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1. Going from finite to infinite dimension

1.1. Recall some basic facts about vector spaces. Vector spaces are
modeled after the familiar vectors in the line, plane, space etc. abstractly
written as R, R2, R3, . . . ,Rn, . . .; these are vector spaces over the scalars R.
It turned out that there is a great advantage to allow for complex coordi-
nates, and then we may also look at C, C2, C3, . . . ,Cn, . . .; these are vector
spaces over the scalars C.

In general:

Definition 1. A vector space over the scalar field F is a set V endowed
with two operations, one between vectors: if x, y ∈ V then x + y ∈ V , and
one between scalars and vectors: if c ∈ F and x ∈ V then cx ∈ V having the
following properties:
- commutativity of addition: x+ y = y + x
- associativity of addition: x+ (y + z) = (x+ y) + z
- existence of zero: there is an element 0 ∈ V such that x + 0 = x for all
x ∈ V
- existence of the opposite: for any x ∈ V there is an opposite, denoted by
−x, such that x+ (−x) = 0
- distributivity of scalar multiplication with respect to vector addition: c(x+
y) = cx+ cy
- distributivity of scalar multiplication with respect to field addition: (c +
d)x = cx+ dx
- compatibility of scalar multiplication with field multiplication: c(dx) =
(cd)x
- identity element of scalar multiplication: 1x = x.

Some familiar definitions are reformulated below in a way that allows us
to tackle infinite dimensions too.

Definition 2. A set of vectors S ⊂ V is called linealy independent if when-
ever, for some x1, x2, . . . , xn ∈ S (for some n) there are scalars c1, c2, . . . , cn ∈
F such that c1x1 + c2x2 + . . . + cnxn = 0 then this necessarily implies that
all the scalars are zero: c1 = c2 = . . . = cn = 0.

Note that the zero vector can never belong to in a linearly independent
set.

Definition 3. Given any set of vectors S ⊂ V the span of S is the set

Sp(S) = {c1x1 + c2x2 + . . .+ cnxn |xj ∈ S, cj ∈ F, n = 1, 2, 3 . . .}
Note that Sp(S) forms a vector space, included in V ; it is a subspace of

V .

Definition 4. A set of vectors S ⊂ V is a basis of V if it is linearly inde-
pendent and its span equals V .

Theorem 5. Any vector space has a basis. Moreover, all the basis of V
have the same cardinality, which is called the dimension of V .
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By the cardinality of a set we usually mean ”the number of elements”.
However, if we allow for infinite dimensions, the notion of ”cardinality”
helps us distinguish between different types of ”infinities”. For example,
the positive integers form an infinite set, and so do the real numbers; we
somehow feel that we should say there are ”fewer” positive integers than
reals. We call the cardinality of the positive integers countable.

Please note that the integers Z are also countable (we can ”count” them:
0, 1,−1, 2,−2, 3,−3, . . .), pairs of positive integers Z2

+ are also countable
(count: (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . .), and so are Z2, and the set
of rational numbers Q (rational numbers are ratios of integers m/n). It can
be proved that the reals are not countable.

Notations The positive integers are denoted Z+ = {1, 2, 3, . . .} and the
natural numbers are denoted N = {0, 1, 2, 3 . . .}. However: some authors do
not include 0 in the natural numbers, so when you use a book make sure
you know the convention used there.

Examples
1. Rn = {(x1, . . . xn) |xj ∈ R} is a vector space over R of dimension n,

with a basis consisting of the vectors
e1 = (1, 0, . . . , 0), e2 = (0, 1, 0 . . . , 0), . . . , en = (0, 0, . . . 0, 1)
Remark: from now on we will prefer to list horizontally the components of
vectors.

Any x = (x1, . . . xn) can be written as a linear combination of them

x = x1e1 + x2e2 + . . .+ xnen

and there is an inner product:

〈x, y〉 = x1y1 + . . .+ xnyn

and any vector has a norm

‖x‖2 = x11 + . . .+ x2n

2. RZ+ = {x = (x1, x2, x3, . . .) |xj ∈ R} is a vector space over R. By
analogy with Rn we can formulate the following wish list.

We would like to say that a norm is defined by

‖x‖2 = x11 + . . .+ x2n + . . .

that an inner product of two sequences is

〈x, y〉 = x1y1 + . . .+ xnyn + . . .

and that a basis consists of the vectors

(1) e1 = (1, 0, 0, 0, . . .), e2 = (0, 1, 0, 0, 0 . . .), e3 = (0, 0, 1, 0, . . .), . . .
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since any x = (x1, x2, x3, . . .) can be written as an (infinite) linear combi-
nation

(2) x = x1e1 + x2e2 + x3e3 + . . . =
∞∑
n=1

xn en

But all these are not quite correct, because we have series rather than finite
sums. It looks like we should accept series as expansions, and to restrict
the sequences we work with in order to get a nice extension to infinite
dimensions!

3. Similarly, Cn = {(z1, . . . zn) | zj ∈ C} is a vector space over C of
dimension n, with a basis consisting of the vectors
(1, 0, . . . , 0), (0, 1, 0 . . . , 0), . . . , (0, 0, . . . 0, 1).

4. CZ+ = {z = (z1, z2, . . . zn, . . .) | zj ∈ C} is a vector space over C and
any z could be thought as the infinite sum z1e1 + z2e2 + z3e3 + . . . where en
are given by (1) - but again, this is not a basis in the sense of the definition
for vector spaces).

5. The set of polynomials of degree at most n, with coefficients in F
(which is R or C)

Pn = {p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n | aj ∈ F}
is a vector space over the field of scalars F , of dimension n+ 1, and a basis
is 1, t , t2, . . . tn.

6. The set of all polynomials with coefficients in F (which is R or C)

P = {p(t) = a0 + a1t+ a2t
2 + . . .+ ant

n | aj ∈ F, n ∈ N}
is a vector space over the field of scalars F , and has the countable basis
1, t, t2, t3 . . ..

7. The set of all functions continuous on a closed interval (it could also
be open, or extending to ∞):

C[a, b] = {f : [a, b]→ F | fcontinuous}
8. The set of all functions f with absolute value |f | integrable on [a, b]:

L1[a, b] = {f : [a, b]→ F | |f |integrable}
Warning: I did not specify what ”integrable” means. L1[a, b] is a bit

more complicated, but for practical purposes this is good enough for now.
(We will comment more later.)

Note that P ⊂ C[a, b] ⊂ L1[a, b].

1.2. Inner product. Vectors in Rn and Cn have an interesting operation:

Definition 6. An inner product on vector space V over F (=R or C) is
an operation which associate to two vectors x, y ∈ V a scalar 〈x, y〉 ∈ F that
satisfies the following properties:
- it is conjugate symmetric: 〈x, y〉 = 〈y, x〉
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- it is linear in the second argument: 〈x, y+z〉 = 〈x, y〉+〈x, z〉 and 〈x, cy〉 =
c〈x, y〉
- its is positive definite: 〈x, x〉 ≥ 0 with equality only for x = 0.

Note that conjugate symmetry combined with linearity implies that 〈., .〉
is conjugate linear in the first variable.

Note that for F = R an inner product is symmetric and linear in the first
argument too.

Please keep in mind that most mathematical books use inner product
linear in the first variable, and conjugate linear in the second one. You
should make sure you know the convention used by each author.

Definition 7. A vector space V equipped with an inner product (V, 〈., .〉) is
called an inner product space.

Examples
On Cn the most used inner product is 〈x, y〉 =

∑n
j=1 xjyj .

We may wish to introduce a similar inner product on CZ+ : 〈x, y〉 =∑∞
j=1 xjyj . The problem is that the series may not converge!

On the space of polynomials P or on continuous functions C[a, b] we can
introduce the inner product

〈f, g〉 =

∫ b

a
f(x) g(x) dx

or more generally, using a weight (which is a positive function w(x)),

〈f, g〉w =

∫ b

a
f(x) g(x)w(x)dx

We may wish to introduce a similar inner product on L1[a, b], only the
integral may not converge. For example, f(x) = 1/

√
x is integrable on [0, 1],

but f(x)2 is not.

