1. Solve the initial value problem
\[y'' + 4y = 0; \quad y(0) = 0, \quad y'(0) = 1 \]

2. A mechanical oscillator with \(m = 1, \gamma = 2, k = 1 \) starts at \(t = 0 \) in the equilibrium position, \(x = 0 \), with velocity 1. What is the maximal displacement \(x \)? What is the behavior of the solution as \(t \to \infty \)?

3. (a) In an RLC circuit, \(L = C = 1 \). For which range of \(R \) is the oscillator **overdamped**?

 (b) Choose now \(R = 0 \) and assume an external voltage \(V(t) = \sin(5t/4) \) is applied to the circuit in (a) and that the initial current is \(-4/9\). What is the frequency of the beats?

4. Find the general solution of the equation
\[\varphi'' + 2\varphi' + \varphi = e^x + xe^{-x} \]

5. Consider the equation
\[(2x - 1)f''(x) - \left(1 + 4x^2 \right) f'(x) + \left(2 + 4x^2 - 2x \right) f(x) = 0 \quad (\text{\#}) \]

 (a) What is the guaranteed interval of existence of the solution of (\#) with \(f(1) = 0, f'(1) = 0 \)?

 (b) Check that a particular solution of (\#) is \(e^x \). Find a second solution, linearly independent from \(e^x \).

 (c) What is the **actual** interval of existence of the solution of (\#) with \(f(1) = 0, f'(1) = 0 \)? Compare with the answer to (a).

 (d) Find the general solution of
\[f''(x) - \frac{(1 + 4x^2)}{2x - 1} f'(x) + \frac{(2 + 4x^2 - 2x)}{2x - 1} f(x) = x(2x - 1) \]

6. Find two linearly independent solutions of the equation below, as power series centered at zero.
\[y'' + x^2y = 0 \]
What is the radius of convergence of the series that you obtained?

Bonus: Assume that \(y(x) \to L \) as \(x \to +\infty \). Show that \(L = 0 \).

7. Consider the differential equation \((x^2 + 1)y'' + y(x) = 0\) with the initial condition \(y(0) = 1, y'(0) = 0 \). What is the guaranteed interval of existence of this solution?

(b) Find \(y \) as a power series. What is the radius of convergence of the series? Compare with (a).