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1. Inner product

1.1. Inner product.

1.1.1. Inner product on real spaces. Vectors in R3 have more properties than
the ones listed in the definition of vector spaces: we can define their length,
and the angle between two vectors.

Recall that two vectors are orthogonal if and only if their dot product is
zero, and, more generally, the cosine of the angle between two unit vectors
in R3 is their dot product. The notion of inner product extracts the essential
properties of the dot product, while allowing it to be defined on quite general
vector spaces. We will first define it for real vector spaces, and then we will
formulate it for complex ones.

Definition 1. An inner product on vector space V over F = R is an
operation which associate to two vectors x,y ∈ V a scalar 〈x,y〉 ∈ R that
satisfies the following properties:
(i) it is is positive definite: 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only if x = 0,
(ii) it is symmetric: 〈x,y〉 = 〈y,x〉
(iii) it is linear in the second argument: 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉 and
〈x, cy〉 = c〈x,y〉

Note that by symmetry it follows that an inner product is linear in the
first argument as well: 〈x + z,y〉 = 〈x,y〉+ 〈z,y〉 and 〈cx,y〉 = c〈x,y〉.

A function of two variables which is linear in one variable and linear in
the other variable is called bilinear; hence, the inner product in a real vector
space is bilinear.

Example 1. The dot product in R2 or R3 is clearly an inner product: if
x = (x1, x2, x3) and y = (y1, y2, y3) then define

〈x,y〉 = x · y = x1y1 + x2y2 + x3y3

Example 2. More generally, an inner product on Rn is

(1) 〈x,y〉 = x · y = x1y1 + . . .+ xnyn

Example 3. Here is another inner product on R3:

〈x,y〉 = 5x1y1 + 10x2y2 + 2x3y3

(some directions are weighted more than others).
Example 4. On spaces of functions the most useful inner products use

integration. For example, consider C[a, b] be the linear space of functions
continuous on [a, b]. Then

〈f, g〉 =

∫ b

a
f(t)g(t) dt

is an inner product on C[a, b] (check!).
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Example 5. Sometimes a weight is useful: let w(t) be a positive function.
Then

〈f, g〉 =

∫ b

a
w(t)f(t)g(t) dt

is also an inner product on C[a, b] (check!).

1.1.2. Inner product on complex spaces. For complex vector spaces extra
care is needed. The blueprint of the construction here can be seen on the
simplest case, C as a one dimensional vector space over C: the inner product
of 〈z, z〉 needs to be a positive number! It makes sense to define 〈z, z〉 = zz.

Definition 2. An inner product on vector space V over F = C is an
operation which associate to two vectors x,y ∈ V a scalar 〈x,y〉 ∈ C that
satisfies the following properties:
(i) it is positive definite: 〈x,x〉 ≥ 0 and 〈x,x〉 = 0 if and only if x = 0,
(ii) it is linear in the second argument: 〈x,y + z〉 = 〈x,y〉 + 〈x, z〉 and
〈x, cy〉 = c〈x,y〉
(iii) it is conjugate symmetric: 〈x,y〉 = 〈y,x〉.

Exercise 1. Check that if 〈x,y〉 is an inner product, then so is 〈x,y〉

Note that conjugate symmetry combined with linearity implies that 〈., .〉
is conjugate-linear in the first variable: 〈x + z,y〉 = 〈x,y〉 + 〈z,y〉 and
〈cx,y〉 = c〈x,y〉.

A function of two variables which is linear in one variable and conjugate-
linear in the other variable is called sesquilinear; the inner product in a
complex vector space is sesquilinear.

Please keep in mind that most mathematical books use inner product
linear in the first variable, and conjugate linear in the second one. You
should make sure you know the convention used by each author.

Example 1’. On the one dimensional complex vector space C an inner
product is 〈z, w〉 = zw.

Example 2’. More generally, an inner product on Cn is

(2) 〈x,y〉 = x1y1 + . . .+ xnyn

Example 3’. Here is another inner product on C3:

〈x,y〉 = 5x1y1 + 10x2y2 + 2x3y3

(some directions are weighted more than others).



4 BASED ON NOTES BY RODICA D. COSTIN

Example 4’. Let C([a, b],C) be the linear space of complex-valued func-
tions which are continuous on [a, b].1 Then

〈f, g〉 =

∫ b

a
f(t) g(t) dt

is an inner product on C([a, b],C) (check!).
Example 5’. Weights need to be positive: for w(t) a given positive

function. Then

〈f, g〉 =

∫ b

a
w(t)f(t) g(t) dt

is also an inner product on C([a, b],C) (check!).

1.2. Inner product spaces.

Definition 3. A vector space V equipped with an inner product (V, 〈., .〉) is
called an inner product space.

Examples 1.-5. before are examples of inner product spaces over R, while
Examples 1’.-5’. are inner product spaces over C.

In an inner product space we can do geometry. First of all, we can define
length of vectors:

Definition 4. Let (V, 〈., .〉) be an inner product space. The quantity

‖x‖ =
√
〈x, x〉

is called the norm of the vector x. For V = R3 with the usual inner product
(which is the dot product) the norm of a vector is its length.

Vectors of norm one, u with ‖u‖ = 1, are called unit vectors.

In an inner product space we can define the angle between two vectors.
Recall that in the usual Euclidian geometry in R2 or R3, the angle θ between
two vectors x,y is calculated from x ·y = ‖x‖ ‖y‖ cos θ. The existence of an
angle θ with this property in any (real) inner product space is guaranteed
by the Cauchy-Schwartz inequality, one of the most useful, and deep, in-
equalities in mathematics, which holds in finite or infinite dimensional inner
product spaces is:

Theorem 5. The Cauchy-Schwartz inequality
In an inner product vector space any two vectors x,y satisfy

(3) |〈x,y〉| ≤ ‖x‖ ‖y‖
with equality if and only if x,y are linearly dependent.

