Justify all your answers!

1. Let $A_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2 \\ 2\end{array}\right], A_{2}=\left[\begin{array}{c}-1 \\ 1 \\ -1 \\ 0\end{array}\right], A_{3}=\left[\begin{array}{c}-1 \\ 2 \\ 0 \\ 2\end{array}\right], Y=\left[\begin{array}{l}1 \\ 1 \\ 3 \\ 4\end{array}\right], Z=\left[\begin{array}{l}2 \\ 1 \\ 3 \\ 4\end{array}\right]$.
a1) True or False? $Y \in S p\left(A_{1}, A_{2}, A_{3}\right)$.
a2) True or False? $Z \in S p\left(A_{1}, A_{2}, A_{3}\right)$.
b) Find a basis for $\operatorname{Sp}\left(A_{1}, A_{2}, A_{3}\right)$.
2. Consider the following polynomials in \mathcal{P}_{3} (the linear space of polynomials of degree at most three) $\phi_{1}(t)=t^{3}, \quad \phi_{2}(t)=t^{2}(1-t), \quad \phi_{3}(t)=t(1-t)^{2}, \quad \phi_{4}(t)=(1-t)^{3}$.
Show that every polynomial $p \in \mathcal{P}_{3}$ has a unique representation $p(t)=\sum_{j=1}^{4} c_{j} \phi_{j}(t)$ with c_{1}, \ldots, c_{4} constants.
3. Let $\mathcal{B}_{N}=$ the set of all linear combinations of $e^{i k t}, k=-N, \ldots, 0, \ldots N$, with complex coefficients. (Such linear combinations form a set of "band limited" functions.)

It is easy to see that \mathcal{B}_{N} is a linear space of functions over \mathbb{C}, and it can be shown that $e^{i k t}, k=-N, \ldots, 0, \ldots N$ are linearly independent. Assume these are true.
a) What is $\operatorname{dim} \mathcal{B}_{N}$?
b) Show that $\{1, \cos t, \ldots, \cos N t, \sin t, \ldots, \sin N t\}$ is a basis for \mathcal{B}_{N}.
4. Consider the transformation of \mathbb{R}^{3} given by the matrix multiplication $\mathrm{x} \rightarrow M \mathrm{x}$ where

$$
M=\left[\begin{array}{ccc}
2 & 4 & 1 \\
3 & 1 & -1 \\
1 & 1 & 0
\end{array}\right]
$$

a) Find the range and the null space of this transformation, describing these subspaces by giving a basis and as geometrical objects in \mathbb{R}^{3}.
b) Find all the vectors $\mathbf{b} \in \mathbb{R}^{3}$ for which the system $M \mathbf{x}=\mathbf{b}$ is soluble.
c) Find the general solution to $M \mathbf{x}=\mathbf{0}$.
(More problems on next page)
5. Let $\mathcal{M}_{2,2}(\mathbb{R})$ be the linear space of all 2×2 matrices with the real entries.
a) Prove that $\mathcal{M}_{2,2}(\mathbb{R})$ has dimension 4 and find a basis.
b) Show that the trace

$$
\operatorname{Tr}: \mathcal{M}_{2,2}(\mathbb{R}) \rightarrow \mathbb{R}, \quad \operatorname{Tr}(A)=A_{11}+A_{22}
$$

is a linear functional and use this to show that the set of matrices of zero trace form a subspace in $\mathcal{M}_{2,2}(\mathbb{R})$.
c) What is the dimension of the subspace of matrices of zero trace?
6. Let V and W both be subspaces of a given vector space.

True or False? Their intersection $V \cap W=\{x: x \in V$ and $x \in W\}$ is also a subspace. (To justify, you need to prove it if True, or find a counterexample if False.)

