1. Recall the complex roots of 1 .
a) Show that the n complex solutions of the equation $z^{n}=1$, called the $n^{\text {th }}$ roots of unity, are $z_{k}=\exp [2 \pi i k / n], k=0,1, \ldots, n-1$.
b) z_{1} is called the primitive $n^{\text {th }}$ root of unity. Show that $z_{k}=z_{1}^{k}$.
c) Why do we stop the index at $k=n-1$? What is z_{n}, z_{n+1} ?
d) Plot these solutions $z_{0}, z_{1}, \ldots, z_{n-1}$ in the the complex plane for $n=2$, then, on a separate plane, for $n=3$, then for $n=4$ and then for general n.

Recall the formula $z^{n}-1=(z-1)\left(z^{n-1}+z^{n-2}+\ldots+z+1\right)$. This shows that $z_{1}, z_{2}, \ldots, z_{n-1}$ satisfy $z^{n-1}+z^{n-2}+\ldots+z+1=0$.
2. Let $w=e^{2 \pi i / n}$ be the primitive $n^{\text {th }}$ root of unity.

Consider the matrix

$$
U=\frac{1}{\sqrt{n}}\left[w^{j k}\right]_{j, k=0,1, \ldots, n-1}
$$

which is, in fact, the Fourier Matrix:

$$
U=\frac{1}{\sqrt{n}}\left[\begin{array}{ccccc}
1 & 1 & 1 & \cdots & 1 \\
1 & w & w^{2} & \cdots & w^{n-1} \\
1 & w^{2} & w^{4} & \cdots & w^{2(n-1)} \\
\vdots & \vdots & \vdots & & \vdots \\
1 & w^{n-1} & w^{2(n-1)} & \cdots & w^{(n-1)^{2}}
\end{array}\right]
$$

Show that U is unitary.
3. Fundamental spaces for products of matrices $A B$. Show that:
a) The null space of $A B$ contains the null space of B :
$\mathcal{N}(A B) \supset \mathcal{N}(B)$
b) The column space of $A B$ is contained in the column space of A :
$\mathcal{R}(A B) \subset \mathcal{R}(A)$
c) The left null space of $A B$ contains the left null space of A : $\mathcal{N}\left((A B)^{*}\right) \supset \mathcal{N}\left(A^{*}\right)$
d) The row space of $A B$ is contained in the space of B : $\mathcal{R}\left((A B)^{*}\right) \subset \mathcal{R}\left(B^{*}\right)$
4. Find the matrix P which takes any vector in \mathbb{R}^{4} to its orthogonal projection on the ($2-\mathrm{d}$) plane containing the vectors $(1,4,4,1)$ and $(2,9,8,2)$.