1A complex valued function f(t) = u(t) + iv(t) is continuous if the R2-valued function
(u(t), v(t)) is continuous.
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Remarks: 1. Recall that x,y are linearly dependent means that one of
the two vectors is 0 or the two vectors are scalar multiples of each other.

2. It suffices to prove inequality (3) in Sp(x,y), a space which is at most
two-dimensional.

Proof of (3).
If y = 0 then the inequality is trivially true. Otherwise, we use the fact

that the norm of a nonzero vector is nononzero. We have

0 ≤ 〈x− cy,x− cy〉 = ‖x‖2 − 2< [c〈x,y〉] + |c|2‖y‖2

To illustrate the idea, think first that we are working in R. Then we have

0 ≤ 〈x− cy,x− cy〉 = ‖x‖2 + c〈x,y〉+ c2‖y‖2 = P (c)

This is true for all c and we use the freedom to look at P as a function
of c. P (c) is a quadratic polynomial in c with P → +∞ as c → ±∞. It
must be nonnegative for all c. This means that it cannot have two distinct
real roots (why?). But this is equivalent to the fact that the discriminant is
nonpositive, which implies

4〈x,y〉2 − ‖x‖2‖y‖2 ≤ 0

exactly what we wanted to prove. If the discriminant is zero, then there is
a real root c0, for which P (c0) = ‖x− c0y‖2 = 0⇒ x = c0y.

In the complex case, we get

0 ≤ 〈x− cy,x− cy〉 = ‖x‖2 − 2|c||〈x,y〉| cos θ + |c|2‖y‖2

where θ is the angle between c and 〈x,y〉. We have the freedom to choose
this angle at will. We choose two extreme values for cos θ, ±1 meaning
θ = 0, π.

We get

0 ≤ 〈x− cy,x− cy〉 = ‖x‖2 ± 2|c||〈x,y〉|+ |c|2‖y‖2

and we are back in the real case!
Straightforwardly, but without motivating the substitution choose c =

〈x,y〉/〈y,y〉. Ee obtain

0 ≤ 〈x,x〉 − |〈x,y〉|
2

〈y,y〉|
which gives (3).

The triangle inequality for vectors x,y in R3 means that the sum of two
sides of a triangle is at least as large as the third side (with equality only
when the triangle is degenerated to a segment). More generally:

Theorem 6. In an inner product space the triangle inequality holds: for
any x,y ∈ V

‖x + y‖ ≤ ‖x‖+ ‖y‖
with equality if and only if x, y are linearly dependent.
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Proof.
Expanding, then using the Cauchy-Schwarts inequality:

‖x + y‖2 = 〈x + y,x + y〉 = 〈x,x〉+ 〈x,y〉+ 〈y,x〉+ 〈y,y〉
= ‖x‖2 + 2<〈x,y〉+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖ ‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

with equality only when the Cauchy-Schwarts inequality has equality, which
is if and only if x, y are linearly dependent. 2

In usual Euclidian geometry, the lengths of the sides of triangle determine
its angles. Similarly, in an inner product space, if we know the norm of
vectors, then we know inner products. In other words, the inner product is
completely recovered if we know the norm of every vector:

Theorem 7. The polarization identity:
In a real real inner space

〈x,y〉 =
1

4

(
‖x + y‖2 − ‖x− y‖2

)
In a complex inner space

〈x,y〉 =
1

4

(
‖x + y‖2 + i‖ix + y‖2 − ‖x− y‖2 − i‖ − ix + y‖2

)
=

1

4

3∑
k=0

ik‖ikx+y‖2

The proof is by a straightforward calculation.
Note. A norm does not always come from a scalar product. The condition
above is a way to check if it does.

In an inner product space, the parallelogram law holds: ”sum of the
squares of the lengths of the four sides of a parallelogram equals the sum of
the squares of the lengths of the two diagonals”:

Proposition 8. In an inner product space the parallelogram law holds: for
any x,y ∈ V
(4) ‖x + y‖2 + ‖x− y‖2 = 2‖x‖2 + 2‖y‖2

The proof of (4) is a simple exercise, left to the reader.

2. Orthogonal bases

Let (V, 〈., .〉) be an inner product space.

Definition 9. Two vectors x,y ∈ V are called orthogonal if 〈x,y〉 = 0.

In this case we denote for short x ⊥ y (in this case, of course, also y ⊥ x).
Note that the zero vector is orthogonal to any vector:

〈x,0〉 = 0 for all x ∈ V
since 〈x,0〉 = 〈x, 0y〉 = 0〈x,y〉 = 0.

As in geometry:
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Definition 10. We say that a vector x ∈ V is orthogonal to a subset S of
V if x is orthogonal to every vector in S:

x ⊥ S if and only if x ⊥ z for all z ∈ S

Proposition 11. We have x ⊥ Sp(y1, . . . ,yr) if and only if
x ⊥ y1, . . . ,x ⊥ yn.

The proof is left as an exercise to the reader.

Definition 12. A set B = {v1, . . . ,vn} ⊂ V is called an orthogonal set
if 〈vj ,vi〉 = 0 for all i 6= j.

The set is called orthonormal if it is orthogonal and all vj are unit
vectors.

Note that {u1, . . . ,un} is an orthonormal set is equivalent to

〈uj ,uk〉 = δjk for all j, k = 1, . . . , n

where δjk is the Kronecker symbol: δjj = 1 and δjk = 0 if j 6= k.

