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1. VECTOR SPACES

1.1. Notations.
x € S denotes the fact that the element x belongs to the set S.
A C B denotes that the set A is included in the set B (possibly A = B).
7 denotes the set of all integer numbers,
Z4 denotes the set of all positive integers: Z;, = {1,2,3,...},
N denotes the set of natural numbers: N = {0,1,2,3,...},
Q denotes the set of rational numbers: Q = {™* |m,n € Z, n # 0},
R denotes the set of real numbers,
C denotes the set of complex numbers.
Of course, R C C (the set of real numbers is included in the set of complex
numbers).
While in planar geometry it is customary to denote the coordinates of
points by (z,y), in linear algebra it is often preferable to use (x1,x2).
Similarly, instead of denoting generic coordinates in space by (x,y, z), it
may be preferable using (x1, x2, x3).
In linear algebra the components of vectors are listed vertically, so I should
write them as (z1,22)7. I will start using the correct notation as soon as it
matters, namely when they start being multiplied by matrices.
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1.2. The definition of vector spaces.

1.2.1. Classical eramples. The rules of operations with vectors originate
from mechanics (working with forces, velocities) and from the usage of com-
plex numbers.

Recall the vectors in the plane: one can do geometry with them by adding
or subtracting, by multiplying with numbers.

Any vector x in the plane can be represented as an arrow starting at
the origin O and ending at a point with coordinates, say, (x1,x2). When
multiplying the vector x by a scalar ¢ (which is a real number) the result is
a vector cx staring at O and ending at the point (cz1, cxs).

When adding, using the parallelogram rule, two vectors x, respectively
y, which start at O and end at (x1,x2), respectively (y1,y2), the result
is a vector x + y, which starts at O and ends at (z; + y1,22 + y2). The
result of the subtraction x — y, using the triangle rule, is a vector ending at
(21 — Y1, 22 — Y2).

Similarly for vectors in space (3 dimensions): when adding (using the par-
allelogram rule) two vectors x, y (starting at O and) ending at (z1, z2, x3),
(y1,y2,y3) we obtain a vector (starting at O and) ending at (x1 + y1,z2 +
Y2, 3 + y3). Multiplying the vector x by the scalar ¢ we obtain a vector cx
(starting at O and) ending at (cz1, cxa, cx3).

Therefore: to operate with vectors we don’t need to draw them, we can
Just work with coordinates! We just write x = (x1,z2,23), and we can call
this object a vector, or a point, whichever helps our intuition more.

We denote by R? the set of vectors in the plane:

R? = {x = (z1,22) | z; € R}

with addition defined as
x+y = (z1,22) + (y1,92) = (21 + Y1, 22 + ¥2)
and multiplication by scalars defined as:
cx = c¢(x1,m9) = (cx1,cx2) for c € R
Similarly R denotes the set of vectors in space:

R3 = {(x1, 29, 73) | z; € R}

with operations defined as
X+y = (z1,72,23) + (y1,%2,¥3) = (1 + Y1, T2 + y2, 73 + ¥3)

cx = c(x1, e, x3) = (cx1,cx9,c23) for c€R
Similarly, we can define n-dimensional vectors by
R" = {x = (z1,22,...,2,) |z; € R}
which we can add by:
x+y=(x1,22,....,20) + (W1,Y2,-- -, Yn) = (T1 + Y1, 22 + Y2, . .., Ty, + Yn)
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and multiply by scalars:
cx = c(x1,T2,...,xy) = (cx1,CT9,...,cT,) for c€R
1.2.2. Complex vectors. It turns out that there is a great advantage to allow
for complex coordinates, in which case we consider C2:
C?={z=(21,22); 212 € C}
which can be added:
z+w = (21, 22) + (w1, w2) = (21 + w1, 22 + w2)
and multiplied by scalars which are complex numbers:
cz = c(z1,22) = (cz1,¢29) for ceC

Similarly, we can consider C3,. .., C".

1.2.3. The Abstract Definition of a Vector Space. The following definition
summarizes some properties of addition and multiplication by scalars of the
vector spaces listed above.

In the following F' denotes R or C. In fact, F' can also be Q, Z,, or any
field®.

