Series

§5.1

Series: short review. Please brush up

Power series are used to solve differential equations, when explicit solutions are hard to find.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right]$. r is called radius of convergence.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right]$. r is called radius of convergence. r can be zero, finite, or infinity.

Power series

These are series of the form

$$
\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}
$$

- There is always a symmetric interval of convergence, $\left[x_{0}-r, x_{0}+r\right]$. r is called radius of convergence. r can be zero, finite, or infinity.The series converges absolutely if $\sum_{k=0}^{\infty}\left|a_{k}\right|\left|x-x_{0}\right|^{k}$ converges.
- Absolute convergence implies convergence, but not the other way around.
- Absolute convergence implies convergence, but not the other way around.
- $\mathrm{e}^{x}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\cdots=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$.
- Convenient way to calculate functions: $\sqrt{\mathrm{e}}=\mathrm{e}^{1 / 2} \approx$ $1+\frac{1}{2}+\frac{1}{8}+\frac{1}{6.8}=1.64 \cdots$
- Ratio test.
- Ratio test. The power series converges if

$$
\left|\frac{a_{k+1}\left(x-x_{0}\right)^{k+1}}{a_{k}\left(x-x_{0}\right)^{k}}\right|=\left|\frac{a_{k+1}}{a_{k}}\right|\left|x-x_{0}\right| \rightarrow L<1 \text { as } k \rightarrow \infty
$$

- Ratio test. The power series converges if

$$
\left|\frac{a_{k+1}\left(x-x_{0}\right)^{k+1}}{a_{k}\left(x-x_{0}\right)^{k}}\right|=\left|\frac{a_{k+1}}{a_{k}}\right|\left|x-x_{0}\right| \rightarrow L<1 \text { as } k \rightarrow \infty
$$

that is

- Ratio test. The power series converges if

$$
\left|\frac{a_{k+1}\left(x-x_{0}\right)^{k+1}}{a_{k}\left(x-x_{0}\right)^{k}}\right|=\left|\frac{a_{k+1}}{a_{k}}\right|\left|x-x_{0}\right| \rightarrow L<1 \text { as } k \rightarrow \infty
$$

that is

$$
\left|x-x_{0}\right|<r=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|
$$

- Ratio test. The power series converges if

$$
\left|\frac{a_{k+1}\left(x-x_{0}\right)^{k+1}}{a_{k}\left(x-x_{0}\right)^{k}}\right|=\left|\frac{a_{k+1}}{a_{k}}\right|\left|x-x_{0}\right| \rightarrow L<1 \text { as } k \rightarrow \infty
$$

that is

$$
\left|x-x_{0}\right|<r=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|
$$

and diverges if $\left|x-x_{0}\right|>r$. If $\left|x-x_{0}\right|=r$, you have to decide on a case-by-case basis.

- This r is the radius of convergence.
- Ratio test. The power series converges if

$$
\left|\frac{a_{k+1}\left(x-x_{0}\right)^{k+1}}{a_{k}\left(x-x_{0}\right)^{k}}\right|=\left|\frac{a_{k+1}}{a_{k}}\right|\left|x-x_{0}\right| \rightarrow L<1 \text { as } k \rightarrow \infty
$$

that is

$$
\left|x-x_{0}\right|<r=\lim _{k \rightarrow \infty}\left|\frac{a_{k}}{a_{k+1}}\right|
$$

and diverges if $\left|x-x_{0}\right|>r$. If $\left|x-x_{0}\right|=r$, you have to decide on a case-by-case basis.

- This r is the radius of convergence.

Example Find the region of convergence of the series $\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.

Example Find the region of convergence of the
 series $\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.

Solution We have

Example Find the region of convergence of the
series $\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.
Solution We have

$$
r=\lim _{k \rightarrow \infty}\left|\frac{k}{k+1}\right|=1
$$

Example Find the region of convergence of the series $\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.
Solution We have

$$
r=\lim _{k \rightarrow \infty}\left|\frac{k}{k+1}\right|=1
$$

The series converges if $|z|<1$ and diverges if $|z|>1$. What about $|z|=1$?

