
isolated ends. Heat transfer is proportional to the temperaturedifference (gradient, ux). If there is no conduction at theendpoints, then ux = 0 at the endpoints . Then, the problembecomes

ut = α2uxx, ux(0, t) = 0, ux(L, t) = 0, u(x, 0) = f (x)
This can be solved by separation of variables as well.

Remark. In the book the problem is solved anew. We note thatthis can be reduced to our first problem in the following way:By taking one x derivative, we get: utx = α2uxxx that is(ux)t = α2(ux)xx . Let ux = v. Then vt = α2vxx ,
v(0, t) = 0, v(L, t) = 0, v(x, 0) = f ′(x) , that we have already
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solved
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solved . We clearly get u from v by one x integration.
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Since we want to practice separation of variables, let’s not takethe shortcut, but solve the problem from scratch.
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Since we want to practice separation of variables, let’s not takethe shortcut, but solve the problem from scratch.Take u(x, t) = X(x)T(t) as before,
T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ.
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Since we want to practice separation of variables, let’s not takethe shortcut, but solve the problem from scratch.Take u(x, t) = X(x)T(t) as before,
T ′(t)
α2T(t)︸ ︷︷ ︸depends on t alone

= X′′(x)
X(x)︸ ︷︷ ︸depends on x alone

Thus X′′(x)
X(x) is simply a constant, say −λ. Then T ′(t)

α2T(t) is equal tothe same constant.
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We need to look at all signs of λ and then select those thatwork. We have
X′′(x) = −λX(x); X′(0) = 0, X′(L) = 0
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We need to look at all signs of λ and then select those thatwork. We have
X′′(x) = −λX(x); X′(0) = 0, X′(L) = 0 (6)

where we seek nonzero solutions. (1) λ > 0. As in §10.5,
X(x) = an sin(√λx) + cn cos(√λx)

X′(0) = an
√
λ cos(0√λ)− cn√λ sin(0√λ) = an

√
λ
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We need to look at all signs of λ and then select those thatwork. We have
X′′(x) = −λX(x); X′(0) = 0, X′(L) = 0 (6)

where we seek nonzero solutions. (1) λ > 0. As in §10.5,
X(x) = an sin(√λx) + cn cos(√λx)

X′(0) = an
√
λ cos(0√λ)− cn√λ sin(0√λ) = an

√
λThus an = 0 and Xn(x) = cn cos(√λx)
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We need to look at all signs of λ and then select those thatwork. We have
X′′(x) = −λX(x); X′(0) = 0, X′(L) = 0 (6)

where we seek nonzero solutions. (1) λ > 0. As in §10.5,
X(x) = an sin(√λx) + cn cos(√λx)

X′(0) = an
√
λ cos(0√λ)− cn√λ sin(0√λ) = an

√
λThus an = 0 and Xn(x) = cn cos(√λx)We need: X′n(L) = 0, thus −cn√λ sin(√λL) = 0, √λn = nπ/L.
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We took λ > 0. As in §10.5, we need to analyze the cases λ = 0and λ < 0.
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We took λ > 0. As in §10.5, we need to analyze the cases λ = 0and λ < 0.
If λ = 0, then X′′ = 0, X = ax + b, X′ = 0
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We took λ > 0. As in §10.5, we need to analyze the cases λ = 0and λ < 0.
If λ = 0, then X′′ = 0, X = ax + b, X′ = 0 means a = 0. Thus
λ = 0 is an eigenvalue here
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We took λ > 0. As in §10.5, we need to analyze the cases λ = 0and λ < 0.
If λ = 0, then X′′ = 0, X = ax + b, X′ = 0 means a = 0. Thus
λ = 0 is an eigenvalue here and X = c0/2, for any constant c0,
are eigenfunctions.
If λ = −µ2 < 0 then X′′ = µ2X,
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We took λ > 0. As in §10.5, we need to analyze the cases λ = 0and λ < 0.
If λ = 0, then X′′ = 0, X = ax + b, X′ = 0 means a = 0. Thus
λ = 0 is an eigenvalue here and X = c0/2, for any constant c0,
are eigenfunctions.
If λ = −µ2 < 0 then X′′ = µ2X, X = Aeµx + Be−µx .
X′(0) = (A− B)µ
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If λ = 0, then X′′ = 0, X = ax + b, X′ = 0 means a = 0. Thus
λ = 0 is an eigenvalue here and X = c0/2, for any constant c0,
are eigenfunctions.
If λ = −µ2 < 0 then X′′ = µ2X, X = Aeµx + Be−µx .
X′(0) = (A− B)µ and thus A = B and X = A(eµx + e−µx).
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no nonzero solutions, λ < 0 is never an eigenvalue.
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Thus the general solution is
c02 + ∞∑

n=1 cn exp(−n2π2α2t/L2) cos(nπx/L)
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n=1 cn exp(−n2π2α2t/L2) cos(nπx/L)
which is a general Fourier cosine series. To fit the initialcondition into a Fourier cosine series, we need an evenextension U1 of the initial data.
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U1 = |x|, and
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Thus the general solution is
c02 + ∞∑

n=1 cn exp(−n2π2α2t/L2) cos(nπx/L)
which is a general Fourier cosine series. To fit the initialcondition into a Fourier cosine series, we need an evenextension U1 of the initial data.
For instance, if L = π , α = 1 and u(x, 0) = f (x) = x, then
U1 = |x|, and

c0 = π, cn = 2
π

∫ π

0 x cos(nx) = − 2
πn2(1− (−1)n); (n > 1)
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