Definition 1. The set V is a vector space over the scalar field F' if V is
endowed with two operations, one between vectors:

(1) for every x,y € V thereisx+yeV
and one between scalars and vectors:
(2) for every c€e F and x € V' thereis ex € V
having the following properties:
(i) commutativity of addition:
X+y=yV+X
(ii) associativity of addition:
x+(y+z)=(x+y)+z
(iii) existence of zero: there is an element 0 € V' so that
x+0=xforallxeV

(iv) existence of the opposite: for any x € V there is an opposite, denoted
by —x, so that
x+(—x)=0
(v) distributivity of scalar multiplication with respect to vector addition:
c(x+y)=cx+cy
(vi) distributivity of scalar multiplication with respect to field addition:

(c+d)x =cx+dx

1A field is a commutative ring where any nonzero element has an inverse.
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(vii) compatibility of scalar multiplication with field multiplication:
c(dx) = (ed)x
(viii) identity element of scalar multiplication:
Ix=x

Remark 2. From the axioms above we can deduce other properties, which
are obvious for R™ and C™, but we need to know them in general. For
example, it follows that:

(ix) the zero scalar multiplied by any vector is the zero vector:

0x=0
(x) the scalar —1 multiplying any vector equals the opposite of the vector:
(-)x=—x

Proof:

To show (iz) note that O0x = (0 + 0)x = 0x + Ox (by (vi)) so 0x =
0x + 0x and adding the opposite of 0x we get 0x = 0 (using, in order,
(iv), i), (iv), i)

Then to show (z) note that (—1)x+x = (—1)x+1x = (—-1+1)x=0x =0
where we used, in order, (viii),(vi),(iz). O

Remark. Another name used for vector space is linear space. The
latter name is preferable when the space V consists of functions, see exam-
ples 4.-8. below.

Vector spaces over the scalars F' = R are also called ”vector spaces over
the reals”, or "real vector spaces”, and similarly, for the complex case F' = C,
one can say ’vector spaces over the complex numbers”, or ”complex vector
spaces”.

1.2.4. Examples.

1. R, R%, R3 ... R" are vector spaces over the reals.

2. C, C?, C3,... C™ are vector spaces over the complex numbers.

2. C™ is also vector spaces over the real numbers, but R™ is not a vector
space over C.

3. R%+ = {(z1,22,23,...,2p,...) | xj; € R} is a vector space over the reals.
4. The set of all polynomials with real coefficients, of degree at most n

(3) Pa(R) = {p(t) = ap + art + ast® + ... + azt" | a; € R}

is a linear space over R. The zero element is the zero polynomials.

4’. The set of all polynomials with real coefficients, of degree exactly n is
not a linear space over R.

5. The set of all polynomials with real coefficients

(4) P(R) = {p(t) = ap + art + ast® + ... + ant" |a; € F,n € N}
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is a linear space over R.
6. The set of all polynomials with complex coefficients

(5) P(C) = {p(t) = ap + a1t + ast® + ... + ayt™|a; € C,n € N}

is a linear space over C. It is also a linear space over R.
7. The set of functions which are continuous on [0, 1] and have values in F:

C([0,1], F) ={f : [0,1] — F'| f continuous }

is a linear space over F. The zero element is the function which is identically
Zero.

8. The set of all solutions of the linear differential equation u”(t) = u(t) is
a linear space.

Exercise. Justify the statements 3.-8.

1.3. Subspaces. Let V be a vector space over the scalars F. If U is a
subset in V' we can add two elements of U, but there is no guarantee that
the results will remain in U. Similarly, we can multiply by scalars elements
of U, but there is no guarantee that the result will be also in U. But if these
are true, then U is called a subspace of V:

Definition 3. A subset U C V is called a subspace of V if
for any x,y € U, c€ FF we have x+y € U, cx € U

Note that the two properties above are sometime written more compactly
as

for any x,y € U, ¢,d € F' we have cx +dy € U

(but the two formulations are equivalent - why?).

Remarks.

