MIDTERM 2: SOME PRACTICE PROBLEMS

Exercise 1. Find $\sqrt{101}$ with two decimal places without using a calculator. Justify your result.

Exercise 2. Assume f is continuous on $[0,1]$ and define the function g by

$$
g(x)=\int_{0}^{1} f(x t) d t
$$

(a) Is the function g necessarily continuous on $(0,1)$?
(b) Is the function g necessarily differentiable on $(0,1)$?
(c) [Bonus] Does the limit $\lim _{x \rightarrow 0^{+}} x^{-1}[g(x)-g(0)]$ (the "right right derivative of $g "$ at 0) exist ?
Exercise 3. Let

$$
f(t)=\frac{t+e^{-t}-1}{t^{5 / 2}} ; \quad g(t)=\frac{1}{t^{1 / 2}(1+t)} ; \quad h(t)=\frac{f(t)}{g(t)}
$$

(a) Prove that $h(t)$ has a limit as $t \rightarrow 0$ and thus there exists a c such that the function H defined as $H(t)=h(t)$ for $t \neq 0$ and $H(0)=c$ is continuous on $[0, \infty)$ (this is expressed as " h extends by continuity to $[0, \infty) "$).
(b) Prove that $\sup _{x \in(0, \infty)}|h(x)|<\infty$
(c)[Bonus] More precisely, show that $\forall t \in \mathbb{R}^{+}, h(t) \in\left(\frac{1}{2}, 1\right)$

Exercise 4. It is known that the integral $f(x)=\int_{0}^{x} e^{s^{2}} d s$ cannot be expressed in terms of elementary functions.

Decide which of the following functions can and which ones cannot be expressed in terms of elementary functions.
(a) $\int_{1}^{x} e^{s^{2}} d s$
(b) $\int_{1}^{1} x e^{s} s^{-1 / 2} d s$
(c) $\int_{1}^{x} s e^{s^{2}} d s$
(d) $\int_{1}^{x}(1+s) e^{s^{2}} d s$

Exercise 5. Let P be the polynomial given by

$$
P(x)=x-5 x^{2}+8 x^{3}-4 x^{4}
$$

Show that

$$
x \in[0,1] \Rightarrow P(x) \in\left[0, \frac{1}{16}\right]
$$

(Assume we don't know how to explicitly solve general cubic equations. There are simple solutions to this problem. Plotting the function may give you an idea.)

