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EIGENVALUES AND EIGENVECTORS 3

1. MOTIVATION

1.1. Diagonal matrices. Perhaps the simplest type of linear transforma-
tions are those whose matrix is diagonal (in some basis). Consider for ex-
ample the matrices

0 w=[% n]v=15 0]

It can be easily checked that

| aar + Bby 0
OzM+ﬁN—|: 0 aa2+5b2:|

o [f 4] e[ L[ 3
& 1 0 a5 |’ 0 asby
Diagonal matrices behave like the bunch of numbers on their diagonal!

The linear transformation consisting of multiplication by the matrix M
in (1) dilates a; times vectors in the direction of e; and as times vectors in
the direction of es.

In this chapter we will see that most linear transformations do have diag-
onal matrices in a special basis, whose elements are called the eigenvectors
of the transformation. We will learn how to find these bases. Along the
special directions of the eigenvectors the transformation just dialation by a

factor, called eigenvalue.

1.2. Example: solving linear differential equations. Consider the sim-

ple equation
du
— = Au
dt
which is linear, homogeneous, with constant coefficients, and unknown func-
tion u(t) € R (or in C). Its general solution is, as it is well known,
u(t) = CeM.
Consider now a similar equation, but where the unknown u(¢) is a vector
valued function:
du
(2) i Mu, wu(t) € R", M is an n X n constant matrix
Inspired by the one dimensional case we look for exponential solutions.
Substituting in (2) u(t) = e*v (where A is a number and v is a constant
vector, both be determined) and dividing by e*, we obtain that the scalar

A and the vector v must satisfy
(3) Av =Mv
or

(4) (M —X)v=0



4 BASED ON NOTES BY RODICA D. COSTIN

If the null space of the matrix M — AI is zero, then the only solution of
(4) is v = 0 which gives the (trivial!) solution u(t) = 0.

If however, we can find special values of A for which N’ (M — AI) is not
null, then we found a nontrivial solution of (2). Such values of A are called
eigenvalues of the matrix M, and vectors v.€ N(M — XI), v # 0, are
called eigenvectors corresponding to the eigenvalue ).

Of course, the necessary and sufficient condition for N'(M — \I) # {0} is
that

(5) det(M — AI) =0

FEzxzample. Let us calculate the exponential solutions for

©) M:[—l —3]
0 2

Looking for eigenvalues of M we solve equation (5), which for (6) is

(L

0 2—A
with solutions \; = —1 and Ay = 2.
We next determine an eigenvector corresponding to the eigenvalue A =
A1 = —1: looking for a nozero vector v; such that (M — A1 I)vy = 0 we solve

MERE

giving 9 = 0 and x; arbitrary; therefore the first eigenvector is any scalar
multiple of v = (1,0)%.
Similarly, for the eigenvalue A = Ay = 2 we solve (M — Aal)vy = 0:

el

which gives yo = —y; and y; arbitrary, and the second eigenvector is any
scalar multiple of vo = (1, —1)7.

We found two particular solutions of (2), (6), namely u;(t) = e~*(1,0)7
and ua(t) = e?(1,—1)". These are functions belonging to the null space
of the linear operator Lu = Z—;‘ — Mu, therefore any linear combination of
these two solutions also belongs to the null space: any Ciuy(t) + Coua(t) is
also a solution, for and constants C7, Cs.

A bit later we will show that these are all the solutions.

— (-1-2(2- N

2. EIGENVALUES AND EIGENVECTORS: DEFINITION AND CALCULATION

2.1. Definitions. Denote the set of n x n (square) matrices with entries in
F (=RorC)

M (F) ={M | M = [M;jli j=1,.n, Mij € F}
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A matrix M € M, (F) defines an endomorphism the vector space F"(over
the scalars F') by usual multiplication x — Mx.

Note that a matrix with real entries can also act on C", since for any
x € C" also Mx € C". But a matrix with complex non real entries cannot
act on R"™, since for x € R™ the image Mx may not belong to R™ (while
certainly Mx € C").

Definition 1. Let M be an n xn matriz acting on the vector space V.= F".
A scalar \ € F is an eigenvalue of M if for some nonzero vector v e V,
v # 0 we have

(7) Mv =)\v
The vector v is called eigenvector corresponding to the eigenvalue .

Of course, if v is an eigenvector corresponding to A, then so is any scalar
multiple cv (for ¢ # 0).

2.2. The characteristic equation. Equation (7) can be rewritten as Mv—
Av =0, or (M — AI)v = 0, which means that the nonzero vector v belongs
to the null space of the matrix M — AI, and in particular this matrix is not
invertible. Using the theory of matrices, we know that this is equivalent to

det(M — AI) =0

The determinant has the form

M1 — A Mo . M,
Moy Mo — X ... Mo,
det(M — \I) = . ) .
My M2 coo Mypp — A

This is a polynomial in A, having degree n. To understand why this is
the case, consider first n = 2 and n = 3.
For n = 2 the characteristic polynomial is
Myy— X My
My My — A

= A? — (My1 + Mag) X + (M1 Mag — Myg May)
which is a quadratic polynomial in A; the dominant coefficient is 1.
For n = 3 the characteristic polynomial is

= (M1 — \) (Mag — X\) — My Moy

My — X Mo M3
My May— X Mo
M3 Mss M3z — A

and expanding along say, row 1,
Moy — A Moy
Mg M3z — A

M1 Mag — A
Mis Mos

Moy M3

= (=) (M-
(=)™ (M=) 2| Myz Mz — A

‘+(—1)1+2 M,

+(_1)1+3 M13
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= — A3+ (M1 + Mag + Mzz)A\? + ...

which is a cubic polynomial in A; the dominant coefficient is —1.
It is easy to show by induction that det(M — AI) is polynomial in A,
having degree n, and that the coefficient of \" is (—1)".

Definition 2. The polynomial det(M — M) is called the characteristic
polynomial of the matriz M, and the equation det(M — X) = 0 is called
the characteristic equation of M.

Remark. Some authors refer to the characteristic polynomial as det(AI —
M); the two polynomial are either equal or a —1 multiple of each other,

since det(A — M) = (—1)"det(M — AI).

2.3. Geometric interpretation of eigenvalues and eigenvectors. Let
M be an n x n matrix, and T : R" — R" defined by T(x) = Mx be the
corresponding linear transformation.

If v is an eigenvector corresponding to an eigenvalue A of M: Mv = A\v,
then T" expands or contracts v (and any vector in its direction) A times (and
it does not change its direction!).

If the eigenvalue/vector are not real, a similar fact is true, only that
multiplication by a complex (not real) scalar cannot be easily called an
expansion or a contraction (there is no ordering in complex numbers), see
the example of rotations, §2.13.1.

The special directions of the eigenvectors are called principal axes of
the linear transformation (or of the matrix).

2.4. Digression: the fundamental theorem of algebra.

2.4.1. Polynomials of degree two: roots and factorization. Consider polyno-
mials of degree two, with real coefficients: p(z) = ax? + bz + c. It is well

b+ Vb2 —4
5 acifb2—4a020
a

(where 1 = z2 when b? — 4ac = 0), and p(z) has no real solutions if
b? — 4ac < 0.
When the solutions are real, then the polynomial factors as

known that p(x) has real solutions z; 9 =

azx® +bx +c = a(x — 21)(x — 22)

In particular, if 21 = 25 then p(z) = a(x — x1)? and z1 is called a double
root; x1 is said to have multiplicity two. It is convenient to say that also in
this case p(x) has two roots.

If, on the other hand, if p(x) has no real roots, then p cannot be factored
within real numbers, and it is called irreducible (over the real numbers).

2.4.2. Complex numbers and factorization of polynomials of degree two. If
p(z) = ax®+bx+c is irreducible this means that b> —4ac < 0 and we cannot
take the square root of this quantity in order to calculate the two roots of
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p(x). However, writing b?> — 4ac = (—1) (—=b? + 4ac) and introducing the
symbol ¢ for v/—1 we can write the zeroes of p(z) as
—b+ivV—b?+4dac  —b | V—b>+4ac

= — 34— — cR+IR=
2a 2a ! 2a R+ ¢

T12 =

Considering the two roots x1, 2 complex, we can still factor az?+br+c =
a(x — x1)(x — x2), only now the factors have complex coefficients. Within
complex numbers every polynomial of degree two is reducible!

Note that the two roots of a quadratic polynomial with real coefficients
are complex conjugate: if a,b,c € R and 12 ¢ R then xo = 77.

2.4.3. The fundamental theorem of algebra. It is absolutely remarkable that
any polynomial can be completely factored using complex numbers:

Theorem 3. The fundamental theorem of algebra
Any polynomial p(z) = apa™+an_12" "1 +...+ag with coefficients a; € C
can be factored

(8) ™ + ap_12" V.. +ag = an(x —z1)(x — 22) ... (T — Y

for a unique set of complex numbers x1,xa, ..., Ty, (not necessarily distinct),
called the roots of the polynomial p(x).

Remark. With probability one, the zeroes x1, ..., x, of polynomials p(x)
are distinct. Indeed, if 1 is a double root (or has higher multiplicity) then
both relations p(z1) = 0 and p'(z1) = 0 must hold. This means that there is
a relation between the coefficients ay, . . . a,, of p(x) (the multiplet (ay, ... ay)
belongs to an n dimensional surface in C**1).

2.4.4. Factorization within real numbers. If we want to restrict ourselves
only within real numbers then we can factor any polynomial into factors of
degree one or two:

Theorem 4. Factorization within real numbers
Any polynomial of degree n with real coefficients can be factored into fac-
tors of degree one or two with real coefficients.

Theorem 4 is an easy consequence of the (deep) Theorem 3. Indeed, first,
factor the polynomial in complex numbers (8). Then note that the zeroes
x1,%2,...,Ty come in pairs of complex conjugate numbers, since if z satisfies
p(z) = 0, then also its complex conjugate z satisfies p(Z) = 0. Then each
pair of factors (z — z)(z — Z) must be replaced in (8) by its expanded value:

2

(z—2)(z—2) =2 - (2+2)z+ |2

which is an irreducible polynomial of degree 2, with real coefficients. O
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2.5. Diagonal matrices. Let D be a diagonal matrix:

di 0 ... 0
0 do ... 0
9) D=| . . _
0 0 dy

To find its eigenvalues, calculate

dy — A 0 0
0 do — X ... 0

det(D—)\I) = = (dlf)\l)(dgf)\g) e (dn*)\n)

0 0 R

The eigenvalues are precisely the diagonal elements, and the eigenvector
corresponding to d; is e; (as it is easy to check). The principal axes of
diagonal matrices the coordinate axes. Vectors in the direction of one of
these axes preserve their direction and are stretched or compressed: if x =
cer then Dx = dix.

