BONUS PROBLEMS

Remember that the rational number p / q is written in irreducible form if p and q have no common factors.

1. $[10 \mathrm{p}]$

Let

$$
P(x)=a_{n} x^{n}+\cdots+a_{0}, \quad a_{j} \in \mathbb{Z}, j=0,1, \ldots, n
$$

Show that any rational root p / q (irreducible) of P has the property that a_{0} is an integer multiple of p and a_{n} is an integer multiple of q. (Thus, one can after finitely many trials, find all rational roots of polynomials with rational coefficients.)
2. $[20 \mathrm{p}]$

Show that for any $x, y \in \mathbb{C}$

$$
\cos (x+y)+\cos (x-y)=2 \cos x \cos y
$$

Let $P_{m}=\cos (m x)$. Show that P_{m} satisfies the recurrence relation

$$
P_{m+1}=2 P_{1} P_{m}-P_{m-1}
$$

Show by induction that $\cos (m x)$ is a polynomial in $y=\cos x$ of the form

$$
P_{m}(y)=2^{m-1} y^{m}+a_{m-1, m} y^{m-2}+\cdots+a_{0, m}
$$

where $a_{0, m}=\operatorname{Im}\left(i^{m+1}\right)$ and all coefficients $a_{m, j}$ are integers.
3. $[30 \mathrm{p}]$

Use problem 2 to show that if $r \in \mathbb{Q}$ and $\cos \pi r=r^{\prime} \in \mathbb{Q}$, then $r^{\prime}=2^{-m} \operatorname{Im}\left(i^{k}\right)$ for some $m \in\{0,1,2, \ldots\}$ and $k \in\{1,2,3\}$.
4. [100p without any hint, 50 p with a hint]

For which $r \in \mathbb{Q}$ is $\cos (r \pi) \in \mathbb{Q}$? Are there regular polygons inscribed in the unit circle with the property that the distance from the center to one side is rational? For which $r \in \mathbb{Q}$ is $\sin (r \pi) \in \mathbb{Q}$?