1. Note that a subspace must contain the zero vector (multiply any vector
in U by the scalar 0).

2. Moreover, a subspace U is a vector space in itself (with respect to
the addition and scalar multiplication inherited from the bigger space V).
Indeed, properties (1), (2) are guaranteed by the definition of the subspace,
while all the other properties (i)-(viii) are automatically satisfied (they are
true for all elements of V', in particular for those in U).

1.3.1. Examples.

Let V be a vector space.
The set {0}, consisting of only the zero element, is a subspace of V.
V' is a subspace of itself.
U C R? given by U = {(x1,72) | 71 = 322} is a subspace of R2.
UCR3 U= {(x1,22,73) | £1 = 322,73 = x5} is a subspace of R3.
U CR3 U= {(x1,72,73) | 72 = 1} is not a subspace of R3.
Lines which pass through the origin are subspaces.
Any line which is a subspace must pass through O.

No Ot W e
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8. Planes passing through the origin are subspaces in R3.
Indeed, a plane in R? is given be a linear equation: Az; + Bxy + Caz = D.
The plane passes through the origin for D = 0. Consider then a plane

U={(z1,22,23) € R3 | Ax1 + Bxzg 4+ Czg = 0}

It is now easy to show that U is a subspace.
9. P, is a subspace of the space of P (see (3), (4), (5)).
10. Py, is a subspace of C]0, 1].
11. The set {(z1,72) € R?|z; > 0} is not a subspace.
Exercise. Justify the statements above.

Definition 4. Let U, W two subspaces of V. Then their intersection U NW
consists of all vectors x that belong to both U and W :

UNW ={x|x€U and x € W}

Exercise. Show that the intersection of two subspaces is also a subspace.

Example. Consider two planes U, W in the space, containing the origin
O. If U # W then their intersection is a line containing O.

The union of two subspaces is not necessarily a subspace. But we may
consider the smallest subspace containing them:

Definition 5. Let U, W two subspaces of V. Their sum U + W consists of
all vectors u+w withu € U and w € W:

U+W={u+wluelU weW}

Exercise. Show that the sum U +W of two subspaces is also a subspace.
Examples.
1. Consider two lines U, W in the space R3, passing thorough the origin. If
U # W then U + W is the plane containing the two lines.
2. Consider a line U and a plane W in the space R3, both passing thorough
the origin. If U is not contained in W then U + W is the whole space R>.
Butif U Cc W then U+ W =W.
Exercise. Give a justification for the statements above.

1.4. Linear Span. Let V be a vector space over the scalars F.

Definition 6. The vector u is the linear combination of the wvectors
Vi,...,V, means that

u=cvy+...+cv, for some c1,...,¢c, € F
Note that any linear combination of vectors vi,...,v, € V still belongs
to V.
Exercise. Show that if all vq,...,v, belong to a subspace U of V, then

any linear combination of these vectors also belongs to the subspace U.
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Definition 7. Let vy,...,v, be vectors in V. The set of all linear combina-
tions of these vectors is called the subspace spanned by vi,...,v, (or simply
the span of vi,...,v;):

Sp(vi,...,vp.)={avi+...+¢v, | c1,...,c, € F}

Exercise. Show that Sp(vi,...,v;) is indeed a subspace.
Exercise. Show that Sp(vy,...,v,) is the smallest subspace containing
all vi,...,v, (in the sense that if all vy, ..., v, belong to a subspace U, then

necessarily Sp(vy,...,v,) C U).
Note: it is sometimes useful to define the linear span of a possibly infinite
set S of vectors (S C V). In this case, define

Sp(S)={avi+...+epvi |v; €S8, ¢jeF, kely}

Warning: this formula does not hold for vector spaces with extra structure,
such as Banach or Hilbert spaces. But here is an equivalent definition which
works: Sp(S) is the intersection of all subspaces containing S (this requires
a proof, not included here).

1.5. Linear dependence; linear independence.

Definition 8. A finite set of vectors vi,...,v,. € V are called linearly
dependent if there is a nontrivial linear relation between them: there exist
some scalars ci,...,c, € F not all zero so that their linear combination is
the zero vector:
civi+...+¢v, =0 where at least one c; # 0

Note: this means that (at least) one of the vectors vy,..., v, belongs to
the span of the others. (Why?)