Diagonal matrices are easy to work with: what was noted for the 2 x 2
matrices in §1 is true in general, and one can easily check that any power
DF is the diagonal matrix having dé? on the diagonal.

If p(z) is a polynomial

p(t) = apt’ + ap_1t" 1+ art +ag
then for any square matrix M one can define p(M) as
(10) p(M) = ajM* + a1 M* + ...+ a1 M + apl

If D is a diagonal matrix (9) then p(D) is the diagonal matrix having
p(d;) on the diagonal. (Check!)
Diagonal matrices can be viewed as the collection of their eigenvalues!

Exercise. Show that the eigenvalues of an upper (or lower) triangular
matrix are the elements on the diagonal.

2.6. Similar matrices have the same eigenvalues. It is very easy to
work with diagonal matrices and a natural question arises: which linear
transformations have a diagonal matrix in a well chosen basis? This is the
main topic we will be exploring for many sections to come.

Recall that if the matrix M represents the linear transformation L : V' —
V in some basis By of V, and the matrix M represents the same linear
transformation L, only in a different basis By, then the two matrices are
similar: M = S~'MS (where S the the matrix of change of basis).

Eigenvalues are associated to the linear transformation (rather than its
matrix representation):
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Proposition 5. Two similar matrices have the same eigenvalues: if M, M,:S'
are n x n matrices, and M = ST'MS then the eigenvalues of M and of M
are the same.

This is very easy to check, since
det(M — XI) = det(S™"MS — XI) = det [S™' (M — AI)S]
=det S det(M — \I) det S = det(M — \I)

so M and M have the same characteristic equation. O

2.7. Projections. Recall that projections do satisfy P? = P (we saw this
for projections in dimension two, and we will prove it in general).

Proposition 6. Let P be a square matriz satisfying P> = P. Then the
eigenvalues of P can only be 0 or 1.

Proof. Let A be an eigenvalue; this means that there is a nonzero vector
v so that Pv = Av. Applying P to both sides of the equality we obtain
P?v = P(\v) = APv = \?v. Using the fact that P?>v = Pv = \v it follows
that Av = A?v so (A — A?)v = 0 and since v # 0 then A — \? = 0 so
Ae{0,1}. O

Example. Consider the projection of R3 onto the x;x9 plane. Its matrix

P pr—

O O =
O = O
O O O

is diagonal, with eigenvalues 1,1, 0.

2.8. Trace, determinant and eigenvalues.

Definition 7. Let M be an n x n matriz, M = [M;j]; j—1,..n. The trace
of M is the sum of its elements on the principal diagonal:

n
TrM =Y M
j=1

The following theorem shows that what we noticed in §2.2 for n = 2 is
true for any n:

Theorem 8. Let M be an nxn matriz, an let A1, ..., A\, be its n eigenvalues
(complex, not necessarily distinct). Then

(11) det M = Ajha ... Ay

and

(12) TrM =X +X+...+ )\

In particular, the traces of similar matrices are equal, and so are their
determinants.
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Proof.

We expand the determinant det(M — ATI') using minors and cofactors keep-
ing track of the coefficient of A»~!. As seen on the examples in §2.2, only
the first term in the expansion contains the power A1, and continuing to
expand to lower and lower dimensional determinants, we see that the only
term containing A"~ is
(13)

p(A) =det(M—AI) = (My11—A)(Mag—A) ... (Myp,—\)+ lower powers of A

= (—1)"\" — (—=1)"(My1 + Mag + ...+ Mp,)A" ' + lower powers of A

On the other hand, this polynomial has roots Ay, ..., A\, so it must be of
the form
(14) AA=X1) - (A=Ap) = AN A+ AN ()N - Ny,
If we expand (14) and compare with (13), we get that A = (—1)". On the
other hand, from (13) we have p(0) =det(M ) by definition as seen from (13)
(15) p(0)=(=1)"A1 - Ay =>det(M) =X -+ N\

The proof of the trace is very similar. O

2.9. The eigenvalue zero. As an immediate consequence of Theorem 8,
we can recognize invertible matrices by looking at their eigenvalues:

Corollary 9. A matrix M is invertible if and only if all its eigenvalues are
nonzero.

Note that a matrix M has an eigenvalue equal to zero if and only if its
null space N (M) is nontrivial. Moreover, the matrix M has dim N (M)
eigenvectors linearly independent which correspond to the eigenvalue zero.

2.10. Eigenvectors corresponding to different eigenvalues are inde-
pendent.

Theorem 10. Let M be an n X n matriz.

Let Ay, ...\, a set of distinct eigenvalues of M and vy, ..., vy be corre-
sponding eigenvectors.
Then the set vy, ...,V is linearly independent.

In particular, if M has entries in F = R or C, and all the eigenvalues
of M are in F and are distinct, then the set of corresponding eigenvectors
form a basis for F™.

Proof.

Assume, to obtain a contradiction, that the eigenvectors are linearly de-
pendent: there are cq,...,c; € F not all zero such that
(16) avi+...+cvp =0

Step I. We can assume that all ¢; are not zero, otherwise we just remove
those v; from (16) and we have a similar equation with a smaller .
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If after this procedure we are left with & = 1, then this implies ¢c;v; = 0
which contradicts the fact that not all ¢; are zero or the fact that vi # 0.

Otherwise, for k£ > 2 we continue as follows.

Step II. Then we can solve (16) for vy:

(17) Vi = Vit G Vi1
where ¢} = —c;/cy.
Applying M to both sides of (17) we obtain
(18) ALV = c’l)\lvl + ...+ C;c—l)\kflkal
Multiplying (17) by Ax and subtracting from (18) we obtain
(19) 0= Cll()\l - )\k.)vl +...+ 02_1(>\k—1 - )\k)vk_l
Note that all ¢;(A\; — Ax) are non-zero (since all ¢| are non-zero, and
Aj # Ak)-

If k=2, then this implies vi = 0 which is a contradiction.

If £ > 2 we go to Step I. with a lower k.

The procedure decreases k, therefore it must end, and we have a contra-
diction. O

2.11. Diagonalization of matrices with linearly independent eigen-
vectors. Suppose that the M be an n x n matrix has n independent eigen-
vectors vi,...,Vy.

Note that, by Theorem 10, this is the case if we work in F' = C and all
the eigenvalues are distinct (recall that this happens with probability one).
Also this is the case if we work in F' = R and all the eigenvalues are real
and distinct.

Let S be the matrix with columns vi,...,vy:
S =1[vi,...,Vp]
which is invertible, since vy, ..., v, are linearly independent.
Since Mv; = A\jv; then
(20) Mvi,...,vp] = [Aivi, .., An vy

The left side of (20) equals M S. To identify the matrix on the right side
of (20) note that since Se; = v; then S(\je;) = \jv; so

A0 0

0 X 0
A1V, ..o AV = S[\e1, ..., Apen] = SA, where A = .

0 0 An

Relation (20) is therefore
MS=SA, or S 'MS=A=diagonal

Note that the matrix S which diagonalizes a matrix is not unique. For
example, we can replace any eigenvector by a scalar multiple of it. Also, we
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can use different orders for the eigenvectors (this will result on a diagonal
matrix with the same values on the diagonal, but in different positions).
Example 1. Consider the matrix (6) for which we found the eigenvalues

A = —1 and Xy = 2 and the corresponding eigenvectors v; = (1,0)7.
vy = (1,-1)T.
1 1
s=[0 4]
we have
1 -1 0
sws=] 5 1]

Not all matrices are diagonalizable, certainly those with distinct eigenval-
ues are, and some matrices with multiple eigenvalues.
Example 2. The matrix

(21) N:[g (1)]

has eigenvalues A\; = A2 = 0 but only one (up to a scalar multiple) eigen-
vector vi = ej.

Multiple eigenvalues are not guaranteed to have an equal number of in-
dependent eigenvectors!

N is not diagonalizable. Indeed, assume the contrary, to arrive at a
contradiction. Suppose there exists an invertible matrix S so that S™'N.S =
A where A is diagonal, hence it has the eigenvalues of N on its diagonal,
and therefore it is the zero matrix: S™'N.S = 0, which multiplied by S to
the left and S~! to the right gives N = 0, which is a contradiction.

Some matrices with multiple eigenvalues may still be diagonalized; next
section explores when this is the case.

2.12. Eigenspaces. Consider an n X n matrix M with entries in F', with
eigenvalues A1,..., A\, in F.

Definition 11. The set
Vy, = {x € F" | Mx = \;x}
is called the eigenspace of M associated to the eigenvalue A;.

Exercise. Show that V), is the null space of the transformation M — AI
and that V), is a subspace of F".

Note that all the nonzero vectors in V), are eigenvectors of M correspond-
ing to the eigenvalues ;.

Definition 12. A subspace V' is called an invariant subspace for M if
M(V) CV (which means that if x € V then Mx € V).
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The following Remark gathers main features of eigenspaces; their proof
is left to the reader.

Remark. 1. Each V), is an invariant subspace for M.

2. V)\j N V)\l = {0} if )\j # Al

3. Denote by Ai,..., A the distinct eigenvalues of M and by r; the
multiplicity of the eigenvalue \;, for each j =1,...,k; it is clear that

k
det(M — M) H A =N and ri+...+rp=n
7=1
Then
dim V)\j < T

4. M is diagonalizable in F™ if and only if dim V), = rj forallj =1,...,k
and then
VM@...oVy, =F"

Example. Consider the matrix

2 0 0
(22) M:i=1]1 0 -1
1 -2 1

Its characteristic polynomial is
det(M —X) ==X +3X2—4=—\+1)(A=2)*

so A\; = —1 and A2 = A3 = 2 is a double eigenvalue. The eigenspace V), is
one dimensional, spanned by an eigenvector, which, after a simple calcula-
tion turns out to be vi = (0,1, 1)7. If the eigenspace V), is two-dimensional
(which is not guaranteed) then the matrix M is diagonalizable. A simple
calculation shows that there are two independent eigenvectors correspond-
ing to the eigenvalue Ay = 2, for example vo = (1,0,1)” and v3 = (2,1,0)”

(the null space of M — A\oI is two-dimensional). Let
01 2
S=lvi,vo,vz]=1[1 0 1
1 1 0
then
-1 0 0
STIMS=1] 0 2 0
0 2

2.13. Real matrices with complex eigenvalues; decomplexification.
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2.13.1. Complex eigenvalues of real matrices. For an n X n matrix with real
entries, if we want to have n guaranteed eigenvalues, then we have to accept
working in C”. Otherwise, if we want to restrict ourselves to working only
with real vectors, then we have to accept that we may have fewer (real)
eigenvalues, or perhaps none.

