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0.1. General properties. We employ the usual definition

Ff = f̂ =
1√
2π

∫ ∞
−∞

f(x)e−ixξdx

Proposition 1.

(1) ̂f(x+ h) = f̂(ξ)eiξh

(2) ̂f(x)e−ixh = f̂(ξ + h); h ∈ R
(3) f̂(ax) = |a|−1f̂(a−1ξ); a 6= 0

(4) f̂ ′(x) = iξf̂(ξ)

(5) x̂f = i ddξ f̂(ξ)

(6) f̂g = 1√
2π
f̂ ∗ ĝ = 1√

2π

∫∞
−∞ f̂(s)ĝ(ξ − s)ds

Many of the proofs we have done them already. The rest are simple
exercises, except perhaps for the last one, which we show by taking

(1)
1√
2π
F−1

∫ ∞
−∞

f̂(s)ĝ(ξ − s)ds =
1

2π

∫ ∞
−∞

eixξ
∫ ∞
−∞

f̂(s)ĝ(ξ − s)dsdξ

=

∫ ∞
−∞

eixt
1√
2π
f̂(t)eixu

1√
2π
ĝ(u)dudt = fg

where we made the change of variables s = t, ξ − s = u
Let S(R) be the Schwarz space.

Proposition 2. If f ∈ S(R) then f̂ ∈ S(R).

We have shown this before as well.
An important invariance property is the following.

Theorem 3. Let f(x) = exp(−x2/2). Then f̂(ξ) = exp(−ξ2/2).

In other words exp(−x2/2) is an eigenfunction of F corresponding to the
eigenvalue 1. What other eigenvalues are possible?

Proof. Let f(x) = e−x
2/2. Then,

F (ξ) =
1√
2π

∫ ∞
−∞

e−x
2/2e−ixξdx

Then,

√
2πF ′(ξ) =

∫ ∞
−∞

(−ix)e−x
2/2e−ixξdx = i

∫ ∞
−∞

f ′(x)e−ixξdx

On the other hand,

F ′(ξ) = ξf̂(ξ) = −ξF (ξ)

(why?) It follows that

F (ξ) = Ce−x
2/2
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Now, F (0) = 1 (why?). Thus

F (ξ) = e−x
2/2

�

Using Proposition 1 (3) we see that

F(e−βx
2
) =

√
π

β
e
− ξ

2

4β

1. Solving PDEs by Fourier transform

1.1. The heat equation. Consider again the heat equation in one dimen-
sion

ut = uxx; u(t = 0, x) = f(x) ∈ L2

By taking the Fourier transform in x we get

ût = −ξ2û⇒ û(t, ξ) = C(t)e−tξ
2

and imposing the boundary condition, we must have

û(t, ξ) = f̂(ξ)e−tξ
2

and by taking F−1 we get

u(x, t) =
1√
4πt
F−1(e−x

2/(4t)) ∗ f =
1√
4πt

∫ ∞
−∞

e−u
2/(4t)f(x− u)du

1.2. The Laplace equation in the upper half plane. Consider the equa-
tion

∆u =
∂2u

∂x2
+
∂2u

∂y2
= 0; u(x, y = 0) = f(x) ∈ L2

Taking the Fourier transform in x we get

−ξ2û+ ûyy = 0

with the only admissible solution (one which is not growing as ξ → ∞ and
imposing the boundary condition we get

û(ξ) = f̂(ξ)e−|ξ|y

and it follows that

u(x, y) =
1

π

∫ ∞
−∞

y

t2 + y2
f(x− t)dt
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2. The Fourier transform in Rd (Based on [1])

