Mechanical and electrical oscillations

§3.8,3.9

The elastic force is opposite to x : $F_{\mathrm{e}}=-k x$

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

There may be an external force $F(t)$, such as someone shaking the object.

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

There may be an external force $F(t)$, such as someone shaking the object.

Total force

$$
F=F(t)-\gamma \frac{d x}{d t}-k x
$$

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

There may be an external force $F(t)$, such as someone shaking the object.

Total force

$$
F=F(t)-\gamma \frac{d x}{d t}-k x
$$

Equation of motion $F=m a=m \frac{d^{2} x}{d t^{2}}$, thus

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

There may be an external force $F(t)$, such as someone shaking the object.

Total force

$$
F=F(t)-\gamma \frac{d x}{d t}-k x
$$

Equation of motion $F=m a=m \frac{d^{2} x}{d t^{2}}$, thus

$$
m \frac{d^{2} x}{d t^{2}}=F(t)-\gamma \frac{d x}{d t}-k x
$$

The air friction force is directed opposite to the velocity (it opposes motion): $F_{d}=-\gamma v$.

There may be an external force $F(t)$, such as someone shaking the object.

Total force

$$
F=F(t)-\gamma \frac{d x}{d t}-k x
$$

Equation of motion $F=m a=m \frac{d^{2} x}{d t^{2}}$, thus

$$
m \frac{d^{2} x}{d t^{2}}=F(t)-\gamma \frac{d x}{d t}-k x
$$

$$
m \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+k x=F(t)
$$

$$
m \frac{d^{2} x}{d t^{2}}+\gamma \frac{d x}{d t}+k x=F(t)
$$

This is the mechanical oscillator, with air friction (damping) γ and forcing F.

Electrical analog

$$
\text { Figure 2: } L Q^{\prime \prime}+R Q^{\prime}+Q / C=V(t)
$$

Both described by linear nonhomogeneous equations with constant coefficients

Both described by linear nonhomogeneous equations with constant coefficients How to solve them?

Both described by linear nonhomogeneous equations with constant coefficients How to solve them?

- If homogeneous they can be solved by finding the roots of the characteristic polynomial.

Both described by linear nonhomogeneous equations with constant coefficients How to solve them?

- If homogeneous they can be solved by finding the roots of the characteristic polynomial.
- If inhomogeneous they can be solved by solving the homogeneous equation and finding a particular solution of the nonhomogeneous one by

1. The method of undetermined coefficients

Both described by linear nonhomogeneous equations with constant coefficients How to solve them?

- If homogeneous they can be solved by finding the roots of the characteristic polynomial.
- If inhomogeneous they can be solved by solving the homogeneous equation and finding a particular solution of the nonhomogeneous one by

1. The method of undetermined coefficients
2. or Lagrange's method (using the Wronskian, §3.7)

Both described by linear nonhomogeneous equations with constant coefficients How to solve them?

- If homogeneous they can be solved by finding the roots of the characteristic polynomial.
- If inhomogeneous they can be solved by solving the homogeneous equation and finding a particular solution of the nonhomogeneous one by

1. The method of undetermined coefficients
2. or Lagrange's method (using the Wronskian, §3.7)

Note The solution of $y^{\prime \prime}+\omega^{2} y=0$ is

Note The solution of $y^{\prime \prime}+\omega^{2} y=0$ is

$C \cos \omega t+B \sin \omega t$

Note The solution of $y^{\prime \prime}+\omega^{2} y=0$ is

$C \cos \omega t+B \sin \omega t$

This can also be written as

$$
B[(C / B) \cos \omega t+\sin \omega t]
$$

Note The solution of $y^{\prime \prime}+\omega^{2} y=0$ is

$C \cos \omega t+B \sin \omega t$

This can also be written as

$$
B[(C / B) \cos \omega t+\sin \omega t]
$$

or

$$
B[\tan \theta \cos \omega t+\sin \omega t]
$$

Note The solution of $y^{\prime \prime}+\omega^{2} y=0$ is

$C \cos \omega t+B \sin \omega t$

This can also be written as

$$
B[(C / B) \cos \omega t+\sin \omega t]
$$

or

$$
B[\tan \theta \cos \omega t+\sin \omega t]
$$

$B[\tan \theta \cos \omega t+\sin \omega t]$

$B[\tan \theta \cos \omega t+\sin \omega t]$ where we just denoted $(C / B)=\tan \theta$, or

