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8.1. The Prüfer system 26
8.2. Behavior of θ(x) and the zeroes of u(x) 27
8.3. Boundary conditions and existence of eigenvalues 27

1



2 RODICA D. COSTIN

8.4. The distance between two consecutive zeroes of the
eigenfunction un 28

9. More examples of separation of variables 28
9.1. The wave equation 28
9.2. Laplace’s equation 30
9.3. The vibrating rod 31
10. An introduction to the Fourier transform 33
10.1. The space L2(R) 33
10.2. The Fourier Transform 34
10.3. The Fourier transform diagonalizes the diffferentiation

operator. 34
10.4. An example 35



STURM-LIOUVILLE THEORY 3

1. Examples of separation of variables leading to
Sturm-Liouville eigenvalue problems

Many partial differential equations which appear in physics can be solved
by separation of variables. Two examples are illustrated here.

1.1. Heat conduction in dimension one. Consider a thin rod of length
L, perfectly insulated. The temperature u(x, t) at time t and position x ∈
[0, L] satisfies the heat equation

(1) ut = αuxx

where α is a parameter (which depends on the rod).
Of course, the heat conduction depends on what happens at the two

endpoints of the rod x = 0 and x = L (boundary condition), and on the
initial temperature distribution the rod (initial condition), which need to be
specified.

1.1.1. Separation of variables. Looking for solutions in the form u(x, t) =
y(x)T (t) (with separated variables) and substituting in (1) we obtain

y(x)T ′(t) = αy′′(x)T (t) therefore
T ′(t)

αT (t)
=
y′′(x)

y(x)
= constant = −λ

and we obtain two ordinary differential equation which can be solved:

(2) T ′(t) = −αλT (t)

and

(3) y′′ + λy = 0

1.1.2. Boundary conditions. 1) Suppose both ends of the rod are kept at
constant temperature zero: say u(0, t) = 0 and u(L, t) = 0 for all t. It
follows that y(0) = 0 and y(L) = 0. Equation (3) with these boundary
conditions is a Sturm-Liouville eigenvalue problem.

We saw that the eigenvalues of this problem are λn = n2π2/L2 (n =
1, 2, . . .) and the eigenfunctions are yn(x) = sin(nπ/Lx).

2) Other constant boundary temperatures can be imposed, but these can
be reduced to the case of zero boundary conditions. If, say, u(0, t) = 0 and
u(L, t) = T0 for all t, then substituting

u(x, t) =
T0
L
x+ v(x, t)

into (1) we find that v(x, t) satisfies the heat equation and has zero boundary
conditions: v(0, t) = 0 and v(L, t) = 0 for all t.

3) If one end radiates (say, x = L) then the boundary condition at x = L
is ux(L, t) = −hu(L, t) (h > 0 means heat loss due to radiation, h = 0 means
there is no radiation) and u(0, t) = 0. This gives: y(0) = 0, y′(L)+hy(L) = 0
which together with equation (3) form another Sturm-Liouville eigenvalue
problem.
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1.1.3. Initial condition. The initial distribution of the temperature needs to
be specified as well: u(x, 0) = u0(x).

After finding the eigenvalues λn and eigenfunctions yn of the appropriate
Sturm-Liouville eigenvalue problem, equation (2) is solved yielding Tn(t) =
cne
−αλnt.

Since the heat equation is linear, then a superposition of solutions with
separated variables: u(x, t) =

∑
n cne

−αλntyn(x) is again a solution.
Now it is the time to require that the initial condition be satisfied: u(x, 0) =

u0(x) =
∑

n cnyn(x).
If the eigenfunctions yn are complete in L2[0, L] then indeed cn exist, and

are uniquely determined for any u0 ∈ L2[0, L]: since the eigenfunctions will
be shown to be orthogonal, and assuming they have been normalized to have

norm one, then cn = 〈yn, u0〉 =
∫ L
0 yn(x)u0(x)dx.

1.2. The vibrating string. Consider a vibrating string with space-dependent
tension T (x) and variable linear density ρ(x), assumed to vibrate only due
to the restoring tension.

1.2.1. Derivation of the equation. Denote by y(x, t) the displacement at time
t. (For each t, the graph of the function x 7→ y(x, t) represents the string.)

To deduce the equation of the motion we apply Newton’s law on each
small piece [x, x+ ∆x]. The force at each point x is the vertical component
of T (x): TV (x) = T (x) sinα where α is the angle between T (x) and the

x-axis. Assuming the oscillations are small then sinα ≈ α ≈ tanα = ∂y
∂x .

Thus TV (x) ≈ T (x) ∂y∂x .
The force of the piece [x, x+ ∆x] is

TV (x+ ∆x)− TV (x) ≈ ∂TV
∂x

∆x =
∂

∂x

(
T (x)

∂y

∂x

)
∆x

On the other hand, mass times acceleration is ρ(x)∆x ∂2y
∂t2

, therefore

(4) ρ(x)
∂2y

∂t2
=

∂

∂x

(
T (x)

∂y

∂x

)
The motion depends on what happens at the endpoints of the string (the

boundary conditions) and on its initial state (initial condition) which need
to be specified for the equation (4).

1.2.2. Separation of variables. Solve the partial differential equation (4) by
separation of variables: looking for solutions of the form y(x, t) = u(x)f(t)
and plugging it into (4) it follows that

ρ(x)u(x)f ′′(t) =
d

dx

(
T (x)

du

dx

)
f(t)

therefore
f ′′(t)

f(t)
=

1

ρ(x)u(x)

(
T (x)u′(x)

)′
= constant = −λ
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so

(5) f ′′ = −λf

and

(6)
1

ρu
(Tu′)′ = −λ

We can rewrite (6) as

(7) (Tu′)′ + λρu = 0

1.2.3. Boundary conditions. Suppose the endpoints of the string are kept
fixed: y(0, t) = 0, y(L, t) = 0. Then this implies

(8) u(0) = 0, u(L) = 0

The problem (7), (8) is a Sturm-Liouville eigenvalue problem. As noted
before, this is an eigenvalue/eigenfunction problem for the operator

− 1

ρ(x)

d

dx
T (x)

d

dx
, in H = L2([0, L], ρ(x)dx)

which is selfadjoint on the domain

{u ∈ H |u′, u′′ ∈ H, u(0) = 0, u(L) = 0}

2) Another boundary conditions could be: while x = 0 is fixed, the end-
point x = L is attached to a vertical rod, without friction. Then, it is easy
to see that u′(L) = 0. Equation (7) together with the boundary conditions
u(0) = 0, u′(L) = 0 is another example of a Sturm-Liouville eigenvalue
problem.

3) Or, x = 0 is fixed, but the endpoint x = L is tied to vertical rod, with-
out friction and to a vertical spring that vibrates: −Tu′(L)− ku(L) = 0 (T
is the string tension, k is the spring constant, the tail is accelerated up and
down but there is no transversal force). In this case, the Sturm-Liouville
eigenvalue problem consists of equation (7) together with the boundary con-
ditions u(0) = 0, Tu′(L) + ku(L) = 0.

The appropriate Sturm-Liouville problem is solved, finding the eigenval-
ues λn and the corresponding eigenfunctions un(x).

Remark. The eigenfunctions un(x) are the normal modes of the string.
Then fn(t) can be found by solving (5): fn(t) = cn sin(

√
λnt)+dn cos(

√
λnt)

1.2.4. Initial condition. To determine a unique solution the initial posi-
tion of the string must be given: u(x, 0) = g(x) and the initial velocity
ut(x, 0) = v(x) (the equation is of order two in t!). It is then required that
a superposition of the solutions

∑
n fn(t)un(x) satisfy the initial condition:∑

n fn(0)un(x) = g(x) and
∑

n f
′
n(0)un(x) = v(x). If un(x) form a complete

set then cn and dn can be determined.
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1.3. The wave equation. In particular, if T (x) and ρ(x) are constant then
equation (4) becomes

ytt = c2 yxx (where c2 = T/ρ)

which is the wave equation.
The eigenfunctions un satisfty u′′n+λnu = 0 and the appropriate boundary

conditions. If these are u(0) = 0, u(L) = 0 then we showed that un(x) =
sin(nπx/L) which are the normal modes of the string.
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2. Second order linear ordinary differential equations

2.1. Recall some basic results. A second order linear ordinary differen-
tial equation (ODE) has the form

(9) P (x)u′′ +Q(x)u′ +R(x)u = 0

Because the equation is linear, any linear combination of solutions is
again a solution: if u1, u2 are solutions of (9) and c1, c2 are constants then
c1u1(x) + c2u2(x) is also a solution of (9).