1.3. Norm. The inner product defines a length by ‖x‖ =
√
〈x, x〉. This is

a norm, in the following sense:

Definition 8. Given a vector space V , a norm is a function on V such
that:
- it is positive definite: ‖x‖ ≥ 0 and ‖x‖ = 0 only for x = 0
- it is positive homogeneous: ‖cx‖ = |c| ‖x‖ for all c ∈ F and x ∈ V
- satisfies the the triangle inequality (i.e. it is subadditive):

‖x+ y‖ ≤ ‖x‖+ ‖y‖

Definition 9. A vector space V equipped with a norm (V, ‖.‖) is called a
normed space.
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An inner product space is, in particular a normed space (the first two
properties of the norm are immediate, the triangle inequality is a geometric
property in finite dimensions and requires a proof in infinite dimensions).

There are some very useful normed spaces (of functions), which are not
inner product spaces (more about that later).

1.4. The space `2. Let us consider again CZ+ , which appears to be the
most straightforward way to go from finite dimension to an infinite one. To
do linear algebra we need an inner product, or at least a norm. We must
then restrict to the ”vectors” which do have a norm, in the sense that the
series ‖z‖2 =

∑∞
n=1 |zn|2 converges.

Define the vector space `2 by

(3) `2 = {z = (z1, z2, z3, . . .) ∈ CZ+ |
∞∑
n=1

|zn|2 <∞}

On `2 we therefore have a norm: ‖z‖ =
(∑∞

n=1 |zn|2
)1/2

.
Examples.
1. The constant sequence with zn = c for all n is not in `2 unless c = 0.
2. The sequences with zn = 1

na with a ∈ R is in `2 only for a > 1/2
(why?).

3. For complex powers of n, recall that they are defined as

na+ib = e(a+ib) lnn = ea lnneib lnn = na eib lnn

therefore if zn = 1
na+ib the sequence is in `2 only for a > 1/2.

Actually, on `2 the inner product converges as well, due to the following
inequality, which is one of the most important and powerful tools in infinite
dimensions (the triangle inequality is also fundamental):

Theorem 10. The Cauchy-Schwartz inequality
In an inner product space we have∣∣ 〈x, y〉 ∣∣ ≤ ‖x‖ ‖y‖
Therefore, if ‖x‖ and ‖y‖ converge, then 〈x, y〉 converges and moreover,

equality holds if and only if x, y are linearly dependent (which means x = 0
or y = 0 or x = cy)

Proof.
Intuitively: if ‖x‖ and ‖y‖ converge, then Sp(x, y) is an inner product

space which is two-dimensional at most, therefore the Cauchy-Schwartz in-
equality follows from the one in finite dimensions.

Here are detailed rigorous arguments for the case of `2, with a review of
the main concepts on convergent series.
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Recall: a series
∑∞

n=1 an is said to converge to A, and we write
∑∞

n=1 an =

A if the sequence formed by its partial sums SN =
∑N

n=1 an converges to A
as N →∞.

Recall: a series
∑∞

n=1 an is said to converge absolutely if
∑∞

n=1 |an| con-
verges.

Recall: absolute convergence implies convergence.
Recall: a series with positive terms either converges or has the limit +∞.

For such a series, say
∑∞

n=1 |an| , it is customary to write
∑∞

n=1 |an| < ∞
to express that it converges.

Take the partial sums of 〈x, y〉, use the triangle inequality in dimen-
sion N , then Cauchy-Schwartz in dimension N (which follows from u · v =
‖u‖ ‖v‖ cosθ):
(4)∣∣∣ N∑
n=1

xn yn

∣∣∣ ≤ N∑
n=1

∣∣∣xn yn∣∣∣ =
N∑
n=1

|xn| |yn| ≤

(
N∑
n=1

|xn|2
)1/2 ( N∑

n=1

|yn|2
)1/2

Taking the limit N → ∞ the convergence of the 〈x, y〉 series follows if ‖x‖
and ‖y‖ converge.

The argument showing when equality holds is not given here, as it is in
accordance with what happens in finite dimensions. 2

We obtained that `2 is an inner product space, by the Cauchy-Schwartz
inequality.

The vectors en of (1) do belong to `2, and they do form an orthonormal
set: en ⊥ ek for n 6= k (since 〈en, ek〉 = 0) and ‖en‖ = 1).

1.5. Metric Spaces. Now we would like to make sense of the expansion
(2). For this, we need to state what we mean by convergence in `2.

We can do that using the usual definition of convergence (in R) by re-
placing the distance between two vectors x, y by d(x, y) = ‖x − y‖. This
distance is a metric, in the following sense:

Definition 11. A distance (or a metric) on a set M is a function d(x, y)
for x, y ∈M with the following properties:
it is nonnegative: d(x, y) ≥ 0
it separates the points: d(x, y) = 0 if and only if x = y
it is symmetric: d(x, y) = d(y, x)
it satisfies the triangle inequality: d(x, z) ≤ d(x, y) + d(y, z).

(Two of conditions follow from the other, but it is better to have them
all listed.)

Definition 12. A metric space (M,d) is a set M equipped with a distance
d.
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Note that any normed space is a metric space by defining the
distance d:

(5) d(x, y) = ‖x− y‖
But there are many interesting metric spaces which are not normed (they
may not even be vector spaces!). For example, we can define distances on a
sphere (or on the surface of the Earth!) by measuring the (shortest) distance
between two points on a large circle joining them.

Once we have a distance, we can define convergence of sequences:

Definition 13. Consider a metric space (M,d).
We say that a sequence s1, s2, s3 . . . ∈ M converges to L ∈ M if for any
ε > 0 there is an N (N depends on ε) such that d(sn, L) < ε for all n ≥ N .

Note that we can use this definition for convergence in normed
spaces using the distance (5).

The series expansion (2) of any x ∈ `2 converges (why?). We now have a
satisfactory theory of `2.

2. Completeness

There is one more property that is essential for calculus: there need to
exist enough limits.

The spaces Rn, Cn, `2 all have this property (inherited from R). However,
the space of polynomials P and C[a, b] as inner product spaces with 〈f, g〉 =∫
fg do not have this property.

2.1. Complete spaces. In the case of R this special property can be intu-
itively formulated as: if a sequence of real numbers an tends to ”pile up”
then it is convergent. Here is the rigorous formulation:

Definition 14. The sequence {an}n∈N is called a Cauchy sequence if for
any ε > 0 there is an N ∈ N (N depending on ε) such that

|an − am| < ε for all n,m > N

Theorem 15. Any Cauchy sequence of real numbers is convergent.

(This is a fundamental property of real numbers, at the essence of what
they are.)

We can define Cauchy sequences in a metric space very similarly:

Definition 16. Let (M,d) be a metric space.
The sequence {an}n∈N ⊂M is called a Cauchy sequence if for any ε > 0

there is an N ∈ N (N depending on ε) such that

d(an, am) < ε for all n,m > N



AN INTRODUCTION TO HILBERT SPACES 9

Theorem 17. If a sequence in a metric space is convergent, then it is
Cauchy

Proof. Let (xn) be the sequence and l the limit. By the definition of con-
vergence, for any ε there is an n0 s.t. for all n ≥ n0 we have d(xn, l) < ε/2.
Let n1, n2 > n0. Then d(xn1 , xn2) ≤ d(xn1 , l) + d(l, xn2) < ε. �

But the converse is not always true: it is not always the case that in a
metric space Cauchy sequences automatically converge. Fortunately if this
is not the case, we can enlarge them to enforce this convergence condition.
More about that later. For now we just define the spaces we will most often
work with: complete ones.

Definition 18. A metric space (M,d) is called complete if every Cauchy
sequence is convergent in M .

(Note that the limit of the Cauchy sequence must belong to M .)
In the particular case of normed spaces (when the distance is given by

the norm):

Definition 19. A normed space (V, ‖ . ‖) which is complete is called a Ba-
nach1 space.

In the even more special case of inner product spaces (when the norm is
given by an inner product):

Definition 20. An inner product space (V, 〈 . 〉) which is complete is called
a Hilbert2 space.

2.2. Example 1.

Theorem 21. The space `2(N) in Definition 19 with the scalar product
〈x, y〉 is a Hilbert space.

Proof. We have already shown that 〈x, y〉 is well defined, see (4) and the
paragraph following it.

Assume x[n] is a Cauchy sequence of elements of `2. First we show that
the sequence is bounded, that is there is an M such that

(6) ‖x[n]‖ ≤M ∀n ∈ N

Indeed, by the definition of a Cauchy sequence, for any ε > 0 there is an n0
s.t.