Proposition 13. An orthogonal set {v1, . . . ,vn} where all vj 6= 0 is a
linearly independent set.

Indeed, if c1v1 + . . .+ ckvk = 0 then for any j = 1, . . . , k

0 = 〈vj , c1v1 + . . .+ ckvk〉 = c1〈vj ,v1〉+ . . .+ cj〈vj ,vj〉+ . . .+ ck〈vj ,vk〉

= cj〈vj ,vj〉
and since vj 6= 0 then 〈vj ,vj〉 6= 0 which implies cj = 0. 2.

Definition 14. A basis for V with is an orthogonal set is called an orthog-
onal basis.

An orthogonal basis made of unit vectors is called an orthonormal basis.

Of course, if {v1, . . . ,vn} is an orthogonal basis, then { 1
‖v1‖v1, . . . ,

1
‖vn‖vn}

is an orthonormal basis.
For example, the standard basis e1, . . . , en is an orthonormal basis in Rn

(when equipped this the inner product given by the dot product).

Orthonormal bases make formulas simpler and calculations easier. As a
first example, here is how coordinates of vectors are found:

Theorem 15. a) If B = {u1, . . . ,un} is an orthonormal basis for V then

(5) x = x1u1 + . . .+ xnun where xj = 〈uj ,x〉

b) If {v1, . . . ,vn} is an orthogonal basis for V then

(6) x = c1v1 + . . .+ cnvn where cj =
〈vj ,x〉
‖vj‖2
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Proof.
a) Consider the expansion of x in the basis B: x = x1u1 + . . . + xnun.

For each j = 1, . . . , n

〈uj ,x〉 = 〈uj , x1u1+. . .+xnun〉 = x1〈uj ,u1〉+. . .+xj〈uj ,uj〉+. . .+xn〈uj ,un〉

= xj〈uj ,uj〉 = xj

which gives the formula (5).
Part b) follows from a) applied to the orthonormal basis uj = 1

‖vj‖vj , j =

1, . . . , n. 2

When coordinates are given in an orthonormal basis, the inner product
is the dot product of the coordinate vectors:

Proposition 16. Let u1, . . . ,un be an orthonormal basis of V .

(7) If x =

n∑
k=1

xkuk, y =

n∑
k=1

ykuk then 〈x,y〉 =

n∑
k=1

xk yk

The proof is an easy exercise left to the reader.

2.1. Existence of an orthogonal basis. We know that any vector space
has a basis. Moreover, any finite dimensional inner product space has an
orthogonal basis, and here is how to find one:

Theorem 17. Gram-Schmidt Orthogonalization
Let {y1, . . . ,yn} be a basis for V . Then an orthonormal basis {u1, . . . ,un}

can be found as follows:

(8) v1 = y1, u1 =
1

‖v1‖
v1 ∈ Sp(y1)

(9) v2 = y2 − 〈u1,y2〉u1, u2 =
1

‖v2‖
v2 ∈ Sp(y1,y2)

(10) v3 = y3 − 〈u1,y3〉u1 − 〈u2,y3〉u2, u3 =
1

‖v3‖
v3 ∈ Sp(y1,y2,y3)

...

(11) vk = yk −
k−1∑
j=1

〈uj ,yk〉uj , uk =
1

‖vk‖
vk ∈ Sp(y1, . . . ,yk)

...

(12) vn = yn −
n−1∑
j=1

〈uj ,yn〉uj un =
1

‖vn‖
vn ∈ Sp(y1, . . . ,yn)
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The Gram-Schmidt orthogonalization process is exactly as in Rn. As a
first step (8) we keep y1, only normalized.

Next, in (9), we replace y2 by a vector in Sp(y1,y2) which is orthogonal
to u1 (as it is easily shown by calculation). After normalization we have
produced the orthonormal basis u1,u2 for Sp(y1,y2).

In the next step, (10), we replace y3 by v3, a vector orthogonal to
Sp(u1,u2) (easy to check by calculation); then v3 is normalized, giving
the orthonormal basis u1,u2,u3 for Sp(y1,y2,y3).

The procedure is continued.
To check that uk ⊥ ui for all i 6= k we note that at each step k we produce

a vector uk which is orthogonal to Sp(u1, . . . ,uk−1). 2

Corollary 18. Let U be a subspace of V . Any orthogonal basis of U can be
completed to an orthogonal basis of V .

Indeed, U has an orthogonal basis u1, . . . ,uk by Theorem 17, which can
be completed to a basis of V , u1, . . . ,uk,yk+1 . . .yn. Applying the Gram-
Schmidt orthogonalization procedure to this basis, we obtain an orthogonal
basis of V . It is easily seen that the procedure leaves u1, . . . ,uk unchanged.
2

2.2. Orthogonal projections. In the usual geometry of R2 or R3, the
orthogonal projection of a vector x on a line ` through the origin is the
unique vector P`x in the direction ` with the property that x − P`x is
orthogonal to `. If u is the unit vector in the direction of ` (therefore
` = Sp(u)) then P`x = 〈u,x〉u.

Similarly, in an inner product space we can define orthogonal projections
onto subspaces:

Proposition 19. Let W be a subspace of an inner product space (V, 〈., .〉).
1. For any x ∈W there exists a unique vector PWx in W so that

x− PWx ⊥W
PWx is called the orthogonal projection of x on the subspace W .
2. If u1, . . .uk is an orthonormal basis for W then

(13) PWx = 〈u1,x〉u1 + . . .+ 〈uk,x〉uk
3. PW : V → V is a linear transformation.