Example Find the region of convergence of the series $\sum_{k=1}^{\infty} \frac{z^{k}}{k}$.
Solution We have

$$
r=\lim _{k \rightarrow \infty}\left|\frac{k}{k+1}\right|=1
$$

The series converges if $|z|<1$ and diverges if $|z|>1$. What about $|z|=1$?

There are two cases: (1): $z=1$.

There are two cases: (1): $z=1$.We get $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent.
Why?

There are two cases: (1): $z=1$. We get $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent.
Why?(2) $z=-1$

There are two cases: (1): $z=1$.We get $\sum_{k=1}^{\infty} \frac{1}{k}$ divergent.
Why? (2) $z=-1$. We get $\sum_{k=1}^{\infty} \frac{(-1)^{k}}{k}$ convergent. Why?
Other examples: $\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z}$ convergent for
$|z|<1$, divergent otherwise.
$\mathrm{e}^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$. Ratio test $\frac{\frac{1}{k!}}{\frac{1}{(k+1)!}} \rightarrow \infty$ thus $r^{\prime}=\infty$ that is,
the series converges everywhere.
$\sum_{k=0}^{\infty} k!x^{k}$ Ratio test $\frac{k!}{(k+1)!}=0, R=0$. This last series will not be too useful for us...

- Power series can be added, subtracted, multiplied, divided.
- Power series can be added, subtracted, multiplied, divided.

$$
\sum_{k=0}^{\infty} a_{k} z^{k}+\sum_{k=0}^{\infty} b_{k} z^{k}=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) z^{k}
$$

- Power series can be added, subtracted, multiplied, divided.

$$
\begin{aligned}
& \sum_{k=0}^{\infty} a_{k} z^{k}+\sum_{k=0}^{\infty} b_{k} z^{k}=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) z^{k} \\
& \left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} z^{k}\right)=\sum_{k=0}^{\infty} c_{k} z^{k}
\end{aligned}
$$

- Power series can be added, subtracted, multiplied, divided.

$$
\begin{gathered}
\sum_{k=0}^{\infty} a_{k} z^{k}+\sum_{k=0}^{\infty} b_{k} z^{k}=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) z^{k} \\
\left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)^{k}\left(\sum_{k=0}^{\infty} b_{k} z^{k}\right)=\sum_{k=0}^{\infty} c_{k} z^{k} \\
c_{k}=\sum_{l=0}^{k} a_{l} b_{k-l}
\end{gathered}
$$

- Power series can be added, subtracted, multiplied, divided.

$$
\begin{gathered}
\sum_{k=0}^{\infty} a_{k} z^{k}+\sum_{k=0}^{\infty} b_{k} z^{k}=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) z^{k} \\
\left(\sum_{k=0}^{\infty} a_{k} z^{k}\right)\left(\sum_{k=0}^{\infty} b_{k} z^{k}\right)=\sum_{k=0}^{\infty} c_{k} z^{k} \\
c_{k}=\sum_{l=0}^{k} a_{l} b_{k-l}
\end{gathered}
$$

They are multiplied as though they were polynomi-
als. $E x:\left(1+a x+b x^{2}+\cdots\right)\left(1+A x+B x^{2}+\cdots\right)=$ $1+(a+A) x+(b+a A+B) x^{2}+\cdots$.

- The radius of convergence changes through these operations
als. $E x:\left(1+a x+b x^{2}+\cdots\right)\left(1+A x+B x^{2}+\cdots\right)=$ $1+(a+A) x+(b+a A+B) x^{2}+\cdots$.
- The radius of convergence changes through these operations
- The sum of a convergent power series, for $\left|x-x_{0}\right|<$ r is called analytic.
- If a series $f(x)=\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$ converges for $\mid x-$ $x_{0} \mid<r$, then, for $\left|x-x_{0}\right|<r$ it can be differentiated term by term.
- If a series $f(x)=\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$ converges for $\mid x-$ $x_{0} \mid<r$, then, for $\left|x-x_{0}\right|<r$ it can be differentiated term by term.