(7) ‖x[n2] − x[n1]‖ < ε ∀n1, n2 > n0

1Stefan Banach (1892-1945) was a Polish mathematician, founder of modern functional
analysis - a domain of mathematics these lectures belong to.

2David Hilbert (1862-1943) was a German mathematician, recognized as one of the
most influential and universal mathematicians of the 19th and early 20th centuries. He
discovered and developed a broad range of fundamental ideas in many areas, including
the theory of Hilbert spaces, one of the foundations of functional analysis.
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In particular,

(8) ‖x[n2] − x[n0]‖ < ε ∀n > n0

Let M1 = ‖x[n0]‖ and M = M1 + 2ε. Then,

(9) ‖x[n]‖ = ‖x[n] − x[n0] + x[n0]‖ ≤ ‖x[n] − x[n0]‖+ ‖x[n0]‖ ≤ ε+M1 < M

• Next we show that for each j

(10) x
[n]
j → Lj for some L ∈ C

Indeed,

(11) |x[n2]
j − x[n1]

j |
2 ≤

∞∑
j=1

|x[n2]
j − x[n1]

j |
2

and thus {x[n]j }n∈N is a Cauchy sequence in C, and it must converge to some

(of course finite) Lj .
• Next we show that (L1, L2, ...) = L ∈ `2. Indeed, for any n and N ,

(12)
N∑
j=1

|Lj |2 ≤
N∑
j=1

|Lj − x[n]j |
2 +

N∑
j=1

|x[n]j |
2 ≤

N∑
j=1

|Lj − x[n]j |
2 +

∞∑
j=1

|x[n]j |
2

≤
N∑
j=1

|Lj − x[n]j |
2 +M

and since |Lj − x[n]j | → 0 for any fixed N , we have,

(13)

N∑
j=1

|Lj |2 ≤M

• Finally, we show that

(14) ‖x[n] − L‖ → 0 as n→∞

Indeed, for any given ε, there is an n0 s.t., for all n > n0 we have ‖x[n] −
x[n0]‖ < ε/2. Now, for the same ε there is an N s.t.

(15)

∞∑
N+1

‖x[n0]
j ‖

2 < ε/2

(why is that the case?). We then have, for n > n0
(16)
∞∑
N+1

‖x[n]j ‖
2 =

∞∑
N+1

‖x[n]j −x
[n0]
j +x

[n]
j ‖

2 ≤
∞∑
1

‖x[n]j −x
[n0]
j ‖+

∞∑
N+1

‖x[n0]
j ‖

2 < ε
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Let N2 ≥ N be s.t.

(17)

∞∑
N1+1

‖Lj‖2 < ε/2

Now,
Then, for any n > n0 we have

(18)
∞∑
j=1

|Lj−x[n]|2 ≤
N∑
j=1

|Lj−x[n]|2+
∞∑

N1+1

|Lj |2+
∞∑

N1+1

|x[n]j |
2 ≤

N∑
j=1

|Lj−x[n]|2+ε ≤ ε

since the first sum goes to zero. �

2.3. Further examples. These are very important examples (some proofs
are needed but not given here).

1. The usual Rn and Cn are Hilbert spaces.

2. The space `2 of sequences:

`2 ≡ `2(Z+) = {x = (x1, x2, x3, . . .) |xn ∈ C,
∞∑
n=1

|xn|2 <∞}

endowed with the `2 inner product

〈x, y〉 =
∞∑
n=1

xnyn

is a Hilbert space.
For example, the sequence x = (x1, x2, x3, . . .) with xn = 1/n belongs to

`2 and so do sequences with xn = can if |a| < 1.
A variation of this space is that of bilateral sequences:

`2(Z) = {x = (. . . , x−2, x−1, x0, x1, x2 . . .) |xn ∈ C,
∞∑

n=−∞
|xn|2 <∞}

with the `2 inner product 〈x, y〉 =
∑∞

n=−∞ xnyn is a Hilbert space.
Recall that a bilateral series

∑∞
n=−∞ an is called convergent if both series∑∞

n=1 an and
∑0

n=−∞ an are convergent.

3. The space C[a, b] of continuous function on the interval [a, b], endowed
with the L2 inner product

〈f, g〉 =

∫ b

a
f(t) g(t) dt

is not a Hilbert space, since it is not complete.
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For example, take the following approximations of step functions

fn(t) =


0 if t ∈ [0, 1]
n (t− 1) if 1 < t < 1 + 1

n
1 if t ∈ [1 + 1

n , 2]

The fn are continuous on [0, 2] (the middle line in the definition of fn rep-
resents a segment joining the two edges of the step). The sequence {fn}n is
Cauchy in the L2 norm: (say n < m)

‖fn − fm‖2 =

∫ 2

0
|fn(t)− fm(t)|2 dt =

∫ 1+ 1
n

1
|fn(t)− fm(t)|2 dt

=

∫ 1+ 1
m

1
[n (t− 1)−m (t− 1)]2 dt +

∫ 1+ 1
n

1+ 1
m

[n (t− 1)− 1]2 dt =

= 1/3
(n−m)2

m3
− 1/3

(n−m)3

m3n
= 1/3

(n−m)2

m2n
<

1

3n
→ 0

However, fn is not L2 convergent in C[0, 2]. Indeed, in fact fn converges
to the step function

f(t) =

{
0 if t ∈ [0, 1)
1 if t ∈ [1, 2]

because

‖fn − f‖2 =

∫ 2

0
|fn(t)− f(t)|2 dt =

∫ 1+ 1
n

1
[n (t− 1)− 1]2 dt =

1

3n
→ 0

therefore the L2 limit of fn is f , a function that does not belong to C[0, 2].

2.4. Completion and closure. The last example suggests that if a metric
space of interest is not closed, then one can add to that space all the possible
limits of the Cauchy sequences, and then we obtain a closed space.

This procedure is called ”closure”, and the closure of a metric space M
is denoted by M .

2.5. The Hilbert space L2[a, b]. The closure of C[a, b] in the L2 norm (the
closure depends on the metric!) is a space denoted by L2[a, b], the space of
square integrable3 functions:

L2[a, b] = {f : [a, b]→ C(or R)
∣∣ |f |2 is integrable on [a, b] }

or, for short,

(19) L2[a, b] = {f : [a, b]→ C
∣∣ ∫ b

a
|f(t)|2 dt < ∞}

3These are Lebesgue integrable functions. They are quite close to the familiar Riemann
integrable functions, but the advantage is that the Lebesue integrability behaves better
when taking limits.
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This notation is very suggestive: for practical purposes, if you have an f
such that you can integrate |f |2 (as a proper or improper integral), and the
result is a finite number, then f ∈ L2.

Examples of functions in L2: continuous functions, functions with jump
discontinuities (a finite number of jumps, or even countably many!), some

functions which go to infinity: for example x−1/4 ∈ L2[0, 1] because
∫ 1
0 (x−1/4)2dx =∫ 1

0 x
−1/2dx = 2x1/2

∣∣1
0

= 2 <∞.

A wrinkle: in L2[a, b], if two functions differ by their values at only a finite
number of points (or even on a countable set) they are considered equal. For
example, the functions f1 and f2 below are equal:

f1(t) =

{
0 if t ∈ [0, 1]
1 if t ∈ (1, 2]

f2(t) =

{
0 if t ∈ [0, 1)
1 if t ∈ [1, 2]

f1 = f2 in L2[0, 2]

as indeed the L2-norm ‖f1 − f2‖ = 0.
Therefore L2[a, b] = L2(a, b).
Note the similarity of the definition (19) of L2 with the definition of `2.
Note that by the Cauchy-Schwartz inequality, the L2 inner product of two

function in L2[a, b] is finite. Therefore the space L2[a, b] is a Hilbert space.
The space L2 is also used on infinite intervals, like L2[a,∞), and L2(R).

2.5.1. An important variation of the L2 space. Instead of using the usual
element of length dt we can use an element of ”weighted” length w(t)dt.
Here, w > 0. One physical interpretation is that if [a, b] represents a wire of
variable density w(t) then the element of mass on the wire is w(t)dt. If w(t)
is a positive function define

L2([a, b], w(t)dt) = {f : [a, b]→ C
∣∣ ∫ b

a
|f(t)|2w(t)dt < ∞}

with the inner product given by

〈f, g〉w =

∫ b

a
f(t) g(t)w(t)dt

Note that f ∈ L2([a, b], w(t)dt) if and only if f√
w
∈ L2[a, b].

