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0.1. General properties. We employ the usual definition

Ff = f̂ =
1√
2π

∫ ∞
−∞

f(x)e−ixξdx

Proposition 1.

(1) ̂f(x+ h) = f̂(ξ)eiξh

(2) ̂f(x)e−ixh = f̂(ξ + h); h ∈ R
(3) f̂(ax) = |a|−1f̂(a−1ξ); a 6= 0

(4) f̂ ′(x) = iξf̂(ξ)

(5) x̂f = i ddξ f̂(ξ)

(6) f̂g = 1√
2π
f̂ ∗ ĝ = 1√

2π

∫∞
−∞ f̂(s)ĝ(ξ − s)ds

1
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Many of the proofs we have done them already. The rest are simple
exercise, except perhaps for the last one, which we show by taking

(1)
1√
2π
F−1

∫ ∞
−∞

f̂(s)ĝ(ξ − s)ds =
1

2π

∫ ∞
−∞

eixξ
∫ ∞
−∞

f̂(s)ĝ(ξ − s)dsdξ

=

∫ ∞
−∞

eixt
1√
2π
f̂(t)eixu

1√
2π
ĝ(u)dudt = fg

where we made the change of variables s = t, ξ − s = u
Let S(R) be the Schwarz space.

Proposition 2. If f ∈ S(R) then f̂ ∈ S(R).

We have shown this before as well.
An important invariance property is the following.

Theorem 3. Let f(x) = exp(−x2/2). Then f̂(ξ) = exp(−ξ2/2).

In other words exp(−x2/2) is an eigenfunction of F corresponding to the
eigenvalue 1. What other eigenvalues are possible?

Proof. Let f(x) = e−x
2/2. Then,

F (ξ) =
1√
2π

∫ ∞
−∞

e−x
2/2e−ixξdx

Then,

√
2πF ′(ξ) =

∫ ∞
−∞

(−ix)e−x
2/2e−ixξdx = i

∫ ∞
−∞

f ′(x)e−ixξdx

On the other hand,

F ′(ξ) = ξf̂(ξ) = −ξF (ξ)

(why?) It follows that

F (ξ) = Ce−x
2/2

Now, F (0) = 1 (why?). Thus

F (ξ) = e−x
2/2

�

Using Proposition 1 (3) we see that

F(e−βx
2
) =

√
π

β
e
− ξ

2

4β
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1. Solving PDEs by Fourier transform

1.1. The heat equation. Consider again the heat equation in one dimen-
sion

ut = uxx; u(t = 0, x) = f(x) ∈ L2

By taking the Fourier transform in x we get

ût = −ξ2û⇒ û(t, ξ) = C(t)e−tξ
2

and imposing the boundary condition, we must have

û(t, ξ) = f̂(ξ)e−tξ
2

and by taking F−1 we get

u(x, t) =
1√
4πt
F−1(e−x2/(4t)) ∗ f =

1√
4πt

∫ ∞
−∞

e−u
2/(4t)f(x− u)du

1.2. The Laplace equation in the upper half plane. Consider the equa-
tion

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0; u(x, y = 0) = f(x) ∈ L2

Taking the Fourier transform in x we get

−ξ2û+ ûyy = 0

with the only admissible solution (one which is not growing as ξ → ∞ and
imposing the boundary condition we get

û(ξ) = f̂(ξ)e−|ξ|y

and it follows that

u(x, y) =
1

π

∫ ∞
−∞

y

t2 + y2
f(x− t)dt

2. The Fourier transform in Rd (Based on [1])

2.1. Notations. Given (x1, ..., xd) ∈ Rd one writes

|x| =
√
x21 + · · ·+ x2d

and we often abbreviate 〈x, y〉 = x · y. Also, for x ∈ Rd,m ∈ Zd we write

xm = xm1
1 · · ·x

md
d

and also (
∂

∂x

)m
=

(
∂

∂x1

)m1

· · ·
(

∂

∂xd

)md
=

∂|m|

∂xm1
1 · · · ∂x

md
d

where (there is some some ambiguity of notation) |m| = m1 + · · ·+md.
Symmetries play an important role in the analysis of PDEs and in other