Proof. (This is true in infinite dimensional spaces too, but now we’ll only
prove it in finite dimensional ones.) By Theorem 17 the subspace W has
an orthonormal basis, say u1, . . .uk. Complete it to an orthonormal basis
u1, . . .uk, . . . ,un of V .

Writing PWx = c1u1 + . . .+ ckuk we search for scalars c1, . . . , ck so that
x− (c1u1 + . . .+ ckuk) is orthogonal to W . By Proposition 11 we only need
to check orthogonality to all u1, . . .uk. Since 〈uj ,x− (c1u1 + . . .+ ckuk)〉 =
〈uj ,x〉 − cj formula (13) follows.

The fact that PW is linear is seen from (13). 2



10 BASED ON NOTES BY RODICA D. COSTIN

Exercise. Show that P 2
W = PW . Find the range and the null space of

PW .

Note that in the Gram-Schmidt process, Theorem 17, at each step k, vk is
the difference between yk and its orthogonal projection on Sp(u1, . . . ,uk−1),
thus guaranteeing that vk is orthogonal to all u1, . . . ,uk−1.

2.3. Orthogonal subspaces, orthogonal complements. Let (V, 〈., .〉)
be an inner product space.

Definition 20. Two subspaces U,W ⊂ V are orthogonal (U ⊥ W ) if
every u ∈ U is orthogonal to every w ∈W .

Remark. If U ⊥W then U ∩W = {0}.
Indeed, suppose that x ∈ U ∩W . Then x ∈ U and x ∈W , and therefore

we must have 〈x,x〉 = 0 which implies x = 0.
Examples. Let V = R3.
(i) The (subspace consisting of all vectors on) the z-axis is orthogonal to

a one dimensional subspace ` (a line through the origin) if and only if ` is
included in the xy-plane.

(ii) In fact the z-axis is orthogonal to the xy-plane.
(iii) But the intuition coming from classical geometry stops here. As

vector subspaces, the yz-plane is not orthogonal to the xy-plane (they have
a subspace in common!).

Recall that any subspace W ⊂ V as a complement in V (in fact, it has
infinitely many). But exactly one of those is orthogonal to W :

Theorem 21. Let W be a subspace of V . Denote

W⊥ = {x ∈ V |x ⊥W}
Then W⊥ is a subspace, called the orthogonal complement of W , and

(14) W ⊕W⊥ = V

In particular, dimW + dimW⊥ = dimV .

Proof. Note that 0 is a vector space, orthogonal to any space. So W⊥ is
nonempty.

To show that W⊥ is a subspace, let x,y ∈ W⊥; then 〈w,y〉 = 0 and
〈w,u〉 = 0 for all w ∈W . Then for any c, d any scalars in F we have

〈w, cx + dy〉 = c〈w,x〉+ d〈w,y〉 = 0

for all w ∈W , which shows that cx + dy ∈W⊥.
The sum is direct since if w ∈ W ∩ W⊥ then w ∈ W and w ∈ W⊥,

therefore 〈w,w〉 = 0, implying w = 0.
To show (14), let u1, . . . ,uk be an orthogonal basis of W , and complete

it to an orthogonal basis of V : u1, . . . ,uk,v1, . . . ,vn−k, by Corollary 18.
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ThenW⊥ = Sp(v1, . . . ,vn−k) since, one one hand, clearly Sp(v1, . . . ,vn−k) ⊂
W⊥ and in the other hand it can be easily checked that if x ∈ W⊥ then
x ∈ Sp(v1, . . . ,vn−k). Therefore W ⊕W⊥ = V . 2

Remark. If V is finite dimensional then(
W⊥

)⊥
= W

The proof is left as an exercise.
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2.4. The Riesz Representation Theorem. In an inner product space
linear functionals are nothing more, and nothing less than inner products:

Theorem 22. The Riesz Representation Theorem
On an inner product space (V, 〈·, ·〉) any linear functional φ : V → F has

the form (φ,x) = 〈z,x〉 for a unique z = zφ ∈ V .

Proof. Let u1, . . . ,un be an orthonormal basis of V . Then a linear func-
tional φ acting on x ∈ V satisfies

(φ,x) = (φ,
n∑
k=1

xkuk) =
n∑
k=1

xk(φ,uk)

which, by (7), equals 〈z,x〉 if z =
∑n

k=1 (φ,uk)uk. 2

2.5. The adjoint of a linear transformation. To keep notations simple,
we first consider linear transformations from a space to itself (endomor-
phisms); the general case is discussed after that (the differences are minor).

Definition 23. Let (V, 〈., .〉) be an inner product space. Given a linear
transformation L : V → V , its adjoint L∗ is a linear transformation L∗ :
V → V which satisfies

(15) 〈Lx,y〉 = 〈x, L∗y〉 for all x,y ∈ V
At this point it is not clear that such a transformation L∗ exists, and it

will require an argument. Before we do so, let us look at concrete examples.
Examples.
1. Let V = Rn with the usual inner product 〈x,y〉 = x · y = xTy.

Consider the linear transformation given by matrix multiplication: Lx =
Mx where M is an n×n real matrix. Equation (15) is in this case (Mx)Ty =
xTL∗y or, using the familiar property of the transpose that (AB)T = BTAT ,
the relation defining the adjoint becomes xTMTy = xTL∗y for all x,y ∈ Rn,
which means that L∗ is matrix multiplication by MT .

2. Let V be the complex vector space Cn with the usual inner product
〈x,y〉 = x · y = xTy. Consider the linear transformation given by matrix
multiplication: Lx = Mx where M is an n × n complex matrix. Equation

(15) is in this case (Mx)Ty = xTL∗y or, xTM
T
y = xTL∗y for all x,y ∈ Cn,

which means that L∗ is multiplication by M
T

.

