Series solutions to ODEs

§5.2

- Changes of index of summation.

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=\sum_{l=0}^{\infty} c_{l}\left(x-x_{0}\right)^{l}
$$

- Changes of index of summation.

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=\sum_{l=0}^{\infty} c_{l}\left(x-x_{0}\right)^{l}
$$

- Shift in index

$$
\sum_{k=1}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=c_{1}\left(x-x_{0}\right)+c_{2}\left(x-x_{0}\right)^{2}+\cdots
$$

$$
=\sum_{k=0}^{\infty} c_{k+1}\left(x-x_{0}\right)^{k+1}
$$

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1} \stackrel{k=m+1}{=} \sum_{m=0}^{\infty}(m+1) c_{m+1}\left(x-x_{0}\right)^{m}
$$

$$
\begin{aligned}
& f^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1} \stackrel{k=m+1}{=} \sum_{m=0}^{\infty}(m+1) c_{m+1}\left(x-x_{0}\right)^{m} \\
&=\sum_{k=0}^{\infty}(k+1) c_{k+1}\left(x-x_{0}\right)^{k}
\end{aligned}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{aligned}
& y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
& x y=x \sum_{k=0}^{\infty} c_{k} x^{k}
\end{aligned}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{gathered}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}
\end{gathered}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{array}{r}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k+1}
\end{array}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{gathered}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k+1}=\sum_{k=1}^{\infty} c_{k-1} x^{k}
\end{gathered}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{gathered}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k+1}=\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
y^{\prime \prime}=x y
\end{gathered}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{gathered}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k+1}=\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
y^{\prime \prime}=x y \Rightarrow(k+1)(k+2) c_{k+2}=c_{k-1} ;
\end{gathered}
$$

Solving equations by convergent power series

- Example: The Airy equation $y^{\prime \prime}-x y=0$.

We look for a power series solution $y=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then $y^{\prime \prime}=\sum_{k=0}^{\infty} k(k-1) c_{k} x^{k-2}=\sum_{k=2}^{\infty} k(k-1) c_{k} x^{k-2}$

$$
\begin{gathered}
y^{\prime \prime}=\sum_{k=0}^{\infty}(k+1)(k+2) c_{k+2} x^{k} \\
x y=x \sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} c_{k} x \cdot x^{k}=\sum_{k=0}^{\infty} c_{k} x^{k+1}=\sum_{k=1}^{\infty} c_{k-1} x^{k} \\
y^{\prime \prime}=x y \Rightarrow(k+1)(k+2) c_{k+2}=c_{k-1} ; \text { and } c_{2}=0
\end{gathered}
$$

(there is no power x^{0} in the series for $x y$)

$$
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc;
(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc;
(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}=\frac{\frac{c_{0}}{2 \cdot 3}}{5 \cdot 6}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}=\frac{\frac{c_{0}}{2 \cdot 3}}{5 \cdot 6}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
\begin{gathered}
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}=\frac{\frac{c_{0}}{2 \cdot 3}}{5 \cdot 6}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \\
k=2: \quad c_{4}=\frac{c_{1}}{3 \cdot 4}
\end{gathered}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
\begin{gathered}
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}=\frac{\frac{c_{0}}{2 \cdot 3}}{5 \cdot 6}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \\
k=2: \quad c_{4}=\frac{c_{1}}{3 \cdot 4} ; \quad c_{7}=\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3}
\end{gathered}
$$

(there is no power x^{0} in the series for $x y$)

$$
\begin{gathered}
c_{k-1}=(k+1)(k+2) c_{k+2} \text { and } c_{2}=0 \\
c_{k+2}=\frac{c_{k-1}}{(k+1)(k+2)}
\end{gathered}
$$

The indices go up by three every time. So, c_{0} determines c_{3} which determines c_{6} etc; c_{1} determines c_{4} which determines c_{7} etc; finally, $c_{2}(=0)$ determines c_{5} which determines c_{8} etc.

