1. For each of the following matrices

$$
A=\left[\begin{array}{ll}
1 & 2 \\
4 & 8
\end{array}\right], B=\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
2 & 1
\end{array}\right], C=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

a) Find the null space.
b) Find the column space.
c) Is the matrix invertible? If so, find its inverse, and check your answer.
d) Does the matrix have a left inverse? If so, find it, and check your answer.
e) Does the matrix have a right inverse? If so, find it, and check your answer.
2. Construct a matrix which transforms the standard basis vectors $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ of \mathbb{R}^{3} into three given vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} \in \mathbb{R}^{3}$. When is this matrix invertible?
3. Let M be an invertible matrix. Assume M has n independent eigenvectors $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$, corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$.
a) If \mathbf{v} is an eigenvector of M, show that \mathbf{v} is also an eigenvector of M^{2} and M^{-2}. What is the corresponding eigenvalue?
b) Find the eigenvectors and eigenvalues of M^{k} for any integer k.
c) Find the eigenvectors and eigenvalues of $M+c I$ (where c is a scalar and I is the identity matrix).
d) Find the eigenvectors and eigenvalues of $M^{2}-10 M+25 I$.
4. For each of the matrices A, B below: find the eigenvalues and eigenvectors.

If the matrix is diagonalizable explain why this is the case, find its diagonal form and a transition matrix. [Otherwise, find a Jordan normal form and a transition matrix -if we get there on Friday].

$$
A=\left[\begin{array}{cccc}
5 & 4 & 2 & -4 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 2 \\
2 & 2 & 1 & -1
\end{array}\right], \quad B=\left[\begin{array}{cccc}
5 & 5 & 2 & -4 \\
0 & 1 & 0 & 0 \\
-2 & -2 & 0 & 2 \\
2 & 3 & 1 & -1
\end{array}\right]
$$

