Forced oscillations. Review of power series

§3.9,5.1

Consider first the undamped oscillator ($\gamma=0$)

Consider first the undamped oscillator ($\gamma=0$)

$$
m x^{\prime \prime}+k x=0
$$

Consider first the undamped oscillator ($\gamma=0$)

$$
m x^{\prime \prime}+k x=0
$$

The characteristic equation is $m r^{2}+k=0$,

$$
r_{1,2}= \pm i \sqrt{k / m}
$$

$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases:
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases: $\omega \neq \omega_{0}$ and
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases: $\omega \neq \omega_{0}$ and $\omega=\omega_{0}$
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.
Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases: $\omega \neq \omega_{0}$ and $\omega=\omega_{0}$. In the first case we look for a particular solution in the form
$A \cos \omega t$
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.

Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases: $\omega \neq \omega_{0}$ and $\omega=\omega_{0}$. In the first case we look for a particular solution in the form $A \cos \omega t$ (we don't need the sin since $x^{\prime \prime}$ and x stay of the form cos. We would need it if we had x^{\prime} in the equation
$r_{1,2}= \pm i \sqrt{k / m}$ where $\omega_{0}=\sqrt{k / m}$ is the natural frequency.

Apply now an external forcing $F(t)=F_{0} \cos \omega t$. The equation becomes:

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t
$$

There are two cases: $\omega \neq \omega_{0}$ and $\omega=\omega_{0}$. In the first case we look for a particular solution in the form $A \cos \omega t$ (we don't need the sin since $x^{\prime \prime}$ and x stay of the form cos. We would need it if we had x^{\prime} in the equation).

$$
m x^{\prime \prime}+k x=F_{0} \cos \omega t ; \quad x=A \cos \omega t
$$

$m x^{\prime \prime}+k x=F_{0} \cos \omega t ; \quad x=A \cos \omega t$
$-m \omega^{2} A \cos \omega t+k A \cos \omega t=F_{0} \cos \omega t$

$$
\begin{aligned}
& m x^{\prime \prime}+k x=F_{0} \cos \omega t ; \quad x=A \cos \omega t \\
& -m \omega^{2} A \underset{\uparrow}{\cos \omega t}+k A \underset{\uparrow}{\cos \omega t}=F_{0} \cos \omega t \\
& \left(-m \omega^{2}+k\right) A=F_{0} \Rightarrow A=\frac{F_{0}}{k-m \omega^{2}}
\end{aligned}
$$

$$
\begin{gathered}
m x^{\prime \prime}+k x=F_{0} \cos \omega t ; \quad x=A \cos \omega t \\
-m \omega^{2} A \underset{\uparrow}{\cos \omega t+k A \cos \omega t=F_{0} \cos \omega t} \\
\left(-m \omega^{2}+k\right) A=F_{0} \Rightarrow A=\frac{F_{0}}{k-m \omega^{2}} \\
=\frac{1}{\frac{k}{m}-\omega^{2}} \frac{F_{0}}{m}=\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m}
\end{gathered}
$$

$$
\begin{gathered}
m x^{\prime \prime}+k x=F_{0} \cos \omega t ; \quad x=A \cos \omega t \\
-m \omega^{2} A \underset{\uparrow}{\cos \omega t+k A \underset{\uparrow}{\cos } \omega t=F_{0} \cos \omega t} \\
\left(-m \omega^{2}+k\right) A=F_{0} \Rightarrow A=\frac{F_{0}}{k-m \omega^{2}} \\
=\frac{1}{\frac{k}{m}-\omega^{2}} \frac{F_{0}}{m}=\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m}
\end{gathered}
$$

We see that $\omega \neq \omega_{0}$ is important.

