Nonhomogeneous Equations and the method of undetermined coefficients

§3.6

General linear nonhomogeneous equation:

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

The associated homogeneous equation or the homogeneous equation corresponding to (1) is

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

The associated homogeneous equation or the homogeneous equation corresponding to (1) is

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

The associated homogeneous equation or the homogeneous equation corresponding to (1) is

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Remember, () it is a from ().

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

The associated homogeneous equation or the homogeneous equation corresponding to (1) is

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Remember, () it is a different equation altogether from
(). The solutions of () are not solutions of ().

General linear nonhomogeneous equation:

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t) \tag{1}
\end{equation*}
$$

The associated homogeneous equation or the homogeneous equation corresponding to (1) is

$$
\begin{equation*}
L[y]=y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0 \tag{2}
\end{equation*}
$$

Remember, () it is a different equation altogether from
(). The solutions of () are not solutions of (). The point is that the solutions of () help us in finding the solutions of ().

$$
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0(*)
$$

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0(*) \\
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)(* *)
\end{gathered}
$$

Let Y_{0} be any solution of $\left({ }^{* *}\right)$.

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0(*) \\
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)(* *)
\end{gathered}
$$

Let Y_{0} be any solution of $\left({ }^{* *}\right)$. Then, the general solution of $\left({ }^{* *}\right)$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*).

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0(*) \\
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)(* *)
\end{gathered}
$$

Let Y_{0} be any solution of $\left({ }^{* *}\right)$. Then, the general solution of $\left(^{* *}\right)$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of $\left({ }^{*}\right)$.

Thus if we know how to find some particular solution and how to solve the homogeneous equation, both simpler tasks, the equation (${ }^{* *}$) has been solved.

$$
\begin{gathered}
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0(*) \\
y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)(* *)
\end{gathered}
$$

Let Y_{0} be any solution of $\left({ }^{* *}\right)$. Then, the general solution of $\left(^{* *}\right)$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of $\left({ }^{*}\right)$.

Thus if we know how to find some particular solution and how to solve the homogeneous equation, both simpler tasks, the equation (${ }^{* *}$) has been solved.

Shapes of g for which particular solutions can be easily found if L is linear with constant coefficients

- Polynomials

Shapes of g for which particular solutions can be easily found if L is linear with constant coefficients

- Polynomials

Exponentials

Shapes of g for which particular solutions can be easily found if L is linear with constant coefficients

- Polynomials

Exponentials
Trig functions

Shapes of g for which particular solutions can be easily found if L is linear with constant coefficients

- Polynomials

Exponentials
Trig functions
Combinations of the above.

Shapes of g for which particular solutions can be easily found if L is linear with constant coefficients

- Polynomials

Exponentials
Trig functions
Combinations of the above.

Proof of the fact that the general solution of ${ }^{(* *)}$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*).

Proof of the fact that the general solution of ${ }^{(* *)}$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*). We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Proof of the fact that the general solution of ${ }^{\left({ }^{* *}\right)}$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of $\left({ }^{*}\right)$. We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$.

Proof of the fact that the general solution of ${ }^{\left({ }^{* *}\right)}$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*). We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$. Let now $y=Y_{0}+h$.

Proof of the fact that the general solution of (**) is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*).We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$. Let now $y=Y_{0}+h$. Then $L[y]=L\left[Y_{0}\right]+L[h]$.

Proof of the fact that the general solution of ${ }^{(* *)}$ is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*).We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$. Let now $y=Y_{0}+h$. Then $L[y]=L\left[Y_{0}\right]+L[h]$. We must have $L\left[Y_{0}\right]+L[h]=g$.

Proof of the fact that the general solution of (**) is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*).We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$. Let now $y=Y_{0}+h$. Then $L[y]=L\left[Y_{0}\right]+L[h]$. We must have $L\left[Y_{0}\right]+L[h]=g$. Using $\left(^{*}\right)$ we have $g+L[h]=g$ or $L[h]=g-g=0$.

Proof of the fact that the general solution of (**) is $Y_{0}+c_{1} y_{1}+c_{2} y_{2}$ where y_{1} and y_{2} are two linearly independent solutions of (*). We have

$$
L\left[Y_{0}\right]=g \quad(*)
$$

Our equation is $L[y]=g$. Let now $y=Y_{0}+h$. Then $L[y]=L\left[Y_{0}\right]+L[h]$. We must have $L\left[Y_{0}\right]+L[h]=g$. Using ${ }^{(*)}$ we have $g+L[h]=g$ or $L[h]=g-g=0$. Thus h must be a solution of the homogeneous equation, and clearly any solution of the homogeneous equation would do.

