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1. Review

1.1. The spectrum of a matrix. If L is a linear transformation on a
finite dimensional vector space the set of its eigenvalues σ(L) is called the
spectrum of L.

Note that: 1. the spectrum σ(L) contains no information on the multi-
plicity of each eigenvalue;

2. λ ∈ σ(L) if and only if L− λI is not invertible.

Remark: It will be seen that for linear transformations (linear operators)
in infinite dimensional vector spaces the spectrum of L is defined using
property 2. above, and it may contain more numbers than just eigenvalues
of L.

1.2. Brief overview of previous results.

Let F denote the scalar field R or C.

1. A matrix M is called diagonalizable if it is similar to a diagonal matrix:
exists an invertible matrix S so that S−1MS = Λ=diagonal. The diagonal
entries of Λ are precisely the eigenvalues of M and the columns of S are
eigenvectors of M .

2. An n × n matrix is diagonalizable if and only if it has n linearly
independent eigenvectors.

3. If T : Fn → Fn is the linear transformation given by Tx = Mx then
M is the matrix associated to T in the standard basis e1, . . . , en of Fn, while
S−1MS is the matrix associated to T in the basis Se1, . . . , Sen of Fn (recall
that Sej is the column j of S, eigenvector of M).

4. Assume that the n-dimensional matrix M is diagonalizable, and let
v1, . . . ,vn be linearly independent eigenvectors. Let S = [v1, . . . ,vn]. Then
S−1MS = Λ =diag(λ1, . . . , λn).
S−1MS is the matrix of the linear transformation Fn → Fn given by

x 7→Mx in the basis of Fn consisting of the eigenvectors v1, . . . ,vn of M .

5. Eigenvectors corresponding to different eigenvalues are linearly inde-
pendent.

As a consequence, an n × n matrix with n distinct eigenvalues is diago-
nalizable.

6. More generally, a matrix M is diagonalizable if and only if for every
eigenvalue λ the eigenspace Vλ = {v |Mv = λv} has dimension equal to the
multiplicity of λ.
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7. If the matrix M is not diagonalizable, then there exists an invertible
matrix S (whose columns are eigenvectors or generalized eigenvectors of
M) so that S−1MS = J=Jordan normal form: a block diagonal matrix,
consisting of Jordan blocks which have a repeated eigenvalue on the diagonal
and 1 above the diagonal.

8. If Jp(λ) is a Jordan p × p block, with λ on the diagonal, then any

power Jp(λ)k is an upper triangular matrix, with λk on the diagonal.

9. Let q(t) be a polynomial.
If M is diagonalizable by S: S−1MS = Λ = diag(λ1, . . . , λn) then q(M)

is also diagonalizable by S and S−1q(M)S = Λ = diag(q(λ1), . . . , q(λn)).
If M is brought to a Jordan normal form by S: S−1MS = J then q(M)

is brought to an upper triangular form by S, having q(λj) on the diagonal.
As a consequence:

Theorem 1. The spectral mapping theorem. The eigenvalues of q(M)
are precisely q(λ1), . . . , q(λn), where λ1, . . . , λn are the eigenvalues of M .

Similar results hold for more general functions, when q(t) =
∑∞

k=0 ckt
k

and the series has radius of convergence strictly greater than maxj |λj |, for
example, for q(t) = exp(t).

1.3. More on similar matrices. Recall that similar matrices have the
same eigenvalues.

Here is an additional result1, to complete the picture (it is not proved
here):

Theorem 2. Two matrices are similar: S−1MS = N if and only if M and
N have the same eigenvalues, and the dimensions of their corresponding

eigenspaces are equal: dimV
[M ]
λj

= dimV
[N ]
λj

for all j.

2. Self-adjoint matrices

2.1. Definitions.

Definition 3. Let (V, 〈, 〉) be an inner product space. The linear transfor-
mation L : V → V is called self-adjoint if L∗ = L, that is, if

〈Lx,y〉 = 〈x, L∗y〉 for all x,y ∈ V

Recall that the matrix M of a linear transformation L with respect to

orthonormal bases is related to the matrix M∗ of L∗ by M∗ = MT (=M
T

).
Note that

(M∗)∗ = M, (MN)∗ = N∗M∗

1See P.D. Lax, Linear Algebra and Its Applications, Wiley, 2007.
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Recall that if u1, . . . ,un is an orthonormal basis of V then the inner
product is the usual dot product of coordinates (also called the Euclidian
inner product):

if x =

n∑
k=0

xkuk, y =

n∑
k=0

ykuk then 〈x,y〉 =

n∑
k=0

xkyk

So it suffices (for a while) to assume V = Rn or V = Cn equipped with
the Euclidian inner product:

(1) 〈x,y〉 =
n∑
j=1

xjyj on Rn

and respectively2

(2) 〈x,y〉 =
n∑
j=1

xjyj on Cn

For a unitary treatment we write V = Fn and use the inner product (2).
Of course for F = R the inner product (2) is just (1).

We will often use interchangeably the expressions ”the matrix M” and
”the linear transformation x 7→Mx”.

Definition 4. A matrix A is called self-adjoint if A = A∗.

Note that only square matrices can be self-adjoint, and that A = A∗

means, entrywise, that Aij = Aji (elements which are positioned symmetri-
cally with respect to the diagonal are complex conjugates of each other).

When it is needed (or just desired) to distinguish between matrices with
real coefficients and those with complex coefficients (perhaps not all real),
the following terms are used:

Definition 5. A self-adjoint matrix with real entries is called symmetric.
A self-adjoint matrix with complex entries is called Hermitian.

Note that a symmetric matrix A satisfies AT = A, hence its entries are
symmetric with respect to the diagonal.

Notations.
Mn denotes the set of n× n matrices with entries in C.
Mn(R) denotes the set of n× n matrices with entries in R.

2.2. Self-adjoint matrices are diagonalizable I. We start with a few
special properties of self-adjoint matrices.

Proposition 6. If A ∈Mn is a self-adjoint matrix: A = A∗, then

(3) 〈x, Ax〉 ∈ R for all x ∈ Cn

2Some texts use conjugation in the second argument, rather than in the first one. Make
sure you know the convention used in the text you are reading.
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Proof:

〈x, Ax〉 = 〈A∗x,x〉 = 〈Ax,x〉 = 〈x, Ax〉
hence (3). 2

Proposition 7. If A ∈ Mn is a self-adjoint matrix: A = A∗, then all its
eigenvalues are real: σ(A) ⊂ R.

Proof:
Let λ ∈ σ(A). Then there is v ∈ Cn, v 6= 0 so that Av = λv. Then on

one hand

〈v, Av〉 = 〈v, λv〉 = λ〈v,v〉 = λ‖v‖2

and on the other hand

〈v, Av〉 = 〈A∗v,v〉 = 〈Av,v〉 = 〈λv,v〉 = λ〈v,v〉 = λ‖v‖2

therefore λ‖v‖2 = λ‖v‖2 and since v 6= 0 then λ = λ hence λ ∈ R. 2

If a matrix is symmetric, not only its eigenvalues are real, but its eigen-
vectors as well:

Proposition 8. If A is a symmetric matrix then all its eigenvectors are
real.

Indeed, the eigenvalues are real by Proposition 7. Then the eigenvectors
are real since they are solutions linear systems with real coefficients (which
can be solved using +,−,×,÷, operations that performed with real numbers
do yield real numbers (as opposed to solving polynomials equations, which
may have nonreal solutions). 2

For self-adjoint matrices, eigenvectors corresponding to distinct eigenval-
ues are not only linearly independent, they are even orthogonal:

Proposition 9. If A ∈ Mn is a self-adjoint matrix: A = A∗, then eigen-
vectors corresponding to distinct eigenvalues are orthogonal: if λ1,2 ∈ σ(A)
and Av1 = λ1v1, Av2 = λ2v2 (v1,2 6= 0) then

λ1 6= λ2 =⇒ v1 ⊥ v2

Proof:
On one hand

〈v1, Av2〉 = 〈v1, λ2v2〉 = λ2〈v1,v2〉

and on the other hand

〈v1, Av2〉 = 〈A∗v1,v2〉 = 〈Av1,v2〉 = 〈λ1v1,v2〉 = λ1〈v1,v2〉

(since the eigenvalues are real, by Proposition 7). Therefore λ2〈v1,v2〉 =
λ1〈v1,v2〉 and since λ1 6= λ2 then 〈v1,v2〉 = 0. 2
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As a consequence of Proposition 9: if A = A∗ and all the eigenvalues of A
are distinct, then the n independent eigenvectors form an orthogonal set. We
can normalize the eigenvectors, to be unit vectors, and then the eigenvectors
form an orthonormal set, hence the matrix S which by conjugation diago-
nalizes A is a unitary matrix:there is U unitary so that U∗AU =diagonal.

In fact this is true for general self-adjoint matrices, as stead in Theorem 15.
Its proof is included in §2.5 and requires establishing additional results,
which are important in themselves.

2.3. Further properties of unitary matrices.

Proposition 10. Every eigenvalue of a unitary matrix U has absolute value
1: σ(U) ⊂ S1 = {z ∈ C | |z| = 1}.