Thus a particular solution is $A_{1} \cos \omega t$

Thus a particular solution is $A_{1} \cos \omega t$ or

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m} \cos \omega t
$$

Thus a particular solution is $A_{1} \cos \omega t$ or

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m} \cos \omega t
$$

Note that for this solution, there is oscillation with frequency ω and amplitude

Thus a particular solution is $A_{1} \cos \omega t$ or

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m} \cos \omega t
$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_{1}=\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m}$

Thus a particular solution is $A_{1} \cos \omega t$ or

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m} \cos \omega t
$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_{1}=\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m}$, which becomes unbounded as ω approaches ω_{0}

Thus a particular solution is $A_{1} \cos \omega t$ or

$$
\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m} \cos \omega t
$$

Note that for this solution, there is oscillation with frequency ω and amplitude $A_{1}=\frac{1}{\omega_{0}^{2}-\omega^{2}} \frac{F_{0}}{m}$, which becomes unbounded as ω approaches ω_{0}. The general solution of the equation is a particular solution, for example this, plus the general solution of the homogeneous equation, $A \sin \left(\omega_{0} t+\phi\right)$

$A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t$

$A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t$

Suppose that $x(0)=x^{\prime}(0)=0$

$A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t$

Suppose that $x(0)=x^{\prime}(0)=0$. Then

$$
A \sin \phi+A_{1}=0 \quad A \omega_{0} \cos (\phi)-A_{1} \omega \underbrace{\sin (0)}_{0}=0
$$

$A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t$

Suppose that $x(0)=x^{\prime}(0)=0$. Then

$$
A \sin \phi+A_{1}=0 \quad A \omega_{0} \cos (\phi)-A_{1} \omega \underbrace{\sin (0)}_{0}=0
$$

Thus $\phi=\pi / 2, A=-A_{1}$ and we get

$$
A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t
$$

Suppose that $x(0)=x^{\prime}(0)=0$. Then

$$
A \sin \phi+A_{1}=0 \quad A \omega_{0} \cos (\phi)-A_{1} \omega \underbrace{\sin (0)}_{0}=0
$$

Thus $\phi=\pi / 2, A=-A_{1}$ and we get
$x=A_{1}\left(\cos \omega t-\cos \omega_{0} t\right)=2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}$

$$
A \sin \left(\omega_{0} t+\phi\right)+A_{1} \cos \omega t
$$

Suppose that $x(0)=x^{\prime}(0)=0$. Then

$$
A \sin \phi+A_{1}=0 \quad A \omega_{0} \cos (\phi)-A_{1} \omega \underbrace{\sin (0)}_{0}=0
$$

Thus $\phi=\pi / 2, A=-A_{1}$ and we get
$x=A_{1}\left(\cos \omega t-\cos \omega_{0} t\right)=2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}$
$2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}$

$$
2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}
$$

Two frequencies are at play: the half difference $\frac{1}{2}\left(\omega-\omega_{0}\right)$

$$
2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}
$$

Two frequencies are at play: the half difference $\frac{1}{2}\left(\omega-\omega_{0}\right)$ and the half sum $\frac{1}{2}\left(\omega+\omega_{0}\right)$

$$
2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}
$$

Two frequencies are at play: the half difference $\frac{1}{2}\left(\omega-\omega_{0}\right)$ and the half sum $\frac{1}{2}\left(\omega+\omega_{0}\right)$. If ω, ω_{0} are close to each other, then it is as if the amplitude of the fast oscillation was varying slowly, with frequency $\frac{1}{2}\left(\omega-\omega_{0}\right)$

$$
2 A_{1} \sin \frac{\omega_{0} t-\omega t}{2} \sin \frac{\omega_{0} t+\omega t}{2}
$$

Two frequencies are at play: the half difference $\frac{1}{2}\left(\omega-\omega_{0}\right)$ and the half sum $\frac{1}{2}\left(\omega+\omega_{0}\right)$. If ω, ω_{0} are close to each other, then it is as if the amplitude of the fast oscillation was varying slowly, with frequency $\frac{1}{2}\left(\omega-\omega_{0}\right)$