Assumptions.
1) It is assumed assume that the coefficients P (x), Q(x), R(x) are con-

tinuous on an interval [a, b]. (However, jump discontinuities do appear in
applications, and can also be accommodated; we will discuss this later.)

2) It is assumed that P (x) does not vanish in [a, b]. Though, we will
sometimes let P vanish at a or b. (Points where P (x) is zero are singular,
solutions are usually very special at such points, and care is needed.)

3) It can be assumed without loss of generality that P (x) > 0 on (a, b).
(Since P (x) is never zero on (a, b), and it is continuous, then P (x) is either
positive on (a, b) or negative on (a, b). If P < 0 we multiply the equation
by −1.)

Existence and uniqueness of solution to the initial value prob-
lem: given x0 ∈ [a, b], so that P (x0) 6= 0 and given the numbers u0, u

′
0 then

there exists a unique solution u(x) of (9) so that u(x0) = u0 and u′(x0) = u′0.
This solution u(x) is twice differentiable (moreover, u′′ is continuous, as it
is seen from (9)), and it depends continuously on the initial conditions.

General solution.
There exist two linearly independent solutions of (9): u1(x), u2(x) solu-

tions for x ∈ (a, b) so that the vectors (u1(x), u′1(x)) and (u2(x), u′2(x)) are
linearly independent at all x ∈ (a, b).

In fact, u1(x), u2(x) are linearly independent at all x ∈ (a, b) is equivalent
to u1(x0), u2(x0) are linearly independent at some x0 ∈ (a, b).

For example, the solutions with the initial conditions u1(x0) = 1, u′1(x0) =
0 and u2(x0) = 0, u′2(x0) = 1 are linearly independent.

Any solution of (9) is a linear combination of two independent solutions:

(10) u(x) = C1u1(x) + C2u2(x)

for some constants C1,2. In fact, C1u1(x) + C2u2(x) with C1,2 arbitrary
parameters is called the general solution of (9).

So the set of all the solutions of (9) form a linear space of dimension two
(the dimension equals the order of the equation).

Note: The general solution depends on two parameters, so it makes sense
that two conditions are required to determine these parameters. However,
there is no apriori guarantee that solutions satisfying different types of prob-
lems, like boundary conditions, do exist.
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An equivalent condition for two solutions to be linearly independent is
that their Wronskian

W [u1, u2] = u′1u2 − u1u′2
satisfies W (x) 6= 0 for all x ∈ (a, b) (equivalently, at some x0 ∈ (a, b)).

Recall that the Wronskian satisfies the differential equation

(11) W ′(x) = −Q(x)

P (x)
W (x)

and therefore

W (x) = C exp

[∫
−Q(x)

P (x)
dx

]

2.2. The selfadjoint form of a linear second order equation. Con-
sider eigenvalue problems for equations (9):

(12) P (x)u′′ +Q(x)u′ +R(x)u+ λu = 0

We will now show that any equation (12) can be written in a self-adjoint
form:

(13)
1

w(x)

(
− d

dx
p(x)

du

dx
+ q(x)

)
u = λu

or, expanded,

(14)
(
pu′
)′

+ (−q + λw)u = 0

where p(x), q(x), w(x) are functions which we will determine now. The des-
ignation “self-adjoint” comes from the fact that − 1

w
d
dxpx) d

dx is self-adjoint

on suitable domains of the weighted L2
w[a, b], the weight being w. We only

show formal-self-adjointness (later).
Expanding the left hand-side of (13) we obtain

p

w
u′′ +

p′

w
u′ +

(
− q
w

+ λ
)
u = 0

which must be (12), therefore

p

w
= P,

p′

w
= Q,

q

w
= −R

The first two equations imply that p′/p = Q/P therefore

(15) p(x) = exp

[∫
Q(x)

P (x)
dx

]
Then since w = p/P and q = wR we obtain

(16) w(x) =
1

P (x)
exp

[∫
Q(x)

P (x)
dx

]
, q(x) = −R(x)

P (x)
exp

[∫
Q(x)

P (x)
dx

]
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2.3. Homogeneous boundary conditions. These conditions are usually
inherited from the PDEs which produced the ODE (12) by separation of
variables. If the values on the boundary are not zero, substitutions can
often be made to ensure zero values on the boundary: these are called
homogeneous boundary conditions.

These could have the form:
Dirichlet conditions: u(a) = 0, u(b) = 0, or
Neuman conditions: u′(a) = 0, u′(b) = 0, or
Mixed Dirichlet-Neuman conditions (or Robin conditions):

(17)
Ba[u] ≡ αu(a) + α′u′(a) = 0
Bb[u] ≡ βu(b) + β′u′(b) = 0

where α, α′, β, β′ are constants.
The mixed conditions are the most general, as they have the Dirichlet and

the Neuman conditions as particular cases (if α′ = 0 = β′ we obtain Dirichlet
conditions, and if α = 0 = β we obtain Neuman conditions). Therefore we
work with the general mixed Dirichlet-Neuman conditions.

Note: Ba, Bb are linear functionals of u.
It must be assumed that the boundary conditions are nontrivial:

the linear functionals Ba, Bb are not identically zero; this means that at
least one of the numbers α, α′ is not zero (note that this condition can be
written as |α|+ |α′| 6= 0), and similarly, at least one of the numbers β, β′ is
not zero (i.e. |β|+ |β′| 6= 0).

2.3.1. Another way of writing Ba[u], Bb[u]. Clearly if we multiply α and
α′ by the same constant, we obtain the same boundary condition Ba[u],
and similarly for β and β′ in Bb[u]. It is sometimes convenient (and always
possible!) to choose these in the form

(18)
Ba[u] ≡ cos(θa)u(a)− sin(θa)p(a)u′(a) = 0
Bb[u] ≡ cos(θb)u(b)− sin(θb)p(b)u

′(b) = 0

which are very suitable for Prüfer coordinates.
The transformation which brings (17) in the form (18) is the following:

dividing α and α′ by the quantity ±
√
α2 + (α′/p(a))2 with the sign chosen

to be opposite to the sign of α′, we obtain Ba[u] = 0 in the form α1u(a) −
α2p(a)u′(a) = 0 where α2

1 + α2
2 = 1 and α2 ≤ 0 therefore there exists

θa ∈ [0, π) so that α1 = cos(θa) and α2 = − sin(θa) (we choose θa < π/2 if
α1 > 0 and θa > π/2 if α1 < 0). A similar transformation can be performed
on Bb. Note that we can choose θb in [n, (n+ 1)π) for any integer n (if n is
even, we proceed as for the condition at x = a, while if n is odd we choose
the opposite sign in front of ±

√
β2 + (β′/p(b))2, namely the sign of β′).

2.3.2. Singular boundary conditions. Other type of conditions which appear
in applications are:
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Periodic conditions: if p(a) = p(b) then it can be required that the solu-
tions be periodic:

u(a) = u(b), and u′(a) = u′(b)

More generally:

α1u(a) + α′1u
′(a) + β1u(b) + β′1u

′(b) = 0
α2u(a) + α′2u

′(a) + β2u(b) + β′2u
′(b) = 0

If p vanishes at an endpoint, say p(a) = 0: then the boundary condition
at x = a is dropped.

2.4. Formulation of the homogeneous Sturm-Liouville problem. We
will consider real-valued problems: the functions P,Q,R and the numbers
α, α′, β, β′ are real. In case complex valued functions are needed, then equa-
tions can be written and separately solved for the real and imaginary parts
of these functions.

Note that with this reality assumption we have p(x) > 0 and w(x) > 0
(see (15), (16)).

Given the functions p, q, w continuous on [a, b] and p, w > 0 on [a, b], and
Ba[u], Bb[u] (nontrivial) find the numbers λ so that the following problem
has a nontrivial (i.e. nonzero) solution u(x) on [a, b]:

(19)

 [p(x)u′]′ + [−q(x) + λw(x)]u = 0

Boundary conditions at x = a and x = b

The boundary conditions are one of the following:
• regular conditions:

(20)
Ba[u] ≡ αu(a) + α′u′(a) = 0 (|α|+ |α′| 6= 0)

Bb[u] ≡ βu(b) + β′u′(b) = 0 (|β|+ |β′| 6= 0)

• singular conditions:
if p(b) = 0:

(21) Ba[u] ≡ αu(a) + α′u′(a) = 0 (|α|+ |α′| 6= 0)

or, if p(a) = 0:

(22) Bb[u] ≡ βu(b) + β′u′(b) = 0 (|β|+ |β′| 6= 0)

or, if both p(a) = 0, p(b) = 0, then no boundary conditions are assumed
• periodic conditions: (also singular) if p(a) = p(b)

(23)
C[u] ≡ u(a)− u(b) = 0
C ′[u] ≡ u′(a)− u′(b) = 0

The numbers λ are called eigenvalues, and the corresponding solutions -
eigenfunctions.