Complex eigenvalues of real matrices come in pairs: if A is an eigenvalue of
M, then so is its complex conjugate A (since the characteristic equation has
real coefficients). Also, if v is an eigenvector corresponding to the eigenvalue
A, then ¥ is eigenvector corresponding to the eigenvalue A (check!). The real
and imaginary parts of v span a plane where the linear transformation acts
by rotation, and a possible dilation. Simple examples are shown below.

Example 1: rotation in the xy-plane. Consider a rotation matrix

cosf —siné
(23) o = [ sinf  cosf ]
To find its eigenvalues calculate
cosf — X —sinf

det(Ry—\I) = ‘ = (cos0—\)*+sin? 0 = A\2—2X\ cos H+1

sin 0 cosf — A\

hence the solutions of the characteristic equations det(Rg — A\[) = 0 are
M2 = cosf £+ isind = et Tt is easy to see that vi = (i,1)7 is the
eigenvector corresponding to A\; = € and vy = (—i,1)7 is the eigenvector
corresponding to Ay = e~ %,

Example 2: complex eigenvalues in R3. Consider the matrix

—IV3 =3V3 0
M=| 13 1+3iv3 0
0 0 —4

Its characteristic polynomial is

det(M — X)) ==X =2 2 +4X—16=— (A +4) (\> =2\ +4)

and its eigenvalues are: Ao = 1+ iv3 = 2eT7/3 and A3 = —4, and cor-
responding eigenvectors vi o = (—1 £ 21, 1,0)7, and v3 = e3. The matrix
S = [v1, Vs, vs] diagonalized the matrix: S™'MS is the diagonal matrix,
having the eigenvalues on the diagonal, but all these are complex matrices.

To understand how the matrix acts on R®, we consider the real and
imaginary parts of vi: let x; = Rvy = %(Vl +va) = (~1,1,0)T and
y1 = Qvy = %(vl —va) = (2,0,0)7. Since the eigenspaces are invari-
ant under M, then so is Sp(x1,y1), over the complex and even over the real
numbers (since M has real elements). The span over the real numbers is the
xy-plane, and it is invariant under M. The figure shows the image of the
unit circle in the xy-plane under the matrix M: it is an ellipse.

Along the direction of the third eigenvector (the z-axis) the matrix mul-
tiples any ceg by —4.



EIGENVALUES AND EIGENVECTORS 15

FIGURE 1. The image of the unit circle in the xy-plane.

In the basis x1,y1,vs the matrix of the linear transformation has its
simplest form: using Sg = [x1,y1, V3] we obtain the matrix of the transfor-
mation in this new basis as

1 V3 0
Sg'MSg=1| —-v/3 1 0
0 0 —4
and the upper 2 x 2 block represents the rotation and dilation 2R_, /3.

2.13.2. Decomplezification. Suppose the n x n matrix M has real elements,

eigenvalues A1,..., A, and n independent eigenvectors vi,...,v,. Then M
is diagonalizable: if S = [v1,...,Vv,] then ST'MS = A where A is a diagonal
matrix with Aq,..., A, on its diagonal.

Suppose that some eigenvalues are not real. Then the matrices S and A
are not real either, and the diagonalization of M must be done in C”.

Suppose that we want to work in R™ only. Recall that the nonreal eigen-
values and eigenvectors of real matrices come in pairs of complex-conjugate
ones. In the complex diagonal form A one can replace diagonal 2 x 2 blocks

A0
0 N

by a 2 X 2 matrix which is not diagonal, but has real entries.

To see how this is done, suppose A\; € C\ R and \y = A, Vo = V1.
Splitting into real and imaginary parts, write Ay = a1+481 and vi = x1+1iy;.
Then from M (x; + iy1) = (a1 + if1)(x1 + ty1) identifying the real and
imaginary parts, we obtain

Mx; +iMy, = (a1x — p1y) +i(fix + a1y)

In the matrix S = [vy,va,...,Vv,] composed of independent eigenvectors
of M, replace the first two columns vy, ve = V7 by x1,y1 (which are vectors
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in R™): using the matrix S = [X1,¥1,V3,...,Vy] instead of S we have MS =
SA where ~ _
aq 51 0 PN 0
—ﬁl a1 0 PN 0
A—| 0 0 A5 ... 0
0 0 0 ... Ap

We can similarly replace_ any pair of complex conjugate eigenvalues with
2 x 2 real blocks.

Exercise. Show that each 2 x 2 real block obtained through decomplex-
ification has the form
a B |
|: _ B o :| - :ORG

for a suitable p > 0 and Ry rotation matrix (23).

2.14. Jordan normal form. We noted in §2.12 that a matrix is similar to
a diagonal matrix if and only if the dimension of each eigenspace V); equals
the order of multiplicity of the eigenvalue \;. Otherwise, there are fewer
than n independent eigenvectors; such a matrix is called defective.

2.14.1. Jordan blocks. Defective matrices can not be diagonalized, but we
will see that they are similar to block diagonal matrices, called Jordan nor-
mal forms; these are upper triangular, have the eigenvalues on the diagonal,
1 in selected placed above the diagonal, and zero in the rest. After that, in
section §2.14.3 it is shown how to construct the transition matrix S, which
conjugates a defective matrix to its Jordan form; its columns are made of
generalized eigenvectors.

The Jordan blocks which appear on the diagonal of a Jordan normal form
are as follows.

1 x 1 Jordan blocks are just [A].

2 x 2 Jordan blocks have the form

(24) T(\) = [ A }

For example, the matrix (21) is a Jordan block J2(0).
3 x 3 Jordan blocks have the form

A
(25) JsA) =10
0

S > =
> = O

In general, a k x k Jordan block, Ji(A), is a matrix having the same
number, A, on the diagonal, 1 above the diagonal and 0 everywhere else.

Note that Jordan blocks Ji(A) have the eigenvalue A with multiplicity &,
and the dimension of the eigenspace is one.
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FEzample of a matrix in Jordan normal form:

T3] 0 0 0 07

0 |2] 0 0 0

0 0 |21 0
0 0 |0 2 1
0 0 |0 0 2

which is block-diagonal, having two 1 x 1 Jordan blocks and one 3 x 3 Jordan
block along its diagonal. The eigenvalue 3 is simple, while 2 has multiplicity
four. The eigenspace corresponding to 2 is two-dimensional (es and es are
eigenvectors).

Note how Jordan blocks act on the vectors of the basis. For (24): Ja(\)e; =
Aeq, so e is an eigenvector. Also

(26) Jg()\)GQ =e1 + dey

which implies that (Jo(\) — AI)%ez = (J2(A\) — Al)e; = 0.
Similarly, for (32): J3(\)e; = Aej so e; is an eigenvector. Then

(27) Jg()\)GQ =e] + )\eg
implying that (J3(\) — AI)%ey = (J3(\) — Al)e; = 0. Finally,
(28) Jg()\)eg =es + /\e3

implying that (J3(\) — A)3e3 = (J3(\) — AI)%e2 = 0. This illuminates
the idea behind the notion of generalized eigenvectors defined in the next
section.

2.14.2. The generalized eigenspace. Defective matrices are similar to a ma-
trix which is block-diagonal, having Jordan blocks on its diagonal. An ap-
propriate basis is formed using generalized eigenvectors:

Definition 13. A generalized eigenvector of M corresponding to the
eigenvalue X is a vector x # 0 so that

(29) (M —X)*x =0
for some positive integer k.
Ezxamples.
1) Eigenvectors are generalized eigenvectors (take k = 1 in (29)).

2) Vectors in the standard basis are generalized eigenvectors for Jordan
blocks.
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Definition 14. The generalized eigenspace of M corresponding to the
etgenvalue X is the subspace

Ey\ = {x| (M — X)*x = 0for some k € Z,}

Sometimes we want to refer to only at the distinct eigenvalues of a matrix,
this set is called ”the spectrum”:

Definition 15. The spectrum o(M) of a matriz M is the set of its eigen-
values.

Theorem 16. For any n X n matriz M the following hold:

(i) Va C Ey;

(ii) Ey is a subspace;

(iii) Ey is an invariant subspace under M ;

(iv) E\x, NE), = {0} for A # Ao

(v) dim E\=the multiplicity of \.

(vi)The set of eigenvectors and generalized eigenvectors of M span the
whole space C":

®rco(m) Ex=C"

The proofs of (i)-(iv) are simple exercises.

The proofs of (v), (vi) are by splitting first the space into spaces generated
by eigenvectors. So we may assume M has only one eigenvalue A and only
one eigenvector, e;. The proof from here on is by induction on the dimension,
and follow the strategy below, illustrated in the 2 x 2 case.

Assume M has only one eigenvalue A and only one eigenvector, e;.We
want to show that (M —AI)? = 0. Let ey be any vector linearly independent
from e;. Then,

(M — )\I)eg = ae; + fes
for some a, 5. Now,
(M — X)%ey = (M — M) (ce; + Bes) = B(M — A)es

which shows that (M — Al)eq is an eigenvector for M — AI. But the only
eigenvector of M — AI is zero. Thus

(M — XI)%ey = 0(M — M\)ey =0

while indeed ej, es satisfy (M — AI)?x = 0, and span R? by construction,
which we wanted to show.

2.14.3. How to find a basis for each E) that can be used to conjugate a
matriz to a Jordan normal form.
Example 1. The matrix

30 M =
( ) 1 a—1

l+a -1 ]
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is defective: it has eigenvalues a,a and only one independent eigenvector,
(1,1)T. Tt is therefore similar to J2(a). To find a basis x1,x2 in which the
matrix takes this form, let x; = (1,1)7 (the eigenvector); to find x5 we
solve (M — al)xy = x; (as seen in (26) and in (27)). The solutions are
X9 € (1,0)" + N (M — al), and any vector in this space works, for example
xo = (1,0)”. For

11
(31) S:[X]_,XQ]:[l O]

we have STIMS = Jy(a).

Example 2.
The matrix
1 -2 3
M=]1 2 -1
0 -1 3

has eigenvalues 2,2, 2 and only one independent eigenvector vi = (1,1,1)7.

Let x; = vi = (1,1,1)”. Solving (M — 2I)xs = x; we obtain xp =
(1,—1,0)T (plus any vector in N'(M —2I) = Vy,). Next solve (M —2I)x3 =
Xo which gives x3 = (0,1,1)” (plus any vector in the null space of M — 2I).
For S = [x1,x2,x3] we have

(32) STIMS =

S O N
[ R

0
1
2

In general, if A is an eigenvalue of M for which dimV), is less than the
multiplicity of A, we do the following. Choose a basis for V). For each
eigenvector v in this basis set x; = v and solve recursively

(33) (M — AN)xp11 =%, k=1,2,...

Note that each x; satisfies (29) for k = 1, x3 satisfies (29) for k = 2, etc.

