FURTHER RESULTS

1. An alternative proof to Theorem 6, p. 561.

Assume $\sum_{k=0}^{\infty} a_{k} z^{k}$ converges for $|z| \in(0, R)$. We know that it then converges absolutely for $|z| \in(0, R)$.

Let $x=|z|, \varepsilon=|h|$. Let $G(y)=\sum_{k=0}^{\infty}\left|a_{k}\right| y^{k}$; then G is an absolutely and uniformly convergent series in $(-R, R)$. By Theorem 6, p. 511, in calculus over \mathbb{R}, if $x, x+\varepsilon \in$ $(-R, R)$ then

$$
\begin{equation*}
\lim _{\varepsilon \rightarrow 0} \frac{G(x+\varepsilon)-G(x)}{\varepsilon}-\sum_{k=1}^{\infty}\left|a_{k}\right| k x^{k-1}=0 \tag{1}
\end{equation*}
$$

Lemma 1.

$$
\begin{equation*}
\left|\frac{(z+h)^{k}-z^{k}}{h}-k z^{k-1}\right| \leqslant \frac{(x+\varepsilon)^{k}-x^{k}}{\varepsilon}-k x^{k-1} \tag{2}
\end{equation*}
$$

Proof of Lemma 1. This can be proved in a number of ways, including induction. Perhaps the simplest is to note that for v, w real or complex, the bionomial formula gives

$$
\frac{(v+w)^{k}-w^{k}}{w}-k v^{k-1}=\sum_{j=2}^{k} v^{j} w^{k-j-1}
$$

and the rest follows since

$$
\left|\sum_{j=2}^{k} v^{j} w^{k-j-1}\right| \leqslant \sum_{j=2}^{k}\binom{k}{j}|v|^{j}|w|^{k-j-1}=\frac{(|v|+|w|)^{k}-|v|^{k}}{|w|}-k|v|^{k-1}
$$

Proof of Theorem 6, p. 561. The proof now is an easy consequence of 11, Lemma 1 and the triangle inequality.
2. Further results in complex analysis

We have shown that if $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$ converges for $|z| \in(0, R)$, then $a_{n}=$ $f^{(n)}(0) / n!$.
Proposition 2. Assume $R>0$ or $R=\infty$ and that $f(z)=\sum a_{k} z^{k}$ converges in $\mathbb{D}_{R}=$ $\{z:|z|<R\}$ (where by convention $\mathbb{D}_{\infty}=\mathbb{C}$). Let $z_{0} \in \mathbb{D}_{R}$ and $h \in \mathbb{D}_{R-\left|z_{0}\right|}$. Then

$$
f\left(z_{0}+h\right)=f\left(z_{0}\right)+\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!} h^{k}
$$

Proof. Let $P_{N}(z)=\sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!} z^{k}$. You can check that $P_{N}^{(k)}(0)=f^{(k)}(0)$. Since P_{N} is a polynomial, we have, for any z_{0}

$$
P_{N}\left(z_{0}+h\right)=P_{N}\left(z_{0}\right)+\sum_{k=0}^{N} \frac{P_{N}^{(k)}\left(z_{0}\right)}{k!} h^{k}
$$

Since $\sum_{k=0}^{\infty} a_{k}\left(z_{0}+h\right)^{k}$ converges for $h \in \mathbb{D}_{R-\left|z_{0}\right|}$, we have

$$
\lim _{N \rightarrow \infty}\left(f\left(z_{0}+h\right)-\sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!}\left(z_{0}+h\right)^{k}\right)=\lim _{N \rightarrow \infty}\left(f\left(z_{0}+h\right)-\sum_{k=0}^{N} \frac{f^{(k)}\left(z_{0}\right)}{k!} h^{k}\right)=0
$$

Note 3. The radius of convergence of the power series in h may be larger than $R-\left|z_{0}\right|$. The series for $1 /(1+z)$ centered at $1 / 2$ has radius of convergence $3 / 2$.
Proposition 4. Assume $f(z)=\sum_{k=0}^{\infty} f_{k} z^{k}$ and $g(z)=\sum_{k=0}^{\infty} g_{k} z^{k}$ converge in some $\mathbb{D}_{R}, R>0$ and coincide on a sequence of points $z_{k} \in \mathbb{D}_{R}$ s.t. $z_{k} \rightarrow 0$. Then $f=g$ in \mathbb{D}_{R} and $f_{k}=g_{k} \forall k \geqslant 0$. ($z_{k} \rightarrow 0$ can be replaced by $z_{k} \rightarrow \alpha \in \mathbb{D}_{R}$: why?)