STURM-LIOUVILLE THEORY 11

2.5. Green’s Identity and self-adjointness of the Sturm-Liouville
operator. We show here that the problem (19) is indeed selfadjoint. Let
us first show a general formula:

Lemma 1. Green’s identity:

(24)

∫ b

a

[
(pu′)′v − u(pv′)′

]
= p(u′v − uv′)

∣∣b
a

Relation (24) follows easily using integration by parts:∫ b

a

[
(pu′)′v − u(pv′)′

]
=

∫ b

a
(pu′)′v −

∫ b

a
u(pv′)′

= pu′v
∣∣b
a
−
∫ b

a
(pu′)v′ − upv′

∣∣b
a

+

∫ b

a
u′(pv′) = p(u′v − uv′)

∣∣b
a

2
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Theorem 2. The operator

(25) L =
1

w(x)

(
− d

dx
p(x)

d

dx
+ q(x)

)
is self-adjoint in the weighted (real) Hilbert space H = L2([a, b], w(x)dx) on
the domain

(26) D = {u ∈ H |u′, u′′ ∈ H, Ba[u] = 0, Bb[u] = 0}
where Ba[u], Bb[u] are any of the boundary conditions listed above.

Proof. To show that 〈Lu, v〉 − 〈u, Lv〉 = 0 for all u, v ∈ D we use, as
usually integration by parts. This work was done by the Green’s identity,
which gives (noting that the terms containing q cancel each other):

〈Lu, v〉−〈u, Lv〉 =

∫ b

a

1

w

[
−
(
pu′
)′

+ qu
]
v w dx−

∫ b

a
u

1

w

[
−
(
pv′
)′

+ qv
]
w dx

(27) = −p(u′v − uv′)
∣∣b
a

= p(a) (u′v − uv′)
∣∣
x=a
− p(b) (u′v − uv′)

∣∣
x=b

We have that

(28) p(a)(u′v − uv′)
∣∣
x=a

= 0, p(b)(u′v − uv′)
∣∣
x=b

= 0

because Ba[u] = 0 = Ba[v] and Bb[u] = 0 = Bb[v].
Indeed, if α′ = 0 then u(a) = 0 = v(a) therefore (u′v − uv′)

∣∣
x=a

= 0, and

if α′ 6= 0 then u′(a) = −α/α′u(a), v′(a) = −α/α′v(a) which substituted
into the first relation of (28) gives again zero. The second relation of (28)
follows in a similar way. 2

2.6. Conclusions. Since L is selfadjoint on D, this implies that its eigen-
values (if any!) are real, and that eigenfunctions corresponding to different
eigenvalues are orthogonal.

We will show that indeed, there exist infinitely many eigenvalues λn,
and that the eigenfunctions un form a complete set in the Hilbert space
L2([a, b], w(x)dx).

We will accomplish this program by studying the solutions of the differ-
ential equation.

It turns out that, in addition, λn can be ordered increasingly, and λn →
∞, and that eigenfunctions un oscillate, and the larger n, the more rapid
the oscillations.
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3. Eigenfunctions associated to one eigenvalue

3.1. Regular problems.

Lemma 3. For regular problems (19), (20) the eigenspaces are one-dimensional:
there is a unique (up to a scalar multiple) eigenfunction associated to each
eigenvalue.

Proof. We show that the eigenspace associated to one eigenvalue of (19)
is one dimensional: any two (nonzero) solutions u1(x), u2(x) of (19) (for the
same λ) are linearly dependent.

Assume, to get a contradiction, that u1 and u2 are linearly independent.
Then the general solution of the differential equation in (19) is u = C1u1 +
C2u2 with C1, C2 arbitrary constants. Since the boundary conditions are
linear, it follows that Ba[u] = C1Ba[u1] +C2Ba[u2] = 0, Bb[u] = C1Bb[u1] +
C2Bb[u2] = 0 therefore the boundary conditions are satisfied by any solution
of the differential equation. For u the solution with u(a) = 1, u′(a) = 0 we
find that α = 0 and u the solution with u(a) = 0, u′(a) = 1 it follows that
α′ = 0, which contradicts the nontriviality assumption on Ba. (A similiar
argument can be made at x = b.)

Therefore, u1 and u2 must be linearly dependent, hence scalar multiples
of each other. 2

3.2. When p(x) vanishes at one endpoint. Suppose that p(b) = 0. Con-
sider the the Sturm-Liouville problem (19), (22).

The Sturm-Liouville operator (25) is selfadjoint on the domain

(29) D = {u ∈ H |u′, u′′ ∈ H, Ba[u] = 0}
Indeed, relations (28) hold: at x = b because p(b) = 0 and at x = a with

the same proof as for Theorem 25.
The eigenspaces are still one-dimensionsl, as the proof of Lemma 3 works.
The singular case with p(a) = 0 is similar.

3.3. Periodic problems. If p(a) = p(b) the Sturm-Liouville eigenvalue
problem (19), (23) is also selfadjoint: the operator (25) is selfadjoint on

(30) D = {u ∈ H |u′, u′′ ∈ H, C[u] = 0, C ′[u] = 0}
since the last quantity in (27) is clearly zero for u, v in the domain (30).

However, for periodic boundary conditions the eigenspaces may be one,
or two-dimensional.

Indeed, repeating the argument of §3.1 we find that if for an eigenvalue
λ, if there are two independent eigenfunctions then all the solutions of the
ODE are periodic (but the space of solutions of a second order ODE is a
two-dimensional vector space). This means that the eigenspace is either
one-dimensional or two-dimensional, and in the latter case we can choose
two orthogonal eigenfunctions.

Here are sufficient conditions which ensure completeness of eigenfunctions:
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Theorem 4. Completeness of the eigenfunctions
Suppose that L is a self-adjoint operator in a Hilbert space H, defined on

a domain D dense in H.
Assume that L has the eigenvalues λ1 ≤ λ2 ≤ λ3 ≤ . . . with λn → ∞,

and that each eigenspace is finite dimensional, spanned by a set of orthgonal
eigenfunctions un.

Then the set of eigenfunctions is complete: they form a basis for the
Hilbert space H.

The proof of the theorem is postponed until §5. We will put it to good
use first.

4. Fourier series

4.1. Basic facts. It is easy to solve the following periodic Sturm-Liouville
problem:

(31) u′′ + λu = 0, u(−π) = u(π), u′(−π) = u′(π)

It has the eigenvalues λn = n2, n = 0, 1, 2, . . .. For n > 0 there are two
orthogonal eigenfunctions corresponding to λn = n2: einx and e−inx, For
n = 0 the eigenfunction corresponding to λ0 = 0 is the constant function,
say 1.

Applying Theorem 4 to L = − d2

dx2
in H = L2[−π, π], which is self-adjoint

on

D = {u ∈ H |u′, u′′ ∈ H, u(π)− u(−π) = 0, u′(π)− u′(−π) = 0}
having the eigenvalues 0, 1, 1, 22, 22, . . . it follows that its eigenfunctions
einx, n ∈ Z form an orthogonal basis for L2[−π, π].

Sometimes it is preferable to work with real-valued functions. In this case,
in each eigenspace Sp(einx, e−inx) corresponding to λn = n2 > 0 we choose a
basis consisting of real function: sin(nx) and cos(nx) (which are orthogonal).
Therefore also its eigenfunctions 1, sin(nx), cos(nx) for n = 1, 2, . . . form an
orthogonal basis for L2[−π, π]. Therefore:

Theorem 5. Any function f ∈ L2[−π, π] can be expanded in a Fourier
series:

(32) f =
∞∑

n=−∞
f̂ne

inx

where

f̂n =
1

2π

∫ π

−π
e−inxf(x) dx

Also

(33) f =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]
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where the Fourier coefficients an and bn are given by the formulas

an =
1

π

∫ π

−π
f(x) cos(nx) dx , bn =

1

π

∫ π

−π
f(x) sin(nx) dx,

The series (32) and (33) converge in the L2-norm of L2[−π, π].