$$
f^{\prime}(x)=\sum_{k=0}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1}
$$

- If a series $f(x)=\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$ converges for $\mid x-$ $x_{0} \mid<r$, then, for $\left|x-x_{0}\right|<r$ it can be differentiated term by term.

$$
\begin{gathered}
f^{\prime}(x)=\sum_{k=0}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1} \\
f^{\prime \prime}(x)=\sum_{k=0}^{\infty} k(k-1) c_{k}\left(x-x_{0}\right)^{k-2} \quad \text { etc }
\end{gathered}
$$

- If a series $f(x)=\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}$ converges for $\mid x-$ $x_{0} \mid<r$, then, for $\left|x-x_{0}\right|<r$ it can be differentiated term by term.

$$
\begin{gathered}
f^{\prime}(x)=\sum_{k=0}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1} \\
f^{\prime \prime}(x)=\sum_{k=0}^{\infty} k(k-1) c_{k}\left(x-x_{0}\right)^{k-2} \quad \text { etc }
\end{gathered}
$$

- Changes of index of summation.

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=\sum_{l=0}^{\infty} c_{l}\left(x-x_{0}\right)^{l}
$$

- Changes of index of summation.

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=\sum_{l=0}^{\infty} c_{l}\left(x-x_{0}\right)^{l}
$$

- Shift in index

$$
\begin{aligned}
\sum_{k=1}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=C_{1}\left(x-x_{0}\right) & +c_{2}\left(x-x_{0}\right)^{2}+\cdots \\
& =\sum_{k=0}^{\infty} c_{k+1}\left(x-x_{0}\right)^{k+1}
\end{aligned}
$$

- Changes of index of summation.

$$
\sum_{k=0}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=\sum_{l=0}^{\infty} c_{l}\left(x-x_{0}\right)^{l}
$$

- Shift in index

$$
\begin{align*}
\sum_{k=1}^{\infty} c_{k}\left(x-x_{0}\right)^{k}=c_{1}\left(x-x_{0}\right) & +c_{2}\left(x-x_{0}\right)^{2}+\cdots \\
& =\sum_{k=0}^{\infty} c_{k+1}\left(x-x_{0}\right)^{k+1} \tag{1}
\end{align*}
$$

$$
f^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}\left(x-x_{0}\right)^{k-1} \stackrel{k=m+1}{=} \sum_{m=0}^{\infty}(m+1) c_{m+1}\left(x-x_{0}\right)^{m}
$$

- Two power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ and $\sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}$ are equal to each other if and only if $a_{k}=b_{k}$ for all k.
- Two power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ and $\sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}$ are equal to each other if and only if $a_{k}=b_{k}$ for all k.
- It is essential that like powers of $\left(x-x_{0}\right)$ are compared.
- Two power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ and $\sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}$ are equal to each other if and only if $a_{k}=b_{k}$ for all k.
- It is essential that like powers of $\left(x-x_{0}\right)$ are compared.
Example $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}=\sum_{k=1}^{\infty} b_{k}\left(x-x_{0}\right)^{k-1}$ are equal if $a_{k}=b_{k+1}$:
- Two power series $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ and $\sum_{k=0}^{\infty} b_{k}\left(x-x_{0}\right)^{k}$ are equal to each other if and only if $a_{k}=b_{k}$ for all k.
- It is essential that like powers of $\left(x-x_{0}\right)$ are compared.
Example $\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}=\sum_{k=1}^{\infty} b_{k}\left(x-x_{0}\right)^{k-1}$ are equal
if $a_{k}=b_{k+1}$: we look at the same power of $x-x_{0}$ not at the same k !)

It is then useful to change the index of summation so that the series clearly exhibit the same powers.

It is then useful to change the index of summation so that the series clearly exhibit the same powers.

- Example. Let us look at the equation $f^{\prime}=f$ and try $f=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then, $f^{\prime}=\sum_{k=0}^{\infty} k c_{k} x^{k-1}$ Since $f=f^{\prime}$ the coefficients of the like powers of x must coincide.

