
Mechanical and electrical
oscillations

§3.8,3.9
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Figure 1: The elastic force is opposite to x: Fe = −kx
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The air friction force is directed opposite to thevelocity (it opposes motion): Fd = −γv .There may be an external force F (t), such assomeone shaking the object.Total force
F = F (t)− γdxdt − kxEquation of motion F = ma = md2x

dt2 , thus
md2x
dt2 = F (t)− γdxdt − kx
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md2x
dt2 + γdxdt + kx = F (t)
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md2x
dt2 + γdxdt + kx = F (t)

This is the mechanical oscillator, with air friction(damping) γ and forcing F .
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Figure 2: LQ′′ + RQ′ + Q/C = V (t)
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B[tan θ cosωt + sinωt]where we just denoted (C/B) = tan θ, or
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B[tan θ cosωt + sinωt]where we just denoted (C/B) = tan θ, or
B[ sin θcos θ cosωt + sinωt] = Bcosωt sin θ + sinωt cos θcos θ= Bcos θ sin(ωt + θ) = A sin(ωt + θ) (1)

Here, A is called the amplitude of the oscillation,2π/ω = T is the period, θ is the phase.
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Example A mass of 1 kg is attached to a spring ofconstant k = 4. The initial displacement, outward, is1cm, and the initial velocity, outward as well, is 1m/s.
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Example A mass of 1 kg is attached to a spring ofconstant k = 4. The initial displacement, outward, is1cm, and the initial velocity, outward as well, is 1m/s.Find the period of oscillation, the amplitude and thephase of the motion.Solution. The equation of motion is x′′ + 4x = 0 andthus the characteristic equation is r2 + 4 = 0,r = ±2and thus x = A sin(2t + φ).The period is 2π/2 = π
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Now we use the initial condition: x(0) = 0.01 thus
A sinφ = 0.01
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Now we use the initial condition: x(0) = 0.01 thus
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Also,
tanφ = 2 · 10−2 φ = arctan(2 · 10−2) (the phase)
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Also,
tanφ = 2 · 10−2 φ = arctan(2 · 10−2) (the phase)
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Figure 3: Typical solution
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Let’s take a larger damping, R = 2.

r2 + 2r + 1 = 0; r = −1

The roots are degenerate. Thus the general solutionis of the form Ae−t + Bte−t = e−t(A + Bt). There isno more oscillation!
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Whenever the two roots coincide, the damping iscalled critical.
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Whenever the two roots coincide, the damping iscalled critical.Let’s take even larger damping, R = 5/2Then,
x (t) = Ae−2t + Be− t2We now have two exponentials, and no trace ofoscillation.This motion is called overdamped.
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