1. Verify that the polarization identity

$$\langle \mathbf{x}, \mathbf{y} \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} \|i^{k} \mathbf{x} + \mathbf{y}\|^{2}$$

holds in any inner product space (V, \langle , \rangle) over the complex numbers $F = \mathbb{C}$.

2. Consider \mathbb{R}^3 equipped with the Euclidian inner product: $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x} \cdot \mathbf{y}$. Let $\mathbf{v} = (1, 2, 3) \in \mathbb{R}^3$.

Describe geometrically, and give algebraic formulas for, the set of all vectors $\mathbf{x} \in \mathbb{R}^3$ so that $\langle \mathbf{x}, \mathbf{v} \rangle = 0$.

- 3. Consider the $C[0,\pi]$, the space of real valued, continuous functions on the interval $[0, \pi]$ equipped with the inner product $\langle f, g \rangle = \int_0^{\pi} f(t)g(t)dt$. a) Show that $\mathcal{S} = \{1, \cos t, \cos(2t), \dots, \cos(nt), \dots\}$ is an orthogonal set.
- b) Suppose a function f has the form $f(t) = \sum_{k=0}^{\infty} c_k \cos(kt)$ where c_k are constants. Express each c_k in terms of the function f and functions in S.
- **4.** Consider the $C[-\pi,\pi]$, the space of complex valued, continuous function on the interval $[-\pi,\pi]$ equipped with the inner product $\langle f,g\rangle=\int_{-\pi}^{\pi}\overline{f(t)}g(t)dt$.
- a) Show that $\mathcal{F} = \{e^{int} | n \in \mathbb{Z}\}$ is an orthogonal set.
- b) Suppose a function f has the form $f(t) = \sum_{k=-N}^{N} c_k e^{ikt}$ where c_k are constants. Express each c_k in terms of the function f and functions in \mathcal{F} .
- 5. Consider the linear space of all real valued polynomials \mathcal{P} equipped with the inner product

$$\langle f, g \rangle = \int_{-\infty}^{\infty} f(t) g(t) e^{-t^2} dt$$

The standard basis of \mathcal{P} consists of all monomials $1, t, t^2, \ldots, t^n \ldots$

Use a Gram-Schmidt process on the three polynomials $1, t, t^2$ to obtain a set of orthonormal polynomials with respect to this inner product.

Note: These polynomials $p_0, p_1, \ldots, p_n \ldots$ obtained by the Gram-Schmidt process are called *Hermite polynomials*. They are one family of orthogonal polynomials; other families are obtained using inner products with different weights.

1