Proof of existence of the adjoint.
Since any linear transformation of a finite dimensional vector space is,

essentially, matrix multiplication (once a bases are chosen), and since the
inner product is the usual dot product if the basis is orthonormal, the ex-
amples above show that the adjoint exists, and that the matrix of L∗ (in
an orthonormal basis) is the conjugate transpose of the matrix of L (in the
same basis).

An alternative argument is as follows. For every fixed y, the formula
(φ,x) = 〈y, Lx〉 defines a linear functional on V . By the Riesz representation
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theorem, there exists a unique vector z ∈ V (which depends on y) so that
(φ,y) = 〈z,x〉. Define L∗y = z. It only remains to check that L∗ thus
defined is linear, which follows using the linearity of the inner product and
by the uniqueness of each z. 2

More generally, if (V, 〈., .〉V ), (U, 〈., .〉U ) are two inner product spaces over
the same scalar field F , and L is a linear transformation between them, L∗

is defined similarly:

Definition 24. If L : U → V is a linear transformation, its adjoint L∗ is
the linear transformation L∗ : V → U which satisfies

〈Lx,y〉V = 〈x, L∗y〉U for all x ∈ U, y ∈ V

Arguments similar to the ones before show that that the adjoint exists,
and that the matrix of L∗ (corresponding to orthonormal bases) is the con-
jugate transpose of the matrix of L (corresponding to the same bases).

Note that

(16) (L∗)∗ = L

Other notations used in the literature: In the case of real inner spaces the
adjoint is sometimes simply called the transpose, and denoted LT (which
is the same as L′, the transpose operator acting on the dual space V ′ if
we identify V ′ to V via the Riesz Representation Theorem). In the case of
complex inner spaces the adjoint L∗ is sometime called the Hermitian, and
denoted by LH or L†. The notation for matrices is similar: the hermitian
of a matrix, MH , is the complex conjugate of the transpose of M .
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2.6. Projections. The prototype of an oblique projection is the shadow
cast by objects on the ground (when the sun is not directly vertical). Math-
ematically, we have a plane (the ground), a direction (direction of the rays
of light, which are approximately parallel, since the sun is very far), and the
projection of a person along the light rays is its shadow on the ground.

More generally, we can have projections parallel to higher dimensional
subspaces (they are quite useful in image processing among other applica-
tions).

The simplest way to define a projection mathematically is

Definition 25. Given a linear space V , a projection is a linear transfor-
mation P : V → V so that P 2 = P .

Exercise. Show that the eigenvalues of a projection can be only 0 or 1.

The subspace R = R(P ) is the subspace on which P projects, and the
projection is parallel to (or, along) the subspace N = N (P ).

If y ∈ R then Py = y since, for any y ∈ R, then y = Px, hence
Py = P (Px) = P 2x = Px = y.

Since dimR(P ) + dimN (P ) = n it follows that R ⊕ N = V . Therefore
any x ∈ V has the form x = xR + xN where xR ∈ R and xN ∈ N and
Px = xR. This is a true projection!

2.6.1. Geometrical characterization of projections. Conversely, given two
subspaces R and N so that R ⊕ N = V , a projection onto R, parallel
to N is defined geometrically as follows.

Proposition 26. If R ⊕ N = V , then for any x ∈ V , there is a unique
vector Px ∈ R so that x− Px ∈ N .
P is a projection (the projection onto R along N).

The proof is immediate, since any x ∈ V can be uniquely written as
x = xR + xN with xR ∈ R and xN ∈ N , hence Px = xR. 2

Of course, the projection is orthogonal if N = R⊥.

Example. In V = R3 consider the projection on R = Sp(e1, e2) (the
x1x2-plane) along a line N = Sp(n) where n is a vector not in R, n =
(n1, n2, n3) with n3 6= 0. We construct the projection geometrically. Given
a point x = (x1, x2, x3), the line parallel to n and passing through x is
x + tn, t ∈ R. The line intersects the x1x2-plane for t = −x3

n3
. Hence

Px = x− x3
n3

n, or

Px = x− 〈x,u〉
〈n,u〉

n, where u ⊥ R
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2.6.2. The matrix of a projection. Let {u1, . . . ,ur} be a basis for R, and
{ur+1, . . . ,un} a basis for S; then {u1, . . . ,un} is a basis for V , and in this
basis the matrix of the sought-for projection is

MP =

[
I O
O O

]
To find the matrix in another basis, say, for example, V = Rn or Cn, and

the vectors uj are given by their coordinates in the standard basis, then the
transition matrix (from old basis to standard basis) is S = [u1, . . . ,un] and
then the matrix of P in the standard basis is S−1MPS.

An alternative formula is2

Proposition 27. Let R and N be subspaces of V = Rn or Cn such that
R⊕N = V .

Let {u1, . . . ,ur} be a basis for R and {v1, . . . ,vr} be a basis for N⊥. Let
A = [u1, . . . ,ur] and B = [v1, . . . ,vr] (where the vectors are expressed as
their coordinates in the standard basis).