Proof. Let $h_{k}=f_{k}-g_{k}$. With $h(z)=\sum_{j=0}^{\infty} h_{j} z^{j}$ we have $h\left(z_{k}\right)=0$, thus $\lim _{k \rightarrow \infty} h\left(z_{k}\right)=$ $0=h_{0}$ the latter being true because h is continuous at zero. Thus $h_{0}=0$. Now take $h(z) / z=h_{1}+h_{2} z+\ldots$. The same argument applies, giving $h_{1}=0$. The general case is easy induction.

Corollary 5. If $f=\sum_{k=0}^{\infty} c_{k} z^{k}$ and $f^{\prime}=0$ on $\mathbb{D}_{R}, R>0$, then $f=c_{0}$ in $n \mathbb{D}_{R}$.
Proof. Indeed, $f^{\prime}=0$ on $[0, R)$. The rest follows from real calculus and the previous proposition.

Examples

Since

$$
\sin z=z-\frac{z^{3}}{3!}+\ldots ; \cos z=1-\frac{z^{2}}{2}+\frac{z^{4}}{4!}+\ldots
$$

converge for all $z \in \mathbb{C}$ and $\sin ^{2} x+\cos ^{2} x=1$ on \mathbb{R}, we have $\sin ^{2} z+\cos ^{2} z=1$ in \mathbb{C}. (Fill in the details). Another proof relies on the corollary and the fact that $\left(\sin ^{2}+\cos ^{2}\right)^{\prime}=$ $2 \sin \cos -2 \sin \cos =0$ in \mathbb{C}. Similarly, $e^{-z}=1 / e^{z}$ in $\mathbb{C}, e^{z_{1}+z_{2}}=e^{z_{1}} e^{z_{2}}$ in \mathbb{C} (fill in the details).

By Euler's identity, we have

$$
e^{2 k \pi i}=\cos (2 k \pi)+i \sin (2 k \pi)=1, \quad \forall k \in \mathbb{Z}
$$

and thus by the above $e^{z+2 k \pi i}=e^{z}$ for all $k \in \mathbb{Z}$ and thus e^{z} is periodic in \mathbb{C} with period $2 \pi i$.
Note 6. You see that e^{z} is thus not one-to-one, though $\left(e^{z}\right)^{\prime}=e^{z}$ is never zero.
However, e^{z} is one-to-one in any strip of the form

$$
\mathbb{S}_{a}=\{x+i y: x \in \mathbb{R}, y \in(a, a+2 \pi)\}
$$

and it is onto

$$
\mathbb{C} \backslash\{z: \arg z=a\}
$$

Proof.

$$
e^{z_{1}}=e^{z_{2}} \Leftrightarrow e^{z_{3}}=1, z_{3}=z_{2}-z_{1}
$$

If $z_{3}=x+i y$, then we have

$$
e^{x}(\cos y+i \sin y)=1 \Rightarrow x=0 \& y=2 k \pi
$$

(why?). Since $\left|y_{1}-y_{2}\right|<2 \pi$ we have $k=0$ and thus $z_{1}=z_{2}$ in \mathbb{S}_{a}. Now let $w \neq 0, \varphi=$ $\arg w \in(a, a+2 \pi)$. Then

$$
e^{z}=w \Leftrightarrow e^{x}(\cos y+i \sin y)=|w|(\cos \varphi+i \varphi) \Rightarrow x=\ln |w| \& y=\varphi
$$

(why?)

Proposition 7. e^{z} is invertible from \mathbb{S}_{a} to $\mathbb{C} \backslash\{z: z=0$ or $\arg z=a\}$.
Proof. This follows from the argument above.
Note that the inverse of \exp depends on the choice of a.
If $a=-\pi$ we say that the corresponding inverse \ln is the principal branch of the log. It is defined in $\mathbb{C} \backslash(-\infty, 0]$. Another relatively common branch is that with $a=0$.

Proposition 8. For the natural branch of the log,

$$
\ln (\pm i)= \pm \pi i / 2
$$

Proof. Check that $\exp (\pm \pi i / 2)= \pm i$.
Proposition 9. Assume $\arg z_{1}=\varphi_{1} \& \arg z_{2}=\varphi_{2} \in(-\pi, \pi)$ and $\varphi_{1}+\varphi_{2} \in(-\pi, \pi)$. Then, for the natural branch of the log we have

$$
\ln \left(z_{1} z_{2}\right)=\ln z_{1}+\ln z_{2}
$$

(Note that the restriction $\varphi_{1}+\varphi_{2} \in(-\pi, \pi)$ is needed. Otherwise we may overshoot the strip. $\ln e^{3 \pi i / 4}+\ln e^{3 \pi i / 4}=3 \pi i / 4+3 \pi i / 4=3 \pi i / 2 \neq-\pi i / 2=\ln e^{3 \pi i / 2}=$ $\ln (-i)$.