2.6. The Banach space C[a, b].
Recall: a function continuous on a closed interval does have an absolute

maximum and an absolute minimum.
The space of continuous function on [a, b] is closed with respect to the

sup norm ‖.‖∞:

‖f‖ = ‖f‖∞ = sup
x∈[a,b]

|f(x)|
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In other words, completeness of C[a, b] in the sup-norm means that: if fn
are continuous on [a, b] and if fn → f in the sense that
lim
n→∞

sup
x∈[a,b]

|fn(x)− f(x)| = 0 then f is continuous.

2.7. The Banach spaces Lp. The space

Lp[a, b] = {f : [a, b]→ C(or R)
∣∣ ∫ b

a
|f(t)|p dt < ∞}

is complete in the Lp norm ‖f‖p = (
∫ b
a |f |

p)1/p.

Lp are called the Lebesgue4 spaces (only L2 is a Hilbert space).

2.8. Closed sets, dense sets.

Definition 22. Let (M,d) be a complete metric space.
A subset F ⊂ M is called closed if it contains the limits of the Cauchy

sequences in F : if fn ∈ F and fn → f then f ∈ F .

Examples: for M = R the intervals (a, b), (a,+∞) are not closed sets, but
the intervals [a, b], [a,+∞) are closed. For M = R2 the disk x2 + y2 ≤ 1 is
closed, but the disk x2 + y2 < 1 is not closed, and neither is the punctured
disk 0 < x2 + y2 ≤ 1.

Definition 23. Given a complete metric space (M,d) and a set S ⊂M we
call the set S the closure of S in M if S contains all the limits of the Cauchy
sequences sequences (fn)n ⊂ S.

Note that S ⊂ S (since if f ∈ S we can take the trivial Cauchy sequence
constantly equal to f , fn = f for all n.

Examples: for M = R the closure of the open interval (a, b) is the closed
interval [a, b]. For M = R2 the closure of the (open) disk x2 + y2 < 1, and
of the punctured disk 0 < x2 + y2 ≤ 1 is the closed disk x2 + y2 ≤ 1.

Definition 24. Given a complete metric space (M,d) and a set S ⊂M we
say that a set S is dense in M if S = M .

It is worth repeating: S is dense in M means that any f ∈ M can be
approximated by elements of S: there exists fn ∈ S such that limn→∞ fn =
f .

Examples: for M = R the rational numbers Q are dense in R (why?). For
M = `2 the sequences that terminate5 are dense in `2.

Dense sets have important practical consequences: when we need to es-
tablish a property of M that is preserved when taking limits (e.g. equalities
or inequalities), then we can prove the property on S and then, by taking
limits, we find it on M .

4Henri Lebesgue (1875-1941) was a French mathematician most famous for Lebesgue’s
theory of integration.

5These are the sequences x = (x1, x2, . . . ) such that xn = 0 for all n large enough.
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2.9. Sets dense in the Hilbert space L2.
C[a, b] is dense (in the L2 norm) in L2[a, b] (by our construction of L2).
In fact, we can assume functions as smooth as we wish, and still obtain

dense spaces: the smaller space C1[a, b], of functions which have a continu-
ous derivative, is also dense in L2[a, b], and so is Cr[a, b], functions with r
continuous derivatives, for any r (including r =∞).

Even the smaller space P (of polynomials) is dense in L2[a, b].
Another type of (inner product sub)spaces dense in L2 are those consisting

of functions satisfying zero boundary conditions, for example

(20) {f ∈ C[a, b] | f(a) = 0}

(Why: any function f in (20) can be approximated in the L2-norm by
functions in (20): consider the sequence of functions fn which equal f for
x ≥ a+ 1

n and whose graph is the segment joining (a, 0) to (a+ 1
n , f(a+ 1

n))

for a ≤ x < a+ 1
n . Then the L2 norm of fn− f converges to zero, much like

in the Example 3. of §2.3.)
Similarly,

C0[a, b] = {f ∈ C[a, b] | f(a) = f(b) = 0}

is dense in L2[a, b], and so is the following very useful space

C1
0 [a, b] = {f | f ′ continuous on [a, b], f(a) = f(b) = 0, f ′(a) = f ′(b) = 0}

2.10. Polynomials are dense in the Banach space C[a, b]. The space
of polynomials is dense in C[a, b] in the sup norm. (This is the Weierstrass
Theorem: any continuous function f on [a, b] can be uniformly approximated
by polynomials, in the sense that there is a sequence of polynomials pn such
that limn→∞ sup[a,b] |f − pn| = 0.)

Please note that closure and density are relative to a norm. For
example, C[a, b] is not closed in the L2 norm, but it is closed in the sup-norm.

3. Hilbert Spaces

In a Hilbert space we can do linear algebra (since it is a vector space), ge-
ometry (since we have lengths and angles) and calculus (since it is complete).
And they are all combined when we write series expansions.

Recall:

Definition 25. A Hilbert space H is a real or complex inner product space
that is also a complete metric space with respect to the distance function
induced by the inner product.

Recall the two fundamental examples: the space of sequences `2, and the
space of square integrable function L2.
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3.1. When does a norm come from an inner product?
In every Hilbert space the parallelogram identity holds: for any f, g ∈

H

(21) ‖f + g‖2 + ‖f − g‖2 = 2(‖f‖2 + ‖g‖2)

(in a parallelogram the sum of the squares of the sides equals the sum of the
squares of the diagonals).

Relation (21) is proved by a direct calculation (expanding the norms in
terms of the inner products and collecting the terms).

The remarkable fact is that, if the parallelogram identity holds in a Banach
space, then its norm actually comes from an inner product, and can recover
the inner product only in terms of the norm by
the polarization identity:
for complex spaces

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2 + i‖f + ig‖2 − i‖f − ig‖2

)
and for real spaces

〈f, g〉 =
1

4

(
‖f + g‖2 − ‖f − g‖2

)
3.2. The inner product is continuous. This means that we can take
limits inside the inner product:

Theorem 26. If fn ∈ H, with fn → f then 〈fn, g〉 → 〈f, g〉.

Indeed: |〈fn, g〉 − 〈f, g〉| = |〈fn − f, g〉| ≤ (by Cauchy-Schwartz)
‖fn − f‖ ‖g‖ → 0. (Recall: fn → f means that ‖fn − f‖ → 0.)

3.3. Orthonormal bases.
Consider a Hilbert space H.
Just like in linear algebra we define:

Definition 27. If 〈f, g〉 = 0 then f, g ∈ H are called orthogonal (f ⊥ g).

and

Definition 28. A set B ⊂ H is called orthonormal if all f 6= g ∈ B are
orthogonal (f ⊥ g) and unitary (‖f‖ = 1).

Note that as in linear algebra, an orthonormal set is a linearly independent
set (why?).

And departing from linear algebra:

Definition 29. A set B ⊂ H is called an orthonormal basis for H if it
is an orthonormal set and it is complete in the sense that the span of B is
dense in H: Sp(B) = H.
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Note that in the above B is not a basis in the sense of linear algebra
(unless H is finite-dimensional). But like in linear algebra:

Theorem 30. Any Hilbert space admits an orthonormal basis; furthermore,
any two orthonormal bases of the same space have the same cardinality,
called the Hilbert dimension of the space.

From here on we will only consider Hilbert spaces which admit
a (finite or) countable orthonormal basis.

These are the Hilbert spaces usually encountered in applications.
It can be proved that this condition is equivalent to the existence of a

countable set S dense in H. This condition is often easier to check, and
the property is called ”H is separable”. Application: L2[a, b] is separable
(why?) therefore L2[a, b] has a countable orthonormal basis. Many physical
problems are solved by finding special orthonormal basis of L2[a, b]!

[For your amusement: it is quite easy to construct a Hilbert space with
an uncountable basis, e.g. just like we took `2(Z+) we could take `2(R).]

We assume from now on that our Hilbert spaces H do have a
countable orthonormal basis.

The following theorem shows that many of the properties of inner product
vector spaces which are finite dimensional (think Rn or Cn with the stan-
dard basis) are very similar for Hilbert spaces; the main difference is that
in infinite dimensions instead of sums we have series - which means sums
followed by limits, see for example the infinite linear combination (22).

