Homework 2

Name(s):

Justify all your answers!

1. Let
$$A_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \\ 2 \end{bmatrix}$$
, $A_2 = \begin{bmatrix} -1 \\ 1 \\ -1 \\ 0 \end{bmatrix}$, $A_3 = \begin{bmatrix} -1 \\ 2 \\ 0 \\ 2 \end{bmatrix}$, $Y = \begin{bmatrix} 1 \\ 1 \\ 3 \\ 4 \end{bmatrix}$, $Z = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 4 \end{bmatrix}$.

- a1) True or False? $Y \in Sp(A_1, A_2, A_3)$.
- a2) True or False? $Z \in Sp(A_1, A_2, A_3)$.
- b) Find a basis for $Sp(A_1, A_2, A_3)$.

2. Consider the following polynomials in \mathcal{P}_3 (the linear space of polynomials of degree at most three) $\phi_1(t) = t^3$, $\phi_2(t) = t^2(1-t)$, $\phi_3(t) = t(1-t)^2$, $\phi_4(t) = (1-t)^3$. Show that every polynomial $p \in \mathcal{P}_3$ has a unique representation $p(t) = \sum_{j=1}^4 c_j \phi_j(t)$ with

 c_1,\ldots,c_4 constants.

3. Let \mathcal{B}_N = the set of all linear combinations of e^{ikt} , $k = -N, \ldots, 0, \ldots, N$, with complex coefficients. (Such linear combinations form a set of "band limited" functions.)

It is easy to see that \mathcal{B}_N is a linear space of functions over \mathbb{C} , and it can be shown that $e^{ikt}, k = -N, \ldots, 0, \ldots, N$ are linearly independent. Assume these are true.

a) What is dim \mathcal{B}_N ?

b) Show that $\{1, \cos t, \ldots, \cos Nt, \sin t, \ldots, \sin Nt\}$ is a basis for \mathcal{B}_N .

4. Consider the transformation of \mathbb{R}^3 given by the matrix multiplication $\mathbf{x} \to M\mathbf{x}$ where

$$M = \begin{bmatrix} 2 & 4 & 1 \\ 3 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$$

a) Find the range and the null space of this transformation, describing these subspaces by giving a basis and as geometrical objects in \mathbb{R}^3 .

b) Find all the vectors $\mathbf{b} \in \mathbb{R}^3$ for which the system $M\mathbf{x} = \mathbf{b}$ is soluble.

c) Find the general solution to $M\mathbf{x} = \mathbf{0}$.

(More problems on next page)

- **5.** Let $\mathcal{M}_{2,2}(\mathbb{R})$ be the linear space of all 2×2 matrices with the real entries.
- a) Prove that $\mathcal{M}_{2,2}(\mathbb{R})$ has dimension 4 and find a basis.
- b) Show that the trace

$$Tr: \mathcal{M}_{2,2}(\mathbb{R}) \to \mathbb{R}, \ Tr(A) = A_{11} + A_{22}$$

is a linear functional and use this to show that the set of matrices of zero trace form a subspace in $\mathcal{M}_{2,2}(\mathbb{R})$.

c) What is the dimension of the subspace of matrices of zero trace?

6. Let V and W both be subspaces of a given vector space.

True or False? Their intersection $V \cap W = \{x : x \in V \text{ and } x \in W\}$ is also a subspace. (To justify, you need to prove it if True, or find a counterexample if False.)