1. a) Show that the functions

$$
\begin{equation*}
\sin \frac{n \pi x}{c}, \quad n=1,2, \ldots \tag{1}
\end{equation*}
$$

are orthogonal in $L^{2}[0, c]$. Normalize them, to obtain an orthonormal set.
b) We will see that it is also complete, hence (1) is an orthogonal basis, and we can expand functions $f \in L^{2}[0, c]$ in sine-series as $f=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{c}$. Find a formula for the coefficients b_{n}.
c) Deduce that any odd function in $L^{2}[-c, c]$ can be expanded as a sineseries.
2. a) Show that the functions

$$
\begin{equation*}
1, \cos \frac{n \pi x}{c}, \quad n=1,2, \ldots \tag{2}
\end{equation*}
$$

are orthogonal in $L^{2}[0, c]$. Normalize them, to obtain an orthonormal set.
b) We will see that it is also complete, hence (2) is an orthogonal basis, and we can expand any $f \in L^{2}[0, c]$ in cosine-series as $f=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{c}$. Find a formula for the coefficients a_{n}.
c) Deduce that any even function in $L^{2}[-c, c]$ can be expanded as a cosineseries.
3. Find the sine-series of $\cos \frac{k \pi x}{c}$ for $x \in[0, c]$.
4. Assuming that (1) is an orthogonal basis in $L^{2}[0, c]$, and that also (2) is one, deduce that any function $f \in L^{2}[-c, c]$ can be expanded in a Fourier series

$$
f=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{c}+\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{c}
$$