Theorem 31. Let (H, 〈·, ·〉) be a Hilbert space with a countable basis.
Let u1, . . . , un, .. be an orthonormal basis.
The following hold.
(i) Let c1, . . . , cn, .. be scalars such that (c1, . . . , cn, ..) ∈ `2. Then the

series

(22) f =

∞∑
n=1

cnun

converges and its sum f ∈ H.
Moreover

‖f‖2 =
∞∑
n=1

|cn|2

(ii) Conversely, every f ∈ H has an expansion (22). The scalars cn
satisfty cn = 〈un, f〉 and are called generalized Fourier coefficients of f .

Therefore any f ∈ H can be written as a generalized Fourier series:

(23) f =

∞∑
n=1

〈un, f〉un
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and Parseval’s identity holds:

(24) ‖f‖2 =
∞∑
n=1

|〈un, f〉|2

As a consequence, Bessel’s inequality holds:

(25) ‖f‖2 ≥
∑
n∈J
|fn|2 for any J ⊂ Z+

(iii) If f, g ∈ H then

(26) 〈f, g〉 =
∞∑
n=1

〈f, un〉 〈un, g〉

Proof. We prove (i), (ii); (iii) is similar. Since, by definition
∑∞

n=1 =

limN→∞
∑N

n=1, the series is convergent if and only if it is Cauchy, meaning

(∗)‖
N+P∑
n=1

cnun −
N∑
n=1

cnun‖2 = ‖
N+P∑
n=N+1

cnun‖2

converges to zero uniformly in N,P . But

‖
N+P∑
n=N+1

cnun‖2 =

N+P∑
n=N+1

|cn|2‖un‖2 =

N+P∑
n=N+1

|cn|2

(inequality would follow by Cauchy-Schwarz. Equality holds because ‖a +
b‖2 = 〈a+ b, a+ b〉 = ‖a‖2 + 〈a, b〉+ 〈b, a〉+ ‖b‖2). Now the the last term in
(*) converges to zero uniformly in N,P since we assumed (c1, . . . , cn, ..) ∈ `2.
Parseval follows in the same way.

For (ii), let f =
∑∞

n=1 cnun = limn→∞ SN :=
∑N

n=1 cnun Clearly,

〈uj , SN 〉 = cj

and by Theorem 39,

〈u, f〉 = lim
N→∞

〈uj , SN 〉 = cj

�

Note that (separable) Hilbert spaces are essentially `2, since given an
orthonormal basis u1, u2, . . ., the elements f ∈ H can be identified with the
sequence of their generalized Fourier coefficients (c1, c2, c3, . . .) which, by
(24), belongs to `2.

Remark. If v1, . . . , vn, . . . form an orthogonal basis, but not an orthonor-
mal basis (some vn are not unit vectors) then one can produce an orthonor-
mal basis by setting un = vn/‖vn‖, which used in formula (23) gives the
expansion of f in terms of vn as

(27) f =

∞∑
n=1

〈vn, f〉
‖vn‖2

vn



AN INTRODUCTION TO HILBERT SPACES 19

3.4. Generalized Fourier series in L2. If H = L2[a, b] then (22) means
that

(28) lim
N→∞

∫ b

a

∣∣f(x)−
N∑
n=1

cnun(x)
∣∣2 dx = 0

(we took the square of the norm rather than the norm).
Formula (28) is often expressed as

(29) f equals
∞∑
n=1

cnun in the least square sense, or in mean square

see also §3.8.
Only if f(x) and un(x) are smooth enough it is true that the series

∑
cnun

is point-wise convergent, meaning that

(30) f(x) =
∞∑
n=1

cnun(x)

(precise conditions can be given) But this is not the case for every f ∈ L2.
In general, the series on the right side of (30) may not converge for all x,
and even if it converges, it may not equal f(x).

3.5. Example of orthonormal basis in L2[a, b]: Fourier series.
The functions sinx, cosx have period 2π. The same is true for any linear

combination of sinnx, cosnx: any trigonometric polynomial6

(31) T (x) =
a0
2

+
N∑
n=1

[an cos(nx) + bn sin(nx)]

is a periodic function, period 2π.
What if instead of a finite sum in (31) we consider a series? Periodicity

should survive taking limits (if the sequence of functions is not oscillating
too wildly).

Exercise. Check that the functions 1, sin(nx), cos(nx), (n = 1, 2, 3 . . .)
form an orthogonal system in L2[−π, π]. Then normalize these functions, to
obtain an orthonormal system.

Moreover

Theorem 32. The functions 1, sin(nx), cos(nx), (n = 1, 2, 3 . . .) form a
basis for the real-valued Hilbert space L2([−π, π],R)

6It is convenient to write the constant term as a0/2 rather than a0 such that formula
(33) applies for all n ≥ 0, and not need a separate formula for a0.
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The proof of this important and deep theorem is not included here.
Is is clear that if we allow the scalars an, bn to be complex numbers,

then the same trigonometric monomials form a basis for the complex-valued
Hilbert space L2([−π, π],C).

It follows that if f(x) ∈ L2[−π, π] then f(x) can be approximated (in
mean squre) by the partial sums of a Fourier series:

(32)
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

Exercise. Assuming that f ∈ L2[−π, π] has its Fourier series expansion
(32) verify that the Fourier coefficients an and bn are given by the formulas

(33) an =
1

π

∫ π

−π
f(x) cos(nx) dx , bn =

1

π

∫ π

−π
f(x) sin(nx) dx

A more concise and compact formula can be written using Euler’s formula
einx = cos(nx) + i sin(nx).

Exercise. Check that the functions einx, n ∈ Z form an orthogonal
system in the complex valued functions L2[−π, π]. Normalize them to obtain
an orthonormal system.

An orthonormal basis for the complex Hilbert spaceL2[−π, π] is thus
found, and any complex valued function in L2[−π, π] can be expanded in a
Fourier series

∞∑
n=−∞

f̂ne
inx

with the Fourier coefficients given by

f̂n =
1

2π

∫ π

−π
f(x)e−inx dx

(why?) The series converges in square mean (i.e. in the L2 norm), and,
moreover, pointwise if f(x) is ”smooth enough” (precise mathematical for-
mulations form the topic of one domain of mathematics, harmonic analysis).

Exercise. Show that the Fourier coefficients an, bn, f̂n are related by the
formulas

an = f̂n + f̂−n for n = 0, 1, 2, . . . , bn = i(f̂n − f̂−n) for n = 1, 2, . . .

Find the conditions on f̂n equivalent to the fact that function f(x) is real
valued.

On a general interval [a, b] the Fourier series is generated by expansion in
terms of exp(2πinx/(b− a)) (with n ∈ Z) as it is easily seen by a rescaling
of x.
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Exercise. Use a linear change of the variable x (i.e. setting x = cx+d for
suitable scalars c, d) to show that the Fourier series of a function g ∈ L2[a, b]
has the form

g =

∞∑
n=−∞

ĝne
2πinx/(b−a)

and find the formula that expresses ĝn in terms of g(x).

3.6. Other bases for L2: orthogonal polynomials.
Recall that polynomials are dense in L2[a, b]. The fact that every function

in L2 can be approximated by polynomials is extremely useful in applica-
tions. It would be even better to have an orthonormal basis of polynomials.

The Legendre orthogonal polynomials are polynomials which form a basis
for the vector space P and orthogonal in L2[−1, 1].

Exercise. Use a Gram-Schmidt process on the polynomials 1, x, x2, x3

to obtain an orthonormal set; these are the first four Legendre polynomials.

More generally, consider weighted L2 spaces, L2([a, b], w(x)dx). As we
noted, the polynomials form a dense set, and they are spanned by 1, x, x2, . . .
The Gram-Schmidt process (with respect to the weighted inner product)
produces a sequence of orthonormal polynomials which span a dense set in
the weighted L2, hence it forms an orthonormal basis for L2([a, b], w(x)dx).

Orthogonal polynomials (with respect to a given weight, on a given in-
terval) have been playing a fundamental role in many areas of mathematics
and its applications, and are invaluable in approximations.

Exercise. The Laguerre orthogonal polynomials are orthogonal in the
weighted L2([0,+∞), e−xdx). Use a Gram-Schmidt process on the poly-
nomials 1, x, x2, x3 to obtain an orthonormal set; these are the first four
Laguerre polynomials.

3.7. Orthogonal complements, The Projection Theorem. The con-
structions are quite similar to the finite-dimensional case. One important
difference is that we often need to assume that subspaces are closed, or
otherwise take their closure.