Then the matrix (in the standard basis) of the projection on R parallel to
N is

A(B∗A)−1B∗

Proof.
Let x ∈ V . We search for Px ∈ R, therefore, for some scalars y1, . . . , yr

Px =
r∑
j=1

yjuj = [u1, . . . ,ur]

 y1
...
yr

 = Ay

Since x − Px ∈ N = (N⊥)⊥ this means that x − Px ⊥ N⊥, therefore
〈vk,x− Px〉 = 0 for all k = 1, . . . , r. Hence

0 = 〈vk,x− Px〉 = 〈vk,x〉 − 〈vk, Px〉 = 〈vk,x〉 − 〈vk,
r∑
j=1

yjuj〉

so

(17) 0 = 〈vk,x〉 −
r∑
j=1

yj〈vk,uj〉, k = 1, . . . , r

Note that element (j, k) of the matrix B∗A is precisely 〈vk,uj〉 = v∗kuj =

vk
Tuj hence the system (17) is

B∗Ay = B∗x

which we need to solve for y.
Claim: The r × r matrix B∗A is invertible.

2Reference: http://en.wikipedia.org/wiki/Projection (linear algebra)
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Its justification will have to wait for a little while. Assuming for the
moment the claim is true, then it follows that y = (B∗A)−1B∗x. Therefore
Px = PAy = A(B∗A)−1B∗x. 2

2.7. More about orthogonal projections. We have defined projections
in §2.6 as endomorphisms P : V → V satisfying P 2 = P and we saw that in
the particular case when N (P ) = R(P )⊥ we have orthogonal projections,
characterized in Theorem 19.

The first theorem shows that a projection is orthogonal if and only if it
is self-adjoint:

Theorem 28. Let V be a finite dimensional inner product space. A linear
transformation P : V → V is an orthogonal projection if and only if P 2 = P
and P = P ∗.

Proof.
We already showed that P 2 = P means that P is a projection. We only

need to check that P = P ∗ if and only if P is an orthogonal projection, that
is, if and only if N (P ) = R(P )⊥.

Assume P = P ∗. Let x ∈ N (P ) and Py ∈ R(P ). Then 〈x, Py〉 =
〈P ∗x,y〉 = 〈Px,y〉 = 0 therefore N (P ) ⊂ R(P )⊥ and since N (P )⊕R(P ) =
V then N (P ) = R(P )⊥.

The converse implication is similar. 2
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2.8. Fundamental subspaces of matrices.

2.8.1. Fundamental subspaces of linear transformations.

Theorem 29. Let L : U → V be a linear transformation between two inner
product spaces (V, 〈., .〉V ), (U, 〈., .〉U ). Then

(i) N (L∗) = R(L)⊥

(ii) R(L∗)⊥ = N (L)

Note: The theorem is true in finite or infinite dimensions. Of course, in
finite dimensions also: N (L∗)⊥ = R(L) and R(L∗) = N (L)⊥ (but in infinite
dimensions extra care is needed).

Remark 30. Let (V, 〈·, ·〉) be an inner product space. We have:
〈x,v〉 = 0 for all v ∈ V if and only if x = 0.

This is easy to see, since if we take in particular v = x then 〈x,x〉 = 0
which implies x = 0.

Proof of Theorem 29.
(i) We have y ∈ R(L)⊥ if and only if 〈y, Lx〉 = 0 for all x ∈ U if and only

if 〈L∗y,x〉 = 0 for all x ∈ U if and only if (by Remark 30) L∗y = 0 hence
y ∈ N (L∗).

(ii) follows from (i) after replacing L by L∗ and using (16). 2

Exercise. Show that if P is a projection onto R along N then P ∗ is a
projection onto N⊥ along R⊥.

2.8.2. The four fundamental subspaces of a matrix. Recall that if M is the
matrix associated L in two bases which are orthonormal, then the matrix
associated to L∗ (in the same bases) is the conjugate transpose ofM , denoted

M∗ = M
T

= MT .
To transcribe Theorem 29 in language of matrices, once orthonormal bases

are chosen L becomes matrix multiplication taking (coordinate) vectors from
Fn to (coordinate) vectors Mx ∈ Fm, where M is an m × n matrix with
elements in F and the inner products on the coordinate spaces are the dot
products if F = R and conjugate-dot products in F = C.

Recall that R(M) is the column space of M , and N (M) is the right null
space of M : the space of all x so that Mx = 0.

Recall that the left null space of M is defined as the space of all vectors
so that yTM = 0.

In the real case, when F = R, M∗ = MT . Then y belongs to the left null
space of M means that y ∈ N (MT ). Also, the row space of M is R(MT ).
Theorem 29 states that:

Theorem 31. Let M be an m× n real matrix. Then:
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1) R(M) (the column space of M) and N (MT ) (the left null space of M)
are orthogonal complements to each other in Rn, and

2) R(MT ) (the row space of M) and N (M) (the right null space of M)
are orthogonal complements to each other in Rm.

As a corrolary: The linear system Mx = b has solutions if and only if
b ∈ R(M) if and only if b is orthogonal to all solutions of yTM = 0.

2.9. Decomposing linear transformations. Let L : U → V be a linear
transformation between two inner product spaces (V, 〈., .〉V ), (U, 〈., .〉U ). It
makes sense to split the spaces U and V into subspaces which carry infor-
mation about L, and their orthogonal complements, which are redundant.

For example, only the subspace R(L) of V is ”necessary” to L, so we
could decompose V = R(L)⊕R(L)⊥, which, by Theorem 29, is the same as
V = R(L)⊕N (L∗).

Also, the subspace N (L) of U is taken to zero through L, and we may
wish to decompose U = N (L)⊕N (L)⊥ = N (L)⊕R(L∗).