At some step kp the system (M — AI)xg,+1 = Xk, will have no solution;
we found the generalized eigenvectors xi, ..., X, (which will give a k; x k;
Jordan block). We then repeat the procedure for a different eigenvector in
the chosen basis for V), and obtain a new set of generalized eigenvectors,
corresponding to a new Jordan block.

Note: Jordan form is not unique.

2.14.4. Real Jordan normal form. If a real matrix has multiple complex
eigenvalues and is defective, then its Jordan form can be replaced with an
upper block diagonal matrix in a way similar to the diagonal case illus-
trated in §2.13.2, by replacing the generalized eigenvectors with their real
and imaginary parts.
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For example, a real matrix which can be brought to the complex Jordan
normal form

a+if 1 0 0
0 a+ i 1 0
0 0 a—1if 1
0 0 0 a—1if
can be conjugated (by a real matrix) to the real matrix
a B 1 0
-6 a 0 1
0 0 o p
0 0 -8 «
In general, the real normal Jordan form is
A T
Ji = A
1
A;
where
o B
A — % %
’ Lﬂi ai:|
and
10
=l

2.15. Nilpotents. Note that a complex Jordan block is of the form

A1 0 1
Ji = Ai =M+ N:; N := 0
| |
Ai 0
Note that I commutes with any matrix, in particular with N. Note also that
0 0 1
0 0

N? .=

o o
o O

and so on, with N* = 0.

2.16. Block matrices.
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2.16.1. Multiplication of block matrices. It is sometimes convenient to work
with matrices split in blocks. We have already used this when we wrote

Mvy,...,vp] =[Mvy,...,Mv,]
More generally, if we have two matrices M, P with dimensions that allow

for multiplication (i.e. the number of columns of M equals the number of
rows of P) and they are split into blocks:

Mun | My Py \ Pia
M=| - - - |, P=| ——— — -~
My | My Py \ Pos
then
My P+ MioPyy | My Pia + MiaPoao
MP=| ———___ -
Mo Py + Moo Py | Moy Pra + Moo Py

if the number of columns of M7 equals the number of rows of Py.
Exercise. Prove that the block multiplication formula is correct.

More generally, one may split the matrices M and P into many blocks, so
that the number of block-columns of M equal the number of block-rows of
P and so that all products M, Py make sense. Then M P can be calculated
using blocks by a formula similar to that using matrix elements.

In particular, if M, P are block diagonal matrices, having the blocks Mj;;,
Pj; on the diagonal, then M P is a block diagonal matrix, having the blocks
M;; P;; along the diagonal.

For example, if M is a matrix in Jordan normal form, then it is block
diagonal, with Jordan blocks M;; along the diagonal. Then the matrix
M? is block diagonal, having Mij along the diagonal, and all powers M*

are block diagonal, having M Jk] along the diagonal. Furthermore, any linear

combination of these powers of M, say ¢y M +cyM? is block diagonal, having
the corresponding ¢ M;j; + co M ]2]. along the diagonal.

2.16.2. Determinant of block matrices.

Proposition 17. Let M be a square matriz, having a triangular block form.:

A B A 0
M:[O D} orM:{C D]

where A and D are square matrices, say A isk x k and D isl x [.

Then det M = det A det D.

Moreover, if ai,...,a, are the eigenvalues of A, and dy,...,d; are the
etgenvalues of D, then the eigenvalues of M are aq,...,ar,d1,...,d;.

The proof is left to the reader as an exercise.!

LHint: bring A, D to Jordan normal form, then M to an upper triangular form.
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For a more general 2 x 2 block matrix, with D invertible?
A B
-l ]

the identity

[A BH I O]:[A—BD—lc B

C D -D7'C I 0 D
together with Proposition 17 implies that
det [ é IB; } = det(A — BD7'C) det D = det(AD — BD™'CD)

For larger number of blocks, there are more complicated formulas.

2References: J.R. Silvester, Determinants of block matrices, Math. Gaz., 84(501)
(2000), pp. 460-467, and P.D. Powell, Calculating Determinants of Block Matrices,
http://arxiv.org/pdf/1112.4379v1.pdf
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3. SOLUTIONS OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT
COEFFICIENTS

In §1.2 we saw an example which motivated the notions of eigenvalues
and eigenvectors. General linear first order systems of differential equations
with constant coefficients can be solved in a quite similar way. Consider

du
34 =M
(34) o u

where M is an m X m constant matrix and u in an m-dimensional vector.
Here, as usual

du u(t + h) — u(t) (dul dun>

dt  ho h de T dt

3.1. The case when M is diagonalizable. Let’s see if there is a change
of basis that would simplify the system.
Let
u=>_5v
then, it is easy to see from the definition of the derivative above, that we
get,
Sv' =MSv=v =SMSv
Clearly, we should choose S to be the matrix that diagonalizes M. In this
basis we get

1)/1 )\1 0 0 U1

o), 0 M| \vp
or

vi=Nvii=1,...,n
which implies that
'Ui(t) = Cie/\it
and then clearly C; = v;(0) which means that
eMt 0. 0
u=Sv=_S>w0)eT=1|.. .. v = eMy(0)
0 o et

Why this notation? We’ll see in the next section.

3.1.1. The matriz e™?. Tt is often preferable to work with a matrix of inde-
pendent solutions U(t) rather than with a set of independent solutions.

In dimension one this equation reads % = Au having its general solution
u(t) = Ce. Let us check this fact based on the fact that the exponential
is the sum of its Taylor series:

1 1 1 1
xr __ 2 n _ n
e —1+—1!x+—2!x +...+—n!x +...—E —n!az
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where the series converges for all x € C. Then

1 1 1 |
At - T v242  \n,.n _ S oyngn
e TR R TR R e P +..._Zn!>\ t
n=0
and the series can be differentiated term-by-term, giving

d y d<&1 =1 ,d N | . N
at _ - )\ntn — - )\nitn — )\ntn — )\ t
at© dtn;)n! Z%n! dt ;(n—l)! °

Perhaps one can define, similarly, the exponential of a matrix and obtain
solutions to (42)?

For any square matrix M, one can define polynomials, as in (10), and it
is natural to define
(35) M =1+ Livslewey oy lewmg - iit”M”

N 1! 2! ool B n!
n=0
provided that the series converges. If, furthermore, the series can differenti-
ated term by term, then this matrix is a solution of (42) since
(36)
N N N

d ;o d 1 1 d n .1 M

el _ 7tnMn: 77tnMn: 7tn Mn:Mt

dte dt Z n! Z n! dt ; n! ¢

Thus we want to study
N

1
2 gt
= n!
as N — oo.
Take first M = A, a diagonal matrix:
A 0 ... 0
0 X ... 0
(37) A= L _
0 O Am
It is easy to see that
AT 0 0
0 A ... 0
(38) At =1| . _ form=1,2,3...
0 O AL
therefore
S Lemar 0 . 0
N N 1
T oo 0 Yome1 g AS 0
(39) 21 1A = , .

0 0 D DI XA

n=1
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eth 0o ... 0
0 e* ... 0
(40) — ) ) ) = eth
N—o0 : : :
0 0 elAm

Convergence and term-by-term differentiation can be justified by diago-
nalizing M:

Let vi,...,v,, be independent eigenvectors corresponding to the eigen-
values A1,..., Ay of M, let S = [vy,...,vy]. Then M = SAS~! with A the
diagonal matrix with entries Aq,..., Ap,.

Note that

M? = (SAS™)® = SASTLIAS ! = SA%S !
then
M? = M?*M = (SA*S7') (SAS™!) = SA3S™!
and so on; for any power
M"™ = SA"S™!
Then

N N

(1) 3 e =30 % mSAm S

n!
N 1
— AT -1 tA g—1 — tM
S<§ n't >S N—>_>OOSe S e

n=0

Therefore U(T) = €™ is a solution of the differential equation
d

(42) ZU(t) = MU()

and is a fundamental solution of (42).

3.2. The most general solution of (42). Let N(¢) be an n x k matrix,
k < n which solves (42). The differential equation (42) makes sense for N.
Since eMte=Mt = T (check!), we define Q(t) = e ™M!N(t) = N(t) = eM'Q(t).
We have
(43) (MQ)Y = MeM'Q(t) = N(HMeMQ + MUQ' = MeM'Q
= Q' =0= Q = const. = Q(0)
Then, the general solution of the equation
(44) U'=MU; U(0)=ugis U(t) = MUy

We note that @) could be an n x 1 matrix, a vector thus, and the general
solution of the system (34) is

(45) u(t) = eMtu(0)
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Mt

the matrix e" is called the fundamental matrix of the matrix equation.

(46) u(t) = SeMs~tu(0) = Sertv(0)

(47) U(t) = Se = Mg
Expanded out,

(48) u(t) = a1eMtvy + .+ ame™ v, aj arbitrary constants
In conclusion:

Proposition 18. If the m x m constant matriz M has has m independent

etgenvectors Vi, ..., Vy, corresponding to the eigenvalues i, ..., Ay, then
equation (34) has m linearly independent solutions u;(t) = elilv;, j =
1,...,m and any solution of (34) is a linear combination of them.

Example. Solve the initial value problem

dx

49 ¢ ’
(49) %z—%ﬂ/, y(0) =5
Denoting u = (z,y)T, problem (49) is

du I -2 o
50 — = Mu, where M = , with u(0) =
B0 G e !—2 1] with u(0) [5]
Calculating the eigenvalues of M, we obtain A\; = —1, \o = 3, and corre-

sponding eigenvectors vi = (1,1)7, vy = (=1,1)”. There are two indepen-
dent solutions of the differential system:

_ -1
ul(t):et[l], uQ(t):e?’t[ 1 ]
and a fundamental matrix solution is
ot _edt
(51) U(t) = [ui(t), u2(t)] = [ o ]

The general solution is a linear combination of the two independent solutions

u(t) = aret [ } } + age’ [ _11 } =U(t) [ “ }

a2

This solution satisfies the initial condition if

ofi] el )15

which is solved for aq, as: from

B
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it follows that
-1
ar ] 1 -1 al
as 1 1 B
therefore

(52) u(t) = 9B [ 1 ] 4 matB [ —11 }

SO

—
l NI
N[
N[— N
| |
—
™ 2
[
I
—
|
Q
wi ‘—i—
N ISy
[

:C(t) — aT-l-Be—t . —a2+5€3t
y(t) = aTJrﬁe—t + fa2+ﬁ€3t

Example. For the example (50) we have
1 -1 -1 0 et 0
S — y A = s etA =
11 0 3 0 e

- [1] o[ 7]

The fundamental matrix U(t) is given by (51).
Using (44)

etM — SetAsfl — [

and

—t 1.3t 1 .-t_ 1.3t
e " +s5e 5€ 5€ ]
-t _ 1.3t 1 1.3t
—2¢ 2 2¢
and the solution to the initial value problem is

w o] (et +3eM)at (Jot - Le) B
e =
BIT L Get—detat (bet+ie) g

which, of course, is the same as (52).

e

NI N

3.3. Non-diagonalizable matrices. The exponential e!™ is defined sim-
ilarly, only a Jordan normal form must be used instead of a diagonal form:
writing S™'M S = J where S is a matrix formed of generalized eigenvectors
of M, and J is a Jordan normal form, then

(53) eM = Get/ g1

It only remains to check that the series defining the exponential of a Jordan
form converges, and that it can be differentiated term by term.

