
STIRLING’S FORMULA

The Gaussian integral. We will use the Gaussian integral
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There are many ways to derive this equality; an elementary but computationally heavy
one is outlined in Problem 42, Chap. 19. One of the easiest ways is to evaluate the double
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Note that the integral in (2) is improper at both endpoints of the interval of integrations!
Show that it is well-defined. We can now use Euler’s reflection formula
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which is proved in Complex Analysis. With z = 1/2 we get
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which, together with (2) implies (1).

Laplace’s method. Let g be a twice continuously differentiable function on [−a, a] with
a strict and absolute maximum at x0 (say x0 = 0), with g′′(0) < 0, and let f be continuous
and s.t. f(0) 6= 0. Consider the integral

(5)

∫ a

−a
f(s)eng(s)ds

for large n. A good number of functions arising in applications can be brought to integrals
of this type after suitable changes of variables, so it is useful to understand how to estimate
them.

Figure 1. e−n(u−ln(1+u) for n = 1, 10, 100, 1000. In this figure, larger
n corresponds to a narrower maximum.

The function eng has a sharper and sharper maximum at s = 0 as n → ∞. Indeed,
if x 6= 0 ⇒ g(0) − g(x) > δ(x) > 0, we have eg(0)−g(x) = α(x) > 1. Now, en[g(0)−g(x)] =

1
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α(x)−n → 0 as n→∞. Thus, only a tiny neighborhood of the origin is visible on a large
n graph. (See Fig. 1 for g = −u + ln(1 + u) relevant for the Gamma function.) For the
same reason, for large n, the bulk of the integral (5) is expected to come from a small
neighborhood of 0. We approximate

f(x) ≈ f(0) and g(x) ≈ g(0) + g′(0)x+
1

2
g′′(0)x2 = g(0) +

1

2
g′′(0)x2

Thus, we expect
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where extending the integral to the whole of R is motivated by the same observation: for
large n, only a small neighborhood of zero contributes to the integral. Of course, all this
needs to be justified!

Lemma 1. Assume f ∈ C[−a, a], that g ∈ C2[−a, a] has a unique absolute maximum at
x = 0 and that f(0) 6= 0 (say f(0) > 0) and g′′(0) < 0. Then, there is a δ > 0 such that
(equivalently, for all δ > 0 small enough, or for δ = a, we have)
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n→∞

h(n) = 0

Proof. Choose 0 < ε < |g′′(0)/2| and let δ be such that |s| < δ implies |g′′(s)− g′′(0)| < ε
and also |f(s)− f(0)| < ε. Then,

(8)

∫ δ

−δ
eng(s)f(s)ds 6 (f(0) + ε)

∫ δ

−δ
eng(0)+

n
2
(g′′(0)+ε)s2ds

6 (f(0) + ε)

∫ ∞
−∞

eng(0)+
n
2
(g′′(0)+ε)s2ds =

√
2π

n|g′′(0)| − ε (f(0) + ε)eng(0)

where we used (2) and the change of variable −n
2

(g′′(0) + ε)s2 = u2 An inequality in the
opposite direction follows in the same way, replacing 6 with > and ε with −ε in the first
line of (8), and then noting that

(9)

∫ δ
−δ e
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as can be seen by changing variables to u = sn−
1
2 . (Check the details!)

We return to n! = Γ(n+ 1) for large n. We write

(10) n! = Γ(n+ 1) =
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with G(t) = −t + ln(1 + t). On [0,∞), the function G takes a maximum value of 0 at
t = 0, G′′(0) = −1 (check!). Note that G′(s) = −1 + 1

1+s
= − s

1+s
. By the Taylor theorem

(11) G(s) = G(0) +G′(c)s = − cs

1 + c
; [c ∈ (0, s) if s > 0 and c ∈ (s, 0) if s < 0]

and thus

(12) G(s) < −β|s|; β =
|δ|

1 + |δ| if s ∈ (−1,−|δ|) ∪ (|δ|,∞)
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Using the lemma with f = 1, g = G in the middle integral in (10) and (12) to estimate
the other two we get
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and thus
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A sharper formula is
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The series in parentheses may be thought of as the Taylor series of n!/
[√

2πn
(
n
e

)n]
at

n = +∞.
We could get (15) from Laplace’s method by using more terms in the expansion around

zero, but this would involve long calculations, and there are much better ways (beyond
the scope of this course though).

The approximation by a truncated expansion gets more and more accurate as n grow.
But even for n = 5, using only the first 4 terms we get

5! ≈ 120.000001
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