1. Are the matrices

$$
A=\left[\begin{array}{lll}
3 & 1 & -2 \\
2 & 2 & -2 \\
2 & 1 & -1
\end{array}\right] ; B=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 4 \\
-2 & 0 & 3
\end{array}\right]
$$

simultaneously diagonalizable? If so, find a basis in which they are both diagonal.
2. Show that any two-by-two matrix R with the property $R^{2}=I$ is of one of the following forms.

$$
\left[\begin{array}{cc}
\alpha & \beta \\
\frac{-\alpha^{2}+1}{\beta} & -\alpha
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right],\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] \text { or }\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

or the transpose of the first matrix, where α is arbitrary, $\beta \neq 0$.
3. Let M be a matrix with distinct positive eigenvalues and let C be such that $C^{2}=M$. Show that M and C commute. (Be careful: if you want to invert something, you have to show invertibility.)
4. Show that there are 2×2 matrices with real coefficients s.t. $R^{2}=-I$.

Bonus ($\mathbf{+ 1 0 p}$)You are not required to solve it .
Let M be a matrix with distinct positive eigenvalues. Find all the matrices with the property $R^{2}=M$-the answer should be expressed in terms of the eigenvectors and eigenvalues of M. How many such matrices are there?

