1. Solve the initial value problem

$$
y^{\prime \prime}+4 y=0 ; \quad y(0)=0, \quad y^{\prime}(0)=1
$$

2. A mechanical oscillator with $m=1, \gamma=2, k=1$ starts at $t=0$ in the equilibrium position, $x=0$, with velocity 1 . What is the maximal displacement x ? What is the behavior of the solution as $t \rightarrow \infty$?
3. (a) In an RLC circuit, $L=C=1$. For which range of R is the oscillator overdamped?
(b) Choose now $R=0$ and assume an external voltage $V(t)=\sin (5 t / 4)$ is applied to the circuit in (a) and that the initial current is $-4 / 9$. What is the frequency of the beats?
4. Find the general solution of the equation

$$
\varphi^{\prime \prime}+2 \varphi^{\prime}+\varphi=e^{x}+x e^{-x}
$$

5. Consider the equation

$$
\begin{equation*}
(2 x-1) f^{\prime \prime}(x)-\left(1+4 x^{2}\right) f^{\prime}(x)+\left(2+4 x^{2}-2 x\right) f(x)=0 \tag{*}
\end{equation*}
$$

(a) What is the guaranteed interval of existence of the solution of $\left(^{*}\right)$ with $f(1)=0, f^{\prime}(1)=0$?
(b) Check that a particular solution of $\left(^{*}\right)$ is e^{x}. Find a second solution, linearly independent from e^{x}.
(c) What is the actual interval of existence of of the solution of $\left(^{*}\right)$ with $f(1)=0, f^{\prime}(1)=0$? Compare with the answer to (a).
(d) Find the general solution of

$$
f^{\prime \prime}(x)-\frac{\left(1+4 x^{2}\right)}{2 x-1} f^{\prime}(x)+\frac{\left(2+4 x^{2}-2 x\right)}{2 x-1} f(x)=x(2 x-1)
$$

6. Find two linearly independent solutions of the equation below, as power series centered at zero.

$$
y^{\prime \prime}+x^{2} y=0
$$

What is the radius of convergence of the series that you obtained?
Bonus: Assume that $y(x) \rightarrow L$ as $x \rightarrow+\infty$. Show that $L=0$.
7. Consider the differential equation $\left(x^{2}+1\right) y^{\prime \prime}+y(x)=0$ with the initial condition $y(0)=1, y^{\prime}(0)=0$. What is the guaranteed interval of existence of this solution?
(b) Find y as a power series. What is the radius of convergence of the series? Compare with (a).