Also to be determined are m linearly independent solutions, since if M is
not diagonalizable, then there are fewer than m independent eigenvectors,
hence fewer than m independent solutions of pure exponential type. This
can be done using the analogue of (47), namely by considering the matrix

(54) U(t) = Se!l = etMg

The columns of the matrix (54) are linearly independent solutions, and we
will see that among them are the purely exponential ones multipling the
eigenvectors of M.
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Since J is block diagonal (with Jordan blocks along its diagonal), then its
exponential will be block diagonal as well, with exponentials of each Jordan
block (see §2.16.1 for multiplication of block matrices).

3.3.1. Ezxample: 2 x 2 blocks: for
(55) J=| M1
0 A
direct calculations give
(56) J° A22) 3 A3 32 Jh MNeo e NE—T
=l o x| =lo v "7 =, N Yo
and then
1 et peth
tJ _ k 1k _
(57) e _ZHtJ _[ .
k=0 0 €
More abstractly,
=1 1
(58) €tJ —_ Zytk‘()\I_i_N)k: — Zytk()‘kj_‘_ Nk,)\k‘—l) — et/\I +tN€)\tI
k=0 " k=0

For the equation (34) with the matrix M is similar to a 2 x 2 Jordan block:
S~IMS = J with J as in (55), and S = [x7,%2] a fundamental matrix

solution is U(t) = Se!’ = [e"xy, e (tx1 + x2)] whose columns are two
linearly independent solutions
(59) u; (t) = Gt)\Xl, UQ(t) = et’\(txl + X2)

and any linear combination is a solution:
(60) u(t) = a1ex; + aze (tx1 + x2)

Example. Solve the initial value problem

dr _ — =
(61) g (1+a)xr—vy, z(0) = «
Denoting u = (z,y)7, the differential system (61) is % = Mu with M given

by (30), matrix for which we found that it has a double eigenvalue a and
only one independent eigenvector x; = (1,1)7.

Solution 1. For this matrix we already found an independent generalized
eigenvector xo = (1,0)7, so we can use formula (60) to write down the
general solution of (61).

Solution 2. We know one independent solution to the differential system,
namely u(t) = e%x;. We look for a second independent solution as the
same exponential multiplying a polynomial in ¢, of degree 1: substituting
u(t) = e®(tb + c) in 2% = Mu we obtain that a(tb +c) + b = M(tb + c)
holds for all ¢, therefore Mb = ab and (M — al)c = b which means that b
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is an eigenvector of M (or b = 0), and c is a generalized eigenvector. We
have re-obtained the formula (59).
By either method it is found that a fundamental matrix solution is

00 = o) = |

and the general solution has the form u(t) = U(t)c for an arbitrary constant
vector c. We now determine ¢ so that u(0) = (o, 3)7, so we solve

11 [ al
1 0|7 8]
which gives

[ 110 AL

and the solution to the initial value problem is

at[l t+1]] 8 ]—e“t
a—p

1 t
a(t) =" (t(a—B)+a), y(t) =" (t(a— ) +B)

tla—pB)+a

ult) =e B+t(a—p)

or

3.3.2. Example: 3 x 3 blocks: for

A1 o0
(62) J=10 X1
00 X
direct calculations give
A2 2) 1 A3 3M2 3 A 4N 62
JP=10 X 22X |, 2= 0 X 3X|.J'=| 0 X\ 4)X
0 0 A 0 0 A 0 0 M

Higher powers can be calculated by induction; it is clear that

)\k k)\k_l k(k’_l))\k—Q

2
(63) JE=1 0 Ak gkt

6t>\ tet)\ %tQ et)\

=1
(64) e = Z gtk!]k = 0 et tet?
k=0
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For M = SJS~! with J as in (62) and S = [x1, X2, x3], a fundamental
matrix solution for (34) is

1
Set! = [X1€/\t, (tx1 + X2)€)\ta (§t2xl +txo + XS)e/\t]

3.3.3. In general, if an eigenvalue A has multiplicity r, but there are only
k < r independent eigenvectors vi,..., Vv, then, besides the k& independent
solutions eMvy, ..., e vy there are other r — k independent solutions in the
form e*p(t) with p() polynomials in ¢ of degree at most  — k, with vector
coefficients (which turn out to be generalized eigenvectors of M).

Then the solution of the initial value problem (34),u(0) = ug is
u(t) = eMuy

Combined with the results of uniqueness of the solution of the initial value
problem (known from the general theory of ordinary differential equations)
it follows that:

Theorem 19. Any linear differential equation u’ = Mu where M is an m x
m constant matriz, and u is an m-dimensional vector valued function has
m linearly independent solutions, and any solution is a linear combination
of these. In other words, the solutions of the equation form a linear space
of dimension m.

3.4. Fundamental facts on linear differential systems.

Theorem 20. Let M be an n x n matriz (diagonalizable or not).
(i) The matriz differential problem

(65) %U(t) = MU(t), U0)=1U,

has a unique solution, namely U(t) = eMtUy.

(i) Let W(t) =detU(t). Then

(66) W'(t) = TrM W(t)
therefore
(67) W(t) = W(0) T

(ii) If Uy is an invertible matriz, then the matriz U(t) is invertible for
all t, called a fundamental matrix solution; the columns of U(t) form
an independent set of solutions of the system

du

by V'
(68) g u
(iv) Let ui(t),...,u,(t) be solutions of the system (68). If the vectors
uy(t),...,uy(t) are linearly independent at some t then they are linearly

independent at any t.
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Proof.

(i) Clearly U(t) = eM!Uj is a solution, and it is unique by the general
theory of differential equations: (65) is a linear system of n? differential
equation in n? unknowns.

(ii) Using (53) it follows that

W (t) = det U(t) = det(Set”’ S~ Up) = det e’ det Uy = €' 25=1% det Uy
= MM det Uy = ™1 (0)

which is (67), implying (66).
(iii), (iv) are immediate consequences of (67). O

3.5. Eigenvalues and eigenvectors of the exponential of a matrix.
It is not hard to show that
(eM)—l — G_M (eM)k — 6kM 6M—I-CI — eceM

More generally, it can be shown that if MN = NM, then eMelN = M+,
Warning: if the matrices do not commute, this may not be true!

Recall that if M is diagonalizable, in other words if M = SAS~! where
A = diag(\1, ..., \,) is a diagonal matrix, then e = SerS~! where e =
diag(e?, ..., eM). If follows that the eigenvalues of €™ are e’ ..., e* and
the columns of S are eigenvectors of M, and also of eM.

If M is not diagonalizable, let J be its Jordan normal form. Recall that
if M = SJS™! then eM = Se’ S~ where e’ is an upper triangular matrix,
with diagonal elements still being exponentials of the eigenvalues of M. The
matrix e’ is not a Jordan normal form; however, generalized eigenvectors of
M are also of .

Exercise.

1. Show that if Mx = 0 then eMx = x.

2. Show that if v is an eigenvector of M corresponding to the eigenvalues
A, then v is also an eigenvector of eM corresponding to the eigenvalues e?.

3. Show that if Mv = Av then eMv = e Mv + (M — AI)v].

Note that if (M — A)*>x = 0 then (e — e*)?x = 0. Indeed, (e —
N2x = (2M — 20%eM + 2 [)2x = P 2M-Nx — 262 M-Ax | Dy =
e [x +2(M — N)x] — 2P [x + (M — \)x] +ePx = 0.

In general, if x is a generalized eigenvector of M corresponding to the
eigenvalues \, then x is also a generalized eigenvector of eM corresponding

to the eigenvalues e*.
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3.6. Higher order linear differential equations; companion matrix.
Consider scalar linear differential equations, with constant coefficients, of
order n:

(69) y™ +an_ 1y Y+ 4 ary +agy =0

where y(t) is a scalar function and aq,...,a,—1 are constants.
Such equations can be transformed into systems of first order equations:
the substitution

(70) w =y, u1 =y, ..., up =y"
transforms (69) into the system
0o 1 0 0 ]
0 0 1 0
(71) u' = Mu, where M = : :
0 0 0o ... 1
| a0 —a1 —az ... —ap-1 |

The matrix M is called the companion matriz to the differential equation
(69).

To find its eigenvalues an easy method is to search for A so that the linear
system Mx = Ax has a solution x # O:

To = AT1, T3 = AT2,..., Tn = ATpn_1, —AQT] — G1T2 — ... — Ap_1Ty = AIp
which implies that
(72) Ny A"+ Fa N +ag=0

which is the characteristic equation of M.
Note that the characteristic equation (72) can also be obtained by search-
ing for solutions of (69) which are purely exponential: y(t) = .

3.6.1. Linearly independent sets of functions. We are familiar with the no-
tion of linear dependence or independence of functions belonging to a given
linear space. In practice, functions arise from particular problems, or classes
of problems, for example as solutions of equations and only a posteriori we
find a linear space to accommodates them. A natural definition of linear
dependence or independence which can be used in most usual linear space
of functions is:

Definition 21. A set of function fi,..., fn are called linearly dependent
on an interval I if there are constants cy, ..., c,, not all zero, so that

(73) afilt)+...+cufu(t)=0 foralltel

A set of functions which are not linearly dependent on I are called linearly
independent on I. This means that if, for some constants ci, ..., ¢, relation
(73) holds, then necessarily all ¢y, ..., ¢, are zero.

If all functions fi,..., f, are enough many times differentiable then there
is a simple way to check linear dependence or independence:
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Theorem 22. Assume functions fi,..., fn aren — 1 times differentiable on
the interval I. Consider their Wronskian
Aty o (D)
AR o @)
Wif,..., fal(t) = : :
AN A ()

(i) If the functions fi,..., fn are linearly dependent then
Wlfi,...,fa](t) =0 foralltel

(i) If there is some point to € I so that W{f1,..., fa](to) # O then the
functions are linearly independent on I.

Indeed, to show (i), assume that (73) holds for some constants ci, ..., ¢y,
not all zero; then by differentiation, we see that the columns of W(t) are
linearly dependent for each ¢, hence W (t) = 0 for all ¢.

Part (ii) is just the negation of (i). O

Example 1. To check if the functions 1,¢%, e
calculate their Wronskian

¢ are linearly dependent we

e
WL, t%, et =0 2t e | =2¢'(t—1) is not identically 0
e

so they are linearly independent (even if the Wronskian happens to be zero
for t =1).