Definition 33. If S is a subset of a Hilbert space H its orthogonal is

S⊥ = {f ∈ H | 〈s, f〉 = 0, for all s ∈ S}

Remark that S⊥ is a closed subspace, therefore it is a Hilbert space
itself.
Why: as in linear algebra, S⊥ is a vector subspace; to see that it is closed
take a sequence fn ∈ S⊥ such that fn → f , and show that f ∈ S⊥. Indeed,
for any s ∈ S we have 0 = 〈fn, s〉 → 〈f, s〉 (by Theorem 36) so f ∈ S⊥. 2

Definition 34. If V is a closed subspace of H, then V ⊥ is called the or-
thogonal complement of V .
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Note that if V is a vector subspace (not necessarily closed) then (V ⊥)⊥ =
V (another point to be careful about in infinite diemensions).

3.7.1. Orthogonal Projections. Like in finite dimensions, in Hilbert spaces
the projection fV of f onto a subspace V is the vector that minimizes the
distance between f and V . Note however: when we try to upgrade a state-
ment from finite to infinite dimensions we often need to assume that our
subspaces are closed, and if they are not, to replace them by their closure.

Theorem 35. Given V a closed subspace of H and f ∈ H there exists a
unique fV ∈ V which minimizes the distance from f to V :

‖f − fV ‖ = min{‖f − g‖ | g ∈ V }

fV is called the orthogonal projection of f onto V .

The outline of the proof is as follows: let gn ∈ V so that ‖f − gn‖ →
inf{‖f−g‖ | g ∈ V }. A calculation (expanding ‖gn−gm‖2 and using Cauchy-
Schwartz) yields that the sequence (gn)n is Cauchy. Since V was assumed
closed, then gn converges, and fV is its limit. 2

The linear operator PV : H → H which maps f to fV is called the
orthogonal projection onto V .

Like in finite dimensions, H decomposes as a direct sum between a sub-
space V and its orthogonal complement: but V must to be closed:

Theorem 36. (The Projection Theorem)
Let V be a closed subspace of H.
Every f ∈ H can be written uniquely as f = fV + f⊥, with fV ∈ V and

f⊥ ∈ V ⊥.
In other words, H = V ⊕ V ⊥.

The Projection Theorem follows by proving that f − fV is orthogonal to
V (which follows after calculations not included here). 2

3.8. Least squares approximation via subspaces. Consider an orthonor-
mal basis of H: u1, u2, u3, . . .. Any given f ∈ H can be written as a (con-
vergent) series

f =

∞∑
n=1

f̂nun, where f̂n = 〈un, f〉

We can approximate f by finite sums, with control of the errors, in the
following way.

It is clear that the N th partial Fourier sum:

f [N ] =
N∑
n=1

f̂nun
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represents the orthogonal projection of f onto VN = Sp(u1, u2, . . . , uN )
(why?). Since VN is closed (it is finite-dimesional, hence it is essentially
RN or CN ) then by Theorem 35 we have that

‖f − f [N ]‖ = min{‖f − g‖ | g ∈ VN} = min{EN (c1, . . . , cN )
∣∣ ck ∈ C}

where EN (c1, . . . , cN ) = ‖f −
N∑
n=1

cnun‖

The function E2
N (c1, . . . , cN ) is called Gauss’ mean squared error. For

example, for H = L2[a, b] we have

E2
N (c1, . . . , cN ) =

∫ b

a

∣∣f(x)−
N∑
n=1

cnun(x)
∣∣2 dx

Note that
∣∣f(x)−

∑N
n=1 cnun(x)

∣∣2 ≡ s(x) is the squared error at x, and then
1
b−a

∫ b
a s(x)dx is its mean.

Assume the Hilbert space is over the reals. To minimize the squared error
(solving the least squares problem) we look for stationary points, hence we
solve the system

∂E2
N

∂ck
= 0, k = 1, . . . , N

whose solution is (try it!) ck = 〈uk, f〉 = f̂k (for k = 1, . . . , N).

The error in approximating f by f [N ] is EN (f̂1, . . . , f̂N ) therefore

E2
N (f̂1, . . . , f̂N ) = ‖f − f [N ]‖2 = ‖

∞∑
n=N+1

f̂nun‖2 =
∞∑

n=N+1

|f̂n|2 ≤ ‖f‖2

4. Linear operators in Hilbert spaces

Let H be a Hilbert space over the scalar field F = R or C, with a countable
orthonormal basis u1, u2, u3, . . ..

In order to extend the concept of a matrix to infinite dimensions, it is
preferable to look at the linear operator associated to it.

Definition 37. An operator T : H → H is called linear if T (f + g) =
Tf + Tg and T (cf) = cTf for all f, g ∈ H and c ∈ F .

The linearity conditions are often written more compactly as

T (cf + dg) = cTf + dTg for all f, g ∈ H, and c, d ∈ F

The adjoint T ∗ of an operator T is defined as in the finite-dimensional
case, by 〈Tf, g〉 = 〈f, T ∗g〉 for all f, g.

We will see that it is sometimes convenient to consider operators T which
are defined on a domain D(T ) ⊂ H which is smaller than the whole Hilbert
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space H. In such cases T ∗ is (usually) also defined on a domain D(T ∗) ⊂ H
and we will call T ∗ the adjoint of T .

We will call the operator T formally selfadjoint (or symmetric) if

〈Tf, g〉 = 〈f, Tg〉 for all f ∈ D(T ), g ∈ D(T ∗)

We call T selfadjoint if it is formally selfadjoint and D(T ) = D(T ∗).

4.1. Shift operators on `2. The examples below illustrate a very impor-
tant distinction of infinite dimension: for a linear operator to be invertible
we need to check both that its kernel is null (meaning that the operator is
one-to-one) and that its range is the whole space (the operator is onto). We
will see that the two conditions are not equivalent in infinite dimensions,
and that an isometry, while it clearly is one-to-one, need not be onto.

1. Consider the left shift operator S : `2 → `2:

S(x1, x2, x3, x4, . . .) = (x2, x3, x4, . . .)

which is clearly linear.
Obviously Ker(S) = Sp(e1) (S is not one-to-one) and Ran(S) = `2 (S is

onto).
2. Consider the right shift operator R on `2:

R(x1, x2, x3, x4, . . .) = (0, x1, x2, x3, . . .)

The operator R is clearly linear. Note that R is an isometry, since

‖Rx‖2 =
∞∑
n=1

|xn|2 = ‖x‖2

thus we have Ker(R) = {0} (R is one-to-one). But R is not onto since
Ran(R) = {x ∈ `2 |x1 = 0}.

4.2. Unitary operators. Isomorphic Hilbert spaces.

Definition 38. A linear operator U : H → H is called unitary if UU∗ =
U∗U = I (i.e. its inverse equals it adjoint).

This definition is similar to the finite dimensional case, and, it follows that
if U is unitary, then U is an isometry. Example 2 in §4.1 shows that the
converse is not true in infinite dimensions (an isometry may not be onto).
It can be shown that

Theorem 39. If a linear operator is an isometry, and is onto, then it is
unitary.

We noted that if H is a Hilbert space with a countable orthonormal basis
then H is essentially `2. Mathematically, this is stated as follows:

Theorem 40. Let H be a Hilbert space with a countable orthonormal basis.
Then H is isomorphic to `2 in the sense that there exists a unitary operator
U : `2 → H.
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To be precise, if H is a complex Hilbert space, then we consider the
complex `2 (sequences of complex numbers), while if H is a real Hilbert
space, then we consider the real `2 (sequences of real numbers.)

The proof of Theorem 40 is immediate: the operator U is constructed in
the obvious way. Denoting by u1, u2, . . . an orthonormal basis of H we define

U(a1, a2, . . .) = a1u1 + a2u2 + . . . =

∞∑
n=1

anun for each (a1, a2, . . .) ∈ `2

We need to show that
∑∞

n=1 anun ∈ H, that U is one-to-one (clearly true
by the definition of the Hilbert space basis) and onto (intuitively clear but
requires an argument). Finally, by the Parseval’s identity U is an isometry,
and by Theorem 39 it is unitary. �

Other examples of unitary operators.
It can be shown that the Fourier transform is a unitary operator on L2(R).

