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Series: short review. Please brush up
Power series are used to solve differential equations,
when explicit solutions are hard to find.
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These are series of the form
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k=0
ak(x − x0)k
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Power series

These are series of the form
∞∑

k=0
ak(x − x0)k

• There is always a symmetric interval of con-
vergence, [x0 − r, x0 + r]. r is called radius of
convergence. r can be zero, finite, or infinity.The se-

ries converges absolutely if
∞∑

k=0
|ak||x − x0|k conver-

ges.
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• Absolute convergence implies convergence, but not
the other way around.



3

• Absolute convergence implies convergence, but not
the other way around.

• ex = 1 + x + x2

2 + x3

6 + · · · =
∞∑

k=0

xk

k! .

• Convenient way to calculate functions:
√

e = e1/2 ≈
1 + 1

2 + 1
8 + 1

6·8 = 1.64 · · ·
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• Ratio test.
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Example Find the region of convergence of the

series
∞∑

k=1

zk

k .

Solution We have

r = lim
k→∞

∣∣∣∣
k

k + 1

∣∣∣∣ = 1

The series converges if |z| < 1 and diverges if
|z| > 1. What about |z| = 1?
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There are two cases: (1): z = 1.
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There are two cases: (1): z = 1.We get
∞∑

k=1

1
k divergent.

Why?(2) z = −1. We get
∞∑

k=1

(−1)k
k convergent. Why?

Other examples:
∞∑

k=0
zk = 1

1− z convergent for

|z| < 1, divergent otherwise.

ex =
∞∑

k=0

xk

k! . Ratio test
1
k!
1

(k+1)!
→∞ thus r‘ =∞ that is,
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the series converges everywhere.
∞∑

k=0
k!xk Ratio test k!

(k+1)! = 0, R = 0. This last series

will not be too useful for us...
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• Power series can be added, subtracted, multiplied,
divided.
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• Power series can be added, subtracted, multiplied,
divided.

∞∑

k=0
akzk +

∞∑

k=0
bkzk =

∞∑

k=0
(ak + bk)zk

( ∞∑

k=0
akzk

)( ∞∑

k=0
bkzk

)
=

∞∑

k=0
ckzk

ck =
k∑

l=0
albk−l

They are multiplied as though they were polynomi-
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als. Ex: (1 + ax + bx2 + · · · )(1 + Ax + Bx2 + · · · ) =
1 + (a + A)x + (b + aA + B)x2 + · · · .

• The radius of convergence changes through these
operations
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als. Ex: (1 + ax + bx2 + · · · )(1 + Ax + Bx2 + · · · ) =
1 + (a + A)x + (b + aA + B)x2 + · · · .

• The radius of convergence changes through these
operations

• The sum of a convergent power series, for |x−x0| <
r is called analytic.
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• If a series f (x) =
∑∞

k=0 ck(x−x0)k converges for |x−
x0| < r, then, for |x− x0| < r it can be differentiated
term by term.
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• Changes of index of summation.
∞∑

k=0
ck(x − x0)k =

∞∑

l=0
cl(x − x0)l

• Shift in index
∞∑

k=1
ck(x − x0)k = c1(x − x0) + c2(x − x0)2 + · · ·

=
∞∑

k=0
ck+1(x − x0)k+1 (1)
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f ′(x) =
∞∑

k=1
kck(x−x0)k−1 k=m+1

=
∞∑

m=0
(m+1)cm+1(x−x0)m
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• Two power series
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are equal to each other if and only if ak = bk for all
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• Two power series
∞∑

k=0
ak(x− x0)k and

∞∑

k=0
bk(x− x0)k

are equal to each other if and only if ak = bk for all
k.

• It is essential that like powers of (x − x0) are
compared.

Example
∞∑

k=0
ak(x−x0)k =

∞∑

k=1
bk(x−x0)k−1 are equal

if ak = bk+1: we look at the same power of x − x0
not at the same k !)
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• Example. Let us look at the equation f ′ = f and try
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k=0
ckxk. Then, f ′ =

∞∑

k=0
kckxk−1 Since f = f ′ the

coefficients of the like powers of x must coincide.
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It is then useful to change the index of summation
so that the series clearly exhibit the same powers.

• Example. Let us look at the equation f ′ = f and try

f =
∞∑

k=0
ckxk. Then, f ′ =

∞∑

k=0
kckxk−1 Since f = f ′ the

coefficients of the like powers of x must coincide.

Note first that
∞∑

k=0
kckxk−1 =

∞∑

k=1
kckxk−1 since the

term with k = 0 is zero.
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We change the index of summation k = m + 1:
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(k + 1)ck+1xk

since m or k are dummy variables, they simply stand
for 1, 2, 3 etc.Now, f ′ = f means:

∞∑

k=0
ckxk =

∞∑

k=0
(k + 1)ck+1xk

Thus
ck = (k + 1)ck+1; ck+1 = ck

k + 1
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ck+1 = ck
k + 1;
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ck+1 = ck
k + 1; Ñ c1 = c0;



16

ck+1 = ck
k + 1; Ñ c1 = c0; c2 = c1

2 = c0
2



16

ck+1 = ck
k + 1; Ñ c1 = c0; c2 = c1

2 = c0
2

c3 = c2
3 =

c0
2
3 = c0

6 · · · ck = c0
1 · 2 · 3 · · ·k = c0

k!



16

ck+1 = ck
k + 1; Ñ c1 = c0; c2 = c1

2 = c0
2

c3 = c2
3 =

c0
2
3 = c0

6 · · · ck = c0
1 · 2 · 3 · · ·k = c0

k!
Thus,

f =
∞∑

k=0
ckxk =

∞∑

k=0

c0
k!x

k = c0

∞∑

k=0

1
k!x

k = c0ex !

and we have solved the differential equation!