problems as well. These symmetries are: translations, dilations, and rota-
tions. The translation by h is simply x 7→ x+ h, dilations are x 7→ ax with
a > 0 and rotations are linear orthogonal transformations, represented by
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matrices with real valued entries, s.t. 〈Rx,Ry〉 = 〈x, y〉. As matrices, these
are unitary matrices with real entries, and preservation of scalar product
simply means RR∗ = R∗R = I where R∗ is the adjoint of R, and since
R is real-valued, R∗ = Rt. We have det(R) = ±1. In particular −I is
a rotation, but an improper one: det(I) = −1. It represents a reflection
(symmetry) about the origin. Rotations with det(R) = 1 are called proper
rotations. General rotations are then proper rotations composed with a
symmetry w.r.t. 0.

In R3 the description of all possible rotations was provided by Euler. For
any proper rotation, there is an axis of rotation d: R(d) = d; If P is the
plane through 0 ⊥ to d, then R(P ) = P and on P , which is isomorphic to
R2, R is a two-dimensional rotation matrix R2:(

cos θ − sin θ
sin θ cos θ

)
2.2. Functions with rapid decrease in Rd. By definition, these are func-
tions with the property

sup
x∈Rd

|xk||f(x) <∞ ∀k ∈ N

Integrals over the whole of Rd are defined in particular on functions of rapid
decrease. They are improper integrals, defined as∫

Rd
f(x)dx = lim

R→∞

∫
BR

f(x)dx

where BR is the ball of radius R. Instead of BR we could take, with the
same result, QR, the (hyper)cube of side R. In the latter interpretation, this
is an iterated improper integral.

You can convince yourself that the limit exists if

sup
x∈Rd

xd+ε|f(x) <∞ for some ε > 0

Functions with moderate decrease are defined as above, with ε = 1.

2.2.1. Properties.

(1) ∫
Rd
f(x+ h)dx =

∫
Rd
f(x)dx

(2)

ad
∫
Rd
f(ax)dx =

∫
Rd
f(x)dx

(3) For any rotation R,∫
Rd
f(Rx)dx =

∫
Rd
f(x)dx
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2.3. (Hyper)Spherical coordinates. We remind that polar coordinates
in R2 are defined by (r, θ) where r is the distance to the origin and θ ∈ [0, 2π)
is the angle with the x axis, and we have∫

R2

f(x)dx =

∫ 2π

0

∫ ∞
0

f(r cos θ, r sin θ)rdrdθ

In R3 we similarly have

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

and∫
R3

f(x)dx =

∫ 2π

0

∫ π

0

∫ ∞
0

f(r sin θ cosφ, r sin θ sinφ, r cos θ)r2 sin θdθdφdr

This is generalized as follows: We write a point on the hypersphere Sd−1 of
radius 1 as γ and write∫

Rd
f(x)dx =

∫
Sd−1

∫ ∞
0

f(rγ)rd−1dσ(γ)

where dσ(γ) is the surface element on Sd−1.

2.4. The Schwarz space in Rd. The Schwarz space in Rd S(Rd) consists
of all indefinitely differentiable functions on Rd with the property

sup
x∈Rd

∣∣∣∣xm( ∂

∂x

)n
f(x)

∣∣∣∣ <∞
for all multi-indices m,n.

2.5. The Fourier transform on S(Rd). If f ∈ S(Rd) we define, for ξ ∈ Rd,
in one convention

f̂(ξ) = (2π)−d/2
∫
Rd
f(x)e−x·ξdx

and in a more common notation in PDEs,

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdx

From this point on, we will use the latter definition.
Some properties of the Fourier transform in Rd are listed below. We write

F(f) = f̂ as f(x) 7→ f̂(ξ).