Proof:
Let λ be an eigenvalue of U : Uv = λv for some v 6= 0. Then ‖Uv‖ =

‖λv‖ and since U is an isometry then ‖v‖ = ‖λv‖ which implies ‖v‖ =
|λ| ‖v‖ which implies |λ| = 1 since v 6= 0. 2

Exercises.
1. Show that the product of two unitary matrices is also a unitary matrix.
2. Show that the determinant of a unitary matrix has absolute value 1.
What is the determinant of an orthogonal matrix?

Proposition 11. Eigenvectors of a unitary matrix U corresponding to dif-
ferent eigenvalues are orthogonal.

Proof:
Let Uv1 = λ1v1 and Uv2 = λ2v2 (vj 6= 0). Since U preserves an-

gles, 〈Uv1, Uv2〉 = 〈v1,v2〉 which implies 〈λ1v1, λ2v2〉 = 〈v1,v2〉 therefore
λ1λ2〈v1,v2〉 = 〈v1,v2〉. For λ1 6= λ2 we have λ1λ2 6= 1 (using Proposi-
tion 10) therefore 〈v1,v2〉 = 0. 2

We will see a bit later that unitary matrices are diagonalizable.

Example. Consider the matrix

Q =

 0 1 0

0 0 1

1 0 0


(its action on R3 is a renumbering of the axes: ej 7→ ej−1 cyclically). The
columns of Q form an orthonormal set, therefore Q is a unitary matrix.
Since its entries are real numbers, then Q is an orthogonal matrix.

The characteristic polynomial of Q is easily found to be 1− λ3, therefore
its eigenvalues are the three cubic roots of 1, namely 1, (−1± i

√
3)/2. The

eigenvector corresponding to 1 is (1, 1, 1)T . In the plane orthogonal to this
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eigenvector is spanned by the other two eiegnevctors (rather, the real and
imaginary parts, if we choose to work in R3) the action of Q is a rotation
seen geometrically, and algebraically by the presence of the two complex
eigenvalues.

2.4. Triangularization by conjugation using a unitary matrix. Di-
agonalization of matrices is not always possible, and even when it is, it is
computationally expensive. However, matrices can be easily brought to a
triangular form, which suffices for many applications:

Theorem 12. Given any square matrix M ∈Mn there is an n dimensional
unitary matrix U so that U∗MU = T=upper triangular.

Of course, the diagonal elements of T are the eigenvalues of M .
Proof:
The matrix U is constructed in successive steps.
1o. Choose an eigenvalue λ1 of M and a corresponding unit eigenvector

u1. Then complete u1 to an orthonormal basis of Cn: u1,x2, . . . ,xn (recall
that this is always possible!). Let U1 be the unitary matrix

U1 = [u1,x2, . . . ,xn] = [u1

∣∣X1]

The goal is to simplify M by replacing it with U∗1MU1. Note that

(4)

U∗1MU1 =

 u∗1
−
X∗1

M [u1

∣∣X1] =

 u∗1
−
X∗1

 [Mu1

∣∣MX1] =

 u∗1
−
X∗1

 [λ1u1

∣∣ ∗]

=

 λ1u
∗
1u1 | ∗
− −

λ1X
∗
1u1 | ∗

 =

 λ1 | ∗
− −
0 | ∗

 ≡ M̃1

where we used the fact that the vector u1 is a unit vector, and that the
columns of X1 are orthogonal to u1.

Denote by M1 the (n− 1)× (n− 1) lower right submatrix of M̃1:

M̃1 =

 λ1 | ∗
− −
0 | M1


Note that Sp(e2, . . . , en) ≡ Cn−1 is an invariant space for U∗1MU1 and

U∗1MU1 acts on Cn−1as multiplication by M1.

Note also that σ(M) = σ(M̃1) (conjugate matrices have the same eigen-

values) and that σ(M̃1) = {λ1} ∪ σ(M1).
2o. We repeat the first step for the n− 1 dimensional matrix M1: let λ2

be an eigenvalue of M1, and u2 ∈ Cn−1 a unit eigenvector, and complete it
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to an orthonormal basis u2,y2, . . . ,yn of Cn−1. If U2 = [u2,y2, . . . ,yn] then

(5) U∗2M1U2 =

 λ2 | ∗
− −
0 | M2


where M2 ∈Mn−2.

We can extend U2 to an n dimensional unitary matrix by

Ũ2 =

 1 | 0
− −
0 | U2


and it is easy to check that

Ũ2
∗
M̃1Ũ2 =


λ1 ∗ | ∗
0 λ2 | ∗
− − −
0 0 | M3

 ≡ M̃2

Note that the matrix U1Ũ2 (which is unitary) conjugates M to M̃2.

3o . . . no Continuing this procedure we obtain the unitary U = U1Ũ2 . . . Ũn
which conjugates M to an upper triangular matrix. 2

2.5. All self-adjoint matrices are diagonalizable II. Let A be a self-
adjoint matrix: A = A∗. By Theorem 12 there is a unitary matrix U so
that U∗AU = T = upper triangular. The matrix U∗AU is self-adjoint,
since (U∗AU)∗ = U∗A∗(U∗)∗ = U∗AU and a triangular matrix which is
self-adjoint must be diagonal! We proved Theorem 15:

Any self-adjoint matrix A is diagonalizable and there is U uni-
tary so that U∗AU =diagonal.

2.6. Normal matrices. We saw that any self-adjoint matrix is diagonaliz-
able, has a complete set of orthonormal eigenvectors, and its diagonal form is
real (by Proposition 7). It is natural to inquire: what are the matrices which
are diagonalizable also having a complete set of orthonormal eigenvectors,
but having possible nonreal eigenvalues?

It is easy to see that such matrices have special properties. For example, if
N = UΛU∗ for some unitary U and diagonal Λ, then, by taking the adjoint,
N∗ = UΛU∗ and it is easy to see that N commutes with its adjoint:

(6) NN∗ = N∗N

It turns out that condition (6) suffices to ensure that a matrix is diago-
nalizable by a unitary. Indeed, we know that any matrix can be conjugated
to an upper triangular form by a unitary: U∗MU = T as in Theorem 2.4;
therefore also U∗M∗U = T ∗. If M satisfies MM∗ = M∗M , then also
TT ∗ = T ∗T ; a simple calculation shows that this can only happen if T is,
in fact, diagonal.
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For example, in the 2-dimensional case:

for T =

[
λ1 α
0 λ2

]
then T ∗ =

[
λ1 0

α λ2

]
and therefore

TT ∗ =

[
|λ1|2 + |α|2 αλ2

αλ2 |λ2|2
]

and T ∗T =

[
|λ1|2 αλ1
αλ1 |λ2|2 + |α|2

]
and TT ∗ = T ∗T if and only if α = 0.

Exercise. Show that an upper triangular matrix T commutes with its
adjoint if and only if T is diagonal.

Definition 13. A matrix N which commutes with its adjoint, NN∗ = N∗N ,
is called normal.

We proved:

Theorem 14. The spectral theorem for normal matrices
A square matrix N can be diagonalized by a unitary matrix: U∗NU =diagonal

for some unitary U , if and only if N is normal: N∗N = NN∗.

In particular:

Theorem 15. The spectral theorem for self-adjoint matrices
A self-adjoint matrix A = A∗ can be diagonalized by a unitary matrix:

U∗AU =real diagonal, for some unitary U .

And in the more particular case:

Theorem 16. The spectral theorem for symmetric matrices
A symmetric matrix A = AT ∈Mn(R) can be diagonalized by an orthog-

onal matrix: QTAQ =real diagonal, for some orthogonal matrix Q.

Exercise. True or False? ”A normal matrix with real eigenvalues is self-
adjoint.”

Note. Unitary matrices are normal, hence are diagonalizable by a unitary.

2.7. Generic matrices (or: ”beware of roundoff errors”). Choosing
the entries of a square matrix M at random, it is almost certain that M
has distinct eigenvalues and a complete set of eigenvectors which is not
orthogonal. In other words, M is almost certainly diagonalizable, but not
by a unitary conjugation, rather by conjugation with an S which requires a
deformation of the space: modifications of angles, stretching of lengths.

Why is that?
I. Generic matrices have no repeated eigenvalues, hence are diagonaliz-

able.
Indeed, of all matrices in Mn (a vector space of dimension n2) the set of

matrices with repeated eigenvalues form a surface of lower dimension since
their entries satisfy the condition that the characteristic polynomial and
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its derivative have a common zero (two polynomial equations with n2 + 1
unknowns).

To illustrate, consider 2 dimensional real matrices. A matrix

(7) M ∈M2(R), M =

[
a b

c d

]
has its characteristic polynomial p(λ) = λ2 − (a+ d)λ + (ad − bc). Then
some λ is not a simple eigenvalue if and only if λ satisfies

p(λ) = 0 and p′(λ) = 0

Equation p′(λ) = 0 implies λ = (a + d)/2 which substituted in p(λ) = 0
gives

(8) (a− d)2 + 4 bc = 0

which is the condition that a two dimensional matrix has multiple eigenval-
ues: one equation in the four dimensional space of the entries (a, b, c, d); its
solution is a three dimensional surface.

II. Among diagonalizable matrices, those diagonalizable by a unitary ma-
trix form a set of lower dimension, due to the conditions that eigenvectors
be orthogonal.

