1. A linear differential equation of the form $a x^{2} u^{\prime \prime}+b x u^{\prime}+c u=0$ where a, b, c are constants is called an Euler equation.
a) Substituting $u(x)=x^{r}$ in the Euler equation we obtain a quadratic equation for $r: \operatorname{ar}(r-1)+b r+c=0$. If this equation has two distinct roots $r_{1} \neq r_{2}$, show that $u_{1}(x)=x^{r_{1}}$ and $u_{2}(x)=x^{r_{2}}$ are two independent solutions of the Euler equation.
b) Show that the substitution $x=e^{s}$ transforms this equation in a linear equation with constant coefficients: $a \frac{d^{2} u}{d s^{2}}+(b-a) \frac{d u}{d s}+c u=0$
c) Solve the equation at b) to show that, indeed, solutions of the Euler equation should be searched in the form $u(x)=x^{r}$ and find two independent solutions in the case $r_{1}=r_{2}$.
2. Solve the Sturm-Liouville problem $\left(x u^{\prime}\right)^{\prime}+\lambda \frac{u}{x}=0, u(1)=0, u(b)=0$ (note that this is an Euler equation).
3. Solve the Sturm-Liouville problem $\left(x^{3} u^{\prime}\right)^{\prime}+\lambda x u=0, u(1)=0, u(e)=0$ (note that this is an Euler equation).
4. Bring the following to a Sturm-Liouville form $\left(p u^{\prime}\right)^{\prime}+(-q+\lambda w) u=0$:
a) Hermite equation: $u^{\prime \prime}-2 x u^{\prime}+\lambda u=0$;
b) Laguerre equation: $x u^{\prime \prime}+(1-x) u^{\prime}+\lambda u=0$;
c) Chebyshev equation: $\left(1-x^{2}\right) u^{\prime \prime}-x u^{\prime}+\alpha^{2} u=0$.
