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y ′′ = xy Ñ (k + 1)(k + 2)ck+2 = ck−1; and c2 = 0
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y = c0

(
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)
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y0 = 1+ x3

2 · 3 + x6

6 · 5 · 3 · 2 + · · · ; y1 = x + x4

3 · 4 + x7

7 · 6 · 4 · 3 + · · ·

What is the radius of convergence? Use ratio test, carefully

since many terms are zero.

x3k+3
(3k+3)(3k+2)3k(3k−1)···

x3k
3k(3k−1)···

= x3

(3k + 3)(3k + 2) → 0 < 1; ∀x

Thus the series converges for all x.



9

Thus general solution of y ′′ − xy = 0 is



9

Thus general solution of y ′′ − xy = 0 is

Ay0 + By1



9

Thus general solution of y ′′ − xy = 0 is

Ay0 + By1



10

x
0 1 2 3 4 5 6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ratio between solution and
power series with: 1 term (yellow), 2 terms (red) 3 terms (mag.)
etc. The graphs which are closer to 1 mean better approxima-
tions



11

Theorem. Consider a differential equation of the
form

y ′′ + P(x)y ′ + Q(x)y (∗)



11

Theorem. Consider a differential equation of the
form

y ′′ + P(x)y ′ + Q(x)y (∗)
where P(x) and Q(x) have convergent power series
at x = x0



11

Theorem. Consider a differential equation of the
form

y ′′ + P(x)y ′ + Q(x)y (∗)
where P(x) and Q(x) have convergent power series
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r1 is at least r.
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series with radia of convergence 1 (note that they are are ge-
ometric series).
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• Example. Take the equation (1 − x)y ′′ + 2xy ′ + y = 0. What
is the minimal radius of convergence of the series solutions,
calculated at x = 0?

Solution. We first have to write the equation in the form

y ′′ + 2x
(1− x)y

′ + 1
(1− x)y = 0

We see x0 = 0 is an ordinary point: both P(x) and Q(x) have
series with radia of convergence 1 (note that they are are ge-
ometric series). Thus the answer is 1.
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What is the radius of convergence of the series of

3x + 2
(x2 + 1)(x − 3)(x + 2)

about x = 5?

Answer: The roots are ±i, 3,−2. The closest to x = 5 is x = 3.
The distance is 2. Thus the radius is 2.
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What is the radius of convergence of the series of

3x + 2
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about x = 5?

Answer: The roots are ±i, 3,−2. The closest to x = 5 is x = 3.
The distance is 2. Thus the radius is 2.