Example 2. If the numbers Aq,..., A, are all distinct then the functions
et .. et are linearly independent.

Indeed, their Wronskian equals the product e ...e**» multiplied by a
Vandermonde determinant which equals [[;_;(A; — A;) which is never zero

if A1,...,\, are all distinct, or identically zero if two of As are equal.

I what follows we will see that if the functions fi,..., f, happen to be
solutions of the same linear differential equation, then their Wronskian is
either identically zero, or never zero.

3.6.2. Linearly independent solutions of nth order linear differential equa-
tions. Using the results obtained for first order linear systems, and looking
just at the first component u;(t) of the vector u(t) (since y(t) = uyi(t)) we
find:

(i) if the characteristic equation (72) has n distinct solutions Aq, ..., A,
then the general solution is a linear combination of purely exponential solu-
tions

y(t) = areMt + ... + apet?

(ii) if A; is a repeated eigenvalue of multiplicity r; then there are r;
independent solutions of the type e**q(t) where ¢(t) are polynomials in ¢ of
degree at most r;, therefore they can be taken to be et tetit, ... =1t
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Example. Solve the differential equation
y/// o Sy// + 4y — 0
The characteristic equation, obtained by substituting y(t) = e, is A3 —3A2+
4 = 0 which factored is (A — 2)2(\ + 1) = 0 giving the simple eigenvalue —1
and the double eigenvalue 2. There are tree independent solutions y;(t) =

et ya(t) = e, y3(t) = te? and any solution is a linear combination of
these.

3.6.3. The Wronskian. Let yi(t),...,yn(t) be n solutions of the equation
(69). The substitution (70) produces n solutions uj,...u, of the system
(71). Let U(t) = [uyi(t),...u,(t)] be the matrix solution of (71). Theorem 20
applied to the companion system yields:

Theorem 23. Let yi(t),...,yn(t) be solutions of equation (69).
(i) Their Wronskian W (t) = Wyi, ..., yn|(t) satisfies

W (t) = e~tan-11¥/(0)

(i) y1(t), ..., yn(t) are linearly independent if and only if their Wronskian
at some t is not zero.

3.6.4. Decomplezification. Suppose equation (69) has real coefficients, a; €
R, but there are nonreal eigenvalues, say A1 2 = a1 +¢51. Then there are two
independent solutions y; o(t) = e{(@1#1) = et@i[cos(tB;) +isin(tB;)]. If real
valued solutions are needed (or desired), note that Sp(y1,y2) = Sp(Ye, ys)
where

ye(t) = €' cos(tfy), ys(t) = e sin(tB;)
and ys, y. are two independent solutions (real valued).
Furthermore, any solution in Sp(y., ys) can be written as

(74) Cre™™ cos(tBy) + Cae'™ sin(tB1) = Ae'™ sin(tf; + B)

and B is the unique angle in [0, 27) so that
C C
cosB=—2__ sinB= !

VCi+C3 VC?+C3
Example 1. Solve the equation of the harmonic oscillator

(75) ¥ =—y, y =k*x where ke R

where

giving both complex and real forms.
In this example it is quicker to solve by turning the system into a second
order scalar equation: taking the derivative in the first equation we obtain

z” = —y/ and using the second equation it follows that z” + k?z = 0, with
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characteristic equation A2+ k2 = 0 and eigenvalues A1,2 = £ik. The general

solution is 2(t) = ¢y 4 coe™t. Then y(t) = —a/(t) = ikc1e™* —ikcge .
In real form
(76) x(t) = A sin(kt + B), y(t) = —Ak cos(kt + B)

Example 2. Solve the differential equation y(®) + y = 0. Find four real
valued independent solutions.

The characteristic equation is A*4+1 = 0 with solutions A, = ¢™(Zk+1)/4 | —
0,1,2,3. The equation has four independent solutions y(t) = exp(im(2k +
1)/4t), k=0,1,2,3.

To identify the real and imaginary parts of the eigenvalues, note that
Ao = exp(E) = Y2 + i3 A3 = g, Ada = —Ao, AL = —Ag. (Alternatively,
one can factor \* + 1= ()\2 +v2A+1)(A2 —/2X + 1) then solve.) We have
the four independent solutions exp(:l:t?) cos(t@), exp(:l:tg) sin(t@).

3.7. Systems of second order equations. Systems of higher order lin-
ear equations, with constant coefficients can de solved using similar ideas.
Consider for example
d*u

Such systems can be reduced to a first order system by introducing new vari-
ables: denoting v = %‘ the n-dimensional system of second order equations
(77) becomes the 2n-dimensional system of first order equations

d| u u 0 I
(78) dt[V]M[V} Where./\/l[M 0}
To find the eigenvalues p of M we solve det(M — pl) = 0, and using
Proposition 17 we find

_ _ |l T _ N2 (o n-lag_
der(M —r) = | 0= det((u? = -y ()
= det (%I — M)
therefore p? is an eigenvalue of M. It follows that if \1,...,\, are the

eigenvalues of M, then the eigenvalues of M are £+1/A1,...,£v/\,. It can
be checked that if Mu; = A\ju; then

o] [ =2 [ |

giving the eigenvectors of M. With this information solutions can be readily
found.
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3.8. Stability in differential equations.

3.8.1. Stable versus unstable equilibrium points. A linear, first order system
of differential equation

du
dt
always has the zero solution: u(t) = 0 for all £. The point 0 is called an
equilibrium point of the system (79). More generally,

(79) Mu

Definition 24. An equilibrium point of a differential equation u’ = f(u)
is a point ugy for which the constant function u(t) = ug is a solution, there-
fore f(up) = 0.

It is important in applications to know how solutions behave near an
equilibrium point.

An equilibrium point ug is called stable if any solutions which start close
enough to ugy remain close to ug for all ¢ > 0. (This definition can be made
more mathematically precise, but it will not be needed here, and it is besides
the scope of these lectures.)

Definition 25. An equilibrium point ug is called asymptotically stable

if

lim u(t) =uy for any solution u(t)
t—00

It is clear that an asymptotically stable point is stable, but the converse is
not necessarily true. For example, the harmonic oscillator (75) has solutions
confined to ellipses, since from (76) it follows that x2+y?/k? = A%. Solutions
are close to the origin if A is small, and they go around the origin along an
ellipse, never going too far, and not going towards the origin: the origin is
a stable, but not asymptotically stable equilibrium point.

An equilibrium point which is not stable is called unstable.

Suppose one is interested in the stability of an equilibrium point of an
equation u’ = f(u). By a change of variables the equilibrium point can be
moved to ug = 0, hence we assume f(0) = 0. It is natural to approximate
the equation by its linear part: f(u) ~ Mx, where the matrix M has the ele-
ments M;; = 0f;/0x;(0), and expect that the stability (or instability) of the
equilibrium point of u’ = f(u) to be the same as for its linear approximation
u = Mu.

This is true for asymptotically stable points, and for unstable points,
under fairly general assumptions on f. But it is not necessarily true for
stable, not asymptotically stable, points as in this case the neglected terms
of the approximation may change the nature of the trajectories.

Understanding the stability for linear systems helps understand the sta-
bility for many nonlinear equations.
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3.8.2. Characterization of stability for linear systems. The nature of the
equilibrium point uy = 0 of linear differential equations depends on the
eigenvalues of the matrix M as follows.

We saw that solutions of a linear system (79) are linear combinations of
exponentials e/ where Aj are the eigenvalues of the matrix M, and if M is
not diagonalizable, also of tFetd for 0 < k <(multiplicity of Aj) — 1.

Recall that

lim t*¢% = 0 if and only if A <0

t—o0

Therefore:

(i) if all A; have negative real parts, then any solution u(t) of (79) converge
to zero: lim;_,o u(t) = 0, and 0 is asymptotically stable.

(ii) If all RA; <0, and some real parts are zero, and eigenvalues with zero
real part have the dimension of the eigenspace equal to the multiplicity of
the eigenvalue® then 0 is stable.

(iii) If any eigenvalue has a positive real part, then 0 is unstable.

As examples, let us consider 2 by 2 systems with real coefficients.

A

3This means that if ®A; = 0 then there are no solutions q(¢)e' with nonconstant

a(t).
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FiGURE 2. Asymptotically stable equilibrium point, nega-
tive eigenvalues.

FEzample 1: an asymptotically stable case, with all eigenvalues real.

For
—30] [12]
) S =
0 —6 -1 1
The figure shows the field plot (a representation of the linear transfor-
mation x — Mx of R?). The trajectories are tangent to the line field, and
they are going towards the origin. Solutions with initial conditions along
the directions of the two eigenvectors of M are straight half-lines (two such
solutions are shown in the picture); these are the solutions u(t) = etitev;.
(Solutions with any other initial conditions are not straight lines.)

—5 -2
AJ:[ . 4],A1:5A51,wnhA=
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FEzxzample 1°: an asymptotically unstable case, with all eigenvalues real.

For
0 1 2
6 -1 1

The figure shows the field plot (a representation of the linear transfor-
mation x — Mx of R?). The trajectories are tangent to the line field, and
they are going away from the origin. Solutions with initial conditions along
the directions of the two eigenvectors of M are straight half-lines (two such
solutions are shown in the picture); these are the solutions u(t) = etitev;.
(Solutions with any other initial conditions are not straight lines.)

5 2
M:[14],MzsmyﬁmmA:

s — N —
R s N\ Ra ~a =

o AN
A e A EIIE
w2
AN AN
/o
/o
/)

\ N e e e —
NN Sy e

FIGURE 3. Asymptotically stable equilibrium point, nonreal eigenvalues.
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FIGURE 4. Asymptotically stable equilibrium point, nonreal eigenvalues.

Example 2: an asymptotically stable case, with nonreal eigenvalues.
For

-1 =2 -2+ 0 147 1—1
1 -3 0 —2—1 1 1

The figure shows the field plot and two trajectories. All trajectories are
going towards the origin, though rotating around it. The equilibrium point
0 is hyperbolic.
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FiGure 5. Unstable equilibrium point, one eigenvalue with
positive real part and one with negative real part.

Example 3: an unstable case, with one negative eigenvalue, and a positive

one.
3 6 -3 0 1 2
3 0 0 6 -1 1

For

The figure shows the field plot. Note that there is a stable direction (in
the direction of the eigenvector corresponding to the negative eigenvalue),
and an unstable one (the direction of the second eigenvector, corresponding
to the positive eigenvalue). Any trajectory starting at a point not on the
stable direction has infinite limit as ¢t — oo.

The equilibrium point 0 is a saddle point.
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FiGure 6. Unstable equilibrium point, one positive eigen-
value, nontrivial Jordan form.