2.1. Notations. Given (x1, ..., xd) ∈ Rd one writes

|x| =
√
x2

1 + · · ·+ x2
d

and we often abbreviate 〈x, y〉 = x · y. Also, for x ∈ Rd,m ∈ Zd we write

xm = xm1
1 · · ·x

md
d

and also (
∂

∂x

)m
=

(
∂

∂x1

)m1

· · ·
(

∂

∂xd

)md
=

∂|m|

∂xm1
1 · · · ∂x

md
d

where (there is some some ambiguity of notation) |m| = m1 + · · ·+md.
Symmetries play an important role in the analysis of PDEs and in other

problems as well. These symmetries are: translations, dilations, and rota-
tions. The translation by h is simply x 7→ x+ h, dilations are x 7→ ax with
a > 0 and rotations are linear orthogonal transformations, represented by
matrices with real valued entries, s.t. 〈Rx,Ry〉 = 〈x, y〉. As matrices, these
are unitary matrices with real entries, and preservation of scalar product
simply means RR∗ = R∗R = I where R∗ is the adjoint of R, and since
R is real-valued, R∗ = Rt. We have det(R) = ±1. In particular −I is
a rotation, but an improper one: det(I) = −1. It represents a reflection
(symmetry) about the origin. Rotations with det(R) = 1 are called proper
rotations. General rotations are then proper rotations composed with a
symmetry w.r.t. 0.

In R3 the description of all possible rotations was provided by Euler. For
any proper rotation, there is an axis of rotation d: R(d) = d; If P is the
plane through 0 ⊥ to d, then R(P ) = P and on P , which is isomorphic to
R2, R is a two-dimensional rotation matrix R2:(

cos θ − sin θ
sin θ cos θ

)
2.2. Functions with rapid decrease in Rd. By definition, these are func-
tions with the property

sup
x∈Rd

|xk||f(x) <∞ ∀k ∈ N

Integrals over the whole of Rd are defined in particular on functions of rapid
decrease. They are improper integrals, defined as∫

Rd
f(x)dx = lim

R→∞

∫
BR

f(x)dx

where BR is the ball of radius R. Instead of BR we could take, with the
same result, QR, the (hyper)cube of side R. In the latter interpretation, this
is an iterated improper integral.
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You can convince yourself that the limit exists if

sup
x∈Rd

xd+ε|f(x)| <∞ for some ε > 0

Functions with moderate decrease are defined as above, with ε = 1.

2.2.1. Properties.

(1) ∫
Rd
f(x+ h)dx =

∫
Rd
f(x)dx

(2)

ad
∫
Rd
f(ax)dx =

∫
Rd
f(x)dx

(3) For any rotation R,∫
Rd
f(Rx)dx =

∫
Rd
f(x)dx

2.3. (Hyper)Spherical coordinates. Recall that polar coordinates in R2

are defined by (r, θ) where r is the distance to the origin and θ ∈ [0, 2π) is
the angle with the x axis, and we have∫

R2

f(x)dx =

∫ 2π

0

∫ ∞
0

f(r cos θ, r sin θ)rdrdθ

In R3 we similarly have

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ

and∫
R3

f(x)dx =

∫ 2π

0

∫ π

0

∫ ∞
0

f(r sin θ cosφ, r sin θ sinφ, r cos θ)r2 sin θdθdφdr

This is generalized as follows: We write a point on the hypersphere Sd−1 of
radius 1 as γ and write∫

Rd
f(x)dx =

∫
Sd−1

∫ ∞
0

f(rγ)rd−1dσ(γ)

where dσ(γ) is the surface element on Sd−1.

2.4. The Schwarz space in Rd. The Schwarz space in Rd S(Rd) consists
of all indefinitely differentiable functions on Rd with the property

sup
x∈Rd

∣∣∣∣|x|m( ∂

∂x

)n
f(x)

∣∣∣∣ <∞
for all multi-indices m,n.
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2.5. The Fourier transform on S(Rd). If f ∈ S(Rd) we define, for ξ ∈ Rd,
in one convention

f̂(ξ) = (2π)−d/2
∫
Rd
f(x)e−ix·ξdx

and in a notation often used in PDEs,

f̂(ξ) =

∫
Rd
f(x)e−2πix·ξdx

From this point on, we will use the latter definition.
Some properties of the Fourier transform in Rd are listed below. We write

F(f) = f̂ as f(x) 7→ f̂(ξ).

