1. $y(x)=\frac{1}{2} \sin 2 x$
2. e^{-1}; The solution goes to zero.
3. (a) $R \in(2, \infty)$; (b) the solution is $-\frac{32}{9} \sin (t / 8) \cos (9 t / 8)$ and thus the frequency is $\frac{1}{16 \pi}$.
4. $\frac{1}{4} e^{x}+\frac{x^{3}}{6} e^{-x}+C_{1} e^{-x}+C_{2} x e^{-x}$
5. (a) $(1 / 2, \infty)$; (b) a second solution is $e^{x^{2}}$. (c) The actual interval of existence is $(-\infty, \infty)$, since e^{x} and $e^{x^{2}}$ are smooth on $(-\infty, \infty) ;(\mathrm{d})$: $x+\frac{1}{2}+C_{1} e^{x}+C_{2} e^{x^{2}}$
6. $c_{0} y_{0}+c_{1} y_{1}$ where $y_{0}=\sum_{k=0}^{\infty} b_{4 k} x^{4 k}$ and $y_{1}=\sum_{k=0}^{\infty} b_{4 k+1} x^{4 k+1}, c_{0}, c_{1}$ are arbitrary. The recurrence relation is $b_{k+2}=-\frac{b_{k-2}}{(k+1)(k+2)}, b_{0}=$ $1, b_{1}=1, b_{2}=0, b_{3}=0$, thus $b_{4 k+2}=b_{4 k+3}=0$. The radius of convergence is infinite, by the ratio test.
7. Written in the form required by Theorem 3.2.1, $y^{\prime \prime}+\frac{1}{1+x^{2}} y=0$, we see that the coefficients are continuous everywhere and thus by Theorem 3.2.1 the solutions exist on $(-\infty, \infty)$.
8. $y=c_{0} y_{0}+c_{1} y_{1}$ where $y_{0}=\sum_{k=0}^{\infty} b_{2 k} x^{2 k}, y_{0}=\sum_{k=0}^{\infty} b_{2 k+1} x^{2 k+1}$ and c_{0}, c_{1} are arbitrary. The recurrence relation is $b_{k+2}=-b_{k} \frac{k^{2}-k+1}{(k+1)(k+2)}$, $b_{0}=1, b_{1}=1$. The radius of convergence is one, and it is calculated for instance by the ratio test.