Resonance

$$
m x^{\prime \prime}+k x=A_{1} \cos \omega_{0} t
$$

Let now $\omega=\omega_{0}$

Resonance

$$
m x^{\prime \prime}+k x=A_{1} \cos \omega_{0} t
$$

Let now $\omega=\omega_{0}$. In this case, a particular solution in the form $A \cos \omega t$ does not exist, we find one in the form

$$
B t \sin \omega_{0} t
$$

Resonance

$$
m x^{\prime \prime}+k x=A_{1} \cos \omega_{0} t
$$

Let now $\omega=\omega_{0}$. In this case, a particular solution in the form $A \cos \omega t$ does not exist, we find one in the form

$$
B t \sin \omega_{0} t
$$

Substituting we get
$\left.-B t\left(m \omega_{0}^{2}-k\right) \sin \omega t+\underline{2 B \omega} \cos \left(\omega_{0} t\right)-\underline{A_{1}} \cos \left(\omega_{0} t\right)=0\right)$
Thus $B=A_{1} /\left(2 \omega_{0}\right)$ and we have a particular solution in the form $A_{1} t \sin \omega_{0} t /\left(2 \omega_{0}\right)$
$\left.-B t\left(m \omega_{0}^{2}-k\right) \sin \omega t+\underline{2 B \omega} \cos \left(\omega_{0} t\right)-\underline{A_{1}} \cos \left(\omega_{0} t\right)=0\right)$
Thus $B=A_{1} /\left(2 \omega_{0}\right)$ and we have a particular solution in the form $A_{1} t \sin \omega_{0} t /\left(2 \omega_{0}\right)$ and the general solution

$$
A_{1} t \sin \omega_{0} t /\left(2 \omega_{0}\right)+A \sin \omega_{0} t+B \cos \omega_{0} t
$$

$$
\left.-B t \underline{\left(m \omega_{0}^{2}-k\right)} \sin \omega t+\underline{2 B \omega} \cos \left(\omega_{0} t\right)-\underline{A_{1}} \cos \left(\omega_{0} t\right)=0\right)
$$

Thus $B=A_{1} /\left(2 \omega_{0}\right)$ and we have a particular solution in the form $A_{1} t \sin \omega_{0} t /\left(2 \omega_{0}\right)$ and the general solution

$$
A_{1} t \sin \omega_{0} t /\left(2 \omega_{0}\right)+A \sin \omega_{0} t+B \cos \omega_{0} t
$$

This solution grows without bound.

Tacoma Narrows bridge, 1940

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} \mathrm{e}^{r_{1} t}+c_{2} \mathrm{e}^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.They always have a real part, and it is negative.

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.They always have a real part, and it is negative.This means that $c_{1} \mathrm{e}^{r_{1} t}+c_{2} \mathrm{e}^{r_{2} t} \rightarrow 0$

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.They always have a real part, and it is negative.This means that $c_{1} e^{r_{1} t}+c_{2} \mathrm{e}^{r_{2} t} \rightarrow 0$ as $t \rightarrow \infty$

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.They always have a real part, and it is negative.This means that $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \rightarrow 0$ as $t \rightarrow \infty$. This is called transient response

Forced oscillations with damping

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=F_{0} \cos \omega t
$$

General solution is

$$
c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}+A_{1} \cos (\omega t-\delta)
$$

where r_{1}, r_{2} are the characteristic roots.They always have a real part, and it is negative.This means that $c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \rightarrow 0$ as $t \rightarrow \infty$. This is called transient response, because it lasts a finite time.

Now,

$$
A_{1}=\frac{F_{0}}{\sqrt{m^{2}\left(\omega^{2}-\omega_{0}\right)^{2}+\gamma^{2} \omega^{2}}}
$$

Now,

$$
A_{1}=\frac{F_{0}}{\sqrt{m^{2}\left(\omega^{2}-\omega_{0}\right)^{2}+\gamma^{2} \omega^{2}}}
$$

and it is large if $\omega \approx \omega_{0}$ and γ is small.

Now,

$$
A_{1}=\frac{F_{0}}{\sqrt{m^{2}\left(\omega^{2}-\omega_{0}\right)^{2}+\gamma^{2} \omega^{2}}}
$$

and it is large if $\omega \approx \omega_{0}$ and γ is small.

Read the textbook for the formulas of the other constants, δ etc.

Figure 1: Response vs. frequency.

Series: short review. Please brush up

Power series are used to solve differential equations, when explicit solutions are hard to find.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right] . \quad r$ is called radius of convergence.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right] . \quad r$ is called radius of convergence. r can be zero, finite, or infinity.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right] . \quad r$ is called radius of convergence. r can be zero, finite, or infinity.