Proposition 4. (1)

f(x+ h) 7→ f̂(ξ)e2πiξh; h ∈ Rd

(2)

f(x)e−2πix·h 7→ f̂(ξ + h); h ∈ Rd

(3)

f(ax) 7→ a−df̂(aξ); a ∈ R+

(4) (
∂

∂x

)m
f(x) 7→ (2πiξ)mf̂(ξ)

(5)

(−2πix)mf(x) 7→
(
∂

∂ξ

)m
f̂(ξ)

(6) If R is a rotation, then

f(Rx) 7→ f̂(Rx)

Proof. Only the last property requires a proof, as the proof of the others
is similar to the one-dimensional case. For the last property, we make the
change of variable t = Rx and remember that 〈R−1x,R−1ξ〉 = 〈x, ξ〉 and
that |det(R)| = 1.

�

Proposition 5. The Fourier transform maps S(Rd) into itself.

Proof. The proof is similar to the one-dimensional one. �

Definition 6. A function is radial if f(x) = fr(|x|) for some fr.

Proposition 7. A function is radial if and only if it has radial symmetry,
that is f(Rx) = f(x) for all x.
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Proof. Indeed, if f(x) = fr(|x|), then f(Rx) = fr(|Rx|) = fr(|x|) = f(x).
In the opposite direction let x and x′ be s.t. x 6= x′, |x| = |x′| and let’s
for now prove the statement for R3. The general proof is not much more
difficult. Taking the Π plane generated by x, x′, there is a 2-d rotation R2

s.t. R2x
′ = x. A 3-d rotation that does the same is R2 about the normal to

Π. Then f(x) = f(Rx) = f(x′) and thus f only depends on |x|.
How would you generalize this argument to Rd? �

Corollary 8. The Fourier transform of a radial function is radial.

Proof. This follows from Proposition 4 (6), since f̂(Rξ) = f̂(ξ) �

The d−dimensional Gaussian f(x) = e−ar
2
, r = |x| is an example of a

radial function.

Proposition 9 (The inversion formula). If f ∈ S(Rd) and f̂ = F(f), then

f(x) = F−1(f̂) =

∫
Rd
f̂(ξ)e2πix·ξdξ

Proposition 10 (Plancherel formula in Rd).∫
Rd
|f̂(ξ)|2dξ =

∫
Rd
|f(x)|2dx

Definition 11. Convolution of two functions, say in S(Rd) is defined in a
way similar to convolution in R:

(f ∗ g)(x) =

∫
Rd
f(t)g(x− t)dt

Proposition 12.

f̂ ∗ g = f̂ ĝ; f̂g = f̂ ∗ ĝ

Proof. The proofs can be obtained from the fact that the Rd Fourier trans-
form in Rd is an iterated 1d Fourier transform. �

2.6. The wave equation in R×Rd. The homogeneous wave equation with
initial condition u(t = 0, x) = f(x), or the Cauchy problem for the wave
equation is similar to the 1d one:

(2)
1

c2

∂2u

∂t2
= ∆u; u(t = 0, x) = f(x); ut(t = 0, x) = g(x)

where

∆u :=

d∑
k=1

∂2u

∂xk2

The strategy for solving this equation is similar to the one used in 1d initial
value problems: We Fourier transform the problem w.r.t. the space variable,
after which we end up with an ODE.
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In (2) we remember that differentiation with respect to xk is transformed
into multiplication by 2πiξk, and the time derivative of the Fourier transform
is the Fourier transform of the time derivative. Thus

(3)
1

c2

∂2û

∂t2
= −4π2

(
n∑
k=1

ξ2
k

)
û = −4π2|ξ|2û

This is indeed an ODE, with general solution

(4) û(t, ξ) = A(ξ) cos(2π|ξ|t) +B(ξ) sin(2π|ξ|t)
We now note that on the one hand

(5) û(t = 0, ξ) = f̂(ξ); ût(t = 0, ξ) = ĝ(ξ);

and on the other hand

(6) û(t = 0, ξ) = A(ξ); ût(t = 0, ξ) = 2π|ξ|B(ξ)