Please note again that convergence is in the sense of tye L2 norm of the
difference going to zero, and not in the sense of convergence at each point!

Exercise. Write f̂n in terms of an, bn. Write an, bn in terms of f̂n.

4.2. Fourier series, sine series and cosine series. Recall that the eigen-
functions of the Sturm-Liouville problem

(34) u′′ + λu = 0, u(0) = 0, u(π) = 0 on [0, π]

are sin(nx), for n = 1, 2, . . . and they correspond to the eigenvalues λn = n2.
Theorem 4 does apply and we obtain that any function in L2[0, π] can be
expanded in a sine-series.

On the other hand, the eigenfunctions of the Sturm-Liouville problem
with Neuman conditions

(35) v′′ + λv = 0, v′(0) = 0, v′(π) = 0 on [0, π]

are cos(nx), for n = 0, 1, 2, . . . and they correspond to the eigenvalues λn =
n2. (Indeed, denoting v′ = u we obtain the problem (34)). By Theorem 4
it follows that cos(nx), for n = 0, 1, 2, . . . also form an orthogonal basis for
L2[0, π].

Therefore, we can expand any function on [0, π] in a sine-series

(36) f =

∞∑
n=1

bn sin(nx), where bn =
2

π

∫ π

0
sin(nx)f(x) dx

or as a cosine series

(37) f =
a0
2

+
∞∑
n=1

an cos(nx), where an =
2

π

∫ π

0
cos(nx)f(x) dx

where the convergence of (36) and (37) is in the L2-norm on [0, π] (i.e. in
square average).

How do the series (33), (36), (37) reconcile each other?
The most important difference to keep in mind between (33) on one hand,

and (36), (37) on the other hand, is that in the first case, of a bone-fide
Fourier series, the function f is considered on an interval equal to the period
of the functions sin and cos used, while in the case of sine, or cosine series,
f(x) is considered the interval of half-period length.

The connection between (33) and (36), (37) can be understood easily if
we think in terms of even and odd functions. (This is one reason why it is
helpful to choose an interval symmetric with respect to the origin.)
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Recall that a function is called even if f(−x) = f(x) for all x. For example
the functions 1, x2, x4, x8 − 3x4, |x|, cos(x) are even.

Recall that a function is called odd if f(−x) = −f(x) for all x. For
example the functions x, x3, x5, x9 − 2x, sin(x), tanx are odd.

4.2.1. Functions on [−π, π].
Note: If f(x) is an even function then all bn = 0 and therefore f has a

cosine-series.
If f(x) is an odd function then all an = 0 and therefore f has a sine-series.
Indeed, first of all this is intuitive, since sines are odd, while cosines are

even. On the other hand, the equality (33) is on average, so we should
better check using formulas. And it is true, since: if f(x) is even, then all
f(x) sin(nx) are odd, hence their integral on a symmetric interval is zero,
hence bn = 0; if f(x) is odd, then all f(x) cos(nx) are odd, hence all an = 0.

Now if f(x) is an arbitrary function on [−π, π] (or on any symmetric
interval), it can be written as a sum of an even function, fe(x) = 1

2 [f(x) +

f(−x)] (its even part) and an odd function fo(x) = 1
2 [f(x)− f(−x)] (its odd

part): f = fe+fo. Hence, if f(x) is defined on [−π, π] its Fourier series (33)
equals the sine-series of its odd part fo plus the cosine-series of its even part
fe.

4.2.2. Functions on [0, π]. Given any function g(x) for x ∈ [0, π], then g
can be continued to x ∈ [−π, π] by

1) requiring that the function on [−π, π] be odd, that is continued as

godd(x) =

{
g(x) if 0 < x < π
−g(−x) if − π < x < 0

in which case g(x) has a sine-series, or by
2) requiring that the function on [−π, π] be even, that is continued as

geven(x) =

{
g(x) if 0 < x < π
g(−x) if − π < x < 0

in which case g(x) has a cosine-series.

(Recall that functions that differ by the value at one point, such as x = 0,
are considered equal in L2.)

Note that the odd part of godd is g, hence its Fourier series contains only
sines (and equals the sine series of g); the even part of geven is also g, hence
its Fourier series contains only cosines (and equals the cosine series of g).

We have now fully reconciled the Fourier series with the sine and cosine
series.
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The figure below shows a function on [0, 1]

3

0.1

1

−1

x

1.00.90.80.70.60.50.40.30.2

2

0

0.0

function on [0,1]       

and its extension to [−1, 1] as an odd function

2

0

x

3

−1

−2

−0.5 0.5 1.00.0

1

−1.0

−3

extension as odd        

and its extension to [−1, 1] as an even function

3

0.5

−1

x

2

1.0

1

0

0.0−0.5−1.0

extended as even        



18 RODICA D. COSTIN

4.3. General intervals. First note that instead of the interval [−π, π] we
can use any interval of length 2π (but we loose the odd-even symmetry);
similarly, instead of the interval [0, π] for the sine and cosine series, we can
use any interval of length π. For a function f(x) on a general interval [a, b]
a linear change of the coordinate x shows that we can write an expansion

f =
∑
n∈Z

f̂ne
2πinx/(b−a) on [a, b]

or, we can replace x by any translation x − c. Also sine series and cosine
series ca be written, with argument nπx/(b− a). The general Fourier series
is more appropriate if f is periodic on [a, b] (i.e. f(a) = f(b)).

4.4. pointwise convergence of Fourier series. While the Fourierseries
(32) and (33) converges to f in the L2-norm (that is, in squared average),
it is useful to know when the series converges pointwise (that is, for a fixed
x, as a series of numbers):

Theorem 6 (Pointwise convergence of a Fourier series).
A. If f and f ′ are piecewise continuous on [−π, π] then the series (33)

converges for every x.
B. Let c ∈ (−π, π).

(i) If f is continuous at x = c then the Fourier series (33) at x = c converges
to f(c).
(ii) If f has a jump discontinuity at x = c then the Fourier series (33) at
x = c converges to [f(c−) + f(c+)]/2.

C. The behavior of the Fourier series at the points x = π and x = −π is
seen in the following way. Continue f(x) outside [−π, π] by 2π-periodicity.
If f(π−) = f(−π+) then x = ±π are points of continuity, and the series
(33) converges to f(±π) for x = ±π. Otherwise, x = ±π are points where
there is a jump discountinuity and the series (33) converges to [f(π−) +
f(−π+)]/2 for x = ±π.

We will give a proof of Theorem 6 shortly.

Remark. Smoothness of a function is related to the rate of decay of its
Fourier coefficients. Namely, the more derivatives a function has, the faster
its Fourier coefficients decay.

Recall that if f ∈ H then sequence of its generalized Fourier coefficients
with respect to an orthonormal basis of H belongs to `2. In particular,
the sequence a0, a1, b1, a2, b2, . . . in (33) is in `2, so an, bn → 0, faster than
1/
√
n in the weak sense that lim inf

√
ncn = 0. It can be shown that if the

coefficients decay faster, say like 1/n2, then f is continuous and piecewise
differentiable. And so on: the faster the decay, the more derivatives f has.

Precise statements can be found in books dedicated to Fourier analysis.

4.5. An example. Let us find the sine-series of function f(x) = 1 for x ∈
[0, π].
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It can be checked that bn = 0 for n even, and its sine-series is

4

π
sin (x) +

4

3π
sin (3x) +

4

5π
sin (5x) +

4

7π
sin (7x) +

4

9π
sin (9x) + . . .

For each x ∈ (0, π) the sine-series converges to 1 by Theorem 6 B.(i). To
understand the value at which the series converges at the end points x = 0
and x = π we first continue the function to an odd function on [−π, π],
which is fodd(x) = 1 for x ∈ (0, π] and fodd(x) = −1 for x ∈ [−π, 0). Using
Theorem 6 B.(i) the series at x = 0 converges to [fodd(0−) + fodd(0+)]/2 =
0 and by Theorem 6 C. at x = π the series converges to [fodd(−π+) +
fodd(π−)]/2 = 0.

Of course, by substituting directly x = 0 or x = π in the series we see
that all its terms are zero.

The picture shows the plot of the sum of the first five nonzero terms.

0.5

0.75

x

3.02.0

0.25

0.0

1.0

0.0

1.51.0 2.50.5

partial sum             

Note the large overshoot of the partial sum at the at the jump disconti-
nuities at x = 0 and x = π: this is called Gibbs phenomenon. This behavior
of truncates of Fourier series gives rise to artifacts in signal processing.

