
Forced oscillations. Review of
power series

§3.9,5.1
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The characteristic equation is mr2 + k = 0,
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We see that ω 6= ω0 is important.
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Thus a particular solution is A1 cosωt or1
ω20 − ω2F0

m cosωt
Note that for this solution, there is oscillation withfrequency ω and amplitude A1 = 1

ω20 − ω2F0
m , whichbecomes unbounded as ω approaches ω0. Thegeneral solution of the equation is a particularsolution, for example this, plus the general solutionof the homogeneous equation, A sin(ω0t + φ)
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mx′′ + kx = A1 cosω0tLet now ω = ω0. In this case, a particular solution inthe form A cosωt does not exist, we find one in theform
Bt sinω0tSubstituting we get



9



9

−Bt(mω20 − k) sinωt+2Bω cos(ω0t)−A1 cos(ω0t) = 0)
Thus B = A1/(2ω0) and we have a particular solutionin the form A1t sinω0t/(2ω0)



9

−Bt(mω20 − k) sinωt+2Bω cos(ω0t)−A1 cos(ω0t) = 0)
Thus B = A1/(2ω0) and we have a particular solutionin the form A1t sinω0t/(2ω0)and the general solution

A1t sinω0t/(2ω0) + A sinω0t + B cosω0t



9

−Bt(mω20 − k) sinωt+2Bω cos(ω0t)−A1 cos(ω0t) = 0)
Thus B = A1/(2ω0) and we have a particular solutionin the form A1t sinω0t/(2ω0)and the general solution

A1t sinω0t/(2ω0) + A sinω0t + B cosω0t
This solution grows without bound.
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Tacoma Narrows bridge, 1940
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mx′′ + γx′ + kx = F0 cosωtGeneral solution is
c1er1t + c2er2t + A1 cos(ωt − δ)

where r1, r2 are the characteristic roots.They alwayshave a real part, and it is negative.This means that
c1er1t + c2er2t → 0 as t →∞. This is called transient
response, because it lasts a finite time.
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and it is large if ω ≈ ω0 and γ is small.
Read the textbook for the formulas of the other
constants, δ etc.
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Figure 1: Response vs. frequency.
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Series: short review. Please brush upPower series are used to solve differential equations,when explicit solutions are hard to find.
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