Combining (5) and (6) we get

Theorem 13. The solution of the Cauchy problem for the d-dimensional
wave equation is

(7) u(x, t) =

∫
Rd

[
f̂(ξ) cos(2π|ξ|t) + ĝ(ξ)

sin(2π|ξ|t)
2π|ξ|

]
e2πix·ξdξ

Proof. This does require a proof since we only derived the solution formally,
assuming it exists, assuming we can take the Fourier transform etc. Part of
this proof is relatively straightforward: we should check that (7) is a solution
of (2). The more difficult part is to show uniqueness of this solution, which
is done by energy arguments, see [1] p. 187. �

What does this give in one dimension?
For this, we use Euler’s formulas:

cos(2π|ξ|) = 1
2

(
e2πi|ξ| + e−2πi|ξ|

)
; sin(2π|ξ|) = 1

2i

(
e2πi|ξ| − e−2πi|ξ|

)
and get d’Alembert’s formula,

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(y)dy

Check the formula above, both in terms of it solving the Cauchy problem,
and also by deriving it from (7)!

2.7. The heat equation in Rd. This is the equation

∂u

∂t
= ∆u =

d∑
k=1

∂u

∂x2
k

; u(t = 0, x) = f(x) ∈ S(Rd)

Taking the Fourier transform in x, we get

ût = (2πi)2
d∑

k=1

ξ2
k = −4π2|ξ|2
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and thus

û = C(ξ)e−4π2|ξ|2

The initial condition implies that

û = f̂(ξ)e−4π2|ξ|2

Now, ∫ ∞
−∞

e−4π2ξ2kt+2πiξkxk =
1√
4πt

e−
x2k
4t

and thus

F−1e−4π2|ξ|2 =

(
1√
4πt

)d
e
|x|2
4t

and therefore, by Proposition 12 we have

(8) u(x, t) = (4πt)−d/2
∫
Rd
e−
|x−y|2

4t f(y)dy

The condition that f ∈ S(R3) is not needed, provided (8) can be justified.

2.8. The Poisson summation formula. Let f ∈ S(R). Note first that

∞∑
n=−∞

f(x+ n)

is convergent and periodic with period one.

Theorem 14 (Poisson summation formula). Under the assumptions above,

(9)
∞∑

n=−∞
f(x+ n) =

∞∑
n=−∞

f̂(n)e2πinx

and in particular we have the symmetric formula

(10)

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n)

Proof. On the left side of the identity we have, as mentioned, a smooth peri-
odic function of period one. It suffices to check that the Fourier coefficients
of both sides of the equation coincide. The series on the right side of (9)
converges pointwise and rapidly so (why?).

The k−th coefficient on the right side of (9), calculated now with the
definition

ĝk =

∫ 1

0
g(s)e−2πiksds
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is clearly f̂(k). For the left side we have

(11)

∫ 1

0

∞∑
n=−∞

f(s+ n)e−2πiksds =
∞∑

n=−∞

∫ 1

0
f(s+ n)e−2πiksds

=

∞∑
n=−∞

∫ n+1

n
f(t)e−2πiktdt =

∫ ∞
−∞

f(t)e−2πiktdt = f̂(k)

The formula extends to the case when f is smooth and decays fast enough,
for instance

|f(x)| ≤ |C|
1 + x2

for some C. Recall that, for a > 0,∫ ∞
−∞

e2πixξe−2πa|x| =
a

π

1

a2 + ξ2

�

Thus,
∞∑

n=−∞

1

n2 + a2
=
π

a

∞∑
n=−∞

e−2πa|n| =
π

a
coth(πa)

This identity is the Mittag Leffler decomposition of π
a coth(πa), a general-

ization of the decomposition by partial fractions to meromorphic functions
(analytic except for poles).

By taking limits carefully, we get

∞∑
n=1

1

n2
=
π2

6

(How?)
Exercise: Show that

F−1

(√
π
2

(
−2e−a|k| − ie−ia|k| + ieia|k|

)
4a3

)
=

1

n4 − a4

Assuming that a4 /∈ Z calculate

∞∑
n=−∞

1

n4 − a4

and show that
∞∑
n=1

1

n4
=
π4

90
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2.9. The Laplace transform. Consider the differential equation

y′′ − y = 0

. We can attempt to solve it by Fourier transform. What do we get?