Example 4: Unstable equilibrium, nontrivial Jordan form

v[1]

What is the eigenvector? What is the generalized eigenvector?



EIGENVALUES AND EIGENVECTORS 43

FEzxzample 5: the equilibrium point O is stable, not asymptotically stable.

For
2 i 0
]WithA:[ ‘],Sz ]
1 0 —2

|

The trajectories rotate around the origin on ellipses, with axes determined
by the real part and the imaginary part of the eigenvectors.

1
1

1—1
1
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4. DIFFERENCE EQUATIONS (DISCRETE DYNAMICAL SYSTEMS)

4.1. Linear difference equations with constant coefficients. A first
order difference equation, linear, homogeneous, with constant coefficients,
has the form

(80) Xpt1 = Mxp

where M is an n X n matrix, and xj are n-dimensional vectors. Given an
initial condition x( the solution of (80) is uniquely determined: x; = Mxy,
then we can determine xo = Mx1, then x3 = Mxo, etc. Clearly the solution
of (80) with the initial condition xq is

(81) Xk = MkX()

A second order difference equation, linear, homogeneous, with constant
coefficients, has the form

(82) Xp+2 = MiXpq1 + Moxy

A solution of (82) is uniquely determined if we give two initial conditions,
X and x7. Then we can find xo = Mix; + Myxg, then x3 = Mixo + Mpyxy
etc.

Second order difference equations can be reduced to first order ones: let
yi be the 2n dimensional vector

_ Xk
Yk [ Xk+1 }

Then y;, satisfies the recurrence

0 1
Yi+1 = My where M = [ My M, ]

which is of the type (80), and has a unique solution if yq is given.
More generally, a difference equation of order p which is linear, homoge-
neous, with constant coefficients, has the form

(83) Xipp = Mp 1Xpyp1 + ... + Mixp1 + Moxy

which has a unique solution if the initial p values are specified xo,x1 ..., %p_1.
The recurrence (83) can be reduced to a first order one for a vector of di-
mension np.

To understand the solutions of the linear difference equations it then
suffices to study the first order ones, (80).

4.2. Solutions of linear difference equations. Consider the equation

(80). If M has n independent eigenvectors vy,...,v, (i.e. M is diagonaliz-
able) let S = [v1,...,Vvy] and then M = SAS~! with A the diagonal matrix
with entries A1, ..., A,. The solution (81) can be written as

X = MkXO = SAkS_IXQ
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and denoting S~'xy = b,
xp = SAFb = by \ivi 4+ .. 4+ b\ v,

hence solutions x;, are linear combinations of )\é? multiples of the eigenvectors
V.
J

Example. Solve the recurrence relation z,12 = 3zp+1 — 22, if 20 = «,
z1 = pB.

This is a scalar difference equation, and we could turn it into a first order
system. But, by analogy to higher order scalar differential equations, it may
be easier to work directly with the scalar equation. We know that there are
solutions of the form z, = A", and substituting this in the recurrence we get
A2 = 3\PHL — 2\ therefore A2 — 3\ + 2 = 0, implying A\ = 1, Ay = 2,
or A = 0. We found the solutions z, = 1 and z, = 2". We can always
discard the value A = 0 since it corresponds to the trivial zero solution. The
general solution is z, = ¢l 4+ 2"co. The constants c¢1, co can be determined
from the initial conditions: zy = ¢1 + o = «, 21 = ¢1 + 2¢9 = 3, therefore
Zn = (2a + B) + (B — a)2™.

If M is not diagonalizable, just as in the case of differential equations,
then consider a matrix S so that S™'M S is in Jordan normal form.

Consider the example of a 2x2 Jordan block: M = SJS~! with J given by
(62). Asin Let S = [y1,y2] where y; is the eigenvector of M corresponding
to the eigenvalue A\ and ys is a generalized eigenvector. Using (56) we obtain
the general solution

AR lm’f—l] |:b1

_ _ k k k
X = [y1,¥2] [ 0 A\ by ] = b1 A"y1 + b2 (k)\ Y1+ A YQ>

and the recurrence has two linearly independent solutions of the form Ay
and q(k)\* where q(k) is a polynomial in k of degree one.

In a similar way, for p x p Jordan blocks there are p linearly independent
solutions of the form q(k)A\* where q(k) are polynomials in k of degree at
most p — 1, one of then being constant, equal to the eigenvector.

Example. Solve the recurrence relation y, 43 = 9ynt+2 — 24 yp11 + 20y,.

Looking for solutions of the type y, = A" we obtain \"3 = 9 \"*2 —
24 \"+1 4 20A" which implies (disregarding A = 0) that A3 —9 A2 4+24 A —20 =
0 which factors (A — 5) (A — 2)% = 0 therefore A\; =5 and Ay = A3 = 2. The
general solution is z, = ¢15™ + 22" + c3n2”.

4.3. Stability. Clearly the constant zero sequence x; = 0 is a solution of
any linear homogeneous discrete equation (80): 0 is an equilibrium point
(a steady state).
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As in the case of differential equations, an equilibrium point of a difference
equation is called asymptotically stable, or an attractor, if solutions starting
close enough to the equilibrium point converge towards it.

For linear difference equations this means that limg_,,, xx = 0 for all
solutions xj. This clearly happens if and only if all the eigenvalues \; of M
satisfy |A\;] < 1.

If all eigenvalues have either |A\;| < 1 or |A\;| = 1 and for eigenvalues of
modulus 1, the dimension of the eigenspace equals the multiplicity of the
eigenvalue, 0 is a stable point (or neutral).

In all other cases the equilibrium point is called unstable.

4.4. Example: Fibonacci numbers.
0,1,1,2,3,5,8,13,21,34,55,89,144, . ..

this is one of the most famous sequence of numbers, studied for more that 2
milennia (it fist appeared in ancient Indian mathematics), which describes
countless phenomena in nature, in art and in sciences.

The Fibonacci numbers are defined by the recurrence relation

(84) Fiopo = Fiop1 + Fe
with the initial condition Fy =0, F} = 1.
Substituting Fy, = A into the recurrence (84) it follows that A2 = X + 1

with solutions

1 1-—
+2\/5 = ¢ = the golden ratio, ;= 2\/5 =—1/¢

F}, is a linear combination of A} and M\§: Fj, = ¢;A\¥ + co\5. The values
of c¢1,co can be found from the initial conditions: ¢; + co = 1 and c1¢1 +
ca/phip = 1 implying

" —(=9)"

V5
Note that the ratio of two consecutive Fibonacci numbers converges to
the golden ratio:

A=

F, =

N
1 —
R
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F1GURE 8. A page of Fibonacci’s Liber Abaci from the Bib-
lioteca Nazionale di Firenze showing (in box on right) the
Fibonacci sequence with the position in the sequence labeled
in Latin and Roman numerals and the value in Hindu-Arabic
numerals (from Wiki).

4.5. Positive matrices.

Definition 26. A positive matrix is a square matriz whose entries are
all positive numbers.

Caution: this is not to be confused with positive definite self adjoint
matrices, which will be studied later.

Positive matrices have countless applications and very special properties.

Notations.

x > 0 denotes a vector with all components x; > 0
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x > 0 denotes a vector with all components xz; > 0

Theorem 27. Perron-Frobenius Theorem

Let P be a positive matriz: P = [Pi;l; j=1,..n, Pij > 0.

P has a dominant eigenvalue (or, Perron root, or Perron-Frobenius eigen-
value) r(P) = A1 with the following properties:

(i) A1 > 0 and the associated eigenvector vy is positive: vi > 0.

(ii) \1 is a simple eigenvalue.

(i11) All other eigenvalues have smaller modulus: if |\;| < A1 for all
eigenvalues \; of P, j > 1.

(iv) All other eigenvectors of P are not nonnegative, v; 2 0 (they have
have at least one negative or nonreal entry).

(v) M\ satisfies the following mazimin property: \y = maxT where

T ={t>0]|Px > tx, for some x >0, x # 0}
(v’) A1 satisfies the following minimaz property: A1 = min.S where
S={t>0]|Px <tx, for all x > 0,x # 0}
(vi) Also
miinZPij <A < mzale%j
J J

The proof of the Perron theorem will not be given here.

4.6. Markov chains. Markov processes model random chains of events
events whose likelihood depends on, and only on, what happened last. Step
n + 1 depends only on the current state: the process has no memory.

4.6.1. Example. Suppose that it was found that every year 1% of the US
population living in coastal areas moves inland, and 2% of the US population
living inland moves to coastal areas®. Denote by zj and y; the number
of people living in coastal areas, respectively inland, at year k. We are
interested to understand how the population distribution among these areas
evolves in the future.

Assuming the US population remains the same, in the year k + 1 we find

that xx11 = .99z, + .02y, and yg1 = .01z, + 98y or
(85) Xk+1 = MXk

where
| 199 .02
Xk—[yk]’M—[.m 98
Relation (85) modeling our process is a first order difference equation.
Note that the entries of the matrix M are nonnegative (they represent a
percentage, or a probability), and that its columns add up to 1, since the

whole population is subject to the process: any person of the US population
is in one of the two regions.

4These are not real figures. Unfortunately, I could not find real data on this topic.
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Question: what happens in the long run, as £k — co? Would the whole
population eventually move to coastal areas?

To find the solution x; of (85) we need the eigenvalues and eigenvectors of
M: it is easily calculated that there is one eigenvalue equal to 1 correspond-
ing to vi = (2,1)7, and an eigenvalue .97, corresponding to vo = (—1,1)7.
(Note that M is a positive matrix, and the Perron-Frobenius Theorem ap-
plies: the dominant eigenvalue is 1, and its eigenvector has positive compo-
nents, while the other eigenvector has both positive and nonpositive com-
ponents.)

Then

Xp = C1V1 + C2 .97kV2
and

Xoo = lim Xp, = ¢1vy
k—o00

The limit is an eigenvector corresponding to the eigenvalue 1!

In fact this is not a big surprise if we reason as follows : assuming that xy
converges (which is not guaranteed without information on the eigenvalues
of M) then taking the limit ¥ — oo in the recurrence relation (85) we find
that xoo = M X hence the limit x., is an eigenvector of M corresponding
to the eigenvalue 1, or the limit is 0 - which is excluded by the interpretation
that xp + yr = const=the total population.

Note: all the eigenvectors corresponding to the eigenvalue 1 are steady-
states: if the initial population distribution was xg = avy then the popula-
tion distribution remains the same: x; = x¢ for all k£ (since Mv; = vy).

Exercise. What is the type of the equilibrium points ¢;vy (asymptoti-
cally stable, stable, unstable)?

In conclusion, in the long run the population becomes distributed with
twice as many people living in coastal area than inland.

4.6.2. Markov matrices. More generally, a Markov process is governed by
an equation (85) where the matrix M has two properties summarized as
follows.

