Forced oscillations. Review of power series

§3.9,5.1

Consider first the undamped oscillator ($\gamma = 0$)

1

Consider first the undamped oscillator ($\gamma = 0$)

mx'' + kx = 0

Consider first the undamped oscillator ($\gamma = 0$)

$$mx'' + kx = 0$$

The characteristic equation is $mr^2 + k = 0$,

$r_{1,2} = \pm i \sqrt{k/m}$

Apply now an external forcing $F(t) = F_0 \cos \omega t$

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

 $mx'' + kx = F_0 \cos \omega t$

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

$$mx'' + kx = F_0 \cos \omega t$$

There are two cases:

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

 $mx'' + kx = F_0 \cos \omega t$

There are two cases: $\omega \neq \omega_0$ and

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

 $mx'' + kx = F_0 \cos \omega t$

There are two cases: $\omega \neq \omega_0$ and $\omega = \omega_0$

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

$$mx'' + kx = F_0 \cos \omega t$$

There are two cases: $\omega \neq \omega_0$ and $\omega = \omega_0$. In the first case we look for a particular solution in the form $A \cos \omega t$

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

$$mx'' + kx = F_0 \cos \omega t$$

There are two cases: $\omega \neq \omega_0$ and $\omega = \omega_0$. In the first case we look for a particular solution in the form $A \cos \omega t$ (we don't need the sin since x'' and x stay of the form cos. We would need it if we had x' in the equation

Apply now an external forcing $F(t) = F_0 \cos \omega t$. The equation becomes:

$$mx'' + kx = F_0 \cos \omega t$$

There are two cases: $\omega \neq \omega_0$ and $\omega = \omega_0$. In the first case we look for a particular solution in the form $A \cos \omega t$ (we don't need the sin since x'' and x stay of the form cos. We would need it if we had x' in the equation).

$mx'' + kx = F_0 \cos \omega t; \quad x = A \cos \omega t$

 $mx'' + kx = F_0 \cos \omega t; \quad x = A \cos \omega t$ $-m\omega^2 A \cos \omega t + kA \cos \omega t = F_0 \cos \omega t$

$$mx'' + kx = F_0 \cos \omega t; \quad x = A \cos \omega t$$
$$-m\omega^2 A \cos \omega t + kA \cos \omega t = F_0 \cos \omega t$$
$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad f_0 \qquad f_$$

$$mx'' + kx = F_0 \cos \omega t; \quad x = A \cos \omega t$$
$$-m\omega^2 A \cos \omega t + kA \cos \omega t = F_0 \cos \omega t$$
$$(-m\omega^2 + k)A = F_0 \implies A = \frac{F_0}{k - m\omega^2}$$
$$= \frac{1}{\frac{k}{m} - \omega^2} \frac{F_0}{m} = \frac{1}{\frac{k}{\omega_0^2 - \omega^2}} \frac{F_0}{m}$$

$$mx'' + kx = F_0 \cos \omega t; \quad x = A \cos \omega t$$
$$-m\omega^2 A \cos \omega t + kA \cos \omega t = F_0 \cos \omega t$$
$$(-m\omega^2 + k)A = F_0 \implies A = \frac{F_0}{k - m\omega^2}$$
$$= \frac{1}{\frac{k}{m} - \omega^2} \frac{F_0}{m} = \frac{1}{\frac{k}{\omega_0^2 - \omega^2}} \frac{F_0}{m}$$
We see that $\omega \neq \omega_0$ is important.

$$\frac{1}{\omega_0^2 - \omega^2} \frac{F_0}{m} \cos \omega t$$

$$\frac{1}{\omega_0^2 - \omega^2} \frac{F_0}{m} \cos \omega t$$

Note that for this solution, there is oscillation with frequency ω and amplitude

$$\frac{1}{\omega_0^2 - \omega^2} \frac{F_0}{m} \cos \omega t$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_1 = \frac{1}{\omega_0^2 - \omega^2 m}$

$$\frac{1}{\omega_0^2 - \omega^2} \frac{F_0}{m} \cos \omega t$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_1 = \frac{1}{\omega_0^2 - \omega^2 m} \frac{F_0}{m}$, which becomes unbounded as ω approaches ω_0

$$\frac{1}{\omega_0^2 - \omega^2} \frac{F_0}{m} \cos \omega t$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_1 = \frac{1}{\omega_0^2 - \omega^2 m} \frac{F_0}{m}$, which becomes unbounded as ω approaches ω_0 . The general solution of the equation is a particular solution, for example this, plus the general solution of the homogeneous equation, $A \sin(\omega_0 t + \phi)$

 $A\sin(\omega_0 t + \phi) + A_1\cos\omega t$

٠

•

•

 $A\sin\phi + A_1 = 0 \quad A\omega_0\cos(\phi) - A_1\omega\underbrace{\sin(0)}_0 = 0$

$$A\sin\phi + A_1 = 0 \quad A\omega_0\cos(\phi) - A_1\omega\underbrace{\sin(0)}_0 = 0$$

Thus $\phi = \pi/2$, $A = -A_1$ and we get

$$A\sin\phi + A_1 = 0 \quad A\omega_0\cos(\phi) - A_1\omega\underbrace{\sin(0)}_0 = 0$$

Thus $\phi = \pi/2$, $A = -A_1$ and we get

$$x = A_1(\cos \omega t - \cos \omega_0 t) = 2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

$$A\sin\phi + A_1 = 0 \quad A\omega_0\cos(\phi) - A_1\omega\underbrace{\sin(0)}_0 = 0$$