Important remark If

$g(t)=A g_{1}(t)+B g_{2}(t)$

Important remark If

$$
g(t)=A g_{1}(t)+B g_{2}(t)
$$

and Y_{1} is a particular solution when $g=g_{1}$

Important remark If

$g(t)=A g_{1}(t)+B g_{2}(t)$
and Y_{1} is a particular solution when $g=g_{1}$
while Y_{2} is a particular solution when $g=g_{2}$,

Important remark If

$g(t)=A g_{1}(t)+B g_{2}(t)$
and Y_{1} is a particular solution when $g=g_{1}$
while Y_{2} is a particular solution when $g=g_{2}$,
then $A Y_{1}+B Y_{2}$ is a particular solution when $g(t)=$ $A g_{1}(t)+B g_{2}(t)$.

Important remark If

$g(t)=A g_{1}(t)+B g_{2}(t)$
and Y_{1} is a particular solution when $g=g_{1}$
while Y_{2} is a particular solution when $g=g_{2}$,
then $A Y_{1}+B Y_{2}$ is a particular solution when $g(t)=$ $A g_{1}(t)+B g_{2}(t)$.

This is because $L\left[A Y_{1}+B Y_{2}\right]=A L\left[Y_{1}\right]+B L\left[Y_{2}\right]=A g_{1}(t)+B g_{2}(t)$. This
allows us to break the nonhomogeneity g into simpler pieces.

How to proceed? We now consider equations with constant coefficients .
allows us to break the nonhomogeneity g into simpler pieces.

How to proceed? We now consider equations with constant coefficients. Suppose g is a

Polynomial
allows us to break the nonhomogeneity g into simpler pieces.

How to proceed? We now consider equations with constant coefficients. Suppose g is a

Polynomial It is enough to look at the case $g=t^{m}$!
allows us to break the nonhomogeneity g into simpler pieces.

How to proceed? We now consider equations with constant coefficients. Suppose g is a

Polynomial It is enough to look at the case $g=t^{m}$! This is because any polynomial can be broken linearly into a sum of monomials of the form $a_{m} t^{m}$.
allows us to break the nonhomogeneity g into simpler pieces.

How to proceed? We now consider equations with constant coefficients. Suppose g is a

Polynomial It is enough to look at the case $g=t^{m}$! This is because any polynomial can be broken linearly into a sum of monomials of the form $a_{m} t^{m}$.
$g=t^{m}$.
\star So suppose $g=t^{m}$.

- $g=t^{m}$.
\star So suppose $g=t^{m}$. The solution is sought in the form $Y_{1}=C t^{m}+V$. In the equation for V, the degree of the new g should be lower than m. This most often works.
- $g=t^{m}$.
\star So suppose $g=t^{m}$. The solution is sought in the form $Y_{1}=C t^{m}+V$. In the equation for V, the degree of the new g should be lower than m. This most often works. If not, try $C t^{m+1}$.
- $g=t^{m}$.
\star So suppose $g=t^{m}$. The solution is sought in the form $Y_{1}=C t^{m}+V$. In the equation for V, the degree of the new g should be lower than m. This most often works. If not, try $C t^{m+1}$. If that fails too, then necessarily $C t^{m+2}$ should work.
- $g=t^{m}$.
\star So suppose $g=t^{m}$. The solution is sought in the form $Y_{1}=C t^{m}+V$. In the equation for V, the degree of the new g should be lower than m. This most often works. If not, try $C t^{m+1}$. If that fails too, then necessarily $C t^{m+2}$ should work. Repeat the trick on the V equation etc. until you bring down the equation to one in which the rhs, g, is zero.
- $g=t^{m}$.
\star So suppose $g=t^{m}$. The solution is sought in the form $Y_{1}=C t^{m}+V$. In the equation for V, the degree of the new g should be lower than m. This most often works. If not, try $C t^{m+1}$. If that fails too, then necessarily $C t^{m+2}$ should work. Repeat the trick on the V equation etc. until you bring down the equation to one in which the rhs, g, is zero. If you found yourself having an exceptional equation where you had to try an increased power, then the same increment should be applied to monomials.

If g is a more complicated polynomial, it may be useful to try a polyn. solution with undetermined coefficients $Y=a_{0}+a_{1} t+\ldots+a_{n} t^{n}$, substitute and solve a system of eqns. for a_{0}, \ldots, a_{n}. Read textbook!!

Exponentials $g=e^{\sigma t}$.

- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try Cte ${ }^{a t}$.
- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try $C t e^{a t}$. If, rarely, this fails too, then $C t^{2} e^{a t}$ must work.
- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try $C t e^{a t}$. If, rarely, this fails too, then $C t^{2} e^{a t}$ must work.

Trig functions $g=\sin a t$ or $g=\cos a t$.

- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try $C t e^{a t}$. If, rarely, this fails too, then $C t^{2} e^{a t}$ must work.

Trig functions $g=\sin a t$ or $g=\cos a t$. Try first a particular solution $Y_{1}=A \sin a t+B \cos a t$. If, rarely, this fails, $\operatorname{try} t(A \sin a t+B \cos a t)$. If, rarely, this fails too, then $t^{2}(A \sin a t+B \cos a t)$ must work.

- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try $C t e^{a t}$. If, rarely, this fails too, then $C t^{2} e^{a t}$ must work.

Trig functions $g=\sin a t$ or $g=\cos a t$. Try first a particular solution $Y_{1}=A \sin a t+B \cos a t$. If, rarely, this fails, $\operatorname{try} t(A \sin a t+B \cos a t)$. If, rarely, this fails too, then $t^{2}(A \sin a t+B \cos a t)$ must work.
combinations of the above.

- Exponentials $g=e^{a t}$. Try a particular solution in the form $C e^{a t}$. If, rarely, this fails, try $C t e^{a t}$. If, rarely, this fails too, then $C t^{2} e^{a t}$ must work.

Trig functions $g=\sin a t$ or $g=\cos a t$. Try first a particular solution $Y_{1}=A \sin a t+B \cos a t$. If, rarely, this fails, $\operatorname{try} t(A \sin a t+B \cos a t)$. If, rarely, this fails too, then $t^{2}(A \sin a t+B \cos a t)$ must work.
combinations of the above. Break the linear combination into components and proceed as above with each of the pieces. Then add together all the $Y^{\prime} s$ thus
obtained.
obtained.
Now, examples.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

$\operatorname{Try} Y=C t^{2}+V$.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

We now try $V=A$.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

We now try $V=A$. We get $-3 A=10 / 3$ thus $A=$ -10/9.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

We now try $V=A$. We get $-3 A=10 / 3$ thus $A=$ $-10 / 9$. Now add the pieces together: $Y=-5 t^{2} / 3-$ 10/9.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

We now try $V=A$. We get $-3 A=10 / 3$ thus $A=$ $-10 / 9$. Now add the pieces together: $Y=-5 t^{2} / 3-$ 10/9. Next.

$$
y^{\prime \prime}-3 y=5 t^{2}
$$

Try $Y=C t^{2}+V$. We get

$$
2 C+V^{\prime \prime}-3 C t^{2}-3 V=5 t^{2}
$$

Then take $C=-5 / 3$. We then get

$$
-10 / 3+V^{\prime \prime}-3 V=0, \quad \text { or } V^{\prime \prime}-3 V=10 / 3
$$

We now try $V=A$. We get $-3 A=10 / 3$ thus $A=$ $-10 / 9$. Now add the pieces together: $Y=-5 t^{2} / 3-$ $10 / 9$. Next. To find general solution, add general solu-
tion of the homogeneous equation.
tion of the homogeneous equation. Characteristic polynomial equation $r^{2}-3=0 r= \pm \sqrt{3}$.
tion of the homogeneous equation. Characteristic polynomial equation $r^{2}-3=0 r= \pm \sqrt{3}$. Gen. sol. of homog. equation is $c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}$.
tion of the homogeneous equation. Characteristic polynomial equation $r^{2}-3=0 r= \pm \sqrt{3}$. Gen. sol. of homog. equation is $c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}$. Finally thus, $y=c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}-5 t^{2} / 3-10 / 9$.

$$
y^{\prime \prime}+y^{\prime}+3 y=\cos 2 t
$$

tion of the homogeneous equation. Characteristic polynomial equation $r^{2}-3=0 r= \pm \sqrt{3}$. Gen. sol. of homog. equation is $c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}$. Finally thus, $y=c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}-5 t^{2} / 3-10 / 9$.

$$
y^{\prime \prime}+y^{\prime}+3 y=\cos 2 t
$$

Try $Y=A \sin 2 t+B \cos 2 t$. We get
tion of the homogeneous equation. Characteristic polynomial equation $r^{2}-3=0 r= \pm \sqrt{3}$. Gen. sol. of homog. equation is $c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}$. Finally thus, $y=c_{1} e^{\sqrt{3} t}+c_{2} e^{-\sqrt{3} t}-5 t^{2} / 3-10 / 9$.

$$
y^{\prime \prime}+y^{\prime}+3 y=\cos 2 t
$$

Try $Y=A \sin 2 t+B \cos 2 t$. We get
$-4 A \sin 2 t-4 B \cos 2 t+2 A \cos 2 t-2 B \sin 2 t$

$$
+3(A \sin 2 t+B \cos 2 t)=\cos 2 t(3)
$$

Thus $-A-2 B=0-B+2 A=1$

Thus $-A-2 B=0-B+2 A=1$

$$
A=2 / 5, \quad B=-1 / 5
$$

General solution.

General solution. Must solve homog. eq. Characteristic poly: $r^{2}+r+3=0$. We find

$$
\begin{array}{r}
y(t)=c_{1} e^{-\frac{t}{2}} \sin \left(\frac{1}{2} \sqrt{11} t\right)+c_{2} e^{-\frac{t}{2}} \cos \left(\frac{1}{2} \sqrt{11} t\right) \\
-1 / 5 \cos (2 t)+2 / 5 \sin (2 t) \tag{4}
\end{array}
$$