$$
\begin{gathered}
k=1: \quad c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{3}}{5 \cdot 6}=\frac{\frac{c_{0}}{2 \cdot 3}}{5 \cdot 6}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \\
k=2: \quad c_{4}=\frac{c_{1}}{3 \cdot 4} ; \quad c_{7}=\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3}
\end{gathered}
$$

$$
k=3: \quad c_{5}=\frac{c_{2}}{4 \cdot 5}=0 ; \quad c_{8}=\frac{c_{5}}{7 \cdot 8}=0 \quad \text { etc. }
$$

$$
\begin{aligned}
& k=3: \quad c_{5}=\frac{c_{2}}{4 \cdot 5}=0 ; \quad c_{8}=\frac{c_{5}}{7 \cdot 8}=0 \text { etc. } \\
& c_{0} \text { arbitrary } ; c_{1} \text { arbitrary } ; c_{2}=0
\end{aligned}
$$

Now we have all the coefficients. So

$$
\begin{gathered}
k=3: \quad c_{5}=\frac{c_{2}}{4 \cdot 5}=0 ; \quad c_{8}=\frac{c_{5}}{7 \cdot 8}=0 \text { etc. } \\
c_{0} \text { arbitrary } ; c_{1} \text { arbitrary } ; c_{2}=0
\end{gathered}
$$

Now we have all the coefficients. So

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

$$
\begin{gathered}
k=3: \quad c_{5}=\frac{c_{2}}{4 \cdot 5}=0 ; \quad c_{8}=\frac{c_{5}}{7 \cdot 8}=0 \text { etc. } \\
c_{0} \text { arbitrary } ; c_{1} \text { arbitrary } ; c_{2}=0
\end{gathered}
$$

Now we have all the coefficients. So

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

We group them by three, since the formula goes in steps of three:

$$
y=c_{0}+c_{3} x^{3}+c_{6} x^{6}+\cdots+c_{1} x+c_{4} x^{4}+c_{7} x^{7}+\cdots
$$

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

We group them by three, since the formula goes in steps of three:

$$
\begin{gathered}
y=c_{0}+c_{3} x^{3}+c_{6} x^{6}+\cdots+c_{1} x+c_{4} x^{4}+c_{7} x^{7}+\cdots \\
c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \text { etc. } \\
c_{4}=\frac{c_{1}}{3 \cdot 4} ; \quad c_{7}=\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3} \text { etc. }
\end{gathered}
$$

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

We group them by three, since the formula goes in steps of three:

$$
\begin{aligned}
& y=c_{0}+c_{3} x^{3}+c_{6} x^{6}+\cdots+c_{1} x+c_{4} x^{4}+c_{7} x^{7}+\cdots \\
& c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}
\end{aligned}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \text { etc. } \quad \begin{gathered}
c_{4}=\frac{c_{1}}{3 \cdot 4} ; \quad c_{7}=\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3} \text { etc. }
\end{gathered}
$$

So

$$
y=c_{0}+\frac{c_{0}}{2 \cdot 3} x^{3}+\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} x^{6}+\cdots+c_{1} x+\frac{c_{1}}{3 \cdot 4} x^{4}+\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3} x^{7}+\cdots
$$

$$
y=c_{0}+c_{1} x+\underbrace{c_{2} x^{2}}_{=0}+c_{3} x^{3}+c_{4} x^{4}+\underbrace{c_{5} x^{5}}_{=0}+c_{6} x^{6}+\cdots
$$

We group them by three, since the formula goes in steps of three:

$$
\begin{aligned}
& y=c_{0}+c_{3} x^{3}+c_{6} x^{6}+\cdots+c_{1} x+c_{4} x^{4}+c_{7} x^{7}+\cdots \\
& c_{3}=\frac{c_{0}}{2 \cdot 3} ; \quad c_{6}
\end{aligned}=\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} \text { etc. } \quad \begin{gathered}
c_{4}=\frac{c_{1}}{3 \cdot 4} ; \quad c_{7}=\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3} \text { etc. }
\end{gathered}
$$

