FURTHER RESULTS

1. An Alternative proof to Theorem 6, p. 561.

Assume $\sum_{k=0}^{\infty} a_k z^k$ converges for $|z| \in (0, R)$. We know that it then converges absolutely for $|z| \in (0, R)$.

Let $x = |z|, \varepsilon = |h|$. Let $G(y) = \sum_{k=0}^{\infty} |a_k| y^k$; then G is an absolutely and uniformly convergent series in (-R, R). By Theorem 6, p. 511, in calculus over \mathbb{R} , if $x, x + \varepsilon \in (-R, R)$ then

(1)
$$\lim_{\varepsilon \to 0} \frac{G(x+\varepsilon) - G(x)}{\varepsilon} - \sum_{k=1}^{\infty} |a_k| k x^{k-1} = 0$$

Lemma 1.

(2)
$$\left|\frac{(z+h)^k - z^k}{h} - kz^{k-1}\right| \leq \frac{(x+\varepsilon)^k - x^k}{\varepsilon} - kx^{k-1}$$

Proof of Lemma 1. This can be proved in a number of ways, including induction. Perhaps the simplest is to note that for v, w real or complex, the bionomial formula gives

$$\frac{(v+w)^k - w^k}{w} - kv^{k-1} = \sum_{j=2}^k v^j w^{k-j-1}$$

and the rest follows since

$$\left|\sum_{j=2}^{k} v^{j} w^{k-j-1}\right| \leq \sum_{j=2}^{k} \binom{k}{j} |v|^{j} |w|^{k-j-1} = \frac{(|v|+|w|)^{k} - |v|^{k}}{|w|} - k|v|^{k-1}$$

Proof of Theorem 6, p. 561. The proof now is an easy consequence of (1), Lemma 1 and the triangle inequality.

2. Further results in complex analysis

We have shown that if $f(z) = \sum_{k=0}^{\infty} a_k z^k$ converges for $|z| \in (0, R)$, then $a_n = f^{(n)}(0)/n!$.

Proposition 2. Assume R > 0 or $R = \infty$ and that $f(z) = \sum a_k z^k$ converges in $\mathbb{D}_R = \{z : |z| < R\}$ (where by convention $\mathbb{D}_{\infty} = \mathbb{C}$). Let $z_0 \in \mathbb{D}_R$ and $h \in \mathbb{D}_{R-|z_0|}$. Then

$$f(z_0 + h) = f(z_0) + \sum_{k=0}^{\infty} \frac{f^{(k)}(z_0)}{k!} h^k$$

Proof. Let $P_N(z) = \sum_{k=0}^N \frac{f^{(k)}(0)}{k!} z^k$. You can check that $P_N^{(k)}(0) = f^{(k)}(0)$. Since P_N is a polynomial, we have, for any z_0

$$P_N(z_0 + h) = P_N(z_0) + \sum_{k=0}^{N} \frac{P_N^{(k)}(z_0)}{k!} h^k$$

Since $\sum_{k=0}^{\infty} a_k (z_0 + h)^k$ converges for $h \in \mathbb{D}_{R-|z_0|}$, we have

$$\lim_{N \to \infty} \left(f(z_0 + h) - \sum_{k=0}^N \frac{f^{(k)}(0)}{k!} (z_0 + h)^k \right) = \lim_{N \to \infty} \left(f(z_0 + h) - \sum_{k=0}^N \frac{f^{(k)}(z_0)}{k!} h^k \right) = 0$$

Note 3. The radius of convergence of the power series in h may be larger than $R - |z_0|$. The series for 1/(1+z) centered at 1/2 has radius of convergence 3/2.

Proposition 4. Assume $f(z) = \sum_{k=0}^{\infty} f_k z^k$ and $g(z) = \sum_{k=0}^{\infty} g_k z^k$ converge in some $\mathbb{D}_R, R > 0$ and coincide on a sequence of points $z_k \in \mathbb{D}_R$ s.t. $z_k \to 0$. Then f = g in \mathbb{D}_R and $f_k = g_k \forall k \ge 0$. $(z_k \to 0 \text{ can be replaced by } z_k \to \alpha \in \mathbb{D}_R : why?)$

Proof. Let $h_k = f_k - g_k$. With $h(z) = \sum_{j=0}^{\infty} h_j z^j$ we have $h(z_k) = 0$, thus $\lim_{k \to \infty} h(z_k) = 0 = h_0$ the latter being true because h is continuous at zero. Thus $h_0 = 0$. Now take $h(z)/z = h_1 + h_2 z + \dots$ The same argument applies, giving $h_1 = 0$. The general case is easy induction.

