MORE REVIEW PROBLEMS

Exercise 1. Prove or disprove:

(a) "Let $\{x_n\}_{n\in\mathbb{N}}$ be a sequence with the property that any *subsequence* $\{x_{n_k}\}$ is convergent. Then $\{x_n\}$ itself is a convergent sequence"

(b) "Let f be defined on (0, 1] and assume that for any sequence $\{x_n\}_{n \in \mathbb{N}}$ s.t. $x_n > 0$ and $x_n \to 0$ as $n \to \infty$ the sequence $\{f(x_n)\}_{n \in \mathbb{N}}$ is also convergent (the limit might depend on $\{x_n\}_{n \in \mathbb{N}}$). Then $\lim_{x \to 0^+} f(x)$ exists."

(c) "Assume f is Lipschitz continuous on [0,1], that is, there exists an $\alpha > 0$ s.t. for all $x \in [0,1]$ we have

(1)
$$|f(x) - f(y)| \leq \alpha |x - y|$$

Then

(2)
$$\int_{0}^{1} \frac{f(x) - f(0)}{x} dx$$

is well defined."

(c') "Assume f is Hölder continuous of exponent $r \in (0, 1)$ on [0, 1], that is, there exists an $r \in (0, 1)$ and an $\alpha > 0$ s.t. for all $x \in [0, 1]$ we have

(3)
$$|f(x) - f(y)| \leq \alpha |x - y|^{r}$$
 Then

(4)
$$\int_{0}^{1} \frac{f(x) - f(0)}{x} dx$$

is well defined."

(d) "Assume f is continuous on [0, 1]. Then

(5)
$$\int_{0}^{1} \frac{f(x) - f(0)}{x} dx$$

is well defined." (e) "Assume $f \in C^{\infty}(-a, a)$. Then,

(6)
$$\frac{f(x) - f(0)}{x} \in C^{\infty}(-a, a)$$

"