So

$$
y=c_{0}+\frac{c_{0}}{2 \cdot 3} x^{3}+\frac{c_{0}}{2 \cdot 3 \cdot 5 \cdot 6} x^{6}+\cdots+c_{1} x+\frac{c_{1}}{3 \cdot 4} x^{4}+\frac{c_{1}}{7 \cdot 6 \cdot 4 \cdot 3} x^{7}+\cdots
$$

$$
y=c_{0}\left(1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2} \cdots\right)
$$

$$
\begin{array}{r}
y=c_{0}\left(1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2} \cdots\right)+c_{1}\left(x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3} \cdots\right. \\
=c_{0} y_{0}+c_{1} y_{1}
\end{array}
$$

The general solution!. y_{0} and y_{1} are 2 particular solutions

$$
\begin{array}{r}
y=c_{0}\left(1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2} \cdots\right)+c_{1}\left(x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3} \cdots\right. \\
=c_{0} y_{0}+c_{1} y_{1}
\end{array}
$$

The general solution!. y_{0} and y_{1} are 2 particular solutions
$y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ;$

$$
\begin{array}{r}
y=c_{0}\left(1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2} \cdots\right)+c_{1}\left(x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3} \cdots\right. \\
=c_{0} y_{0}+c_{1} y_{1}
\end{array}
$$

The general solution!. y_{0} and y_{1} are 2 particular solutions
$y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ; y_{1}=x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3}+\cdots$

$$
\begin{array}{r}
y=c_{0}\left(1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2} \cdots\right)+c_{1}\left(x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3} \cdots\right. \\
=c_{0} y_{0}+c_{1} y_{1}
\end{array}
$$

The general solution!. y_{0} and y_{1} are 2 particular solutions
$y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ; y_{1}=x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3}+\cdots$

- They are linearly independent! (Why?)

$$
y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots
$$

$$
y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ; y_{1}=x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3}+\cdots
$$

$y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ; y_{1}=x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3}+\cdots$
What is the radius of convergence? Use ratio test, carefully since many terms are zero.
$y_{0}=1+\frac{x^{3}}{2 \cdot 3}+\frac{x^{6}}{6 \cdot 5 \cdot 3 \cdot 2}+\cdots ; y_{1}=x+\frac{x^{4}}{3 \cdot 4}+\frac{x^{7}}{7 \cdot 6 \cdot 4 \cdot 3}+\cdots$
What is the radius of convergence? Use ratio test, carefully since many terms are zero.

$$
\frac{\frac{x^{3 k+3}}{(3 k+3)(3 k+2) 3 k(3 k-1) \cdots}}{\frac{x^{3 k}}{3 k(3 k-1) \cdots}}=\frac{x^{3}}{(3 k+3)(3 k+2)} \rightarrow 0<1 ; \quad \forall x
$$

Thus the series converges for all x.

Thus general solution of $y^{\prime \prime}-x y=0$ is

Thus general solution of $y^{\prime \prime}-x y=0$ is

$$
A y_{0}+B y_{1}
$$

Thus general solution of $y^{\prime \prime}-x y=0$ is

$$
A y_{0}+B y_{1}
$$

Ratio between solution and power series with: 1 term (yellow), 2 terms (red) 3 terms (mag.) etc. The graphs which are closer to 1 mean better approximations

Theorem. Consider a differential equation of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \quad(*)
$$

Theorem. Consider a differential equation of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \quad(*)
$$

where $P(x)$ and $Q(x)$ have convergent power series at $x=x_{0}$

Theorem. Consider a differential equation of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \quad(*)
$$

where $P(x)$ and $Q(x)$ have convergent power series at $x=x_{0}$. Such a point is called regular or ordinary.

- Let r be (the lesser of) their radius of convergence.
- Then all solutions to (*) have convergent power series solutions at x_{0}, and their radius of convergence r_{1} is at least r.

Theorem. Consider a differential equation of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \quad(*)
$$

where $P(x)$ and $Q(x)$ have convergent power series at $x=x_{0}$. Such a point is called regular or ordinary.

- Let r be (the lesser of) their radius of convergence.
- Then all solutions to (*) have convergent power series solutions at x_{0}, and their radius of convergence r_{1} is at least r.