Definition 28. An n x n matric M = [M;;] is called « Markov matrix
(or a Stochastic matrix) if:

(1) all M;; > 0, and

(1) each column adds up to 1: Y . M;; = 1.

Theorem 29. Properties of Markov matrices

If M is a Markov matriz then:
(i) A =1 is an eigenvalue.
(11) All the eigenvalues satisfy |\;| < 1. If all the entries of M are positive,
then |Aj| <1 for j > 1.
(i) If for some k all the entries of MF are positive, then A\; = 1 has
multiplicity 1 and all the other eigenvalues satisfy |\;| <1 for j=2,...,n.
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Proof.

(i) The matrix M — I is not invertible, since all the columns of M add
up to 1, and therefore the columns of M — I add up to zero. Therefore
det(M — I) =0 and 1 is an eigenvalue.

(ii) and (iii) follow from Perron-Frobenius Theorem 27. O

Note that for general Markov matrices all eigenvectors corresponding to
the eigenvalue 1 are steady states.

5. MORE FUNCTIONAL CALCULUS

5.1. Discrete equations versus differential equations.
Suppose a function y(t) satisfies a the differential equation

dy

(86) 7 ay(t), y(0) = yo

with solution y(t) = e*yq

Discretize the equation: fix some small h and consider only the values t =
ty = kh. Using the linear approximation

(87) yY(te1) = y(te) + o (tr)h + O(R?)
then
hy'(tr) = y(tes1) — y(te)

which used in (88) gives the difference equation

(88)  (tk+1) — 4(te) = ahg(te), §(0) = yo
with solution §(t) = (1 + ah)*yo
The discrete equation (88) is an approximation of the continuous equation
(88).
We can get better approximations in two ways. Taking h smaller and
smaller in (88), y(tr) approaches y(t):

Q(tk) = (1 + ah)tk/h Yo — eatkyo ash—0

Another way to improve the approximation is to retain more terms in the
approximation (87):

y(thr1) = y(tr) + ' (te)h + 55" (t)R* + 5" (te)B® +
“The limit” is the Taylor series
o dn

ylter) =yt +0) = > — i ACOLS
k=0
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(this is complete hand-waving at this stage. The series may not even

exist for a fixed y let alone converge to it!) Noting that j; is the n-th power
of the linear operator % one can formally write

o

1 d" n hd
y(t+h) = (Zn' dTnh ) y(t) = e"ary(t)

k=0
therefore
(89) y(t+h) = ehiey(t)

which a remarkable formula: the exponential of differentiation is a shift.
Note that the fact that y(¢) solves (88) means that y(¢) is an eigenfunction
of the operator % corresponding to the eigenvalue a. By §3.5 this means

that y(¢) is an eigenfunction of e corresponding to the eigenvalue e

Therefore eh%y(t) = ey(t)

5.2. Functional calculus for digonalizable matrices. Let M be a square
n X n matrix, assumed diagonalizable: it has n independent eigenvectors
Vi,...,Vy corresponding to the eigenvalues A1, ..., A, and if S = [vy,...,Vvy]
then S~'!MS = A a diagonal matrix with Aq,...,\, on its diagonal.

5.2.1. Polynomials of M. We looked at positive integer powers of M, and
we saw that M* = SA¥S~1 where the power k is applied to each diagonal
entry of A. To be consistent we clearly need to define M" = I.

Recall that M is invertible if and only if all its eigenvalues are not zero.
Assume this is the case. Then we can easily check that M~! = SA=15~!
where the power k is applied to each diagonal entry of A. We can then define
any negative integer power of M.

If p(t) = ant™ + ... + a1t + ap is a polynomial in ¢, we can easily define

p(M) = a,M" + ...+ a1 M +agl = Sp(A)S~!
where p(A) is the diagonal matrix with p();) on the diagonal.

5.2.2. The exponential €™ . We defined the exponential eM using its Taylor
series
M — R
e = Z k!M
k=0

and eM = SerS—1 where e is the diagonal matrix with e’ on the diagonal.

5.2.3. The resolvent. For which numbers z € C the matrix zI — M has an
inverse, and what are its eigenvalues? Clearly the matrix zI — M is invertible
for all z which differ from the eigenvalues of M (in the infinite dimensional
case things are not quite so).

The matrix valued function R(z) = (2I — M)~!, defined for all z #
Al,... Ay is called the resolvent of M. The resolvent has many uses, and is
particularly useful in infinite dimensions.
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Let 2 = 1. If M is diagonalizable then (2 — M)™1 = S (21 — A)~1 7!
where (21 — A)~! is the diagonal matrix with (z — A;)~! on the diagonal.
Here is another formula, very useful for the infinite dimensional case: if

M is diagonalizable, with all the eigenvalues satisfying |\;| < 1

then
(90) (I-M)y ' =T+M+M+M+...
which follows from the fact that
1 .
Y =14+XN+AFA . i<

The resolvent is extremely useful for nondiagonalizable cases as well. In
infinite dimensions the numbers z for which the resolvent does not exist, the
spectrum of the linear transformation, (they may or may nor be eigenval-
ues) play the role of the eigenvalues in finite dimensions.

We will see that (90) is true for matrices of norm less than 1 - this is a
good motivation for introducing the notion of norm of a matrix later on.

5.2.4. The square root of M. Given the diagonalizable matrix M can we
find matrices R so that R? = M, and what are they?

Using the diagonal form of M we have: R? = SAS~! which is equivalent
to ST1R2S = A and therefore (S~!RS)? = A.

Assuming that S~'RS is diagonal, then S™!RS :diag(i/\iﬂ, cee j:)\,l/Q)
and therefore

a1 ... 0

(91) R=S| : D ST oy ed{1,-1}

0 ... opn

There are 2™ such matrices!

But there are also matrices with S™!'RS not diagonal. Take for example
M = I, and find all the matrices R with R?> = I. Then besides the four
diagonal solutions

| o1 O B
R = [ 0 oy :|, 0'1726{1, 1}
there is the two parameter family of the solutions

Some of these matrices have nonreal entries!
Can you find all matrices s.t. M? = I in any number of dimensions?
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5.2.5. Functional calculus for diagonalizable matrices. What other functions
of M can we define? If M is diagonalizable it seems that given a function
f(t) we can define f(M) provided that all f();) are defined (a careful con-
struction is needed).

Diagonalizable matrices are thus very ”user friendly”. Later on we will
see that there is a quick test to see which matrices are diagonalizable, and
which are not.

5.2.6. Working with Jordan blocks. The calculations done for 2 and 3 di-
mensional Jodan blocks in §3.3 can be done in a tidy way for the general
n X n blocks using functional calculus.

First note that any n x n Jordan block, with eigenvalue A can be written
as

J=AN+N

where N is a matrix whose only nonzero entries are 1 above the diagonal.
A short calculation shows that N2 only nonzero entries are a sequence of
1’s at a distance two above diagonal, and so on: each additional power of NV
pushes the slanted line of 1 moves toward the upper right corner. Eventually
N™ = 0. For example in dimension four:

01 00 0 010 0 0 01
o010 , looo1| , loooo]_,
0 0 01 0 00O 0 00O
0 00O 0 00O 0 00O

Since I and N commute we can use the binomial formula which gives
"k
JF= (A + N)F = < ; >A’”‘Nﬂ'
(N =

j=
k. Ne=INT . See (56), (63) for n = 2

which for & > n — 2 equals Z?:_ol < p

and n = 3.
Also because I and N commute

n—1
1
J_ M4N _ M_N _ _X k
e’ =e =ete' =e¢ E HN
k=0
See (57),(64) for n =2 and n = 3.

Exercise. What is (I —.J)~! for J an n x n Jordan block with eigenvalue
A?

5.2.7. The Cayley-Hamilton Theorem. Here is a beautiful fact:

Theorem 30. The Cayley-Hamilton Theorem. Let M be a square
matriz, and p(\) = det(M — XI) be its characteristic polynomial.
Then p(M) = 0.
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Note that if M is n x n then it follows in particular that M™ is a linear
combinations of earlier powers I, M, M?, ... M" L.

Proof of the Cayley-Hamilton Theorem.

Assume first that M is diagonalizable: M = SAS~!. Then p(M) =
p(SAS™Y) = Sp(A) S~ where p(A) is the diagonal matrix having p();) on
the diagonal. Since p(A;) = 0 for all j then p(A) = 0 and the theorem is
proved.

In the general case M = SJS~! where J is a Jordan normal form. Then
p(J) is a block diagonal matrix, the blocks being p applied to standard
Jordan blocks. Let Ji be any one of these blocks, with eigenvalue A; and
dimension p;. Then the characteristic polynomial of M contains the factor
(A1 —A)PL. Since (A — J1)P* = (—=N7p)P* = 0 then p(J;) = 0. As this is true
for each Jordan block composing J, the theorem follows. O

5.3. Commuting matrices. The beautiful world of functional calculus

with matrices is marred by noncommuatitivity. For example e4e? equals

eA*B only if A and B commute, and the square (A + B)? = A% + AB +

BA+ B? cannot be simplified to A2 +2AB + B? unless A and B commute.
When do two matrices commute?

Theorem 31. Let A and B be two diagonalizable matrices.
Then AB = BA if and only if they have the same matriz matrix of eigen-
vectors S (they are simultaneously diagonalizable).

Proof. Assume that A = SAS™! and B = SA’S~! where A, A’ diagonal.

Then, since diagonal matrices commute,
AB = SAST'SA'STt = SAN'STH = SAAS™H = SA'STTSAS™! = BA

Conversely, assume AB = BA and let S = [vy,...,v,] be the matrix
diagonalizing A, with Av; = a;v;. Then BAv; = ajBv; so ABv; = a;Bv;
which means that both v; and Bv; are eigenvectors of A corresponding to
the same eigenvalue a;.

If all the eigenvalues of A are simple, then this means that Bv; is a scalar
multiple of v; so S diagonalizes B as well.

If A has multiple eigenvalues then we may need to change S a little bit
(each set of eigenvectors of A corresponding to the same eigenvalue), to
accommodate B.

First replace A by a diagonal matrix: AB = BA is equivalent to SAS™'B =
BSAS~! therefore AST'BS = S™!BSA. Let C = S™'BS, satisfying
AC = CA.

We can assume that the multiple eigenvalues of A are grouped together,
so that A is built of diagonal blocks of the type o;I of dimensions d;, with
distinct o;.

A direct calculation shows that AC = CA is equivalent to the fact that
C' is block diagonal with blocks of dimensions d;. Since C' is diagonalizable,
each block can be diagonalized: C' = TA’T~!, and this conjugation leaves
A invariant (why?): TAT—! = A.
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Then the matrix ST diagonalizes both A and B. O

Ezamples. Any two functions of a matrix M, f(M) and g(M), commute.