4.3. Integral operators.

4.3.1. Illustration - solutions of a first order differential equation. The sim-
plest integral operator takes f to

∫ x
a f(s) ds (it is clearly linear!). More

general integral operators have the form

(34) Kf(x) =

∫ b

a
G(x, s)f(s) ds

where G(x, s) (called ”integral kernel”) is continuous, or has jump disconti-
nuities.

(Note the similarity of (34) with the action of a matrix on a vector: if
G = (Gxs)x,s is a matrix, and f = (fs)s is a vector, the (Gf)x =

∑
sGxsfs.)

Integral operators appear as solutions of nonhomogenous differential equa-
tions; then G is called the Green’s functions.

As a first example, consider the differential problem

(35)
dy

dx
+ y = f(x), y(0) = 0

where we look for solutions y(x) for x in a finite interval, say x ∈ [0, 1].
It is well known that the general solution of (35) is obtained by multiplying

by the integrating factor (exp of the integral of the coefficient of y) giving

d

dx
( exy) = exf(x) therefore y(x) = Ce−x + e−x

∫
exf(x) dx

Imposing the initial condition y(0) = 0 we obtain the solution

(36) y(x) = e−x
∫ x

0
esf(s) ds

which has the form (34) for the (Green’s function of the problem)

(37) G(x, s) = e−x es χ[0,x](s)
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where χ[0,x] is the characteristic function of the interval [0, x], defined as

(38) χ[0,x](s) =

{
1 if s ∈ [0, x]
0 if s 6∈ [0, x]

In many applications it is important to understand how solutions of (35)
depend on the nonhomogeneous term f , for example, if a small change of f
produces only a small change of the solution y = Kf . This is the case if

(39) there is a constant C so that ‖Kf‖ ≤ C ‖f‖ for all f

If an operator K satisfies (39) then K is called bounded. In fact, condition
(39) is equivalent to the fact that the linear operator K is continuous.

It is not hard to see that the integral operator K given by (34), (37) is
bounded on L2[0, 1]; this means that the mean squared average of Kf does
not exceed a constant times the mean squared average of f (the estimates
are shown in §4.3.2 below).

We can find better estimates, point-wise rather than in average, since
the linear operator K is also bounded as an operator on the Banach space
C[0, 1], and this means that the maximum of |Kf(x)| does not exceed C
times the maximum of |f | (see the proof of this estimate below in §4.3.3).

While the estimate in C[0, 1] (in the sup-norm) is stronger and more
informative than the estimate in L2[0, 1] (in square-average), we have to
pay a price: we can only obtain them for continuous forcing terms f .

General principle: integral operators do offer good estimates.

4.3.2. Proof that K is bounded on L2[0, 1] (Optional). Let us denote the
norm in L2[0, 1] by ‖ ·‖L2 , and the inner product by 〈·, ·〉L2 to avoid possible
confusions.

To see that K is bounded on  L2[0, 1] note that Kf(x) is, for each fixed
x, an L2 inner product, and using the Cauchy-Schwartz inequality

(40) |Kf(x)| = |〈G(x, ·), f(·)〉L2 | ≤ ‖G(x, ·)‖L2 ‖f‖L2

We can calculate using (37)

‖G(x, ·)‖2L2 =

∫ 1

0
G(x, s)2 ds =

∫ x

0
e2s−2xds =

1

2

(
1− e−2x

)
<

1

2

which used in (40) gives

(41) |Kf(x)| ≤ 1

2
‖f‖L2

for any f ∈ L2[0, 1]. Then from (41) we obtain

(42) ‖Kf‖2L2 =

∫ 1

0
|Kf(x)|2dx ≤ 1

4
‖f‖2L2

so K satisfies (39) in the L2-norm for C = 1/2. 2
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4.3.3. Proof that K is bounded on C[0, 1] (Optional). Recall that C[0, 1] is
a Banach space with the sup-norm ‖ · ‖∞. Note that we obviously have
|f(x)| ≤ ‖f‖∞ for any continuous f .

We need to use the following (very useful) inequality:∣∣ ∫ b

a
F (s) ds

∣∣ ≤ ∫ b

a
|F (s)| ds

which is intuitively clear if we think of the definite integral of a function as
the signed area between the graph of the function and the x-axis.

We then have, for any f ∈ C[0, 1],

|Kf(x)| =
∣∣e−x ∫ x

0
esf(s) ds

∣∣ ≤ e−x ∫ x

0
es |f(s)| ds

≤ ‖f‖∞ e−x
∫ x

0
es ds = ‖f‖∞ (1− e−x) ≤ ‖f‖∞

hence K satisfies (39) in the sup-norm for C = 1. 2

4.3.4. Remarks about the δ function. This δ is “defined” by the property
δ(x) = 0 if x = 0 and

∫∞
−∞ δ(s)ds = 1.

The first remark is that ... there is no such function. There are ob-
jects more general than functions, they are called distributions and δ is a
distribution.

However, in engineering and physics applications it is treated as though
it were a function. This leads to correct results in many cases, not all, and
one has to be careful.

For example, an alternative method for finding the Green’s function of
(35) is by solving dy

dx + y = δ(x − s) where δ is Dirac delta “function”.
Its solution turns out to be G(x, s) in (37). Then, using the fundamental
property of the delta function that

(43) f(x) =

∫
δ(x− s)f(s)ds

by superposition of solutions we obtain (36).
The study of distributions and of their applications form a separate chap-

ter in mathematics.

4.4. Differential operators in L2[a, b]. The simplest differential operator

is d
dx , which takes f to df

dx . It is clearly linear.
There are two fundamental differences between the differential operator

d
dx and the integral operators (34):

1) we cannot define the derivative on all the functions in L2, and
2) d

dx is not a bounded operator: we cannot estimate the derivative of
a function by only knowing the magnitude of the function (not in the sup-
norm, and not even in average). Indeed, you can easily imagine a smooth
function, whose values are close to zero and never exceed 1, but which has
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a very narrow and sudden spike. The narrower the spike, the higher the
derivative, even if the average of the function remains small.

4.4.1. Illustration on a first order problem. Consider again the problem (35).
It can be written as

Ly = f, y(0) = 0

where L is the differential operator

L =
d

dx
+ 1, therefore Ly =

(
d

dx
+ 1

)
y =

dy

dx
+ y

If we are interested to allow the nonhomogeneous term f to have jump
discontinuities, since y′ = f − y then y′ will have jump discontinuities (at
such a point y′ may not be defined). An example of a such function is:

d

dx
|x| =

{
−1 if x < 0
1 if x > 0

A good domain for L is then

D = {y ∈ L2[0, 1] | y′ ∈ L2[0, 1], y(0) = 0}
Note that the initial condition was incorporated in D. Note also that D is
dense in L2[0, 1].

Note that the integral operator K found in §4.3.1 is the inverse of the
differential operator L (defined on D).

4.5. A second order boundary value problem. Quite often separable
partial differential equations lead to second order boundary value problems,
illustrated here on a simple example.

Problem: Find the values of the constant λ for which the equation

(44) y′′ + λy = 0

has non-identically zero solutions for x ∈ [0, π] satisfying the boundary con-
ditions

(45) y(0) = 0, y(π) = 0

Equation (44) models the simple vibrating string: x ∈ [0, 1] represents
the position on the string, and y(x) is the displacement at position x. The
boundary conditions (45) mean that the endpoints x = 0 and x = 1 of the
string are kept fixed.

4.5.1. Formulation of the problem using a differential operator. Unbounded
operators are trickier. If A is a bounded operator, defined everywhere, and
for all x, y 〈x,Ay〉 = 〈Ax, y〉, then A is self-adjoint.

But if A is unbounded, and the condition above holds for all x, y where
A is defined, then A is called formally self-adjoint or symmetric. Formally
self-adjoint is not enough to endure self-adjointness. For now, we’ll work,
once more, formally.
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Equation (44) can be written as

(46) Ly = λy, where L = − d2

dx2

with the domain (dense in L2[0, π])

(47) D = {y ∈ L2[0, π] | y′′ ∈ L2[0, π], y(0) = 0, y(π) = 0}

(it must be noted that D needs to be more precisely specified, stating con-
ditions on y and y′).

A solution of (44), (45) is a solution of (46) in the domain (47). If this so-
lution is not (identically) zero, then it is an eigenfunction of L, corresponding
to the eigenvalue λ.

