
FURTHER RESULTS

1. An alternative proof to Theorem 6, p. 561.

Assume
∑∞
k=0 akz

k converges for |z| ∈ (0, R). We know that it then converges abso-
lutely for |z| ∈ (0, R).

Let x = |z|, ε = |h|. Let G(y) =
∑∞
k=0 |ak|y

k; then G is an absolutely and uniformly
convergent series in (−R,R). By Theorem 6, p. 511, in calculus over R, if x, x + ε ∈
(−R,R) then

(1) lim
ε→0

G(x+ ε)−G(x)

ε
−
∞∑
k=1

|ak|kxk−1 = 0

Lemma 1.

(2)
∣∣∣ (z + h)k − zk

h
− kzk−1

∣∣∣ 6 (x+ ε)k − xk

ε
− kxk−1

Proof of Lemma 1. This can be proved in a number of ways, including induction. Perhaps
the simplest is to note that for v, w real or complex, the bionomial formula gives

(v + w)k − wk

w
− kvk−1 =

k∑
j=2

vjwk−j−1

and the rest follows since∣∣∣∣∣
k∑
j=2

vjwk−j−1

∣∣∣∣∣ 6
k∑
j=2

(
k

j

)
|v|j |w|k−j−1 =

(|v|+ |w|)k − |v|k

|w| − k|v|k−1

Proof of Theorem 6, p. 561. The proof now is an easy consequence of (1), Lemma 1 and

the triangle inequality.

2. Further results in complex analysis

We have shown that if f(z) =
∑∞
k=0 akz

k converges for |z| ∈ (0, R), then an =

f (n)(0)/n!.

Proposition 2. Assume R > 0 or R = ∞ and that f(z) =
∑
akz

k converges in DR =
{z : |z| < R} (where by convention D∞ = C). Let z0 ∈ DR and h ∈ DR−|z0|. Then

f(z0 + h) = f(z0) +

∞∑
k=0

f (k)(z0)

k!
hk

Proof. Let PN (z) =
∑N
k=0

f(k)(0)
k!

zk. You can check that P
(k)
N (0) = f (k)(0).Since PN is a

polynomial, we have, for any z0

PN (z0 + h) = PN (z0) +

N∑
k=0

P
(k)
N (z0)

k!
hk
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Since
∑∞
k=0 ak(z0 + h)k converges for h ∈ DR−|z0|, we have

lim
N→∞

(
f(z0 + h)−

N∑
k=0

f (k)(0)

k!
(z0 + h)k

)
= lim
N→∞

(
f(z0 + h)−

N∑
k=0

f (k)(z0)

k!
hk
)

= 0

Note 3. The radius of convergence of the power series in h may be larger than R− |z0|.
The series for 1/(1 + z) centered at 1/2 has radius of convergence 3/2.

Proposition 4. Assume f(z) =
∑∞
k=0 fkz

k and g(z) =
∑∞
k=0 gkz

k converge in some
DR, R > 0 and coincide on a sequence of points zk ∈ DR s.t. zk → 0. Then f = g in DR
and fk = gk∀k > 0. (zk → 0 can be replaced by zk → α ∈ DR: why?)

Proof. Let hk = fk−gk. With h(z) =
∑∞
j=0 hjz

j we have h(zk) = 0, thus limk→∞ h(zk) =
0 = h0 the latter being true because h is continuous at zero. Thus h0 = 0. Now take
h(z)/z = h1 + h2z + .... The same argument applies, giving h1 = 0. The general case is

easy induction.

Corollary 5. If f =
∑∞
k=0 ckz

k and f ′ = 0 on DR, R > 0, then f = c0 in n DR.

Proof. Indeed, f ′ = 0 on [0, R). The rest follows from real calculus and the previous

proposition.

Examples
Since

sin z = z − z3

3!
+ ...; cos z = 1− z2

2
+
z4

4!
+ ...

converge for all z ∈ C and sin2 x + cos2 x = 1 on R, we have sin2 z + cos2 z = 1 in C.
(Fill in the details). Another proof relies on the corollary and the fact that (sin2 +cos2)′ =
2 sin cos−2 sin cos = 0 in C. Similarly, e−z = 1/ez in C, ez1+z2 = ez1ez2 in C (fill in the
details).

By Euler’s identity, we have

e2kπi = cos(2kπ) + i sin(2kπ) = 1, ∀k ∈ Z

and thus by the above ez+2kπi = ez for all k ∈ Z and thus ez is periodic in C with period
2πi.

Note 6. You see that ez is thus not one-to-one, though (ez)′ = ez is never zero.

However, ez is one-to-one in any strip of the form

Sa = {x+ iy : x ∈ R, y ∈ (a, a+ 2π)}
and it is onto

C \ {z : arg z = a}

Proof.

ez1 = ez2 ⇔ ez3 = 1, z3 = z2 − z1
If z3 = x+ iy, then we have

ex(cos y + i sin y) = 1⇒ x = 0&y = 2kπ

(why?). Since |y1 − y2| < 2π we have k = 0 and thus z1 = z2 in Sa. Now let w 6= 0, ϕ =
argw ∈ (a, a+ 2π). Then

ez = w ⇔ ex(cos y + i sin y) = |w|(cosϕ+ iϕ)⇒ x = ln |w| &y = ϕ

(why?)
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Proposition 7. ez is invertible from Sa to C \ {z : z = 0 or arg z = a}.

Proof. This follows from the argument above.

Note that the inverse of exp depends on the choice of a.
If a = −π we say that the corresponding inverse ln is the principal branch of the log.

It is defined in C \ (−∞, 0]. Another relatively common branch is that with a = 0.

Proposition 8. For the natural branch of the log,

ln(±i) = ±πi/2

Proof. Check that exp(±πi/2) = ±i.

Proposition 9. Assume arg z1 = ϕ1&arg z2 = ϕ2 ∈ (−π, π) and ϕ1 + ϕ2 ∈ (−π, π).
Then, for the natural branch of the log we have

ln(z1z2) = ln z1 + ln z2

(Note that the restriction ϕ1 + ϕ2 ∈ (−π, π) is needed. Otherwise we may

overshoot the strip. ln e3πi/4+ln e3πi/4 = 3πi/4+3πi/4 = 3πi/2 6= −πi/2 = ln e3πi/2 =
ln(−i).


	1. An alternative proof to Theorem 6, p. 561.
	2. Further results in complex analysis

