(A VERSION OF) THE HEINE-BOREL THEOREM IN \mathbb{R} AND UNIFORM CONTINUITY

Theorem 1. Let $a<b$ be real numbers and \mathcal{O} be a set of open intervals. If $[a, b]$ is contained in the union of the intervals in \mathcal{O}, then there exists $n \in \mathbb{N}$ and $O_{1}, \ldots, O_{n} \in \mathcal{O}$ s.t. $[a, b] \subset \cup_{i=1}^{n} O_{i}:=O_{1} \cup \cdots \cup O_{n}$. ("If there is an open interval covering, then there is a finite subcovering")

Proof. Let

$$
S=\left\{x \in[a, b]: \exists n \in \mathbb{N}, O_{1}, \ldots, O_{n} \in \mathcal{O} \text { s.t }[a, x] \subset \cup_{i=1}^{n} O_{i}\right\}
$$

S is nonempty, since a must be contained in at least one $O \in \mathcal{O} . S$ is bounded above by b, and thus it has a least upper bound α. We show that $\alpha=b$ and that $b \in S$, completing the proof. Since $\alpha \in[a, b]$, there is an interval $(c, d) \in \mathcal{O}$ s.t. $\alpha \in(c, d)$. Then for some $\varepsilon>0$ s.t. $(\alpha-\varepsilon, \alpha+\varepsilon) \subset(c, d)$ (find one!). Since $\alpha-\varepsilon / 2<\alpha$ we have $\alpha-\varepsilon / 2 \in S$, thus there is an N and $O_{i}, i=1 \ldots N$ s.t. $[a, \alpha-\varepsilon / 2] \subset \cup_{i=1}^{N} O_{i}$. But then, if we choose O_{N+1} to be (c, d), then $[a, \alpha+\varepsilon / 2] \subset \cup_{i=1}^{N+1} O_{i}$.

Definition 2. A function is uniformly continuous on an interval if for any ε there is a δ s.t. for all x, y s.t. $|x-y|<\delta$ we have $|f(x)-f(y)|<\varepsilon$. The key property here is that δ does not depend on x or y.

Theorem 3. Let $a, b \in \mathbb{R}$ and f be continuous on $[a, b]$. Then f is uniformly continuous on $[a, b]$.
Proof. For each x there is a $\delta(x)$ s.t. any y in $(x-2 \delta(x), x+2 \delta(x))$ satisfies $|f(y)-f(x)|<$ $\varepsilon / 2$. But the intervals $(x-\delta(x), x+\delta(x))$ cover $[a, b]$. Thus there is a finite set S of intervals $\left\{\left(x_{k}-\delta\left(x_{k}\right), x_{k}+\delta\left(x_{k}\right)\right), k=1, \ldots, n\right\}$ which cover $[a, b]$. Let $\delta=\min \left(\delta_{1}, \ldots, \delta_{n}\right)$. Let $x, y \in[a, b]$ with $|x-y|<\delta$. Since S covers $[a, b]$, then $\left|x-x_{k}\right|<\delta_{k}$ for some k. Then by the triangle inequality, $\left|y-x_{k}\right|=\left|y-x+x-x_{k}\right|<2 \delta_{k}$. Still by the triangle inequality, $|f(x)-f(y)|=\left|f(x)-f\left(x_{k}\right)+f\left(x_{k}\right)-f(y)\right|<\varepsilon$.