Then
L : U = R(L∗)⊕N (L)→ V = R(L)⊕N (L∗)

Recall that the rank of a matrix equals the one of its transpose. It also
equals the rank of its complex conjugate, since det(M) = detM . Therefore

rankM = dimR(L) = dimR(L∗) = rankM∗

Let B1 = {u1, . . .ur} be an orthonormal basis for R(L∗) and ur+1, . . . ,un
an orthonormal basis for N (T ). Then BU = {u1, . . . ,un} is a basis for
U . Similarly, let B2 = {v1, . . .vr} be an orthonormal basis for R(L) and
vr+1, . . . ,vm an orthonormal basis for N (L∗). Then BV = {v1, . . . ,vn} is
an orthonormal basis for V . It is easily checked that the matrix associated
to L in the bases BU , BV has the block form[

M0 0
0 0

]
where M0 is an k × k invertible matrix associated to the restriction of L:

L0 : R(L∗)→ R(L) given by L0x = Lx

which is onto, hence also one-to-one: it is invertible!
L0, and its associated matrix M0 constitute an invertible ”core” of any

linear transformation, respectively, matrix.
Exercise the Pythagorean theorem Show that

(18) if y ⊥ z then ‖y‖2 + ‖z‖2 = ‖y + z‖2
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3. Least squares approximations

The distance between two vectors x,y in an inner product space is defined
as ‖x− y‖.

The following characterization of orthogonal projections is very useful in
approximations. As in Euclidian geometry, the shortest distance between a
point and a line (or a plane) is the one measured on a perpendicular line:

Theorem 32. Let W be a subspace of the inner product space (V, 〈 , 〉).
For any x ∈ V the point in W which is at minimal distance to x is Px,

the orthogonal projection of x onto W :

‖x− Px‖ = min{‖x−w‖ |w ∈W}

Proof.
We use the Pythagorean theorem for y = Px − w and z = x − Px

(orthogonal to W , hence to y) gives

‖x−w‖2 = ‖w − Px‖2 + ‖x− Px‖2, for any w ∈W

implying that ‖x−w‖ ≥ ‖x− Px‖ with equality only for w = Px. 2

3.1. Overdetermined systems: best fit solution. Let M be an m× n
matrix with entries in R (one could also work in C). By abuse of notation
we will speak of the matrix M both as a matrix and as the linear transfor-
mation Rn → Rm which takes x to Mx, denoting by R(M) the range of the
transformation (the column space of M).

The linear system Mx = b has solutions if and only if b ∈ R(M). If
b 6∈ R(M) then the system has no solutions, and it is called overdetermined.

In practice overdetermined systems are not uncommon, usual sources be-
ing that linear systems are only models for more complicated phenomena,
and the collected data is subject to errors and fluctuations. For practical
problems it is important to produce a best fit solution: an x for which the
error Mx− b is as small as possible.

There are many ways of measuring such an error, often this is the least
squares: find x which minimizes the square error:

S = r21 + . . .+ r2m where rj = (Mx)j − bj
Of course, this is the same as minimizing ‖Mx − b‖ where the inner

product is the usual dot product on Rm. By Theorem 32 it follows that Mx
must equal Pb, the orthogonal projection of b onto the subspace R(M).

We now need to solve the system Mx = Pb (solvable since Pb ∈ R(M)).
The notation x is standard in statistics for the best fit. It can be
confused with the complex conjugate!

Remark: (a) If M is one to one, then so is M∗M (since if M∗Mx = 0
then 0 = 〈M∗Mx,x〉 = 〈Mx,Mx〉 therefore Mx = 0).

(b) Note that M∗M and MM∗ are always square matrices.
Case I: If M is one to one, then there is a unique solution x = M−1Pb.
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An easier to implement formula can be found as follows. Since P is an
orthogonal projection on R(M), we have (b−Pb) ⊥ R(M) then (b−Pb) ∈
N (M∗) (by Theorem 29 (i)) therfeore M∗b = M∗Pb, so

M∗b = M∗Mx

which is also called the normal equation in statistics.
Since we assumed M is one to one, then M∗M is one to one, therefore it

is invertible (being a square matrix), and we can solve

x = (M∗M)−1M∗b

Since Mx = Pb we also found a formula for the projection

(19) Pb = M(M∗M)−1M∗b

Case II: If M is not one to one, then, given one solution x then any
vector in the space x +N (M) is a solution as well. Choosing the vector x
with the smallest norm in x + N (M), this gives x = M+b where M+ is
called the pseudoinverse of M . The notion of pseudoinverse will be studied
in more detail later on. By Theorem 32 x = x− PN (M)x.

3.2. Another formula for orthogonal projections. Formula (19) is an-
other useful way of writing projections. Suppose that W is a subspace in
Rn (or Cn) and x1, . . . ,xr is a basis for W (not necessarily orthonormal).
The matrix M = [x1, . . . ,xr] has its column space equal to W and has lin-
early independent columns, therefore a zero null space. Then (19) is the
orthogonal projection to W .

4. Orthogonal and unitary matrices, QR factorization

4.1. Unitary and orthogonal matrices. Let (V, 〈·, ·〉) be an inner prod-
uct space. The following type of linear transformation are what isomor-
phisms of inner product spaces should be: linear, invertible, and they pre-
serve the inner product (therefore angles and lengths):

Definition 33. A linear transformation U : V → V is called a unitary
transformation if U∗U = UU∗ = I.

Remark. U is unitary if and only if U∗ is unitary.

In the language of matrices:

Definition 34. A unitary matrix is an n×n matrix with U∗U = UU∗ = I
and therefore U−1 = U∗.

Definition 35. A unitary matrix with real entries is called an orthogonal
matrix.

In other words, Q is an orthogonal matrix means that Q has real elements
and Q−1 = QT .