Thus $\phi = \pi/2$, $A = -A_1$ and we get

$$x = A_1(\cos \omega t - \cos \omega_0 t) = 2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

$$2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

$$2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

Two frequencies are at play: the half difference $\frac{1}{2}(\omega - \omega_0)$

$$2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

Two frequencies are at play: the half difference $\frac{1}{2}(\omega - \omega_0)$ and the half sum $\frac{1}{2}(\omega + \omega_0)$

$$2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

Two frequencies are at play: the half difference $\frac{1}{2}(\omega - \omega_0)$ and the half sum $\frac{1}{2}(\omega + \omega_0)$. If ω, ω_0 are close to each other, then it is as if the amplitude of the fast oscillation was varying slowly, with frequency $\frac{1}{2}(\omega - \omega_0)$

$$2A_1 \sin \frac{\omega_0 t - \omega t}{2} \sin \frac{\omega_0 t + \omega t}{2}$$

Two frequencies are at play: the half difference $\frac{1}{2}(\omega - \omega_0)$ and the half sum $\frac{1}{2}(\omega + \omega_0)$. If ω, ω_0 are close to each other, then it is as if the amplitude of the fast oscillation was varying slowly, with frequency $\frac{1}{2}(\omega - \omega_0)$

Resonance

$$mx'' + kx = A_1 \cos \omega_0 t$$

Let now $\omega = \omega_0$

Resonance

$$mx'' + kx = A_1 \cos \omega_0 t$$

Let now $\omega = \omega_0$. In this case, a particular solution in the form $A \cos \omega t$ does not exist, we find one in the form

 $Bt\sin\omega_0 t$

Resonance

$$mx'' + kx = A_1 \cos \omega_0 t$$

Let now $\omega = \omega_0$. In this case, a particular solution in the form $A \cos \omega t$ does not exist, we find one in the form

 $Bt\sin\omega_0 t$

Substituting we get

g

 $-Bt(m\omega_0^2 - k)\sin\omega t + \underline{2B\omega}\cos(\omega_0 t) - \underline{A_1}\cos(\omega_0 t) = 0)$

Thus $B = A_1/(2\omega_0)$ and we have a particular solution in the form $A_1 t \sin \omega_0 t/(2\omega_0)$

$$-Bt(\boldsymbol{m}\omega_0^2 - \boldsymbol{k})\sin\omega t + \underline{2B\omega}\cos(\omega_0 t) - \underline{A_1}\cos(\omega_0 t) = 0)$$

Thus $B = A_1/(2\omega_0)$ and we have a particular solution in the form $A_1 t \sin \omega_0 t/(2\omega_0)$ and the general solution

 $A_1 t \sin \omega_0 t / (2\omega_0) + A \sin \omega_0 t + B \cos \omega_0 t$

 $-Bt(\boldsymbol{m}\omega_0^2 - \boldsymbol{k})\sin\omega t + \underline{2B\omega}\cos(\omega_0 t) - \underline{A_1}\cos(\omega_0 t) = 0)$

Thus $B = A_1/(2\omega_0)$ and we have a particular solution in the form $A_1 t \sin \omega_0 t/(2\omega_0)$ and the general solution

 $A_1 t \sin \omega_0 t / (2\omega_0) + A \sin \omega_0 t + B \cos \omega_0 t$

This solution grows without bound.

Tacoma Narrows bridge, 1940

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

$$mx'' + \gamma x' + kx = F_0 \cos \omega t$$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$ General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1 , r_2 are the characteristic roots.

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1 , r_2 are the characteristic roots. They always have a real part, and it is negative.

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1, r_2 are the characteristic roots. They always have a real part, and it is negative. This means that $c_1e^{r_1t} + c_2e^{r_2t} \rightarrow 0$

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1, r_2 are the characteristic roots. They always have a real part, and it is negative. This means that $c_1e^{r_1t} + c_2e^{r_2t} \rightarrow 0$ as $t \rightarrow \infty$

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1 , r_2 are the characteristic roots. They always have a real part, and it is negative. This means that $c_1e^{r_1t} + c_2e^{r_2t} \rightarrow 0$ as $t \rightarrow \infty$. This is called **transient response**

 $mx'' + \gamma x' + kx = F_0 \cos \omega t$

General solution is

$$c_1 e^{r_1 t} + c_2 e^{r_2 t} + A_1 \cos(\omega t - \delta)$$

where r_1 , r_2 are the characteristic roots. They always have a real part, and it is negative. This means that $c_1e^{r_1t} + c_2e^{r_2t} \rightarrow 0$ as $t \rightarrow \infty$. This is called **transient response**, because it lasts a finite time.

Now,

$$A_1 = \frac{F_0}{\sqrt{m^2(\omega^2 - \omega_0)^2 + \gamma^2 \omega^2}}$$

Now,

$$A_1 = \frac{F_0}{\sqrt{m^2(\omega^2 - \omega_0)^2 + \gamma^2 \omega^2}}$$

and it is large if $\omega \approx \omega_0$ and γ is small.

Now,

$$A_1 = \frac{F_0}{\sqrt{m^2(\omega^2 - \omega_0)^2 + \gamma^2 \omega^2}}$$

and it is large if $\omega \approx \omega_0$ and γ is small.

Read the textbook for the formulas of the other constants, δ etc.

Figure 1: Response vs. frequency.

Series: short review. Please brush up Power series are used to solve differential equations, when explicit solutions are hard to find.

These are series of the form

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

These are series of the form

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

• There is always a symmetric interval of convergence, $[x_0 - r, x_0 + r]$. r is called radius of convergence.

These are series of the form

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

• There is always a symmetric interval of convergence, $[x_0 - r, x_0 + r]$. r is called radius of convergence. r can be zero, finite, or infinity.

These are series of the form

$$\sum_{k=0}^{\infty} a_k (x - x_0)^k$$

• There is always a symmetric interval of convergence, $[x_0 - r, x_0 + r]$. r is called radius of convergence. r can be zero, finite, or infinity.