To illustrate, consider 2 dimensional matrices (7) with distinct eigenval-
ues. The eigenvalues are

λ± =
a+ d

2
± 1

2

√
(a− d)2 + 4 bc

and the eigenvectors are

v± =

[
b

λ± − a

]
if b 6= 0, and v1 =

[
0
1

]
v2 =

[
a− d
c

]
if b = 0

which are orthogonal if and only if b = c, a 3-dimensional subspace in the
four dimensional space of the parameters (a, b, c, d).

Why study normal and self-adjoint transformations? Problems which
come from applications often have symmetries (coming from conservation
laws which systems have, or are approximated to have) and normal or self-
adjoint matrices often appear. We will see that in infinite dimensions, there
are important linear transformations which are, or are reducible to, self-
adjoint ones; differentiation is one of them.
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2.8. Anti-self-adjoint (skew-symmetric, skew-Hermitian) matrices.

Definition 17.
A matrix M satisfying M∗ = −M is called anti-self-adjoint.
In particular:
A matrix B ∈Mn(R) so that BT = −B is called skew-symmetric.
A matrix K ∈Mn(C) so that KH = −K is called skew-Hermitian.

Note that:
1. Anti-self-adjoint matrices are normal.
2. If K∗ = −K then A = ±iK is a self-adjoint matrix.
Therefore, eigenvalues of anti-self-adjoint matrices are purely imaginary.

Exercises.
1. Show that a skew-symmetric matrix of odd dimension has determinant

zero.
2. Show that if λ is an eigenvalue of a skew-symmetric matrix, then −λ

is also an eigenvalue.
3. Show that if K is skew-Hermitian then eK is unitary. What kind of

matrix is eK when K is skew-symmetric?
4. Consider u(t) a solution of the linear differential equation u′(t) =

Mu(t) where M is a skew-symmetric matrix. Show that ‖u(t)‖ = ‖u(0)‖
for any t.

5. For A,B ∈Mn(R) define their commutator [A,B] = AB−BA. Show
that [A,B] is skew-symmetric.

6. If N is normal, show that N = A + K where A is self-adjoint and K
is anti-self-adjoint. Hint: let A = 1

2(N +N∗) and K = 1
2(N −N∗).

Note that skew-symmetric matrices have the diagonal entries zero, since
if BT = −B then this imples that Bjj = −Bjj hence Bjj = 0. For general
anti-self-adjoint matrices K∗ = −K implies for the diagonal entries that
Kjj = −Kjj hence if Kjj = aj + ibj (with aj , bj real) then aj + ibj =
−(aj − ibj) hence the diagonal entries are purely imaginary (or zero).

2.9. Application to linear differential equations. The Schrödinger equa-
tion has the form

(9) −idy
dt

= Ay, A ∈Mn(R)

where A = A∗. (In the proper Schrödinger equation A is more general than
a matrix, it is a linear transformation in infinite dimensions -an operator,
usually A = ∆− V (x).)

Equation (9) is, of course, the same as y′ = iAy with iA an anti-self-
adjoint matrix. The general solution is y(t) = eitAy0.

It turns out that the evolution of a Schrödinger equation preserves the
norm of vectors: ‖y(t)‖ = ‖y(0)‖ for all t.
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First note the derivative of an inner product obeys the product rule:

d

dt
〈x(t),y(t)〉 = 〈 d

dt
x(t),y(t)〉+ 〈x(t),

d

dt
y(t)〉

because the inner product is a sum of products: 〈x(t),y(t)〉 =
∑n

j=1 xj(t)yj(t).
To see that the evolution preserves the norm calculate

d

dt
‖y(t)‖2 =

d

dt
〈y(t),y(t)〉 = 〈 d

dt
y(t),y(t)〉+ 〈y(t),

d

dt
y(t)〉

= 〈iAy(t),y(t)〉+ 〈y(t), iAy(t)〉 = 〈iAy(t),y(t)〉+ 〈(iA)∗y(t),y(t)〉 =

= 〈iAy(t),y(t)〉+〈(−iA∗)y(t),y(t)〉 = 〈iAy(t),y(t)〉+〈(−iA)y(t),y(t)〉 = 0

and therefore the function ‖y(t)‖ is constant:

‖y(t)‖ = ‖eitAy0‖ = ‖y0‖ for all y0 and all t

which means that the matrix eitA (called propagator) is unitary.
The evolution of a system with an anti-self-adjoint matrix is unitary (pre-

serves the norm).

2.10. Diagonalization of unitary matrices. Noting that unitary matri-
ces are normal, we re-obtain Proposition 11 for free. Also, Proposition 2.3
becomes obvious, since if U is unitary and S∗US = Λ =diagonal with S
unitary, then UU∗ = I implies (SΛS∗)(SΛS∗)∗ = I therefore ΛΛ∗ = I so all
λjλj = 1 hence all |λj | = 1.
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3. Quadratic forms and Positive definite matrices

3.1. Quadratic forms. Example: a quadratic form in R2 is a function
q : R2 → R of the form

q(x1, x2) = ax21 + 2bx1x2 + cx22

The function q can be written using matrices and the usual inner product
as

q(x) = 〈x, Ax〉, where A =

[
a b
b c

]
Note that the matrix A is symmetric. But the same quadratic form can

be written using many other matrices which are not symmetric:

q(x) = ax21 + 2bx1x2 + cx22 = 〈x, Cx〉, where C =

[
a b+ d

b− d c

]
Definition 18. A quadratic form in Rn is a function q : Rn → R of the
form

q(x) =

n∑
i,j=1

Aijxixj = 〈x, Ax〉

The matrix A can be assumed symmetric. Indeed, if q(x) = 〈x, Cx〉 is a
quadratic form defined by an arbitrary (square) matrix C, then C can be
replaced by A = 1

2(C + CT ) which is symmetric (entrywise, Aij = 1
2(Cij +

Cji)), and gives the same quadratic form:

〈x, Ax〉 = 〈x, 1

2
(C+CT )x〉 =

1

2

(
〈x, Cx〉+ 〈x, CTx〉

)
=

1

2
(〈x, Cx〉+ 〈Cx,x〉)

=
1

2
(〈x, Cx〉+ 〈x, Cx〉) = 〈x, Cx〉

3.1.1. Diagonalization by orthogonal matrices. Since A ∈ Mn(R) is sym-
metric, then there exists an orthogonal matrix Q so that QTAQ = Λ with
Λ = diag(λ1, . . . , λn), the eigenvalues λj of A being real. Then

q(x) = 〈x, Ax〉 = 〈x, QΛQTx〉 = 〈QTx,ΛQTx〉
In the new coordinates y given by y = QTx the quadratic form has com-
pleted squares:

(10) q(x) = q(Qy) = 〈y,Λy〉 =

n∑
j=1

λjy
2
j

The columns of Q = [u1, . . . ,un] (uj are eigenvectors of A) are called
a diagonalizing basis of the quadratic form, their spanned subspaces Ruj
are called principal axes of the quadratic form, and formula (10) is called
reduction to principal axes (or diagonal form of the quadratic function).

Using (10) for y = ej it follows that

q(uj) = λj
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Examples of quadratic form in R2, and their level sets.
1. Consider the quadratic form

q(x1, x2) = 9x21 + 2
√

3x1x2 + 11x22

Note that

q(x) = 〈x, Ax〉 where A =

[
9
√

3
√

3 11

]
The matrix A has the eigenvalue λ1 = 12 with eigenvector u1 = (12 ,

√
3
2 )T

and the eigenvalue λ2 = 8 with eigenvector u2 = (−
√
3
2 ,

1
2)T . The orthogonal

matrix Q diagonalizing A is

Q =

[
1/2 −

√
3/2√

3/2 1/2

]
and QTAQ =

[
12 0

0 8

]
The level curves q(x) = k are ellipses (for k > 0) with principal axes in

the directions of the two eigenvectors. For k = 0 the level set is a point, 0
(a degenerate ellipse).

The point x = 0 is a minimum of the function q(x).
1’. Consider

qn(x1, x2) = −9x21 − 2
√

3x1x2 − 11x22
Of course, qn = −q, hence qn has the same eigenvectors as q in Example

1., and eigenvalues of opposite sign: −12 and −8.
The level curves qn(x) = k are ellipses (for k < 0) with principal axes in

the directions of the two eigenvectors. The point x = 0 is a maximum of
the function qn(x).

2. Consider the quadratic form:

qs(x1, x2) = −3x21 + 10
√

3x1x2 + 7x22

with

qs(x) = 〈x, Asx〉 where As =

[
−3 5

√
3

5
√

3 7

]
The matrix As has the eigenvalues λ1 = 12 and λ2 = −8 with the same
eigenvectors as in Example 1. The diagonal form is

qs(x) = qs(Qy) = 12y21 − 8y21

The level sets q(x) = k are hyperbolas (for k 6= 0) with asymptotes in the
directions of the two eigenvectors. For k = 0 the level set is formed of two
lines (a degenerate hyperbola).

The point x = 0 is a minimum in the direction of (y1, 0) and a maximum
in the direction of (0, y2): it is a saddle point of the function qs(x).

3. As an example of a quadratic form with one zero eigenvalue consider

qd(x1, x2) = 3x21 + 6
√

3x1x2 + 9x22
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with

qd(x) = 〈x, Adx〉 where Ad =

[
3 3

√
3

3
√

3 9

]
where Ad has the eigenvalues λ1 = 12 and λ2 = 0 (and the same eigenvectors
as above). The diagonal form is

qd(x) = qd(Qy) = 12y21

The level sets qd(x) = k are pairs of lines.