4.6. The Dirichlet Kernel and the pointwise convergence theorem.
We will prove the theorem in the case f is periodic in C1[−π, π]. Dealing
with discontinuities is relatively easy, and could, in principle, be left as an
exercise. How would you go about solving such an exercise?

In assessing pointwise convergence of Fourier series, we want to estimate
sums of the form

(38) f(x)−
M∑
−N

f̂ne
inx

The sum

(39)

n∑
k=−n

eikx =
sin((n+ 1/2)x)

sin(x/2)
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is called the Dirichlet kernel. To show (39), one way is to use the geometric
series,

(40)
n∑

k=−n
rk = r−n

1− r2n+1

1− r
=
r−n−1/2

r−1/2
1− r2n+1

1− r
=
r−n−1/2 − rn+1/2

r−1/2 − r1/2

and thus
(41)
n∑

k=−n
eikx =

e−(n+1/2)ix − e(n+1/2)ix

e−ix/2 − eix/2
=
−2i sin((n+ 1/2)x)

−2i sin(x/2)
=

sin((n+ 1/2)x)

sin(x/2)

Noting that we can write the Fourier series of a function on [−π, π] in the
form

(42) a0 +

∞∑
k=0

(ak cos kx+ bk sin kx)

where we remember that we got the an, bn by using Euler’s formula in

(43) f =

∞∑
−∞

f̂ne
inx, equality in the sense of L2

(44)

a0 =
1

2π

∫ π

−π
f(t)dt, ak =

1

π

∫ π

−π
f(t) cos(kt)dt bk =

1

π

∫ π

−π
f(t) sin(kt)dt

we have

(45) f(x)−

[
a0 +

n∑
k=0

(ak cos kx+ bk sin kx)

]
= f(x)−

n∑
k=−n

f̂ne
inx

= f(x)− 1

2π

n∑
k=−n

∫ π

−π
f(t)e−inteinxdt = f(x)− 1

2π

∫ π

−π
f(t)

n∑
k=−n

e−in(t−x)

= f(x)− 1

2π

∫ π

−π
f(t)

sin((n+ 1/2)(x− t))
sin((x− t)/2)

=
1

2π

∫ π

−π
[f(x)− f(t)]

sin((n+ 1/2)(x− t))
sin((x− t)/2)

Here we used the fact that
(46)

1

2π

∫ π

−π

sin((n+ 1/2)(x− t))
sin((x− t)/2)

=
1

2π

∫ π

−π

sin((n+ 1/2)u)

sin(u/2)
du =

1

2π

∫ π

−π

n∑
k=−n

eikudu = 1
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Now,

(47)
1

2π

∫ π

−π
[f(x)− f(t)]

sin((n+ 1/2)(x− t))
sin((x− t)/2)

=

∫ π

−π

[
f(x)− f(t)

x− t
x− t

sin((x− t)/2)

]
sin((n+ 1/2)u)du

=

∫ x+π

x−π

[
f(x)− f(x− u)

u

u

sin(u/2)

]
sin(nu+ u/2)du

=

∫ x+π

x−π
Gx(u) sin(nu+ u/2)du

where, because f is continuously differentiable, Gx is continuous (why?).
Thus

(48)

∫ x+π

x−π
Gx(u) sin(nu+ u/2)du as n→∞ (why?)

5. Completeness of the eigenfunctions: Proof of Theorem 4

Consider a self-adjoint operator L on a domain D dense in a Hilbert space
H. We found many problems where there exists a sequence of eigenvalues
λ1 ≤ λ2 ≤ λ3 ≤ . . . with λn →∞ and that the corresponding eigenfunctions
un are orthogonal. The hypotheses of Theorem 4 are thus satisfied. It only
remains to prove Theorem 4.

5.1. Proof of Theorem 4. As in finite dimensions, the eigenvalues of L
can be calculated using the maximin principle. (We cannot speak about a
minimax since there is no maximum eigenvalue).

Recall that, using the Rayleigh quotient

R[u] =
〈u, Lu〉
〈u, u〉

, u ∈ D, u 6= 0

we have
λ1 = minR[u]

then

λ2 = min{R[u] | 〈u1, u〉 = 0}, λ3 = min{R[u] | 〈u1, u〉 = 0, 〈u2, u〉 = 0} . . .
or, with the notation W1 = Sp(u1), . . .Wn = Sp(u1, u2, . . . , un) . . . and
Vn = W⊥1 ∩D then

λ2 = min
u∈V1

R[u], λ2 = min
u∈V2

R[u], . . . , λn+1 = min
u∈Vn

R[u] . . .

Let un be eigenfunctions of L: un ∈ D so that Lun = λnun which by
assumption satisfy un ⊥ uk if n 6= k (note that this is automatic if λn 6= λk
since L is selfadjoint). We can assume ‖un‖ = 1.

To prove completeness of the eigenfunctions un we first show that any
f in the domain D of the operator L can be expanded in terms of un, in
other words that the space S = Sp(u1, u2, u2, . . .) is dense in D. Then since
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D was assumed to be dense in H it follows that S is dense in H, therefore
u1, u2, u3, . . . form a basis for the Hilbert space (see details in §5.2 below).

To show that S is dense in D for any arbitrary f ∈ D, form the series

(49)

∞∑
n=1

f̂nun, with f̂n = 〈un, f〉

and show that this series converges to f . Note that the partial sums of the
series (49) belong to S:

f [N ] ≡
N∑
n=1

〈un, f〉un ∈ S

We show that the error when approximating f by partial sums

(50) h[N ] = f − f [N ]

goes to zero as N →∞, that is

‖h[N ]‖ → 0 as N →∞

Since h[N ] ∈ VN (why?) then

λN+1 = min
u∈VN

R[u] ≤ R[h[N ]] =
〈h[N ], Lh[N ]〉
‖h[N ]‖2

and therefore

(51) ‖h[N ]‖2 ≤ 1

λN+1
〈h[N ], Lh[N ]〉

Now expand, using (50) (recall that λn ∈ R),

〈h[N ], Lh[N ]〉 = 〈f, Lf〉−
N∑
n=1

f̂n〈un, Lf〉−
N∑
n=1

f̂n〈f, Lun〉+
N∑

n,m=1

f̂nf̂m〈un, Lum〉

= 〈f, Lf〉 −
N∑
n=1

2f̂nλn〈un, f〉+

N∑
n=1

|f̂n|2λn = 〈f, Lf〉 −
N∑
n=1

|f̂n|2λn

Since limn λn = +∞ then the eigenvalues are positive starting with a
certain rank N0: suppose λn ≥ 0 for n > N0. Then (for N > N0)
(52)

〈f, Lf〉−
N∑
n=1

|f̂n|2λn = 〈f, Lf〉−
N0∑
n=1

|f̂n|2λn−
N∑

n=N0+1

|f̂n|2λn ≤ 〈f, Lf〉−
N0∑
n=1

|f̂n|2λn

Using (52) in (51) we obtain

‖h[N ]‖2 ≤ 1

λN+1

(
〈f, Lf〉 −

N0∑
n=1

|f̂n|2λn

)
→ 0 as N →∞

which completes the proof of the convergence and of completeness. 2
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5.2. If S is dense in D and D is dense in H then S is dense in H.
Intuitively: the statement that D is dense in H means that for any f ∈ H
we can find an fD ∈ D as close to f as we wish. Similarly, if S is dense
in D then we can find fS ∈ S as close to fD as we wish. By the triangle’s
inequality: if fD is close to f , and fS is close to fD, then fS is close to f .

So, let f ∈ H. We want (for an arbitrary ε > 0) to find fS ∈ S so that
d(f, fS) < ε. But we can certainly find fD ∈ D so that d(f, fD) < ε/2 and
for that fD we can certainly find fS ∈ S so that d(fD, fD) < ε/2.

By the triangle’s inequality then

d(f, fS) < d(f, fD) + d(fD, fS) < ε/2 + ε/2 = ε

which proves the claim.
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5.3. Problems on infinite intervals. If we have eigenvalue problems on
infinite intervals (like [a,+∞) or R = (−∞,+∞)) a similar theory can be
developed, only series need to be replaced by integrals.

For example, consider the differentiation operator in L2(R): L = −i ddx .
Since

−i d
dx
eikx = keikx

then the function eikx is a generalized eigenfunction of L (it must be called
”generalized” because it does not belong to the Hilbert space L2(R)).