Corollary 5. If $f = \sum_{k=0}^{\infty} c_k z^k$ and f' = 0 on \mathbb{D}_R , R > 0, then $f = c_0$ in $n \mathbb{D}_R$.

Proof. Indeed, f' = 0 on [0, R). The rest follows from real calculus and the previous proposition.

Examples

Since

$$\sin z = z - \frac{z^3}{3!} + \dots; \ \cos z = 1 - \frac{z^2}{2} + \frac{z^4}{4!} + \dots$$

converge for all $z \in \mathbb{C}$ and $\sin^2 x + \cos^2 x = 1$ on \mathbb{R} , we have $\sin^2 z + \cos^2 z = 1$ in \mathbb{C} . (Fill in the details). Another proof relies on the corollary and the fact that $(\sin^2 + \cos^2)' = 2\sin\cos - 2\sin\cos = 0$ in \mathbb{C} . Similarly, $e^{-z} = 1/e^z$ in \mathbb{C} , $e^{z_1+z_2} = e^{z_1}e^{z_2}$ in \mathbb{C} (fill in the details).

By Euler's identity, we have

$$e^{2k\pi i} = \cos(2k\pi) + i\sin(2k\pi) = 1, \quad \forall k \in \mathbb{Z}$$

and thus by the above $e^{z+2k\pi i} = e^z$ for all $k \in \mathbb{Z}$ and thus e^z is periodic in \mathbb{C} with period $2\pi i$.

Note 6. You see that e^z is thus not one-to-one, though $(e^z)' = e^z$ is never zero.

However, e^z is one-to-one in any strip of the form

$$\mathbb{S}_a = \{x + iy : x \in \mathbb{R}, y \in (a, a + 2\pi)\}$$

and it is onto

$$\mathbb{C} \setminus \{ z : \arg z = a \}$$

Proof.

$$e^{z_1} = e^{z_2} \Leftrightarrow e^{z_3} = 1, \ z_3 = z_2 - z_1$$

If $z_3 = x + iy$, then we have

 $e^{x}(\cos y + i\sin y) = 1 \Rightarrow x = 0\&y = 2k\pi$

(why?). Since $|y_1 - y_2| < 2\pi$ we have k = 0 and thus $z_1 = z_2$ in \mathbb{S}_a . Now let $w \neq 0, \varphi = \arg w \in (a, a + 2\pi)$. Then

$$e^{z} = w \Leftrightarrow e^{x}(\cos y + i\sin y) = |w|(\cos \varphi + i\varphi) \Rightarrow x = \ln |w| \& y = \varphi$$

(why?)

Proposition 7. e^z is invertible from \mathbb{S}_a to $\mathbb{C} \setminus \{z : z = 0 \text{ or } \arg z = a\}$.

Proof. This follows from the argument above.

Note that the inverse of exp depends on the choice of a.

If $a = -\pi$ we say that the corresponding inverse $\ln is$ the principal branch of the log. It is defined in $\mathbb{C} \setminus (-\infty, 0]$. Another relatively common branch is that with a = 0.

Proposition 8. For the natural branch of the log,

$$\ln(\pm i) = \pm \pi i/2$$

Proof. Check that $\exp(\pm \pi i/2) = \pm i$.

Proposition 9. Assume $\arg z_1 = \varphi_1 \& \arg z_2 = \varphi_2 \in (-\pi, \pi)$ and $\varphi_1 + \varphi_2 \in (-\pi, \pi)$. Then, for the natural branch of the log we have

$$\ln(z_1 z_2) = \ln z_1 + \ln z_2$$

(Note that the restriction $\varphi_1 + \varphi_2 \in (-\pi, \pi)$ is needed. Otherwise we may overshoot the strip. $\ln e^{3\pi i/4} + \ln e^{3\pi i/4} = 3\pi i/4 + 3\pi i/4 = 3\pi i/2 \neq -\pi i/2 = \ln e^{3\pi i/2} = \ln(-i)$.