In general, the level curves of quadratic forms are quadrics, whose nature
depends on the signs of the eigenvalues of A.

3.1.2. Diagonalization using a non-unitary matrix. How much more can we
simplify a normal form (10) of a quadratic form? Can we replace the λ’s
with, say, all 1?

Change the coordinates even further: in (10) substitute y = Dv where D
is the diagonal matrix with entries Djj ; (10) becomes

(11) q(x) = q(Qy) = q(QDv) =
n∑
j=1

λjD
2
jjv

2
j

which can be most simplified by choosing

Djj =

 1/
√
λj if λj > 0

1/
√
−λj if λj < 0

0 if λj = 0

in which case and (11) becomes sum/difference of squares

(12) q(x) = q(Qy) = q(QDv) =

n∑
j=1

sign(λj)v
2
j

where

sign(t) =

 1 if t > 0
−1 if t < 0
0 if t = 0

The linear change of coordinates x 7→ v after which the quadratic form that
the simple form of (12) is x = QDv. The matrix A is diagonalized by QD,
a matrix which preserves orthogonality, but stretches or compresses lengths.

Theorem 20 shows that this all that can be done: the modulus of any
λj 6= 0 can be changed (in appropriate coordinates), but not its sign.

3.1.3. A quadratic form after a change of basis. What matrices represent
the same quadratic form, only in different coordinates (i.e. in a different
basis) of Rn? Let q(x) = 〈x, Ax〉 be the quadratic form associated to the
symmetric matrix A using the usual inner product in Rn. Let S be an
invertible matrix, and let x = Sy be a change of coordinates in Rn. Then

q(x) = q(Sy) = 〈Sy, ASy〉 = 〈y, STASy〉
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and in the new coordinates y the quadratic form is associated to the sym-
metric matrix STAS.

Definition 19. Two symmetric matrices A and B linked by the transfor-
mation B = STAS for some nonsingular matrix S are called congruent.

Congruent matrices represent the same quadratic form in different bases.
The quadratic form q(x) is called diagonalized in the basis consisting of

the columns of S if q(Sy) =
∑

j ajy
2
j .

We saw that the numbers aj can be changed by changing the basis. What
cannot be changed is their sign (except for a rearrangement):

Theorem 20. Sylvester’s law of inertia for quadratic forms
Let q(x) be a quadratic form with real coefficients.
The number of coefficients of a given sign does not depend on a particular

choice of diagonalizing basis.
In other words, congruent symmetric matrices have the same number of

positive eigenvalues, the same number of negative eigenvalues, and the same
number of zero eigenvalues.

The number of positive eigenvalues of the symmetric matrix A defining a
quadratic form defines its character, as we will explore on a few examples.

Examples.
1. Quadratic forms in R2:
(i) Forms with both eigenvalues positive have level curves ellipses (for

k > 0), and have a minimum at the point x = 0.
(ii) Forms with both eigenvalues negative have level curves in the shape

of ellipses (for k < 0), and have a maximum at the point x = 0.
(iii) Forms with one positive and one negative eigenvalue have level curves

in the shape of hyperbolas (for k 6= 0), and the point x = 0 is a saddle
point (in some directions it is a minimum, while in other directions it is a
maximum). For k = 0 the level curves are two lines.

2. Quadratic forms in Rn:
(i) Forms with all eigenvalues positive have a minimum at the point x = 0.
(ii) Forms with all eigenvalues negative have a maximum at x = 0.
(iii) Forms with some positive eigenvalues and the other negative, have a

saddle point at x = 0.
3. The character of a surface in R3 given by an equation ax2+by2+cz2 = 1

depends only on the signs of the constants a, b, c: if all are positive, then it is
an ellipsoid; if two are positive and one is negative, then it is a hyperboloid
of one sheet; if one positive and two are negative, then it is a hyperboloid
of two sheets.

3.2. Critical points of functions of several variables. Let f(x) be a
function of n real variables defined on a domain in Rn.
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Recall that the first derivatives of f can be organized as the gradient
vector

∇f =

(
∂f

∂x1
, . . . ,

∂f

∂xn

)T
and its second derivatives can be organized as a matrix, the Hessian,

Hf =

[
∂2f

∂xi∂xj

]
i,j=1,...,n

which is a symmetric matrix if the mixed derivatives are continuous, and
therefore equal.

Recall the form of the Taylor series of a function f(x) of n variables:∑
k∈Nn

1

k!

∂kf

∂xk
(a) (x− a)k

where the following notations are used

k! =
n∏
j=1

(kj)! ,
∂k

∂xk
=

n∏
j=1

∂kj

∂x
kj
j

, vk =
n∏
j=1

v
kj
j

Retaining the first few terms of the Taylor series of f at x = a we obtain
the quadratic approximation
(13)

f(x) ≈ f(a) +
1

1!

n∑
j=1

∂f

∂xj
(a)(xj − aj) +

1

2!

n∑
i,j=1

∂2f

∂xi∂xj
(a)(xi − ai)(xj − aj)

or, more compactly,

f(x) ≈ f(a) +
1

1!
〈∇f(a), (x− a)〉+

1

2!
〈x− a, Hf(a)(x− a)〉

The point x = a is called a critical point if ∇f(a) = 0. At a critical point
the Taylor approximation (13) becomes

f(x) ≈ f(a) +
1

2!
〈x− a, Hf(a)(x− a)〉

In real analysis it is proved that if the Hessian matrix Hf(a) has all its
eigenvalues nonzero, then the character of the critical point x = a of f(x)
is the same as for the Hessian quadratic form 〈x − a, Hf(a)(x − a)〉 (they
both have minimum, or a maximum, or a saddle point).

It is then important to have practical criteria to decide when quadratic
forms have a minimum, a maximum, or a saddle point. This brings us to
the topic of next section, positive definite matrices.
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3.3. Positive definite matrices. In this section matrices are not neces-
sarily real. But the notions of positive/negative definite matrices is used
only for self-adjoint matrices.

Definition 21. A self-adjoint matrix A = A∗ is called positive definite if

〈x, Ax〉 > 0 for all x 6= 0

Note that 〈x, Ax〉 ∈ R since A is self-adjoint.

Exercise. Find which of following matrices are positive definite

A1 =

[
2 0
0 3

]
, A2 =

[
0 0
0 3

]
, A3 =

[
−2 0
0 3

]
.

The following theorem lists equivalent characterization of positive matri-
ces:

Theorem 22. Let A = A∗ be an n×n matrix. Then following are equivalent:
(i) 〈x, Ax〉 > 0 for all x 6= 0;
(ii) all the eigenvalues of A are positive;
(iii) the function Cn × Cn → R defined by (x,y)→ 〈x,y〉A where

〈x,y〉A = 〈x, Ay〉
is an inner product on Cn (in fact, every inner product on Cn has this form);

(iv) there are n linearly independent vectors x1, . . . ,xn ∈ Cn so that

Aij = 〈xi,xj〉, i, j = 1, . . . , n

in other words, A = M∗M where M = [x1, . . . ,xn] is an invertible matrix,
and if A is a real matrix, then M is a real matrix and A = MTM . (In
fact, the same is true for M a rectangular m × n matrix, with m ≥ n and
of maximal rank);

(v) all the upper left k × k (k = 1, 2, . . . , n) submatrices

[A1,1], [Ai,j ]i,j=1,2, . . . , [Ai,j ]i,j=1,...,k, . . . , [Ai,j ]i,j=1,...,n

have positive determinants.

Proof:
The equivalence of (i) and (ii) is immediate, since if U is a unitary matrix

so that U∗AU = Λ =diagonal then

(14) 〈x, Ax〉 = 〈x, UΛU∗x〉 = 〈U∗x,ΛU∗x〉 =
n∑
j=1

λj
∣∣ (U∗x)j

∣∣2
If all λj > 0 then clearly 〈x, Ax〉 > 0. Conversley, if all 〈x, Ax〉 > 0 then for
each x = uk (kth column of U) then Uek = uk hence U∗uk = ek and (14)
implies λk > 0.

The equivalence of (i) and (iii) is immediate.
(i) implies (iv): using A = UΛU∗ and since λj > 0 we can define the

radical
√

Λ =diag(
√
λ1, . . . ,

√
λn). Then A = U

√
Λ
√

ΛU∗ = M∗M where
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M = U
√

ΛU∗ is a positive definite matrix (since U is invertible and
√

Λ has
positive eigenvalues, hence it is also invertible). If A is a real matrix, then
U is real (an orthogonal matrix) by Proposition ??.

There are many other matrices M , for example M =
√

ΛU∗. Rectangular
matrices M can be found too.

(iv) implies (i): a matrixM∗M is self-adjoint since (M∗M)∗ = M∗(M∗)∗ =
M∗M and it is positive definite since 〈x,M∗Mx〉 = 〈Mx,Mx〉 = ‖Mx‖ > 0
for x 6= 0.

The equivalence of (i) and (v) is not proved here3. 2

3.4. Negative definite, semidefinite and indefinite matrices.

Definition 23. A self-adjoint matrix A = A∗ is called negative definite
if

〈x, Ax〉 < 0 for all x 6= 0

Of course, A is positive definite if and only if −A is negative definite, so
the properties of negative definite matrices can be easily deduced from those
of positive definite ones.