$B[\tan \theta \cos \omega t+\sin \omega t]$

where we just denoted $(C / B)=\tan \theta$, or
$B\left[\frac{\sin \theta}{\cos \theta} \cos \omega t+\sin \omega t\right]=B \frac{\cos \omega t \sin \theta+\sin \omega t \cos \theta}{\cos \theta}$

$$
=\frac{B}{\cos \theta} \sin (\omega t+\theta)=A \sin (\omega t+\theta)
$$

$B[\tan \theta \cos \omega t+\sin \omega t]$

where we just denoted $(C / B)=\tan \theta$, or

$$
\begin{aligned}
B\left[\frac{\sin \theta}{\cos \theta} \cos \omega t+\right. & \sin \omega t]=B \frac{\cos \omega t \sin \theta+\sin \omega t \cos \theta}{\cos \theta} \\
& =\frac{B}{\cos \theta} \sin (\omega t+\theta)=A \sin (\omega t+\theta)
\end{aligned}
$$

Here, A is called the amplitude of the oscillation, $2 \pi / \omega=T$ is the period, θ is the phase.

Example A mass of 1 kg is attached to a spring of constant $k=4$. The initial displacement, outward, is 1 cm , and the initial velocity, outward as well, is $1 \mathrm{~m} / \mathrm{s}$.

Example A mass of 1 kg is attached to a spring of constant $k=4$. The initial displacement, outward, is 1 cm , and the initial velocity, outward as well, is $1 \mathrm{~m} / \mathrm{s}$. Find the period of oscillation, the amplitude and the phase of the motion.

Example A mass of 1 kg is attached to a spring of constant $k=4$. The initial displacement, outward, is 1 cm , and the initial velocity, outward as well, is $1 \mathrm{~m} / \mathrm{s}$. Find the period of oscillation, the amplitude and the phase of the motion.

Solution. The equation of motion is $x^{\prime \prime}+4 x=0$ and thus the characteristic equation is $r^{2}+4=0$,

Example A mass of 1 kg is attached to a spring of constant $k=4$. The initial displacement, outward, is 1 cm , and the initial velocity, outward as well, is $1 \mathrm{~m} / \mathrm{s}$. Find the period of oscillation, the amplitude and the phase of the motion.

Solution. The equation of motion is $x^{\prime \prime}+4 x=0$ and thus the characteristic equation is $r^{2}+4=0, r= \pm 2$ and thus $x=A \sin (2 t+\phi)$.

The period is $2 \pi / 2=\pi$

Now we use the initial condition: $x(0)=0.01$ thus

$$
A \sin \phi=0.01
$$

Now we use the initial condition: $x(0)=0.01$ thus

$$
A \sin \phi=0.01
$$

and

$$
1=x^{\prime}(0)=2 A \cos \phi \text { or } A \cos \phi=\frac{1}{2}
$$

Now we use the initial condition: $x(0)=0.01$ thus

$$
A \sin \phi=0.01
$$

and

$$
1=x^{\prime}(0)=2 A \cos \phi \text { or } A \cos \phi=\frac{1}{2}
$$

Thus

$$
A^{2} \sin ^{2} \phi+A^{2} \cos ^{2} \phi=10^{-4}+1 / 4
$$

Now we use the initial condition: $x(0)=0.01$ thus

$$
A \sin \phi=0.01
$$

and

$$
1=x^{\prime}(0)=2 A \cos \phi \text { or } A \cos \phi=\frac{1}{2}
$$

Thus

$$
\begin{aligned}
& A^{2} \sin ^{2} \phi+A^{2} \cos ^{2} \phi=10^{-4}+1 / 4 \\
& A=\sqrt{10^{-4}+1 / 4} \quad \text { (the amplitude) }
\end{aligned}
$$

Now we use the initial condition: $x(0)=0.01$ thus

$$
A \sin \phi=0.01
$$

and

$$
1=x^{\prime}(0)=2 A \cos \phi \text { or } A \cos \phi=\frac{1}{2}
$$

Thus

$$
\begin{aligned}
& A^{2} \sin ^{2} \phi+A^{2} \cos ^{2} \phi=10^{-4}+1 / 4 \\
& A=\sqrt{10^{-4}+1 / 4} \quad \text { (the amplitude) }
\end{aligned}
$$

Also,

$\tan \phi=2 \cdot 10^{-2} \phi=\arctan \left(2 \cdot 10^{-2}\right) \quad$ (the phase)

Also,

$\tan \phi=2 \cdot 10^{-2} \phi=\arctan \left(2 \cdot 10^{-2}\right) \quad$ (the phase)

Damping

Consider an electrical circuit with $L=R=C=1$ and no external voltage.