It is then useful to change the index of summation so that the series clearly exhibit the same powers.

- Example. Let us look at the equation $f^{\prime}=f$ and try $f=\sum_{k=0}^{\infty} c_{k} x^{k}$. Then, $f^{\prime}=\sum_{k=0}^{\infty} k c_{k} x^{k-1}$ Since $f=f^{\prime}$ the coefficients of the like powers of x must coincide.
Note first that $\sum_{k=0}^{\infty} k c_{k} x^{k-1}=\sum_{k=1}^{\infty} k c_{k} x^{k-1}$ since the term with $k=0$ is zero.

We change the index of summation $k=m+1$: $\sum_{k=1}^{\infty} k c_{k} x^{k-1}=\sum_{m=0}^{\infty}(m+1) c_{m+1} x^{m}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}$

We change the index of summation $k=m+1$: $\sum_{k=1}^{\infty} k c_{k} x^{k-1}=\sum_{m=0}^{\infty}(m+1) c_{m+1} x^{m}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}$ since m or k are dummy variables, they simply stand for $1,2,3$ etc.

We change the index of summation $k=m+1$: $\sum_{k=1}^{\infty} k c_{k} x^{k-1}=\sum_{m=0}^{\infty}(m+1) c_{m+1} x^{m}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}$ since m or k are dummy variables, they simply stand for $1,2,3$ etc.Now, $f^{\prime}=f$ means:

$$
\sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}
$$

Thus

$$
c_{k}=(k+1) c_{k+1}
$$

We change the index of summation $k=m+1$: $\sum_{k=1}^{\infty} k c_{k} x^{k-1}=\sum_{m=0}^{\infty}(m+1) c_{m+1} x^{m}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}$ since m or k are dummy variables, they simply stand for $1,2,3$ etc.Now, $f^{\prime}=f$ means:

$$
\sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty}(k+1) c_{k+1} x^{k}
$$

Thus

$$
c_{k}=(k+1) c_{k+1} ; \quad c_{k+1}=\frac{c_{k}}{k+1}
$$

$$
c_{k+1}=\frac{c_{k}}{k+1}
$$

$$
c_{k+1}=\frac{c_{k}}{k+1} ; \quad \Longrightarrow c_{1}=c_{0}
$$

$$
c_{k+1}=\frac{c_{k}}{k+1} ; \quad \Rightarrow c_{1}=c_{0} ; \quad c_{2}=\frac{c_{1}}{2}=\frac{c_{0}}{2}
$$

$$
\begin{aligned}
& c_{k+1}=\frac{c_{k}}{k+1} ; \quad \Rightarrow c_{1}=c_{0} ; \quad c_{2}=\frac{c_{1}}{2}=\frac{c_{0}}{2} \\
& c_{3}=\frac{c_{2}}{3}=\frac{\frac{c_{0}}{2}}{3}=\frac{c_{0}}{6} \cdots c_{k}=\frac{c_{0}}{1 \cdot 2 \cdot 3 \cdots k}=\frac{c_{0}}{k!}
\end{aligned}
$$

$$
\begin{gathered}
c_{k+1}=\frac{c_{k}}{k+1} ; \quad \Longrightarrow c_{1}=c_{0} ; \quad c_{2}=\frac{c_{1}}{2}=\frac{c_{0}}{2} \\
c_{3}=\frac{c_{2}}{3}=\frac{\frac{c_{0}}{2}}{3}=\frac{c_{0}}{6} \cdots c_{k}=\frac{c_{0}}{1 \cdot 2 \cdot 3 \cdots k}=\frac{c_{0}}{k!}
\end{gathered}
$$

Thus,

$$
f=\sum_{k=0}^{\infty} c_{k} x^{k}=\sum_{k=0}^{\infty} \frac{c_{0}}{k!} x^{k}=c_{0} \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=c_{0} \mathrm{e}^{x}!
$$

and we have solved the differential equation!