As a word of caution: in Theorem 22 part (v) becomes: A is negative
definite is equivalent to
(v−) the upper left submatrices of odd dimension have negative determinant,
while those of even dimension have positive determinant.

Definition 24. A self-adjoint matrix A = A∗ is called positive semidefi-
nite if

〈x, Ax〉 ≥ 0 for all x

The analogue of Theorem 22 is, quite obviously:

Theorem 25. Let A = A∗ be an n×n matrix. Then following are equivalent:
(i’) 〈x, Ax〉 ≥ 0 for all x;
(ii’) all the eigenvalues of A are ≥ 0;
[(iii) is obviously not true if A has zero eigenvalues.]
(iv’) there are n vectors (possibly dependent) x1, . . . ,xn ∈ Cn so that

Aij = 〈xi,xj〉, i, j = 1, . . . , n

in other words, A = M∗M where M = [x1, . . . ,xn] (possibly not of maximal
rank);

(v’) all the upper left k × k (k = 1, 2, . . . , n) submatrices

[A1,1], [Ai,j ]i,j=1,2, . . . , [Ai,j ]i,j=1,...,k, . . . , [Ai,j ]i,j=1,...,n

have nonnegative determinants.

Definition 26. A self-adjoint matrix A = A∗ is called negative semidef-
inite if

〈x, Ax〉 ≤ 0 for all x

3For a proof see Strang’s book.
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Of course, A is positive semidefinite if and only if −A is negative semi-
definite, and an analogue of Theorem 25 can be obtained.

Definition 27. A self-adjoint matrix which is neither positive- nor negative-
semidefinite is called indefinite.

Indefinite matrices have both positive and negative eigenvalues.

3.5. Applications to critical points of several variables.

3.5.1. Functions of two variables. We can (re)obtain the second derivative
test for functions of two variables: if f(x, y) has a critical point at (a, b),
then its nature can be seen by looking at the Hessian matrix, §3.2,

Hf(a, b) =

[
fxx(a, b) fxy(a, b)
fyx(a, b) fyy(a, b)

]
if its determinant is not zero (meaning that no eigenvalue is zero).

If the mixed derivatives are equal, then Hf(a, b) is a symmetric matrix.
Using Theorem 22 (v), and its analogue for negative definite matrices we
obtain the second derivative test:
• If Hf(a, b) is positive definite, that is, if

fxx(a, b) > 0, fxx(a, b)fyy(a, b)− fxy(a, b)2 > 0

then (a, b) is a minimum.
• If Hf(a, b) is negative definite, that is, if

fxx(a, b) < 0, fxx(a, b)fyy(a, b)− fxy(a, b)2 > 0

then (a, b) is a maximum.
• If Hf(a, b) has one positive and one negative eigenvalue, that is, if its

determinant is negative,

fxx(a, b)fyy(a, b)− fxy(a, b)2 < 0

then (a, b) is a saddle point.

3.5.2. Functions of n variables. If f(x) is a function of n real variables,
let x = a be a critical point: ∇f(a) = 0. As discussed in §3.2, if the
Hessian matrix Hf(a) has all eigenvalues nonzero, then the nature of
the critical point of f is the same as the nature of the point for the Hessian
quadratic form 〈x− a, Hf(a)(x− a)〉:

(i) a is a point of (local) minimum of f if and only if y = 0 is a minimum
for q(y) = 〈y, Hf(a)y〉, hence if and only if Hf(a) is positive definite;

(ii) a is a point of (local) maximum of f if and only if y = 0 is a maximum
for q(y) = 〈y, Hf(a)y〉, hence if and only if Hf(a) is negative definite;

(iii) a is a saddle point of f if and only if 0 is a saddle point for q(y) =
〈y, Hf(a)y〉, hence if and only if Hf(a) is indefinite.
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3.6. Application to differential equations: Lyapunov functions. Con-
sider a linear system of differential equation of first order

(15)
dy

dt
= My, M ∈Mn(R)

Recall that 0 is a stationary point, in the sense that y(t) = 0 is a solution
of 15), and if all the eigenvalues of M have negative real parts, then this
stationary point is asymptotically stable.

Another method for proving stability (for linear, or nonlinear equations)
is by finding a Lyapunov function. Consider a (possibly nonlinear) system

(16)
dy

dt
= F(y), y ∈ Rn

with an equilibrium point y0: F (y0) = 0.

Definition 28. A function L : Rn → R is called a Lyapunov function for
the system (16) and the equilibrium point 0 if:

(i) L(y0) = 0,
(ii) L(x) > 0 for x 6= y0, and
(iii) L decreases along the solutions:

(17)
d

dt
L(y(t)) < 0

for all y(t) solution of (16) stating close enough to y0.

Note that it is not needed that we actually know the solutions y(t) since

d

dt
L(y(t)) =

n∑
j=1

∂L

∂yj
(y(t))y′j(t) = 〈∇L(y(t)), F (y(t))〉

Then if

(18) 〈∇L(x), F (x)〉 < 0 for all x 6= y0,x close to y0

then (iii) is satisfied.
It is proved in the theory of differential equation that if a Lyapunov

function exists, then y0 is stable.
Consider a linear system (15). A good candidate for a Lyapunov function4

is the function ‖x‖. Intuitively, if ‖y(t)‖ decreases in time, then trajectories
keep on approaching 0.

It is better to consider the norm squared instead, since it is easier to
differentiate: let L(x) = ‖x‖2. Calculating as in §2.9 it is found that

d

dt
‖y(t)‖2 = 〈(M +MT )y(t),y(t)〉

4”There is no general method to construct or find a Lyapunov-candidate-function which
proves the stability of an equilibrium, and the inability to find a Lyapunov function is
inconclusive with respect to stability, which means, that not finding a Lyapunov function
does not mean that the system is unstable.” From Wikipedia.
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Note that the matrix M + MT is symmetric. If M + MT is negative
definite, then 〈(M + MT )y(t),y(t)〉 < 0 for all y(t) 6= 0 which shows that
L(x) = ‖x‖2 is a Lyapunov function and that 0 is asymptotically stable.

We used a Lyapunov function to show that if the symmetric matrix M +
MT is negative definite then M has eigenvalues with negative real part. Can
we find a simpler proof?

Proposition 29. If the self-adjoint matrix M + M∗ negative definite then
M has eigenvalues with negative real part.

Proof:
Let λ be an eigenvalue of M and v a corresponding eigenvector. Then

〈v, (M +M∗)v〉 < 0. On the other hand

〈v, (M +M∗)v〉 = 〈v,Mv〉+ 〈v,M∗v〉 = 〈v,Mv〉+ 〈Mv,v〉
= 〈v, λv〉+ 〈λv,v〉 = (λ+ λ)‖v‖2 = 2<λ ‖v‖2

hence <λ < 0. 2

The converse is not true. For example the matrix

M =

[
−1 4

0 −1

]
has eigenvalues −1,−1, while

M +M∗ =

[
−2 4

4 −2

]
has eigenvalues 2,−6.
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3.7. Solving linear systems by minimization. A scalar equation Ax = b
can be solved by minimization: its solution coincides with the point x = xm
where the parabola p(x) = 1

2Ax
2 − bx has a minimum (assuming A > 0).

To generalize this minimization solution to higher dimensions, note that the
derivative of p is p′(x) = Ax − b, whose critical point is the solution of the
linear equation Ax = b, and the second derivative is p′′(x) = A > 0, which
ensures that the critical point is a minimum. The idea is then to construct
a function p(x) whose gradient is Ax− b, and Hessian is A:

Theorem 30. Let A ∈Mn(R) be a positive definite matrix, and b ∈ Rn.
The quadratic form

p(x) =
1

2
〈x, Ax〉 − 〈x,b〉

has a global minimum.
The minimum is attained at a point xm satisfying Axm = b and the

minimum value is p(xm) = −1
2〈A

−1b,b〉.

Proof:
The gradient of p(x) equals Ax− b since from

p(x) = p(x1, . . . , xn) =
1

2

∑
i,j=1,...,n

Aijxixj −
∑

i=1,...,n

bixi

we get, using that A is symmetric,

∂p

∂xk
=

1

2

∑
j=1,...,n

Akjxj+
1

2

∑
i=1,...,n

Aikxi−bk =
∑

j=1,...,n

Akjxj+bk = (Ax)k−bk

and the Hessian of p(x) is A since ∂2p
∂xl∂xk

= Alk.