Damping

Consider an electrical circuit with $L=R=C=1$ and no external voltage. The equation is then, with
$Q=x$,

$$
x^{\prime \prime}+x^{\prime}+x=0
$$

Damping

Consider an electrical circuit with $L=R=C=1$ and no external voltage. The equation is then, with
$Q=x$,

$$
x^{\prime \prime}+x^{\prime}+x=0
$$

The characteristic polynomial is

$$
r^{2}+r+1=0
$$

Damping

Consider an electrical circuit with $L=R=C=1$ and no external voltage. The equation is then, with $Q=x$,

$$
x^{\prime \prime}+x^{\prime}+x=0
$$

The characteristic polynomial is

$$
\begin{gathered}
r^{2}+r+1=0 \\
r=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}
\end{gathered}
$$

Damping

Consider an electrical circuit with $L=R=C=1$ and no external voltage. The equation is then, with $Q=x$,

$$
x^{\prime \prime}+x^{\prime}+x=0
$$

The characteristic polynomial is

$$
\begin{gathered}
r^{2}+r+1=0 \\
r=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm i \frac{\sqrt{3}}{2}
\end{gathered}
$$

Thus the general solution is of the form

$$
A e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t+\phi\right)
$$

Thus the general solution is of the form

$$
A e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t+\phi\right)
$$

Here the damping is not too large. We will see what we mean by that.

Thus the general solution is of the form

$$
A e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t+\phi\right)
$$

Here the damping is not too large. We will see what we mean by that. In this case, $\sqrt{3} / 2$ is called quasi-frequency. It is not a true frequency, since the current never returns to the initial value.

Thus the general solution is of the form

$$
A e^{-\frac{t}{2}} \sin \left(\frac{\sqrt{3}}{2} t+\phi\right)
$$

Here the damping is not too large. We will see what we mean by that. In this case, $\sqrt{3} / 2$ is called quasi-frequency. It is not a true frequency, since the current never returns to the initial value.

Figure 3: Typical solution

Let's take a larger damping, $R=2$.

$$
r^{2}+2 r+1=0 ; \quad r=-1
$$

Let's take a larger damping, $R=2$.

$$
r^{2}+2 r+1=0 ; \quad r=-1
$$

The roots are degenerate.

Let's take a larger damping, $R=2$.

$$
r^{2}+2 r+1=0 ; \quad r=-1
$$

The roots are degenerate. Thus the general solution is of the form $A e^{-t}+B t e^{-t}=e^{-t}(A+B t)$.

Let's take a larger damping, $R=2$.

$$
r^{2}+2 r+1=0 ; \quad r=-1
$$

The roots are degenerate. Thus the general solution is of the form $A e^{-t}+B t e^{-t}=e^{-t}(A+B t)$. There is no more oscillation!

Figure 4: Typical solution

Whenever the two roots coincide, the damping is called critical.

Whenever the two roots coincide, the damping is called critical.

Let's take even larger damping, $R=5 / 2$

Whenever the two roots coincide, the damping is called critical.

Let's take even larger damping, $R=5 / 2$
Then,

$$
x(t)=A e^{-2 t}+B e^{-\frac{t}{2}}
$$

Whenever the two roots coincide, the damping is called critical.

Let's take even larger damping, $R=5 / 2$
Then,

$$
x(t)=A e^{-2 t}+B e^{-\frac{t}{2}}
$$

We now have two exponentials, and no trace of oscillation.

Whenever the two roots coincide, the damping is called critical.

Let's take even larger damping, $R=5 / 2$
Then,

$$
x(t)=A e^{-2 t}+B e^{-\frac{t}{2}}
$$

We now have two exponentials, and no trace of oscillation.

This motion is called overdamped.

