Mechanical and electrical
oscillations

§3.8,3.9
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d’x  dx
mo g+ ¥+ kx = F(t)



d?x dx
M — + bx = F(t
m T + 7y er + bx ()
This is the mechanical oscillator, with air friction
(damping) v and forcing F.
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LQ" + RQ + Q/C = V(1)
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Bltan 6 cos wt + sin wf]

where we just denoted (C/B) = tan 6, or

sin 0 , cos wtsin 6 + sin wf cos 6
coswt + sinwt| = B

B
cos 6

Bl

cos 0

sin(wt + 8) = Asin(wt + 6) (1)

cos 0O

Here, A is called the amplitude of the oscillation,
27t/w = T is the period, 0 is the phase.
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Example A mass of 1 kg is attached to a spring of
constant k = /4. The initial displacement, outward, is
1cm, and the initial velocity, outward as well, is 1m/s.
Find the period of oscillation, the amplitude and the
phase of the motion.

Solution. The equation of motion is x” + “x = 0 and
thus the characteristic equation is r* + - = Or = +2

and thus x = Asin(2t + ¢).
The period is 251/2 = 7
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Let’s take a larger damping, R = 2.

r’+2r+1=0 r=-1

The roots are degenerate. Thus the general solution
is of the form Ae ! 4+ Bte ' = e !(A + Bt). There is
no movre oscillation!
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Whenever the two roots coincide, the damping is
called critical.

Let's take even larger damping, R = 5/2

Then, t
x(t) = Ae ! + Be 2

We now have two exponentials, and no trace of
oscillation.

This motion is called overdamped.
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