[Here is a more compact way to do this calculation:

∂p

∂xk
=

1

2
〈 ∂
∂xk

x, Ax〉+
1

2
〈x, A ∂

∂xk
x〉 − 〈 ∂

∂xk
x,b〉

=
1

2
〈ek, Ax〉+

1

2
〈x, Aek〉 − 〈ek,b〉 = 〈ek, Ax〉 − bk = (Ax)k − bk

and the Hessian of p(x) is A since ∂2p
∂xj∂xk

= ∂
∂xj
〈ek, Ax〉 = 〈ek, A ∂

∂xj
x〉 =

〈ek, Aej〉 = Ajk.]
Note that the linear system Ax = b has a unique solution x = xm = A−1b

(since A has no zero eigenvalues).
Write the Taylor expansion of p at x = xm, which stops at the second

order terms, since p is a polynomial of degree 2, hence derivatives of higher
order vanish:

p(x) = p(xm) + 〈∇p(xm), (x− xm)〉+
1

2
〈(x− xm), (Hp)(xm) (x− xm)〉

= p(xm) + 〈(Axm − b), (x− xm)〉+
1

2
〈(x− xm), A (x− xm)〉
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= p(xm) +
1

2
〈(x− xm), A (x− xm)〉 > p(xm) for all x 6= xm

where the last inequality holds since A is positive definite; this means that
p(xm) is an absolute minimum. Furthermore

p(xmin) =
1

2
〈xmin, Axmin〉 − 〈xmin,b〉 = −1

2
〈xmin,b〉 = −1

2
〈A−1b,b〉

2

3.8. Generalized eigenvalue problems. The following type of problem
appears in applications (for example they arise in discretizations of contin-
uous problems):

Problem: given two n× n matrices A and B find the numbers λ so that

(19) Av = λBv for some v 6= 0

Are there such numbers λ, and if so, how many?
Clearly, such numbers λ must satisfy the equation det(A−λB) = 0, which

is a polynomial in λ of degree at most n.
Since det(A − λB) = λn det( 1

λA − B) wee that the coefficient of λn is
det(−B). Therefore, if B is not invertible, the degree of det(A− λB) is less
than n.

On the other hand, if B is invertible, then (19) is equivalent to B−1Av =
λv so λ and v are the eigenvalues and eigenvectors of the matrix B−1A.

For real matrices, A symmetric and B positive definite, the eigen-
values/vectors of the generalized problem have special properties, which are
derived below.

If B is positive definite and real, then B = MTM for an invertible real
matrix M , by Theorem 22 (iv). Equation (19) is Av = λMTMv therefore
(MT )−1Av = λMv, where denoting Mv = y and C = M−1 the equation
becomes

(20) (CTAC)y = λy

which is an eigenvalue problem for the symmetric matrix CTAC: there
are n real eigenvalues, and n orthonormal eigenvectors u1, . . . ,un. Going
back through the substitution, let vj ’s be so that uj = Mvj , we find the
eigenvectors of the generalized problem (19) as v1, . . . ,vn where

δij = 〈uj ,ui〉 = 〈Mvj ,Mvi〉 = 〈vj ,MTMvi〉 = 〈vj , Bvi〉
and therefore

(21) 〈vj , Bvi〉 = δij , for i, j = 1, . . . , n

meaning that the vj are B-orthonormal, i.e. orthonormal with respect to
the inner product 〈·, ·〉B, see Theorem 22 (iii).

Also

〈vj , Avi〉 = 〈vj , λiBvi〉 = λi〈vj , Bvi〉 = λi δij
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so

(22) 〈vj , Avi〉 = δijλi, for i, j = 1, . . . , n

meaning that the vectors v1, . . . ,vn are also A-orthogonal.
In matrix notation, if S = [v1, . . . ,vn] is the matrix with columns the

generalized eigenvectors, then (22) is STAS = Λ, and (21) is STBS = I.
The matrices A and B are simultaneously diagonalized by a congruence

transformation! We proved:

Theorem 31. Consider the real matrices: A symmetric and B positive
definite. Then the quadratic forms

q(x) = 〈x, Ax〉, r(x) = 〈x, Bx〉
are simultaneously diagonalizable.

More precisely, there exists an invertible matrix S so that STAS = Λ and
STBS = I and if x = Sy then

q(x) = q(Sy) = 〈y,Λy〉, r(x) = r(Sy) = 〈y,y〉
The diagonal matrix Λ consists of the generalized eigenvalues solutions of

the problem Av = λBv and the columns of S are its generalized eigenvectors.
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4. The Rayleigh’s principle. The minimax theorem for the
eigenvalues of a self-adjoint matrix

Eigenvalues of self-adjoint matrices are easy to calculate. This section
shows how this is done using a minimization, or maximization procedure.

4.1. The Rayleigh’s quotient.

Definition 32. Let A = A∗ be a self-adjoint matrix. The Rayleigh’s
quotient is the function

R(x) =
〈x, Ax〉
‖x‖2

, for x 6= 0

Note that

R(x) = 〈 x

‖x‖
, A

x

‖x‖
〉 = 〈u, Au〉 where u =

x

‖x‖
so in fact, it suffices to define the Rayleigh’s quotient on unit vectors.

The set of unit vectors in Rn (or in Cn), is called the n − 1 dimensional
sphere in Rn (or in Cn):

Sn−1F = {u ∈ Fn | ‖u‖ = 1}

For example, the sphere in R2 is the unit circle (it is a curve, it has dimension
1), the sphere in R3 is the unit sphere (it is a surface, it has dimension 2);
for higher dimensions we need to use our imagination.

4.2. Extrema of the Rayleigh’s quotient.

4.2.1. Closed sets, bounded sets, compact sets. You probably know very well
the extreme value theorem for continuous function on the real line:

Theorem 33. The extreme value theorem in dimension one.
A functions f(x) which is continuous on a closed and bounded interval

[a, b] has a maximum value (and a minimum value) on [a, b].

To formulate an analogue of this theorem in higher dimensions we need
to specify what we mean by a closed set and by a bounded set.

Definition 34. A set S is called closed if it contains all its limit points: if
a sequence of points in S, {xk}k ⊂ S converges, limk→∞ = x, then the limit
x is also in S.

For example, the intervals [2, 6] and [2,+∞) are closed in R, but [2, 6) is
not closed. The closed unit disk {x ∈ R2 | ‖x‖ ≤ 1} is closed in R2, but the
punctured disk {x ∈ R2 | 0 < ‖x‖ ≤ 1} or the open disk {x ∈ R2 | ‖x‖ < 1}
are not closed sets.

Definition 35. A set S is called bounded if there is a number larger than
all the lengths of the vectors in S: there is M > 0 so that ‖x‖ ≤ M for all
x ∈ S.
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For example, the intervals [2, 6] and [2, 6) are bounded in R, but [2,+∞)
is not. The square {x ∈ R2 | |x1| < 1, and |x2| < 1} is bounded in R2, but
the vertical strip {x ∈ R2 | |x1| < 1} is not.

Theorem 36. The extreme value theorem in finite dimensions.
A functions f(x) which is continuous on a closed and bounded set S in

Rn or Cn has a maximum value (and a minimum value) on S.

In infinite dimensions Theorem 36 is not true in this form. A more strin-
gent condition on the set S is needed to ensure existence of extreme values
of continuous functions on S (the set must be compact).

It is intuitively clear (and rigorously proved in mathematical analysis)
that any sphere in Fn is a closed and bounded set.

4.2.2. Minimum and maximum of the Rayleigh’s quotient. The Rayleigh’s
quotient calculated on unit vectors is a quadratic polynomial, and therefore
it is a continuous function on the unit sphere, and therefore

Proposition 37. The Rayleigh’s quotient has a maximum and a minimum.

What happens if A is not self-adjoint? Recall that the quadratic form
〈x, Ax〉 has the same value if we replace A by its self-adjoint part, 1

2(A+A∗),
therefore the Rayleigh’s quotient of A is the same as the Rayleigh’s quotient
of the self-adjoint part of A (information about A is lost).

The extreme values of the Rayleigh’s quotient are linked to the eigenvalues
of the self-adjoint matrix A. To see this, diagonalize the quadratic form
〈x, Ax〉: consider a unitary matrix U which diagonalizes A:

U∗AU = Λ = diag(λ1, . . . , λn)

In the new coordinates y = U∗x we have

〈x, Ax〉 = 〈x, UΛU∗x〉 = 〈U∗x,ΛU∗x〉 = 〈y,Λy〉 =

n∑
j=1

λj |yj |2

which together with ‖x‖ = ‖Uy‖ = ‖y‖ give

(23) R(x) = R(Uy) =

∑n
j=1 λj |yj |2

‖y‖2
=

n∑
j=1

λj
|yj |2

‖y‖2
≡ RU (y)

Since A is self-adjoint, its eigenvalues λj are real; assume them ordered
in an increasing sequence:

(24) λ1 ≤ λ2 ≤ . . . ≤ λn
Then clearly

n∑
j=1

λj |yj |2 ≤ λn
n∑
j=1

|yj |2 = λn‖y‖2
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and
n∑
j=1

λj |yj |2 ≥ λ1
n∑
j=1

|yj |2 = λ1‖y‖2

therefore

λ1 ≤ R(x) ≤ λn for all x 6= 0

Equalities are attained since RU (e1) = λ1 and RU (en) = λn. Going
to coordinates x minimum is attained for x = Ue1 = u1 = eigenvector
corresponding to λ1 since R(u1) = RU (e1) = λ1 , and for x = Uen =
un = eigenvector corresponding to λn, maximum is attained since R(un) =
RU (en) = λn. This proves:

Theorem 38. If A is a self-adjoint matrix then

max
〈x, Ax〉
‖x‖2

= λn the max eigenvalue of A, attained for x = un

and

min
〈x, Ax〉
‖x‖2

= λ1 the min eigenvalue of A, attained for x = u1

As an important consequence in numerical calculations: the maximum
eigenvalue of A can be found by solving a maximization problem, and the
minimum eigenvalue - by a minimization problem.