However, any f ∈ L2(R) can be developed in terms of these generalized
eigenfunctions:

f(x) =

∫ ∞
−∞

eikxF̂ (k) dk

(the inverse Fourier transform, up to a scalar multiple... this normalization
issue again...) to be compared to the Fourier series for f ∈ L2[−π, π]

f =
∞∑

k=−∞
f̂ke

ikx

We will discuss Fourier integrals in detail later; the main point is that on
finite intervals we have series, while on infinite intervals we have integrals.

6. Abel’s Theorem

The following results is (11) in disguise:

Theorem 7. Abel’s Theorem
Let u, v be two solutions of the second order linear differential equation

(53) [p(x)u′]′ + [−q(x) + λw(x)]u = 0

Then

p(u′v − uv′) = constant

Proof. Equation (53) expanded is pu′′ + p′u′ + (−q + λw)u = 0. For
W = W [u, v] = u′v − uv′ relation (11) implies that W ′ = −p′/pW so
lnW = − ln p+ const which implies pW = const. 2

Note that once a solution u of (53) another independent solution v can be
found by solving p(u′v−uv′) = c, which is a first order differential equation,
linear nonhomogeneous for v.

7. Sturm’s Oscillation Theorems

7.1. A simple example. It is always useful to consider simple examples
(or, ”toy models”) for the more complicated system studied. A simple exam-
ple (and exactly solvable!) of a Sturm-Liouville problem is obtained for for
w(x) = 1, p(x) = 1, q(x) = 0, and α′ = 0, β′ = 0, and [a, b] = [0, π], namely
the problem (34). We studied this equation and we found the eigenvalues
λn = n2 (n = 1, 2, . . .) and the eigenfunctions un = sin(nx).
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The figures show, on the same plot, un and un+1 for n = 1, 2, 3. Please
note how their zeroes interlace: between two consecutive zeroes on un there
is a zero of un+1. Sturm’s Comparison Theorem shows that this is a general
feature. (Please note that the numbers of zeros is linked to the number of
oscillations.)

7.2. Sturm’s Comparison Theorem.

Theorem 8. Consider two solutions u(x) and v(x) of two equations

(54) [p(x)u′]′ + g(x)u = 0

and

(55) [p(x)v′]′ + h(x)v = 0

where p(x) > 0 on [a, b].
(i) If g(x) < h(x) on [a, b] then v(x) oscillates more rapidly than u(x):

between any two zeroes of u(x) there is a zero of v(x).
(ii) If g(x) < 0 on [a, b] then u(x) does not oscillate: it vanishes at most

once on [a, b].

Sturms’s Comparison Theorem applied to g(x) = −q(x) + λw(x) with
w > 0 shows that if λ is negative enough there cannot be solutions of
(54) which vanish at both endpoints a, b. However, once there is a solution
vanishing at x = a and x = b, then the higher λ the more zeroes solutions
have (i.e. more oscillations) and that zeroes of solutions for different λs do
interlace.

Proof of Sturm’s Comparison Theorem
(i) Multiplying (54) by v, (55) by u and subtracting it is found that

d

dx

[
p(u′v − uv′)

]
= (h− g)uv

therefore by integration

(56) p(u′v − uv′)
∣∣∣x2
x1

=

∫ x2

x1

(h− g)uv

Choose x1 < x2 be two consecutive zeroes of u. Assume, to get a con-
tradiction, that v has no zero on (x1, x2). Then v has a constant sign on
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(x1, x2), say v > 0 (otherwise replace v by −v). We can also assume u > 0
on (x1, x2). Then the right-hand side of (56) is positive, while the left-hane
side is negative since it equals

p(x2)︸ ︷︷ ︸
>0

u′(x2)︸ ︷︷ ︸
≤0

v(x2)︸ ︷︷ ︸
>0

− p(x1)︸ ︷︷ ︸
>0

u′(x1)︸ ︷︷ ︸
≥0

v(x1)︸ ︷︷ ︸
>0

≤ 0

which is a contradiction.
(ii) For h(x) = 0: since (pv′)′ = 0 then the general solution of (55) is

c1 + c2
∫ x
a (1/p). Choosing v = 1 +

∫ x
a (1/p) we have v > 0 hence v has no

zero. Therefore by (i) u has at most one zero. 2.

8. Existence of eigenvalues: The Prüfer transformation

The differential equation (in selfadjoint form) is

(57) (p(x)u′)′ + g(x)u = 0 with g(x) = −q(x) + λw(x)

Assume that p(x) > 0 and that p′, g′ are continuous.
Sturm’s Comparison Theorem shows the oscillatory character of the so-

lutions of (57). Polar coordinates in the phase space are then natural.

8.1. The Prüfer system. The Prüfer transformation consists in writing
in polar coordinates the (phase-space like) quantities u and v = pu′:

(58) u(x) = r(x) sin θ(x), u′(x) =
r(x)

p(x)
cos θ(x)

The equation (57) is v′ + gu = 0, therefore

(59)
d

dx
(r cos θ) + gr sin θ = 0

The second equation is obtained from u′ = r/p cos θ which expanded gives

(60) r′ sin θ + rθ′ cos θ = r/p cos θ

On the other hand, expanding (59) we obtain

(61) r′ cos θ − rθ′ sin θ + gr sin θ = 0

Solving (60), (61) for r′, θ′ we obtain

(62) r′ =
1

2

(
1

p
− g
)
r sin 2θ

and

(63) θ′ = g sin2 θ +
1

p
cos2 θ ≡ F (x, θ)

(multiplying (60) by sin θ, multiplying (61) by cos θ and adding them up we
obtain (62), while multiplying (60) by cos θ, multiplying (61) by − sin θ and
adding them up we obtain (63)).
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Remarkably, equation (63) is a first order equation for θ(x), independent
of r(x)! With θ(x) determined by (63) we can integrate (62) to obtain r(x):

r(x) = K exp

∫ x

a

1

2

(
1

p(s)
− g(s)

)
sin 2θ(s) ds

Note that r(x) 6= 0. Note that we can take the constant K = 1 (otherwise
we divide u(x) by K).

It is easy to see (from (58)) that the boundary conditions (18) become

(64) θ(a) = θa, θ(b) = θb

8.2. Behavior of θ(x) and the zeroes of u(x).

Choosing λ large enough assume that g(x) > 0 on [a, b], so that oscillations
are possible.

(A) Note that (from (58))

u(x) = 0 if and only if sin θ = 0 so if and only if θ = kπ, k ∈ Z
(B) On the other hand θ′(x) = F (x, θ) > 0, so θ(x) is an increasing

function. In fact, the larger g, the larger θ′ (the rate of increase of θ).
(C) There can be no accumulation of zeroes of u(x) as the distance be-

tween two successive zeroes is no smaller that a positive number d.
Why: Denoting MF = max{F (x, θ) |x ∈ [a, b], θ ∈ [0, 2π]} we have

θ′(x) < MF . Therefore, if x1 < x2 are two successive zeroes of u(x) then we
have θ(x1) = kπ and since θ(x2) = (k+1)π and θ(x2)−θ(x1) = θ′(c)(x2−x1)
for some c ∈ (a, b) it follows that

(65) x2 − x1 =
1

θ′(c)
(θ(x2)− θ(x1)) ≥

π

MF
≡ d

8.3. Boundary conditions and existence of eigenvalues. We showed
that the Sturm-Liouville eigenvalue problem (19) becomes, in Prüfer coordi-
nates: determine the values λ so that the following boundary value problem
has a nontrivial solution:

(66) θ′ = (−q(x) + λw(x)) sin2 θ +
1

p(x)
cos2 θ

(67) θ(a) = θa ∈ [0, π)

(68) θ(b) = θb ∈ [nπ, (n+ 1)π)

To solve the problem, first solve the equation (66) with the initial con-
dition (67). We obtain θ(x;λ) depending on the parameter λ, chosen large
enough so that −q(x) + λw(x) > 0 on [a, b].

The solution θ(x;λ) has the following properties:
1) is continuous in λ (since g depends continuously on the parameter λ) and
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is increasing in λ (since θ′ is increasing in λ);
2) for x fixed limλ→∞ θ(x;λ) = +∞ (since θ′ is increasing in λ, without any
bound);
3) for x fixed limλ→−∞ θ(x;λ) = 0 (because for large λ equation (63) is
approximately θ′ ≈ λw(x) sin2 θ with the solution cot θ ≈ −λ

∫ x
c w. In the

limit λ→ −∞ then cot θ → −∞⇒ θ → 0).
Therefore, for some λ = λn, condition (68) is satisfied.

