1. Are the matrices

. .

	3	1	-2		[1	0	0
A =	2	2	-2	; $B =$	-4	1	4
	2	1	-1		-2	0	3

simultaneously diagonalizable? If so, find a basis in which they are both diagonal.

2. Show that any two-by-two matrix R with the property $R^2 = I$ is of one of the following forms.

α	β		1	0		1	0		-1	0		$\begin{bmatrix} -1 \end{bmatrix}$	0]	
$\frac{-\alpha^2+1}{\beta}$	$-\alpha$,	0	1 _	,	0	-1 .	,	0	1 _	or	0	-1	

or the transpose of the first matrix, where α is arbitrary, $\beta \neq 0$.

3. Let M be a matrix with distinct positive eigenvalues and let C be such that $C^2 = M$. Show that M and C commute. (Be careful: if you want to invert something, you have to show invertibility.)

4. Show that there are 2×2 matrices with real coefficients s.t. $R^2 = -I$.

Bonus (+10p)You are not required to solve it .

Let M be a matrix with distinct positive eigenvalues. Find all the matrices with the property $R^2 = M$ -the answer should be expressed in terms of the eigenvectors and eigenvalues of M. How many such matrices are there?