4.3. The minimax principle. Reducing the dimension of A we can find
all the eigenvalues, one by one. Consider the eigenvalues (24) of A and
the corresponding eigenvectors u1, . . . ,un which form an orthonormal basis:
Fn = ⊕nj=1Fuj .

We saw that maxR(x) = λn = R(un). The subspace Sp(un) and its
orthogonal complement Sp(un)⊥ = ⊕n−1j=1Sp(uj) are invariant under A.

Consider A as a linear transformation of the n − 1 dimensional vector
space Sp(un)⊥ to itself: its eigenvalues are λ1, . . . , λn−1, the largest being
λn−1. We reduced the dimension!

Using Theorem 38 for A as a linear transformation on the vector space
Sp(un)⊥ it follows that

(25) max
x∈Sp(un)⊥

R(x) = λn−1 is attained for x = un−1

The statement x ∈ Sp(un)⊥ can be formulated as the constraint 〈x,un〉 = 0:

max
x:〈x,un〉=0

R(x) = λn−1

We can do even better: we can obtain λn−1 without knowing un or λn.
To achieve this, subject x to any constraint: 〈x, z〉 = 0 for some z 6= 0.

It is easier to see what happens in coordinates y = U∗x in which A
is diagonal. The constraint 〈x, z〉 = 0 is equivalent to 〈y,w〉 = 0 where
w = Uz is some nonzero vector.
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Step I. We have

(26) max
y: 〈y,w〉=0

RU (y) ≥ λn−1 for all w 6= 0

since there is some nonzero vector ỹ belonging to both the n−1 dimensional
subspace {y : 〈y,w〉 = 0} and the two dimensional subspace Fen−1 ⊕Fen.
(Such a vector is easy to find: ỹ = (0, . . . , 0, yn−1, yn)T with 〈ỹ,w〉 = 0; if
wn 6= 0 take yn−1 = 1 and yn = −wn−1/wn, and if wn = 0 take yn−1 =
0, yn = 1). Using formula (23)

(27) RU (ỹ) =
λn−1|yn−1|2 + λn|yn|2

|yn−1|2 + |yn|2
≥ λn−1|yn−1|2 + λn−1|yn|2

|yn−1|2 + |yn|2
= λn−1

proving (26).
Step II. Inequality (26) implies that

(28) min
w 6=0

max
y: 〈y,w〉=0

RU (y) ≥ λn−1

Step III. We now show that equality is attained in (28) for special w.
For w = en we have, by (25),

max
y: 〈y,en〉=0

RU (y) = λn−1 attained for y = en−1

hence in (28) there is equality

min
w 6=0

max
y: 〈y,w〉=0

RU (y) = λn−1

In a similar way it is shown that λn−2 is obtained by a minimum-maximum
process, but with two constraints:

(29) min
w1,w2 6=0

max
〈y,w1〉 = 0
〈y,w2〉 = 0

RU (y) = λn−2

Indeed, consider a nonzero vector ỹ = (0, . . . , 0, yn−2, yn−1, yn)T satisfying
〈ỹ,w1〉 = 0 and 〈ỹ,w2〉 = 0. Then in formula (23)

RU (ỹ) =
λn−2|yn−2|2 + λn−1|yn−1|2 + λn|yn|2

|yn−2|2 + |yn−1|2 + |yn|2

≥ λn−2|yn−2|2 + λn−2|yn−1|2 + λn−2|yn|2

|yn−2|2 + |yn−1|2 + |yn|2
= λn−2

which shows that

(30) max
〈y,w1〉 = 0
〈y,w2〉 = 0

RU (y) ≥ λn−2

Since for w1 = en and w2 = en−1 we have equality in (30), and this implies
(29).
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Step by step, adding one extra constraint, the minimax procedure yields
the next largest eigenvalue.

Going back to the variable x it is found that:

Theorem 39. The minimax principle
Let A be a self-adjoint matrix, with its eigenvalues numbered in an in-

creasing sequence:
λ1 ≤ λ2 ≤ . . . ≤ λn

corresponding to the eigenvectors v1, . . . ,vn.
Then its Rayleigh’s quotient

R(x) =
〈x, Ax〉
‖x‖2

satisfies
max
x 6=0

R(x) = λn

min
z 6=0

max
〈x,z〉=0

R(x) = λn−1

min
z1,z2 6=0

max
〈x, z1〉 = 0
〈x, z2〉 = 0

R(x) = λn−2

and in general

min
z1,...zk 6=0

max
〈x, z1〉 = 0

...
〈x, zk〉 = 0

R(x) = λn−k, k = 1, 2, . . . , n− 1

Remark. Sometimes the minimax principle is formulated as

min
Vj

max
x∈Vj

R(x) = λj , j = 1, . . . , n

where Vj denotes an arbitrary subspace of dimension j.
The two formulations are equivalent since the set

Vn−k = {x | 〈x, z1〉 = 0, . . . , 〈x, zk〉 = 0}
is a vector space of dimension n− k if z1, . . . , zk are linearly independent.

A similar construction starting with the lowest eigenvalue produces:

Theorem 40. The maximin principle
Under the assumptions of Theorem 39

min
x 6=0

R(x) = λ1

max
z 6=0

min
〈x,z〉=0

R(x) = λ2
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and in general

max
z1,...zk 6=0

min
〈x, z1〉 = 0

...
〈x, zk〉 = 0

R(x) = λk+1, k = 1, 2, . . . , n− 1

4.4. The minimax principle for the generalized eigenvalue problem.
Suppose λ1 ≤ λ1 ≤ . . . ≤ λn are eigenvalues for the problem

(31) Av = λBv, A symmetric, B positive definite

It was seen in §3.8 that if S = [v1, . . . ,vn] is the matrix whose columns
are the generalized eigenvectors of the problem (31), then both matrices A
and B are diagonalized using a congruence transformation: STAS = Λ and
STBS = I.

Defining

R(x) =
〈x, Ax〉
〈x, Bx〉

it is found that in coordinates x = Sy:

R(x) = R(Sy) =
〈Sy, ASy〉
〈Sy, BSy〉

=
〈y, STASy〉
〈y, STBSy〉

=
λ1y

2
1 + . . .+ λny

2
n

y21 + . . .+ y2n
and therefore

maxR(x) = λn, minR(x) = λ1
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5. Singular Value Decomposition

5.1. Rectangular matrices.
For rectangular matrices M the notions of eigenvalue/vector cannot be

defined. However, the products MM∗ and/or M∗M (which are square,
even self-adjoint, and even positive semi-definite matrices) carry a lot of
information about M :

Proposition 41. Let M be an m× n matrix. Then

(32) N (M∗M) = N (M)

(33) R(MM∗) = R(M)

Proof. To show (32), let x ∈ N (M∗M); then M∗Mx = 0, so that 0 =
〈M∗Mx,x〉 = 〈Mx,Mx〉 which implies Mx = 0, showing that N (M∗M) ⊂
N (M). The converse inclusion is immediate.

To show (33), note that (32), used for M interchanged with M∗ implies
that N (MM∗) = N (M∗), hence N (MM∗)⊥ = N (M∗)⊥, which is exactly
(33) (recall that for any linear transformation L we have N (L∗)⊥ = R(L)).
2

Moreover, MM∗ and M∗M have the same nonzero eigenvalues:

Proposition 42. Let M be an m × n matrix. The matrices MM∗ and
M∗M are positive semi-definite. Moreover, they have the same nonzero
eigenvalues (with the same multiplicity).

More precisely, let λ1, . . . , λr be the positive eigenvalues. If M∗Mvj =
λjvj with v1, . . . ,vr an orthonormal set, then MM∗uj = λjuj for uj =

1√
λj
Mvj and u1, . . . ,ur is an orthonormal set.

Proof. MM∗ and M∗M obviously self-adjoint; they are positive semi-
definite since 〈x,M∗Mx〉 = 〈Mx,Mx〉 ≥ 0 and 〈x,MM∗x〉 = 〈M∗x,M∗x〉 ≥
0.

Let v1, . . . ,vn be an orthonormal set of eigenvectors of M∗M , the first
r corresponding to nonzero eigenvalues: M∗Mvj = λjvj with λj > 0, for
j = 1, . . . , r and M∗Mvj = 0 for j > r.

Applying M we discover that MM∗Mvj = λjMvj with λj > 0, for
j = 1, . . . , r and MM∗Mvj = 0 for j > r which would mean that Mvj
are eigenvectors to MM∗ corresponding to the eigenvalue λj provided we
ensure that Mvj 6= 0. This is true for j ≤ r by (32).

Also, all Mv1, . . . ,Mvr are mutually orthogonal, since 〈Mvj ,Mvi〉 =
〈vj ,M∗Mvi〉 = λiδij so Mvj ⊥ Mvi for all i 6= j ≤ r, and ‖Mvj‖2 =
λj . Therefore, all the nonzero eigenvalues of M∗M are also eigenvalues
for MM∗, with corresponding orthonormal eigenvectors uj = 1√

λj
Mvj ,

j = 1, . . . , r.
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The same argument can be applied replacing M by M∗, showing that
indeed, MM∗ and M∗M have the same nonzero eigenvalues and with the
same multiplicity. 2

5.2. The SVD theorem. We are going to bring any m × n matrix M to
a (rectangular) diagonal form by writing M = UΣV ∗ where Σ is a diagonal
m × n matrix, and U and V are unitary (of obvious dimensions). The
diagonal elements σj of Σ are called the singular values of M .