Note that L is formally self-adjoint on D since for y, g ∈ D we have

〈Ly, g〉 =

∫ π

0
Ly(x)g(x) dx = −

∫ 1

0
y′′(x)g(x) dx

and integration by parts gives (since g(0) = 0 = g(π))

= −y′(x)g(x)
∣∣π
0

+

∫ π

0
y′(x)g′(x) dx =

∫ π

0
y′(x)g′(x) dx

and integrating by parts again (and using y(0) = 0 = y(π))

= y(x)g(x)
∣∣π
0
−
∫ π

0
y(x)g′′(x) dx = 〈y, Lg〉

(Note that the boundary terms vanish by virtue of the boundary conditions.)
It can be shown, just like in the finite-dimensional case, that since L is

formally self-adjoint then its eigenvalues are real and the eigenfunctions of
L corresponding to different eigenvalues are orthogonal (see §4.5.2).

Remark that L = − d2

dx2
is positive definite, motivating the choice of a

negative sign in front of the second derivative. Indeed, for y 6= 0

〈Ly, y〉 = −
∫ 1

0
y′′(x)y(x) dx =

∫ π

0
y′(x)y′(x) dx =

∫ π

0
|y′(x)|2 dx > 0

where the last inequality is strict because
∫ π
0 |y

′(x)|2 dx = 0 implies y′ = 0,
therefore y is constant, and due to the zero boundary conditions then y = 0.

Then the eigenvalues of L are positive, like in the finite-dimensional case.
Indeed, if Lf = λf (f 6= 0) then 〈f, Lf〉 = 〈f, λf〉 hence

−
∫ 1

0
f(x) f ′′(x) dx = λ

∫ 1

0
|f(x)|2 dx

then integrating by parts and using the fact that f(0) = f(1) = 0 we obtain∫ 1

0
|f ′(x)|2 dx = λ

∫ 1

0
|f(x)|2 dx

which implies λ > 0.
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Let us find the eigenvalues and eigenfunctions of L. Since λ 6= 0 the

general solution of (44) is y = C1e
√
−λx +C2e

−
√
−λx (note that

√
−λ = i

√
λ

since λ > 0). Since y(0) = 0 it follows that C2 = −C1, so, choosing C1 = 1,

y(x) = ei
√
λx − e−i

√
λx. The condition y(π) = 0 implies that e2i

√
λπ = 1

therefore
√
λ ∈ Z so λ = λn = n2, n = 1, 2, . . . and the corresponding

eigenfunctions are yn(x) = einx − e−inx = 2i sin(nx).
A proof is needed to show that the eigenfunctions are complete, i.e. they

form a basis for the Hilbert space L2[0, π]. The question of finding the eigen-
values, eigenfunctions, proving their completeness and finding their proper-
ties, is the subject of study in Sturm-Liouville theory.

4.5.2. Review. Let A be a selfadjoint operator.
1) If λ is an eigenvalue of A, then λ ∈ R.
Indeed, Av = λv for some v 6= 0. Then on one hand we have

〈v,Av〉 = 〈v, λv〉 = λ〈v, v〉 = λ‖v‖2

and on the other hand

〈v,Av〉 = 〈Av, v〉 = 〈λv, v〉 = λ〈v, v〉 = λ‖v‖2

therefore λ‖v‖2 = λ‖v‖2 so (λ− λ)‖v‖2 = 0 therefore λ = λ so λ ∈ R.
2) If λ 6= µ are to eigenvalues of A, Av = λv (v 6= 0), and Au = µu

(u 6= 0) then u ⊥ v.
Indeed, on one hand

〈u,Av〉 = 〈u, λv〉 = λ〈u, v〉

and on the other hand

〈u,Av〉 = 〈Au, v〉 = 〈µu, v〉 = µ〈u, v〉

therefore λ〈u, v〉 = µ〈u, v〉 so (λ− µ)〈u, v〉 = 0 therefore 〈u, v〉 = 0.

4.5.3. Solution of a boundary value problem using an integral operator. Let
us consider again equation (46) on the domain (47) and rewrite it as (L −
λ)y = 0. We have non-zero solutions y (eigenfunctions of L) only when
Ker(L− λ) 6= {0}.

Let us consider the totally opposite case, and look at complex numbers
z for which L − z is invertible. (Recall that, in general, the condition that
the kernel be zero does not guarantee invertibility of an operator in infinite
dimensions.)

Let us invert L−z; this means that for any f we solve (L−z)y = f giving
y = (L− z)−1f . The operator (L− z)−1 is called the resolvent of L.

To find y we solve the differential equation

(48) y′′ + zy = −f

with the boundary conditions

(49) y(0) = 0, y(π) = 0
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Recall that the general solution of (48) is given by

C1y1 + C2y2 − y1
∫

y2
W
f + y2

∫
y1
W
f

where y1, y2 are two linearly independent solutions of the homogeneous equa-
tion y′′ + zy = 0 and W = W [y1, y2] = y′1y2 − y1y′2 is their Wronskian.

We need to distinguish the cases z = 0 and z 6= 0.
I. If z = 0, then y1 = 1, y2 = x and we can easily solve the problem

(48), (49).
II. If z 6= 0, then y1 = exp(kx) and y2 = exp(−kx) where k =

√
−z (note

that k may be a complex number; in particular, if z > 0 then k = i
√
z).

Their Wronskian is W = 2k, so the general solution of (48) has the form

C1e
kx + C2e

−kx − ekx

2k

∫ x

0
e−ksf(s) ds+

e−kx

2k

∫ x

0
eksf(s) ds

The boundary condition y(0) = 0 implies C2 = −C1 therefore

y(x) = C
(
ekx − e−kx

)
− ekx

2k

∫ x

0
e−ksf(s) ds+

e−kx

2k

∫ x

0
eksf(s) ds

(50) ≡ C
(
ekx − e−kx

)
+

∫ π

0
g(x, s) f(s) ds

where

g(x, s) =
−1

2k

(
ekx−ks − e−kx+ks

)
χ[0,x](s)

Imposing the boundary condition y(π) = 0 we obtain that C must satisfy

C
(
ekπ − e−kπ

)
+

∫ π

0
g(π, s) f(s) ds = 0

Solving for C and substituting in (50) we obtain that the solution of the
problem (48), (49) has the form (34)

y(x) =

∫ π

0
G(x, s) f(s) ds = (L− z)−1f

where G(x, s) is the Green function of the problem

(51) G(x, s) = g(x, s) − ekx − e−kx

ekπ − e−kπ
g(π, s)

Note that G is not defined if ekπ − e−kπ = 0 which means for ik ∈ Z.
Since k =

√
−z (z 6= 0), this means that for z = n2 (n = 1, 2, . . .) the Green

function is undefined (for these values the denominator of G vanishes): the
resolvent (L− z)−1 does not exist for z = λn = n2.

Note also that G(x, s) is continuous (the discontinuity of χ[0,x](s) at s = x
does not result in a discontinuity of G(x, s) at s = x because g(x, x) = 0).

It is clear that if z is real then (L − z)−1 is self-adjoint because L is
self-adjoint.
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The study of operators on Hilbert spaces is the topic of Functional Analy-
sis. In one of its chapters it is proved that integral operators (34) (and other
similar operators, called compact operators) which are selfadjoint are very
much like selfadjoint matrices, in that they have real eigenvalues µn and the
corresponding eigenfunctions un form an orthonormal basis for the Hilbert
space. The infinite dimensionality of the Hilbert space implies that there
are infinitely many eigenvalues: a countable set, which, moreover, tend to
zero: µn → 0. (Zero may also be an eigenvalue.)

Let us see how the eigenvalues µn and eigenfunctions of the resolvent
(L− z)−1 are related to the eigenvalues λn and eigenfunctions yn of L.

We have Lyn = λnyn hence (L− z)yn = (λn − z)yn for any number z. If
L − z is invertible (we saw that this is the case for z 6= λk for all k) then
yn = (λn−z)(L−z)−1yn so yn is an eigenfunctions of the resolvent (L−z)−1
corresponding to the eigenvalue µn = (λn − z)−1.

Note that λn →∞ (since µn → 0).
Note the following quite general facts:
◦ Remark the functional calculus aspect: if λn are the eigenvalues of L

then (λn− z)−1 are the eigenvalues of (L− z)−1 and they correspond to the
same eigenvectors.
◦ Note again that the eigenvalues of L appear as values of z for which the

Green function has zero denominators.