We thus find an increasing sequence of eigenvalues λn, with λn →∞.

8.4. The distance between two consecutive zeroes of the eigenfunc-
tion un. Using the formula (65) for g(x) = −q(x) + λnw(x) we obtain that
the distance between two consecutive zeroes of the eigenfunction un is no
smaller that dn = π/Mn where

Mn = max{[−q(x) + λnw(x)] sin2 θ +
1

p(x)
cos2 θ

∣∣x ∈ [a, b], θ ∈ [0, 2π]}

(Note that this estimate can be used only when p does not vanish at the
endpoints of the interval [a, b].)

9. More examples of separation of variables

9.1. The wave equation. Vibrations of a string and propagation of waves
is modeled by the wave equation

(69) utt = c2 uxx

It can be easily checked that if h1,2 are two arbitrary twice differentiable
functions then

(70) u(x, t) = h1(x− ct) + h2(x+ ct)

satisfies the wave equation and therefore (70) is the general solution of the
wave equation. Note that c represents the speed of propagation of the wave.

Let us solve (69) for x ∈ [0, L] and t > 0. For this we need the boundary
conditions at x = 0 and at x = L, which we take for simplicity to be the
homogeneous Dirichlet problem:

(71) u(0, t) = 0, u(L, t) = 0

and we also need initial conditions, at t = 0. Since (69) is second order
in t we need the initial positions and the initial velocity. Therefore the
conditions are

(72) u(x, 0) = f(x), ut(x, 0) = g(x)
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9.1.1. Separation of variables. Looking for solutions of (69) in the form
u(x, t) = X(x)T (t) the PDE becomes

T ′′(t)X(x) = c2T (t)X ′′(x) therefore
T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= constant = −λ

(we include c2 with T just for the convenience of solving the equation for
X). The boundary conditions (71) imply that

(73) X(0) = 0, X(L) = 0

We solved the Sturm-Liouville problem

X ′′(x) + λX(x) = 0

with (73); the solutions are

(74) λ = λn =
n2π2

L2
, n = 1, 2 . . . , Xn(x) = sin

nπx

L

Next solve

T ′′(t) + c2λnT (t) = 0

which gives

(75) T (t) = Tn(t) = an cos
cnπt

L
+ bn sin

cnπt

L

(note the undetermined constants an, bn). We obtained the solutions

(76) u(x, t) = un(x, t) =

[
an cos

cnπt

L
+ bn sin

cnπt

L

]
sin

nπx

L

which represent the modes of vibration: the mode un has frequency ωn =
1
2π

cnπ
L = c

2L cycles per unit time, and it is called the nth harmonic. The
harmonic with n = 1 is called the fundamental frequency, or first harmonic.
In the case of the vibrating sting all the harmonic frequency are multiples
of the fundamental one.

9.1.2. Superposition. Since the PDE (69) is linear, then any sum of solutions
(76) is again a solution, so let

(77) u(x, t) =

∞∑
n=1

un(x, t) =

∞∑
n=1

[
an cos

cnπt

L
+ bn sin

cnπt

L

]
sin

nπx

L

9.1.3. Initial conditions. We now require that the solution (77) satisfies (72):

(78) u(x, 0) =

∞∑
n=1

an sin
nπx

L
= f(x)

and

(79) ut(x, 0) =

∞∑
n=1

bn
cnπ

L
sin

nπx

L
= g(x)
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Assuming that f, g ∈ L2[0, L] we can expand them as a sine-series (re-
call that sin nπx

L are eigenfunctions of a selfadjoint operator satisfying the
hypothesis of the Completeness Theorem 4), and

an =
〈sin nπx

L , f〉
‖ sin nπx

L ‖2
, bn =

L

cnπ

〈sin nπx
L , g〉

‖ sin nπx
L ‖2

Since

‖ sin
nπx

L
‖2 =

∫ L

0
sin2 nπx

L
dx =

1

2

∫ L

0

(
1− cos

2nπx

L

)
dx =

L

2

we obtain

(80) an =
2

L

∫ L

0
f(x) sin

nπx

L
dx, bn =

2

nπc

∫ L

0
g(x) sin

nπx

L
dx

9.1.4. Connection with the general solution. To see how the solution (77),
(80) is related to the general solution (70) use the trigonometric formulas
2 sinA cosB = sin(A + B) + sin(A − B) and 2 sinA sinB = cos(A − B) −
cos(A+B) to rewrite (77) as

u(x, t) =
∞∑
n=1

[
an
2

(
sin

(x+ ct)nπ

L
+ sin

(x− ct)nπ
L

)

+
bn
2

(
cos

(x− ct)nπ
L

− cos
(x+ ct)nπ

L

)]
≡ 1

2
[F (x+ ct) +G(x− ct)]

where

F (x) =
∞∑
n=1

(
an sin

nxπx

L
− bn cos

nxπx

L

)
G(x) =

∞∑
n=1

(
an sin

nxπx

L
+ bn cos

nxπx

L

)
Note that the graph of F (x−ct) (for any fixed t) is the same as the graph

of F (x) (the initial shape), only shifted to the right by ct: it represents
the initial ”wave” traveling to the right with speed c. Similarly, F (x + ct)
represents the initial ”wave” traveling to the left with speed c.

9.2. Laplace’s equation. The two-dimensional heat equation (modeling
the temperature distribution in a lamina) is

ut = α2 (uxx + uyy)

The stationary solutions (for which u(x, y, t) ≡ u(x, y)) satisfy Laplace’s
equation

(81) uxx + uyy = 0

It is clear that in order to solve (81) we need information about the temper-
ature on the boundary of the lamina.
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Consider as example a lamina in the shape of a seminfinite vertical strip:
0 ≤ x ≤ L and y ≥ 0 and the Dirichlet problem: we need the temperature
along the segment (x, 0) with 0 ≤ x ≤ L, along the half lines (0, y), y ≥ 0
and (L, y), y ≥ 0 and for y → +∞:

(82)

u(x, 0) = f(x) for 0 ≤ x ≤ L
u(0, y) = 0 for y ≥ 0
u(L, y) = 0 for y ≥ 0
limy→+∞ u(x, y) = 0 for 0 ≤ x ≤ L

9.2.1. Separation of variables. Looking for solutions of (81) in the form
u(x, Y ) = X(x)Y (y) the PDE becomes

X ′′(x)Y (y) +X(x)Y ′′(y) = 0 therefore
X ′′(x)

X(x)
=
−Y ′′(y)

Y (y)
= −λ

Solving for X(x) we obtain (74) then solving for Y (y):

Y (y) = Yn(y) = an exp(−nπy/L) + bn exp(nπy/L)

The last condition in (82) implies that bn = 0.

9.2.2. Solving the problem by superposition. Since the equation (81) is linear,
then a sum of the solutions with separated variables is again a solution:

u(x, y) =
∞∑
n=1

Xn(x)Yn(y) =
∞∑
n=1

an exp(−nπy/L) sin
nπx

L

Requiring that the first condition in (82) be satisfied we obtain

u(x, 0) =
∞∑
n=1

an sin
nπx

L
= f(x)

If f ∈ L2[0, L] then an are found by (80).

9.3. The vibrating rod. Transverse vibrations of a homogeneous rod are
described by the equation

(83) uxxxx + utt = 0

Assume that the rest position of the rod is for 0 ≤ x ≤ π.
The problem needs two initial conditions in t and four conditions in x (it

has order four in x).
The boundary conditions come from the system studied. For example,

they could be
1) free ends: X ′′ = X ′′′ = 0 for x = 0 and x = π, or
2) supported ends: X = X ′′ = 0 for x = 0 and x = π, or
3) clamped ends: X = X ′ = 0 for x = 0 and x = π, or
4) X ′ = X ′′′ = 0 for x = 0 and x = π, or
5) periodicity: X(0) = X(π), X ′(0) = X ′(π), X ′′(0) = X ′′(π), X ′′′(0) =
X ′′′(π).
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Let us solve the problem with free ends:

X ′′ = X ′′′ = 0 for x = 0, x = π

As before, we solve by separation of variable: u(x, t) = X(x)T (t) which
gives

X(IV )(x)

X(x)
=
−T ′′(t)
T (t)

= λ

Can we expect a complete set of eigenfunctions?