Examples.

1. If i = (1,0), j = (0,1) then Sp(i,j) = R
2. The vectors i, j,i—j are linearly dependent, and so are i,j,i —j,2i. Then
Sp(i7j7 i _J) = Sp(i7j7 i—j, 21) = Sp(17.])
3. If u, v are two nonzero vectors in R then Sp(u, v) is the plane determined
by these two vectors if u f| v, and it is the line containing the vectors if u||v
(in which case u, v are linearly dependent).

Exercise. Prove the statements above.

Remark 9. A useful observation: if two vectors are linearly dependent then
either they are scalar multiples of each other, or one of them is zero.

Indeed, let u,v € V with cu 4+ dv = 0 with not both ¢, d zero. Say ¢ # 0
then dividing by ¢ we have u + %v = 0 and adding the opposite u = —gv
hence u is a multiple of v. Furthermore, note that also d # 0 (otherwise we
would have u = 0) hence also v = —5u. O

Definition 10. A set of vectors vi,...,v, € V are called linearly indepen-
dent if they are not linearly dependent, or, in other words, if

cvi+...+¢v, =0 impliesc; =0, ...,¢, =0
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And more generally:

Definition 11. An (infinite) set of vectors S C V is called linearly inde-
pendent if all its finite subsets are linearly independent.

Remark 12. A linearly independent set cannot contain the zero vector.

Indeed, consider a collection vi = 0, va,...,v,, € V. Then they are
linearly dependent, since we have civy + cove + ... + ¢ v, = 0 for
ci=1,c0=0,...,¢,=0. 0O

Examples.
. The vectors (1,0), (2,1) € R? are linearly independent.
. The vectors (1,0,0),(0,1,0),(0,0,1) € R? are linearly independent.
. The vectors (1,0), (0,1), (—2,3) € R? are linearly dependent.
. The polynomials 1, ¢, t2 € P are linearly independent.
. The polynomials 1, ¢, t2,...,t"... € P are linearly independent.

. The polynomials 1+ ¢ + t2 t2 — 1 3t are linearly independent in P.
Exerc1se Prove the statements above

© 00 O U=

Remark 13. Consider a collection of vectors xi1,...,x; € V, all x; # 0.
Then x1,...,x, € V are linearly dependent if and only if one of them belongs
to the span of the others.

The proof is left to the reader.

1.6. Basis and Dimension.

Definition 14. A set of vectors S C V is a basis of V' if:
(i) it is linearly independent and
(i) its span equals V.

In the Examples above, the vectors in Examples 1,2,4,5 above form bases
for the stated vector spaces, but this is not true for Example 3.

Theorem 15. Any vector space has a basis. Moreover, all the basis of V
have the same number of elements, which is called the dimension of V.

(The proof will not be discussed here; basically one chooses a maximal
set of linearly independent vectors.)

Remark: if the dimension of V' is infinite, we can also distinguish between
different magnitudes of infinity...but this has to wait until next semester.
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Examples

0. R3 is a vector space over R of dimension 3, with a basis consisting of
the vectors e; = (1,0,0), e; = (0,1,0),e3 = (0,0,1). Indeed, any x € R3
having coordinates x = (x1,x2,x3) can be written as a linear combination

X = (21, 22,23) = x1€1 + T2€2 + T3€3

and the vectors e, es, e3 are linearly independent.
1. R" is a vector space over R of dimension n, with a basis consisting of
the vectors

(6) e =(1,0,...,0), e2=1(0,1,0...,0),...,e, = (0,0,...0,1)

Indeed, any x € R™ having coordinates x = (z1, ... x,) can be written as a
linear combination

x = (21,... Tp) = T1€1 + T2€2 + ... + Tpe)

Also, the vectors eq, ..., e, are linearly independent (why?).

The basis (6) is called the standard basis of R".

2. Similarly, C" = {(z1,... z,)|2; € C} is a vector space over C of
dimension n, with a basis consisting of the vectors (6).

