Math 5102

Homework 1

due Fri Jan 30, 2015
Recall that \mathbb{R} and \mathbb{C} are complete: a sequence $s=\left(s_{k}\right)_{k \in \mathbb{N}}$ converges if and only if s is Cauchy, that is $\forall \epsilon \exists n_{0}$ s.t. for all $n_{1}, n_{2} \geq n_{0},\left|s_{n_{2}}-s_{n_{1}}\right|<\epsilon$ (Cauchy criterion). Applied to series,

$$
S=\sum_{k=0}^{\infty} s_{k}, \quad s_{k} \in \mathbb{C}
$$

we see that S converges if and only if $\forall \epsilon \exists n_{0}$ s.t. for all $n_{1}, n_{2} \geq n_{0}$, $\left|\sum_{k=n_{1}}^{n_{2}} s_{k}\right|<\epsilon$. In particular this implies, by taking $n_{2}=n_{1}+1$ that if a series is convergent, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} s_{n}=0 \tag{1}
\end{equation*}
$$

1. Show that taking $n_{2}=n_{1}+1$ is not enough to ensure convergence. That is, there are sequences s.t. (1) holds but $\sum_{k=0}^{\infty} s_{n}$ does not exist. Thus (1) is a necessary but not sufficient condition for convergence. (Only the full Cauchy criterion is necessary and sufficient.)
2. (A) For which complex numbers a, b the sequences x, where for all $k \in \mathbb{N} x_{k}=a b^{k}$, belong to $\ell^{2}(\mathbb{N})=\left\{\left(c_{0}, c_{1}, c_{2}, \ldots\right): \sum_{k=0}^{\infty}\left|c_{k}\right|^{2}<\infty\right\}$?
(B) For which complex numbers a, b the sequences x, where for all $k \in \mathbb{Z}$ $x_{k}=a b^{k}$, belong to $\ell^{2}(\mathbb{Z})=\left\{\left(\cdots c_{-2}, c_{-1}, c_{0}, c_{1}, c_{2}, \ldots\right): \sum_{k=-\infty}^{\infty}\left|c_{k}\right|^{2}<\infty\right\}$?
3. a) Show that the functions $f_{n}, n \in \mathbb{Z}$ defined as $f_{n}(x)=e^{i n x}$ form an orthogonal set in the complex Hilbert space $L^{2}[0,2 \pi]$.
b) Normalize them to obtain an orthonormal set.
4. Let a, b be real numbers. Show that if $f \in L^{2}[a, b]$ then $\int_{a}^{b}|f(t)| d t<\infty$ (in other words, $f \in L^{1}[a, b]$). (Hint: use Cauchy-Schwartz.)

Note: this is not true on infinite intervals!
5. The converse of the above is not true: give an example of a function for with $\int_{0}^{1}|f(t)| d t<\infty$ but with $f \notin L^{2}[0,1]$.

