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1General linear nonhomogeneous equation:
L[y] = y′′ + p(t)y′ + q(t)y = g(t) (1)

The associated homogeneous equation or thehomogeneous equation corresponding to (1) is
L[y] = y′′ + p(t)y′ + q(t)y = 0 (2)

Remember, (2) it is a different equation altogether, from(1). The solutions of (1) are not solutions of (2).Thepoint is that the solutions of (2) help us in finding thesolutions of (1).
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Proof of the fact that the general solution of (**) is
Y0 + c1y1 + c2y2 where y1 and y2 are two linearlyindependent solutions of (*).We have

L[Y0] = g (∗)
Our equation is L[y] = g. Let now y = Y0 + h. Then
L[y] = L[Y0] + L[h]. We must have L[Y0] + L[h] = g. Using(*) we have g + L[h] = g or L[h] = g− g = 0. Thus hmust be a solution of the homogeneous equation, andclearly any solution of the homogeneous equation woulddo.
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Important remark If
• g(t) = Ag1(t) + Bg2(t)
• and Y1 is a particular solution when g = g1
• while Y2 is a particular solution when g = g2,
• then AY1 + BY2 is a particular solution when g(t) =

Ag1(t) + Bg2(t).
This is because
L[AY1 + BY2] = AL[Y1] + BL[Y2] = Ag1(t) + Bg2(t). This
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• g = tm.
? So suppose g = tm. The solution is sought in the form

Y1 = Ctm + V . In the equation for V , the degree ofthe new g should be lower than m. This most oftenworks. If not, try Ctm+1.If that fails too, then neces-sarily Ctm+2 should work. Repeat the trick on the Vequation etc. until you bring down the equation toone in which the rhs, g, is zero. If you found yourselfhaving an exceptional equation where you had to tryan increased power, then the same increment shouldbe applied to all later monomials.



8If g is a more complicated polynomial, it may be usefulto try a polyn. solution with undetermined coefficients
Y = a0+a1t+...+antn, substitute and solve a systemof eqns. for a0, ..., an. Read textbook!!
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• Exponentials g = eat. Try a particular solution in theform Ceat. If, rarely, this fails, try Cteat. If, rarely, thisfails too, then Ct2eat must work.
• Trig functions g = sin at or g = cos at. Try first aparticular solution Y1 = A sin at + B cos at. If, rarely,this fails, try t(A sin at + B cos at). If, rarely, this failstoo, then t2(A sin at + B cos at) must work.
• Linear combinations of the above. Break the linear com-bination into components and proceed as above witheach of the pieces. Then add together all the Y ′s thus
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y′′ − 3y = 5t2Try Y = Ct2 + V . We get
2C + V ′′ − 3Ct2 − 3V = 5t2

Then take C = −5/3. We then get
−10/3 + V ′′ − 3V = 0, orV ′′ − 3V = 10/3

We now try V = A. We get −3A = 10/3 thus A =
−10/9. Now add the pieces together: Y = −5t2/3 −10/9. Next. To find general solution, add general solu-
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12tion of the homogeneous equation. Characteristic po-lynomial equation r2 − 3 = 0 r = ±
√3. Gen. sol.of homog. equation is c1e√3t + c2e−√3t. Finally thus,

y = c1e√3t + c2e−√3t − 5t2/3− 10/9.
y′′ + y′ + 3y = cos 2tTry Y = A sin 2t + B cos 2t. We get

− 4A sin 2t − 4B cos 2t + 2A cos 2t − 2B sin 2t+ 3(A sin 2t + B cos 2t) = cos 2t (3)
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Thus − A− 2B = 0− B + 2A = 1
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Thus − A− 2B = 0− B + 2A = 1
A = 2/5, B = −1/5
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14General solution. Must solve homog. eq. Characteristicpoly: r2 + r + 3 = 0. We find
y (t) = c1e− t2 sin (12√11t

) + c2e− t2 cos (12√11t
)

− 1/5 cos (2 t) + 2/5 sin (2 t) (4)