3. Pn(F), see (3), is a vector space over the field of scalars F', of dimension
n+1, and a basis is 1, ¢,t2,... t".

4. The set of all polynomials with coefficients in F', see (4), (5) is a vector
space over the field of scalars F', has infinite dimension.

Exercise. Justify the statements in the examples above.

Let V be a vector space over F and let vi,vo,...,Vv, be a basis. Since
Sp(vi,va,...,vy) =V then any x € V belongs to Sp(vy,va,...,Vvy,), hence
has the form

(7) X =c1Vy + Ve + ...+ ¢, v, for some scalars ¢, ca,..., ¢y

which is called the representation of the vector x in the basis vi,va, ..., vy,
and the scalars ¢y, ..., ¢, are called the coordinates of the vector in the given
basis.

The representation of a vector in a given basis is unique. Indeed,
suppose that x can be represented as (7), and also as

(8) x=dyvi+dova +...+d,v, forsome scalars di,ds,...,d,
Then subtracting (7) and (8) we obtain
cvitcavo+ ...+ cpvy — (divi +dave + ...+ dyvy,) =0

which (using the properties of the operations in a vector space) can be
written as

(61 — dl)Vl =+ (CQ — d2)v2 4+ ...+ (Cn — dn)Vn =0

and since vy, va, ..., v, are linearly independent, then necessarily (¢; —d;) =
0,...,(cn —dyp) = 0 therefore ¢c; = dy,...,cp =dy,. O
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Once a basis is specified, operations are done coordinate-wise:
Remark 16. Let vi,va,...,v, be a basis of V. If x;y € V then x =
di=16jVis Y = > iy djv; for some cj,dj € F. It follows that

n

n
x+y:Z(cj+dj)vj, aX:Zozcjvj, for any a € F
j=1 J=1

Theorem 17. If a vector space V' has finite dimension n, then any collection
consisting of n 4+ 1 vectors is linearly dependent.

Why: Let vi,...,v, be a basis for V. Assume, to arrive at a contradic-
tion, that x1,...,Xy,, X1 € V are linearly independent.

The plan is to express vy, . .., v, in terms of x1, . . ., X, and then the linear
dependence of x1,...,x,, X, 1 Will give a linear relation among vi,...,vy,.

If one of x; equals 0, then x1,...,X;,,X,4+1 € V are linearly dependent,
which is a contradiction. So we may assume that all x; # 0.

Since vi,...,Vv, is a basis then

X1 =c1vi+...+c,v, for somecq,...,c, € F

Since x; # 0 then at least one scalar ¢; is not zero, say c¢; # 0 (we can

always renumber the v;) . We can solve for v; in terms of x1,va, ..., vy:
1 Co Cn N - .

(9) Vi=—X| — —=Vg—...— —V, =¢1X] +Cavy+ ...+ ¢,V
C1 C1 C1

We repeat the argument for vo:
X9 =divy+...+d,v, forsomed,...,d, €F
and replacing v; from (9) it follows that
(10) X9 = d1X1 + dovo + ...+ dp vy,

Noting that not all Jg, ... ,Jn can be zero (otherwise x2,x; would be linearly
dependent) one of them, say da, is not zero, hence we can solve (10) for v
in terms of X1,Xs2,Vs,...,Vy:

Vo = Jlxl + d~2x2 + 623V3 + ...+ a?nvn

Continuing the argument, in the end we obtain vy, ..., v, as linear com-
binations of x1,...,X,.

But x,41 can be written as a linear combination of vy, ..., v,, hence as
a linear combination of xi,...,X,, which contradicts their assumed linear
independence. O

Example. Sp(1 +t+ 12,1 —1,3t) = Ps.
Indeed, by Example9 of §1.5, the polynomials 1 + ¢ + 2, t?> — 1, 3t are
linearly independent. Hence they span a 3-dimensional subspace in Ps.
Since dim P2=3, then any polynomial in Py belongs to Sp(1+t+t2,12—1, 3t),
hence Sp(1 4t + 2,12 —1,3t) = Py. O
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Theorem 18. Every linearly independent set of vectors v1,...,v, in a finite
dimensional vector space V' can be completed to a basis of V.

How: If Sp(v1,...,v,) =V then vy,..., v, form a basis and we are done.