We should immediately state and prove the following properties of unitary
matrices, each one can be used as a definition for a unitary matrix:
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Theorem 36. Let U be n× n a matrix.
The following statements are equivalent:

(i) U is unitary.
(ii) The columns of U form an orthonormal set of vectors (therefore an
orthonormal basis of Cn).
(iii) U preserves inner products: 〈Ux, Uy〉 = 〈x,y〉 for all x,y ∈ Cn.
(iv) U is an isometry: ‖Ux‖ = ‖x‖ for all x ∈ Cn.

Remark. If U is unitary, also the rows of U from an orthonormal set.
Examples. Rotation matrices and reflexion matrices in Rn, and their

products, are orthogonal (they preserve the length of vectors).
Remark. An isometry is necessarily one to one, and therefore, it is also

onto (in finite dimensional spaces).
Remark. The equivalence between (i) and (iv) is not true in infinite

dimensions (unless the isometry is assumed onto).

Proof of Theorem 36.
(i)⇐⇒(ii) is obvious by matrix multiplication (line j of U∗ multiplying,

place by place, column i of U is exactly the dot product of column j complex
conjugated and column i).

(i)⇐⇒(iii) is obvious because U∗U = I is equivalent to 〈U∗Ux,y〉 = 〈x,y〉
for all x,y ∈ Rn, which is equivalent to (iii).

(iii)⇒(iv) by taking y = x.
(iv)⇒(iii) follows from the polarization identity. 2

4.2. Rectangular matrices with orthonormal columns. A simple
formula for orthogonal projections.

Let M = [u1, . . . ,uk] be an m × k matrix whose columns u1, . . . ,uk are
an orthonormal set of vectors. Then necessarily m ≥ k. If m = k then the
matrix M is unitary, but assume here that m > k.

Note that N (M) = {0} since the columns are independent.
Note also that

M∗M = I

(since line j of M∗ multiplying, place by place, column i of M is exactly
uj · ui which equals 1 for i = j and 0 otherwise). Then the least squares
minimization formula (19) takes the simple form P = MM∗:

Theorem 37. Let u1, . . . ,uk be an orthonormal set, and M = [u1, . . . ,uk].
The orthogonal projection onto Sp(u1, . . . ,uk) (cf. §3.2) is

P = MM∗

4.3. QR factorization. The following decomposition of matrices has count-
less applications, and extends to infinite dimensions.

If an m × k matrix M = [y1, . . . ,yk] has linearly independent columns
(hence m ≥ k and N (M) = {0}) then applying the Gram-Schmidt process
on the columns y1, . . . ,yk amounts to factoring M = QR as described below.
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Theorem 38. QR factorization of matrices
Any m × k matrix M = [y1, . . . ,yk] with linearly independent columns

can be factored as M = QR where Q is an m × k matrix whose columns
form an orthonormal basis for R(M) (hence Q∗Q = I) and R is an k × k
upper triangular matrix with positive entries on its diagonal (hence R is
invertible).

In the case of a square matrix M then Q is also square, and it is a unitary
matrix.

If the matrix M has real entries, then Q and R have real entries, and if
k = n then Q is an orthogonal matrix.

Remark 39. A similar factorization can be written A = Q1R1 with Q1 an
m × m unitary matrix and R1 an m × k rectangular matrix whose first k
rows are the upper triangular matrix R and the last m− k rows are zero:

A = Q1R1 = [Q Q2]

[
R
0

]
= QR

Proof of Theorem 38.
Every step of the Gram-Schmidt process (8), (9), . . . (11) is completed by

a special normalization: after obtaining an orthonormal set u1, . . . ,uk let

(20) qj = γj uj for all j = 1, . . . k, where γj ∈ C, |γj | = 1

where the numbers γj will be suitably determined to obtain a special or-
thonormal set q1, . . . ,qk.

First, replace u1, . . . ,uk in (8), (9),. . .,(11) by the orthonormal set q1, . . . ,qk.
Then invert: write yj ’s in terms of qj ’s. Since q1 ∈ Sp(y1), q2 ∈

Sp(y1,y2),. . . , qj ∈ Sp(y1,y2, . . . ,yj), . . . then y1 ∈ Sp(q1), y2 ∈ Sp(q1,q2),. . . ,
yj ∈ Sp(q1,q2, . . . ,qj), . . . and therefore there are scalars cij so that

(21) yj = c1jq1 + c2jq2 + . . .+ cjjqj for each j = 1, . . . , k

and since q1, . . . ,qk are orthonormal, then

(22) cij = 〈qi,yj〉

Relations (21), (22) can be written in matrix form as

M = QR

with

Q = [q1, . . . ,qk], R =


〈q1,y1〉 〈q1,y2〉 . . . 〈q1,yk〉

0 〈q2,y2〉 . . . 〈q2,yk〉
...

...
...

0 0 . . . 〈qk,yk〉


We have the freedom of choosing the constants γj of modulus 1, and

they can be chosen so that all diagonal elements of R are positive (since
〈qj ,yj〉 = γj〈uj ,yj〉 choose γj = 〈uj ,yj〉/|〈uj ,yj〉|). 2
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For numerical calculations the Gram-Schmidt process described above
accumulates round-off errors. For large m and k other more efficient, nu-
merically stable, algorithms exist, and should be used.

Applications of the QR factorization to solving linear systems.
1. Suppose M is an invertible square matrix. To solve Mx = b, factoring

M = QR, the system is QRx = b, or Rx = Q∗b which can be easily solved
since R is triangular.

2. Suppose M is an m × k rectangular matrix, of full rank k. Since
m > k the linear system Mx = b may be overdetermined. Using the QR
factorization in Remark 39, the system is Q1R1x = b, or R1x = Q∗1b, which
is easy to see if it has solutions: the last m−k rows of Q∗1b must be zero. If
this is the case, the system can be easily solved since R is upper triangular.