Proposition 4. (1)

f(x+ h) 7→ f̂(ξ)e2πiξh; h ∈ Rd

(2)

f(x)e−2πix·h 7→ f̂(ξ + h); h ∈ Rd
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(3)

f(ax) 7→ a−df̂(aξ); a ∈ R+

(4) (
∂

∂x

)m
f(x) 7→ (2πiξ)mf̂(ξ)

(5)

(−2πix)mf(x) 7→
(
∂

∂ξ

)m
f̂(ξ)

(6) If R is a rotation, then

f(Rx) 7→ f̂(Rx)

Proof. Only the last property requires a proof, as the proof of the others
is similar to the one-dimensional case. For the last property, we make the
change of variable t = Rx and remember that 〈R−1x,R−1ξ〉 = 〈x, ξ〉 and
that |det(R)| = 1.

�

Proposition 5. The Fourier transform maps S(Rd) into itself.

Proof. The proof is similar to the one-dimensional one. �

Definition 6. A function is radial if f(x) = fr(|x|) for some fr.

Proposition 7. A function is radial if and only if it has radial symmetry,
that is f(Rx) = f(x) for all x.

Proof. Indeed, in one direction, f(Rx) = fr(|Rx|) = fr(|x|) = f(x). In the
opposite direction let x and x′ be s.t. x 6= x′, |x| = |x′| and let’s for now
prove the statement for R3. The general proof is not much more difficult.
Taking the plane generated Π by x, x′ there is a 2-d rotation s.t. R2x

′ = x.
A 3-d rotation that does the same is R2 about the normal to Π. Then
f(x) = f(Rx) = f(x′) and thus f only depends on |x|.

How would you generalize this argument to Rd? �

Corollary 8. The Fourier transform of a radial function is radial.

Proof. This follows from Proposition 4 (6), since f̂(Rξ) = f̂(ξ) �

The d−dimensional Gaussian f(x) = e−ar
2
, r = |x| is an example of a

radial function.

Proposition 9 (The inversion formula). If f ∈ S(Rd) and f̂ = F(f), then

f(x) = F−1(f̂) =

∫
Rd
f̂(ξ)e2πix·ξdξ

Proposition 10 (Plancherel formula in Rd).∫
Rd
|f̂(ξ)|2dξ =

∫
Rd
|f(x)|2dx
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Definition 11. Convolution of two functions, say in S(Rd) is defined in a
way similar to convolution in R:

(f ∗ g)(x) =

∫
Rd
f(t)g(x− t)dt

Proposition 12.

f̂ ∗ g = f̂ ĝ; f̂g = f̂ ∗ ĝ

Proof. The proofs can be obtained from the fact that the Rd Fourier trans-
form in Rd is an iterated 1d Fourier transform. �

2.6. The wave equation in R×Rd. The homogeneous wave equation with
initial condition u(t = 0, x) = f(x), or the Cauchy problem for the wave
equation is similar to the 1d one:

(2)
1

c2
∂2u

∂t2
= ∆u; u(t = 0, x) = f(x); ut(t = 0, x) = g(x)

where

∆u :=

d∑
k=1

∂2u

∂xk2

The strategy for solving this equation is similar to the one used in 1d initial
value problems: We Fourier transform the problem w.r.t. the space variable,
after which we end up with an ODE.