Otherwise, there is some vector in V, call it v,41, that cannot be written
as a linear combination of vi,...,v,. Then this means that vi,..., vy, vy41
is a linearly independent set (convince yourselves!).

We then repeat the steps above with vq,...,v,, v,41.

The procedure must end, since by Theorem 17 we can have at most dim V'
linearly independent vectors. O

1.6.1. More examples.

1. Let u = (1,2, -3) € R3. What is Sp(u)?

Solution: Sp(u) = {cu|c € R} is the line through O in the direction of
u.

2. Let u= (1,2,-3),v = (2,4,—6) € R3. What is Sp(u, v)?
Solution: note that v = 2u hence Sp(u,v) = Sp(u,2u) = Sp(u) = as
above.

3. Let u= (1,2,-3),w = (1,1,0) € R®. What is Sp(u, w)?

Solution: (think geometrically) if u, w are dependent, then they are multi-
ple of each other (by Remark9), and it is obvious by inspection that it is not
case. Hence Sp(u,w) = the smallest subspace containing two independent
vectors = the plane (through O) containing them.

4. Let u = (1,2,-3),v = (2,4,—6),w = (1,1,0) € R3. What is
Sp(u,v,w)? Find a basis for this subspace. What is its dimension?

Solution: since v = 2u then Sp(u,v,w) = Sp(u,2u,w) = Sp(u,w) =
the plane containing u, w.

Basis: clearly u, w are independent and span Sp(u, v, w) so they form a
basis. Dimension 2.

What if we are not quite sure if u,w are independent? Let’s check:
suppose that for some scalars ¢,d we have cu + dw = 0. But cu + dw =
c(1,2,-3)4+d(1,1,0) = (c+d, 2¢+d, —3c) = (0,0,0) hence c+d = 0, 2¢+d =
0 — 3¢ = 0 hence ¢ = d = 0, independent!

5. Show that x = (1,0,0), y = (1,1,0), z = (1,1,1) form a basis for R3.
Do they form a basis for C* (as a complex vector space)?

6. Show that C is a real vector space, find a basis and its dimension.
Same questions for C? and for P, (C).

1.7. Direct sum of subspaces. Let V' be a vector space over the field I
(which for us is either R or C).
Recall that if U, W are two subspaces of V' then their sum is defined as

U+W={u+wluelU, weW}
and that U + W s also a subspace of V.

Definition 19. If U NW = {0} then their sum U + W is called the direct
sum of the subspaces U and W, denoted by U P W.
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Examples. Let V = R3.
1) If U and W are two distinct planes through O then U + W = R3, and
the sum is not direct (the intersection of two distinct planes is a line).
2) If U and W are two distinct lines through O then U +W =U@PW =
their plane.
3) If U is a line and W is a plane through O, then U + W = U@ W =
the whole space if U ¢ W, and U+ W = W is U C W and the sum is not
direct.

Theorem 20. Existence of the complement space. IfU is a subspace
of V', then there exists W a subspace of V so that UE@PW =V.

Proof.
By Theorem 15, U has a basis vy, ..., v,. By Theorem 18, this can be com-
pletes to a basis vi,..., Vv, Veg1,..., v, of V. Take W = Sp(uy41,...,up).

It only remains to show that U N W = {0} and that U + W =V, which are
left to the reader. O

Examples.
1. Let U be the xj-axis in V = R? (the z;xo-plane). Any different line W
(through O) is a complement of U. (Why?)
2. Let U be the z1-axis in V = R3. Any plane (through O) not containing
W is a complement of U. (Why?)

Theorem 21. Let U, W be two subspaces of V with UNW = {0}. Then if
Ui, ..., U, is a basis of U, and vy, ..., vy is a basis of V' then
ui,...,Up,Vi,...,Vy is a basis of UEPW.
In particular
dimU P W = dim U + dim W

The proof is left as an exercise.
Remark: more is true, namely

dim(U + W) =dimU +dim W —dimU NW

Remark 22. If V. =U@W then any x € V can be uniquely decomposed
asx=u+wuwithueUweW.

The proof is left as an exercise.