The SVD has a myriad applications in filtering, image reconstruction,
image compression, statistics, to name just a few.

Theorem 43. Singular Value Decomposition
Let M be an m× n matrix. Then

M = UΣV ∗

where:
• U is a unitary matrix whose columns are eigenvectors of MM∗

• V is a unitary matrix whose columns are eigenvectors of M∗M
• Σ is an m× n diagonal matrix

More precisely:
◦ if U = [u1, . . . ,ur,ur+1, . . . ,um] and V = [v1, . . . ,vr,vr+1, . . . ,vn] then

for j = 1, . . . r the vectors uj and vj correspond to the eigenvalue λj 6= 0
while all the others correspond to the eigenvalue 0.
◦ The diagonal matrix Σ has Σjj = σj =

√
λj for j = 1, . . . , r, and all

other elements are 0.
◦ Also, uj = 1

σj
Mvj for j = 1, . . . , r.

Remarks. 1. M∗M = V ΛnV
∗ and MM∗ = UΛmU

∗ where Λm,n are
diagonal matrices with entries λ1, . . . , λr and 0 everywhere else.

2. The singular values are preferred be listed in decreasing order σ1 ≥
σ2 ≥ . . . ≥ σr for reasons coming from applications, see §5.5.

Proof of Theorem 43.
Let v1, . . . ,vr and u1, . . . ,ur be as in Proposition 42; ur+1, . . . ,um and

vr+1, . . . ,vncorrespond to the eigenvalue 0.
Calculating

U∗MV =

 u∗1
...

u∗m

 M [v1, . . . ,vn] =

 u∗1
...

u∗m

 [Mv1, . . . ,Mvn] = Σ

where Σ is a matrix with elements Σij = u∗iMvj .
For j > r we have M∗Mvj = 0, hence by (41) also Mvj = 0, hence

Σij = 0, while for j ≤ r we have u∗iMvj = u∗i (
√
λj)uj =

√
λjδij , showing

that Σ is the diagonal matrix stated. 2
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5.3. Examples and applications of SVD.
Example 1. How does the SVD look like for a square, diagonal matrix?

Say

(34) M =

[
a1 0

0 a2

]

In this case

MM∗ =

[
|a1|2 0

0 |a2|2

]
= M∗M

therefore σj = |aj |, V = I, and uj = 1
σj
Mej =

aj
|aj |ej .

By the polar decomposition of complex numbers, write aj = |aj |eiθj then

uj = eiθjej and the SVD is[
a1 0

0 a2

]
=

[
eiθ1 0

0 eiθ2

] [
|a1| 0

0 |a2|

]

which is called the polar decomposition of the matrix (34).
In general:

Proposition 44. Polar decomposition of square matrices.
Every square matrix M can be decomposed as M = US with U unitary

and S positive semidefinite.

Proof.
Writing the SDV of the matrix M = UΣV ∗ = (UV ∗)(V ΣV ∗) which is

the polar decomposition since UV ∗ is a unitary matrix and V ΣV ∗ is a self-
adjoint matrix with non-negative eigenvalues. 2

Example 2. A rectangular diagonal matrix, say a1 0

0 a2
0 0

 =

 eiθ1 0 0

0 eiθ2 0
0 0 1


 |a1| 0

0 |a2|
0 0

[ 1 0

0 1

]

Example 3. A column matrix[
−1
2

]
=

[
− 1√

5
2√
5

2√
5

1√
5

] [ √
5

0

]
[1]

Example 4. An orthogonal matrixQ is its own SVD sinceQQ∗ = Q∗Q = I
hence V = I, σj = 1 and U = Q.
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5.4. The matrix of an oblique projection. Recall that a square matrix
P is a projection if P 2 = P ; then P projects onto R = R(P ), parallel to
N = N (P ).

For given complementary subspaces R and N a simple formula for the
matrix of P can be obtained from the singular value decomposition.

Since the eigenvalues of P can only be 0 or 1, then all σj = 1.
The vectors v1, . . . ,vr in Theorem 43 form an orthonormal basis forR(P ∗P ) =

N (P ∗P )⊥ = N⊥, and u1 = Pv1, . . . ,ur = Pvr form an orthonormal basis
for R(PP ∗) = R(P ) = R. Split the matrices U, V into blocks, the first one
containing the first r columns: U = [UA U ′], V = [VB V ′], and since Σ has
its upper-left r× r diagonal sub matrix equal to the identity, the SDV of P
becomes

P = UΣV ∗ = [UA U ′]

[
I 0
0 0

] [
V ∗B
0

]
= UAV

∗
B

Note that V ∗BUA = I. Indeed, the elements of this matrix are (V ∗BUA)i,j =

〈vi,uj〉 = 1
σj
〈vi,vj〉 = 1

σj
δij and for projections σj = 1.

Let y1, . . . ,yr be any basis of R; then B = [y1, . . . ,yr] = VBS for some
invertible r×r matrix S. Similarly, if x1, . . . ,xr is any basis of N⊥, then A =
[x1, . . . ,xr] = UAT for some invertible r × r matrix T . Then A(B∗A)−1B∗

is the matrix of P since

A(B∗A)−1B∗ = UAT (S∗V ∗BUAT )−1S∗V ∗B = UA(V ∗BUA)−1V ∗B = UAIV
∗
B = P

5.5. Low-rank approximations, image compression. Suppose anm×n
matrix M is to be approximated by a matrix X of same dimensions, but
lower rank k. If M = UΣV ∗ with singular values σ1 ≥ σ2 ≥ . . . ≥ σk ≥
. . . ≥ σr, let X = UΣkV

∗ where Σk has the same singular values σ1, . . . , σk
and 0 everywhere else. Then the sum of the squares of the singular values
of M −X is minimum among all matrices m×n of rank k (in the sense that
the Frobenius norm of M −X is minimum).

This low rank approximations are used in image compression, noise fil-
tering and many other applications.

6. Pseudoinverse

There are many ways to define a matrix which behaves, in some sense,
like the inverse of a matrix which is not invertible. This section describes
the Moore-Penrose pseudoinverse.

Finding the ”best fit” solution (in the least square sense) to a possibly
overdetermined linear system Mx = b yields a vector x+ which depends
linearly on b, hence there is a matrix M+ so that x = M+b; this is the
Moore-Penrose pseudoinverse of M .

Recall the construction of this solution.
Step I. If Mx = b is overdetermined (i.e. has no solutions) this is because

b 6∈ R(M). Then find x so that ‖Mx − b‖ is minimum. This happens if
Mx = Pb where Pb is the orthogonal projection of b on R(M).
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Step II. Now Mx = Pb is solvable. The solution is not unique if N (M)
is not {0}, in which case, if xp is a solution, then all vectors in xp +N (M)
are solutions.

Choosing among them the solution of minimal length. Since Fn = N (M)⊕
N (M)⊥ and N (M)⊥ = R(M∗), any x ∈ Fn can be uniquely written as x =
xN + xR with xN ∈ N (M) and xR ∈ R(M∗). Since ‖x‖2 = ‖xN‖2 + ‖xR‖2
(by the Pythagorean theorem) the solution of minimal length will be the
unique solution x+ ∈ xp +N (M) which belongs to R(M∗). (It exists: since
‖xp + w‖ is the distance between −xp and w ∈ N (M) it is minimum when
w is the orthogonal projection of −xp on N (M).)

Then M+ is defined by M+x = x+ for all x.

Example. Solve Σx = b for

Σ =

 σ1 0 0 0
0 σ2 0 0
0 0 0 0


Clearly R(Σ) = {y ∈ R3|y3 = 0} hence Pb = P (b1, b2, b3)

T = (b1, b2, 0)T .
Then Σx = Pb has the solutions x with xj = bj/σj for j = 1, 2 and x3,4
arbitrary, which has minimal norm for x3,4 = 0. We obtained

x+ =


b1/σ1
b2/σ2

0
0

 =


1/σ1 0 0

0 1/σ2 0
0 0 0
0 0 0


 b1
b2
0

 ≡ Σ+b

For a general m × n diagonal matrix Σ with singular values Σjj = σj
similar arguments show that its pseudoinverse Σ+ is an n × m diagonal
matrix with singular values Σ+

jj = 1/σj .

For a general m × n matrix M with singular value decomposition M =
UΣV ∗, solving Mx = b is equivalent to solving Σy = U∗b where y = V ∗x.
This that the optimal solution y+ = Σ+U∗b, therefore (since U preserves
distances) x+ = V Σ+U∗b. We proved

Theorem 45. The pseudoinverse of a matrix M with singular value decom-
position M = UΣV ∗ is M+ = V Σ+U∗.

The pseudoinverse has many properties similar to those of an inverse. The
following statements are left as exercises.

1. If M is invertible, then M−1 = M+.
2. MM+M = M and M+MM+ = M+ (though MM+ and M+M are

not necessarily the identity).
3. MM+ and M+M are orthogonal projectors.
4. The operator + commutes with complex conjugation and transposition.
5. (λM)+ = 1

λM
+
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6. If λ is a scalar (think M = [λ]) then λ+ equals 0 if λ = 0 and 1/λ if
λ 6= 0.

7. The pseudoinverse of a vector x is x+ = x∗

‖x‖2 if x 6= 0 and 0T if x = 0.