In (2) we remember that differentiation with respect to xk is transformed
into multiplication by 2πiξk, and the time derivative of the Fourier transform
is the Fourier transform of the time derivative. Thus

(3)
1

c2
∂2û

∂t2
= −4π2

(
n∑
k=1

ξ2k

)
û = −4π2|ξ|2û

This is indeed an ODE, with general solution

(4) û(t, ξ) = A(ξ) cos(2π|ξ|t) +B(ξ) sin(2π|ξ|t)

We now note that on the one hand

(5) û(t = 0, ξ) = f̂(ξ); ût(t = 0, ξ) = ĝ(ξ);

and on the other hand

(6) û(t = 0, ξ) = A(ξ); ût(t = 0, ξ) = 2π|ξ|B(ξ)

Combining (5) and (6) we get

Theorem 13. The solution of the Cauchy problem for the d-dimensional
wave equation is

(7) u(x, t) =

∫
Rd

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πix·ξdξ
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Proof. This does require a proof since we only derived the solution formally,
assuming it exists, assuming we can take the Fourier transform etc. Part of
this proof is relatively straightforward: we should check that (7) is a solution
of (2). The more difficult part is to show uniqueness of this solution, which
is done by energy arguments, see [1] p. 187. �

What does this give in one dimension?
For this, we use Euler’s formulas:

cos(2π|ξ|) = 1
2

(
e2πi|ξ| + e−2πi|ξ|

)
; sin(2π|ξ|) = 1

2i

(
e2πi|ξ| − e−2πi|ξ|

)
and get d’Alembert’s formula,

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(y)dy

Check the formula above, both in terms of it solving the Cauchy problem,
and also by deriving it from (7)!

2.7. The heat equation in Rd. This is the equation

∂u

∂t
= ∆u =

d∑
k=1

∂u

∂x2k
; u(t = 0, x) = f(x) ∈ S(Rd)

Taking the Fourier transform in x, we get

ût = (2πi)2
d∑

k=1

ξ2k = −4π2|ξ|2

and thus

û = C(ξ)e−4π
2|ξ|2

The initial condition implies that

û = f̂(ξ)e−4π
2|ξ|2

Now, ∫ ∞
−∞

e−4π
2ξ2kt+2πiξkxk =

1√
4πt

e−
x2k
4t

and thus

F−1e−4π2|ξ|2 =

(
1√
4πt

)d
e
|x|2
4t

and therefore, by Proposition 12 we have

(8) u(x, t) = (4πt)−d/2
∫
Rd
e−
|x−y|2

4t f(y)dy

The condition that f ∈ S(R3) is not needed, provided (8) can be justified.
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2.8. The Poisson summation formula. Let f ∈ S(R). Note first that

∞∑
n=−∞

f(x+ n)

is convergent and periodic with period one.

Theorem 14 (Poisson summation formula). Under the assumptions above,

(9)
∞∑

n=−∞
f(x+ n) =

∞∑
n=−∞

f̂(n)e2πinx

and in particular we have the symmetric formula

(10)
∞∑

n=−∞
f(n) =

∞∑
n=−∞

f̂(n)

Proof. On the left side of the identity we have, as mentioned, a smooth peri-
odic function of period one. It suffices to check that the Fourier coefficients
of both sides of the equation coincide. The series on the right side of (9)
converges pointwise and rapidly so (why?).

The k−th coefficient on the right side of (9), calculated now with the
definition

ĝk =

∫ 1

0
g(s)e−2πiksds

is clearly f̂(k). For the left side we have

(11)

∫ 1

0

∞∑
n=−∞

f(s+ n)e−2πiksds =
∞∑

n=−∞

∫ 1

0
f(s+ n)e−2πiksds

=

∞∑
n=−∞

∫ n+1

n
f(t)e−2πiktdt =

∫ ∞
−∞

f(t)e−2πiktdt = f̂(k)

The formula extends to the case when f is smooth and decays fast enough,
for instance

|f(x)| ≤ |C|
1 + x2

for some C. Recall that, for a > 0,∫ ∞
−∞

e2πixξe−2πa|x| =
a

π

1

a2 + ξ2

�

Thus,
∞∑

n=−∞

1

n2 + a2
=
π

a

∞∑
n=−∞

e−2πa|n|
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and by taking limits carefully, we get
∞∑
n=1

1

n2
=
π2

6

(How?)
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