Consider the operator L = d4

dx4
in H = L2[0, π] on the domain

D = {f ∈ H | f ′, f ′′, f ′′′, f (IV ) ∈ H, f ′′(0) = f ′′′(0) = 0, f ′′(π) = f ′′′(π) = 0}

Is the operator (formally) selfadjoint on D?
For f, g ∈ D calculate

〈Lf, g〉 =

∫ π

0
f (IV )(x)g(x) dx = f ′′′g

∣∣π
0
−
∫ π

0
f
′′′

(x)g′(x) dx

= −
∫ π

0
f
′′′

(x)g′(x) dx = f ′′g′
∣∣π
0

+

∫ π

0
f
′′
(x)g′′(x) dx

(84) =

∫ π

0
f
′′
(x)g′′(x) dx = f ′g′′

∣∣π
0
−
∫ π

0
f
′
(x)g′′′(x) dx

−
∫ π

0
f
′
(x)g′′′(x) dx = fg′′′

∣∣π
0

+

∫ π

0
f(x)g(IV )(x) dx = 〈f, Lg〉

therefore L is indeed (formally) selfadjoint on D.
Note also that L is positive semidefinite, so the eigenvalues λ are nonneg-

ative. Indeed we have from (84) that

〈Lf, f〉 =

∫ π

0
|f ′′(x)|2 dx ≥ 0

and 〈Lf, f〉 = 0 implies f
′′
(x) = 0 hence f(x) = a+ bx ∈ D.

To calculate the eigenfunctions we find the general solution of the ODE.
For λ 6= 0 denote ν = λ1/4 and then

(85) X(x) = c1 cos(νx) + c2 sin(νx) + c3e
νx + c4e

−νx

and for λ = 0

X(x) = d1 + d2x+ d3x
2 + d4x

4

which belongs to D if d3 = d4 = 0. Hence the eigenspace corresponding to
λ = 0 is two-dimansional, consisting of linear functions X0(x) = d1 + d2x.

Imposing the boundary condition in (85) we obtain a linear system of four
equations for the four constants c1, . . . , c4. The condition that this system
has a nontrivial solution is that its determinant be zero. Calculation of this
determinant yields the condition

(86) cosh νπ cos νπ = 1
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which determines λ. However, (86) is a transcendental equation for ν (we
cannot solve it explicitly). We can deduct that there is a sequence of solu-
tions ν tending to +∞ in the following way. Rewrite (86) as

(87) coshx =
1

cosx
, (x = νπ)

The function coshx is increasing and greater than 1 for x > 0. The graph
of the right-hand side of (87) has vertical asymptotes. On intervals (−π/2+
2nπ, 2nπ] (n integer) it decreases from +∞ to 1, and on intervals [2nπ, π/2+
2nπ) it increases from 1 to +∞. Therefore, in each of these intervals there
is a solution of equation (87). On the other intervals 1/ cosx is negative and
equation (87) has no solutions.

A sequence of nonnegative eigenvalues λn do exist and λn →∞.The Com-
pleteness Theorem applies and the eigenfunctions are complete in L2[0π].

The equation is then solved using specified initial conditions.

10. An introduction to the Fourier transform

10.1. The space L2(R). Consider any function in the vector space of con-
tinuous functions which are zero outside a closed interval:

C0(R) = {f : R→ C | fcontinuous, f(x) = 0 for all x 6∈ [a, b] for some a < b}
(they are called contiuous functions with compact support). If f ∈ C0 van-
ished outside some [a, b] then clearly it has finite L2(R)-norm since

‖f‖2 =

∫ +∞

−∞
|f(x)|2 dx =

∫ b

a
|f(x)|2 dx <∞

The space L2(R) is defined as the completion of C0 with respect to the
L2(R)-norm

‖f‖ =

(∫ +∞

−∞
|f(x)|2 dx

)1/2

and it is a Hilbert space with respect to the inner product

〈f, g〉 =

∫ +∞

−∞
f(x)g(x) dx

(which is finite by the Cauchy-Schwarz inequality).

The Hilbert space L2(R) has many features common to L2[a, b]; for ex-
ample, if two functions differ at only a number of points (finitely many, or
countably many) are considered equal in L2.

One novel feature is that, for a function, even continuous on R, to belong
to L2(R), this function needs to decay to zero fast enough for x→ ±∞ (so
that the improper integral converges).

For example, consider functions decaying like a power, say f(x) = 1/(1 +
|x|a). For which a is such a function in L2(R)?
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For large x, f(x) ∼ x−a and |f(x)|2 ∼ x−2a which integrated gives a
multiple of x1−2a. The improper integral converges if 1− 2a < 0, therefore
for a > 1/2.

Other examples of functions belonging to L2(R) are e−|x|, e−x
2
.

10.2. The Fourier Transform. For f ∈ C0 its Fourier transform, Ff , is
defined as

(88) f̂(ξ) = (Ff)(ξ) =
1√
2π

∫ ∞
−∞

e−ixξf(x) dx

It can be shown that ‖f̂‖ = ‖f‖ (Parseval’s identity) and that the Fourier
transform can be extended as a unitary operator from L2(R) to itself, and
that its inverse is:

(89) f(x) = (F−1f̂)(x) =
1√
2π

∫ ∞
−∞

eixξ f̂(ξ) dξ

Note the similarity with Fourier series, only we have an integral instead
of a series: recall f =

∑
n e

inxfn.

Note also the similarity with matrix multiplication: if Uξ,x = e−iξx and
f = fx then (88) is like

∑
x Uξ,xfx while the inverse of U , which equals its

adjoint, is U∗x,ξ = Uξ,x = eiξx.

Remark. Some books define the Fourier transform (88) without the
prefactor 1√

2π
. In this case, the transform is no longer a unitary operator,

and the inverse (89) must have the prefactor 1
2π .

10.3. The Fourier transform diagonalizes the diffferentiation op-
erator. Indeed, consider the linear operator d

dx in L2(R), defined on the
domain

D = C1
0 ≡ {f ∈ C0 | f ′ ∈ C0}

Just like for finite intervals, the space C1
0 is dense in L2(R).

For f, g ∈ C1
0 we have

〈 d
dx
f, g〉 =

∫ ∞
−∞

f ′(x)g(x) dx = f(x)g(x)
∣∣∣∞
−∞
−
∫ ∞
−∞

f(x)g′(x) dx = −〈f, d
dx
g〉

and therefore d
dx is skew-symmetric (hence its eigenvalues - if any!- are purely

imaginary).
We can see that eixξ (for ξ ∈ R) are eigenfunctions of d

dx . However they
are generalized eigenfunctions , since they do not belong to the Hilbert space
L2(R), and we have expansions as integrals (88) rather than series. Indeed,

d

dx
eixξ = iξeixξ
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Moreover, integrating by parts we find that

(F d

dx
f)(ξ) =

1√
2π

∫ ∞
−∞

e−ixξf ′(x) dx =
1√
2π

∫ ∞
−∞

iξe−ixξf(x) dx = iξ(Ff)(ξ)

or

(90)
d̂f

dx
= iξf̂

or F d
dxF

−1 is the operator of multiplication by iξ - hence it is diagonal!.

10.4. An example. Problem: solve the initial value problem for the heat
equation on the line

(91) ut = αuxx, for x ∈ R, t > 0

with

(92) u(x, 0) = u0(x) ∈ L2(R)

Take the Fourier transform in x in the heat equation: denoting

û(ξ, t) =
1√
2π

∫ ∞
−∞

e−ixξu(x, t) dx

we obtain
ût = αûxx

which gives using (90)

ût = −ξ2αû
which is an ODE in t whose general solution is

(93) û(ξ, t) = F (ξ)e−ξ
2αt

Using the initial condition (92) we see that we must have F (ξ) = û0(ξ) and
taking the inverse Fourier transform in (93) we obtain the solution

u(x, t) =
1√
2π

∫ ∞
−∞

eixξ−ξ
2αtû0(ξ) dξ

=
1

2π

∫ ∞
−∞

eixξ−ξ
2αt

∫ ∞
−∞

e−iyξu0(y) dy dξ

=
1

2π

∫ ∞
−∞

K(x, y, t)u0(y) dy

where

K(x, y, t) =

∫ ∞
−∞

eixξ−ξ
2αt−iyξ dξ

which is easily calculated by completing the squares:

ξ2αt− i(x− y)ξ =

(
ξ
√
α
√
t− i x− y

2
√
α
√
t

)2

+
(x− y)2

4αt

therefore

K(x, y, t) =
1√

4παt
e−

(x−y)2
4αt
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and therefore the solution to (91), (92) is

u(x, t) =
1√

4παt

∫ ∞
−∞

e−
(x−y)2

4αt u0(y) dy