Note. r_{1} rarely exceeds it r.

Theorem. Consider a differential equation of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y \quad(*)
$$

where $P(x)$ and $Q(x)$ have convergent power series at $x=x_{0}$. Such a point is called regular or ordinary.

- Let r be (the lesser of) their radius of convergence.
- Then all solutions to (*) have convergent power series solutions at x_{0}, and their radius of convergence r_{1} is at least r.

Note. r_{1} rarely exceeds it r.

- Example. Take the equation $(1-x) y^{\prime \prime}+2 x y^{\prime}+y=0$. What is the minimal radius of convergence of the series solutions, calculated at $x=0$?
- Example. Take the equation $(1-x) y^{\prime \prime}+2 x y^{\prime}+y=0$. What is the minimal radius of convergence of the series solutions, calculated at $x=0$?

Solution. We first have to write the equation in the form

$$
y^{\prime \prime}+\frac{2 x}{(1-x)} y^{\prime}+\frac{1}{(1-x)} y=0
$$

- Example. Take the equation $(1-x) y^{\prime \prime}+2 x y^{\prime}+y=0$. What is the minimal radius of convergence of the series solutions, calculated at $x=0$?

Solution. We first have to write the equation in the form

$$
y^{\prime \prime}+\frac{2 x}{(1-x)} y^{\prime}+\frac{1}{(1-x)} y=0
$$

We see $x_{0}=0$ is an ordinary point: both $P(x)$ and $Q(x)$ have series with radia of convergence 1 (note that they are are geometric series).

- Example. Take the equation $(1-x) y^{\prime \prime}+2 x y^{\prime}+y=0$. What is the minimal radius of convergence of the series solutions, calculated at $x=0$?

Solution. We first have to write the equation in the form

$$
y^{\prime \prime}+\frac{2 x}{(1-x)} y^{\prime}+\frac{1}{(1-x)} y=0
$$

We see $x_{0}=0$ is an ordinary point: both $P(x)$ and $Q(x)$ have series with radia of convergence 1 (note that they are are geometric series). Thus the answer is 1.

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.Let z_{1}, \ldots, z_{n} be the complex roots of P_{2}.

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.Let z_{1}, \ldots, z_{n} be the complex roots of P_{2}. Then the radius of analyticity of $P(x)$ at $x=x_{0}$ is the distance between x_{0} and the z_{k} closest to x_{0}.

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.Let z_{1}, \ldots, z_{n} be the complex roots of P_{2}. Then the radius of analyticity of $P(x)$ at $x=x_{0}$ is the distance between x_{0} and the z_{k} closest to x_{0}.

Example. What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=0$?

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.Let z_{1}, \ldots, z_{n} be the complex roots of P_{2}. Then the radius of analyticity of $P(x)$ at $x=x_{0}$ is the distance between x_{0} and the z_{k} closest to x_{0}.

Example. What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=0$?
Answer: The roots are $\pm i, 3,-2$. The closest to zero: $\pm i$. The distance is $|i|=1$. Thus the radius is one.

Theorem. Let $P(x)=P_{1}(x) / P_{2}(x)$ where P_{1} and P_{2} are polynomials.Let z_{1}, \ldots, z_{n} be the complex roots of P_{2}. Then the radius of analyticity of $P(x)$ at $x=x_{0}$ is the distance between x_{0} and the z_{k} closest to x_{0}.

Example. What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=0$?
Answer: The roots are $\pm i, 3,-2$. The closest to zero: $\pm i$. The distance is $|i|=1$. Thus the radius is one.

What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=5$?

What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=5$?
Answer: The roots are $\pm i, 3,-2$. The closest to $x=5$ is $x=3$. The distance is 2 . Thus the radius is 2 .

What is the radius of convergence of the series of

$$
\frac{3 x+2}{\left(x^{2}+1\right)(x-3)(x+2)}
$$

about $x=5$?
Answer: The roots are $\pm i, 3,-2$. The closest to $x=5$ is $x=3$. The distance is 2 . Thus the radius is 2 .