(−ξ2 − 1)ŷ(ξ) = 0

thus y = 0.
Why did we fail to obtain any interesting solution? Because neither of

the two solutions of the equation, e±x is Fourier transformable.
There are other ways in which d/dx can be diagonalized.
Assume f is analytic in the upper half plane and decays faster than

1/|z|1+a, for some a > 0, as z → ∞ in the upper half plane. Then, the
integral

f̂(p) =
1

2π

∫ ∞
−∞

e−ixpf(x)dx =
1

2πi

∫ i∞

−i∞
eptf(−it)dt

is zero for all p < 0.
Indeed, the integral is the limit as N →∞ of

1

2π

∫ N

−N
e−ixpf(x)dx

and it is also, for p < 0, the limit of

1

2π

∫ N+ia

−N+ia
e−ixpf(x)dx

(Why)? It is easy to see that, if we take the limit a→∞, the limit is zero.
Thus, under these assumptions,

f̂(p) =
1

2π

∫ ∞
−∞

e−ixpf(x)dx = 0 for p < 0

Then, the inverse transform is

(12)

∫ ∞
−∞

eixpf̂(p)dp =

∫ ∞
0

eixpf̂(p)dp

Note now that this integral makes sense for x = x1 + ix2 provided that
x2 > 0. In fact, the integral is analytic in x in the upper half plane: the
value of the integral for x = x1 + ix2 is the analytic continuation of (12) to
the upper half plane.

We can take x1 = 0 and the inverse Fourier transform becomes (the
analytic continuation of)

(13)

∫ ∞
0

e−xpF (p)dp

The formula

(14) g(x) =

∫ ∞
0

e−xpG(p)dp
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is called the Laplace transform. By the calculations above, the inverse of
the Laplace transform is

G(p) =
1

2πi

∫ i∞

−i∞
epxg(x)dx

Note that this transform exists if F (p) does not grow faster than eνp

provided that x > ν (or <(x) > ν more generally). In this case, the inversion
formula becomes

G(p) =
1

2πi

∫ ν+i∞

ν−i∞
epxg(x)dx

Note also that
(15)

F̂ ′(p) =

∫ ∞
0

e−xpF ′(p)dp = p =

∫ ∞
0

e−xpF (p)dp− F (0) = F̂ (p)− F (0)

Similarly,

(16) F̂ ′′(p) =

∫ ∞
0

e−xpF ′(p)dp = p =

∫ ∞
0

e−xpF (p)dp− F ′(0)− pF (0)

= F̂ (p)− F ′(0)− pF (0)

Now, the Laplace transform of our toy model y′′ − y = 0 is

(p2 − 1)ŷ(p) = py(0) + y′(0)

with solution

ŷ(p) =
py(0) + y′(0

(p2 − 1)
⇒ y(x) = y(0) cosh(x) + y′(0) sinh(x)

We can now easily solve the forced pendulum equation,

y′′ + y = cos(ωx)

Indeed, the Laplace transformed equation is

p2ŷ + ŷ − py(0)− y′(0)− p

ω2 + p2
= 0

with inverse Laplace transform

y(x) = y(0) cos(x) + y′(0) sin(x) +
cos(x)− cos(ωx)

ω2 − 1

or, similarly, the damped forced pendulum and so on.

2.10. An application to Laplace transforms. For now let F ∈ L1(R).
The Laplace transform

(17) LF :=

∫ ∞
0

e−pxF (p)dp

is well defined and continuous in x in the closed H+ and analytic in the
open RHP (the open H+). (Obviously, we could allow Fe−|α|p ∈ L1 and
then LF would be defined for <x > |α|.) F is uniquely defined by its
Laplace transform, as seen below.
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Lemma 15 (Uniqueness). Assume F ∈ L1(R+) and LF = 0 for a set of x
with an accumulation point in H+. Then F = 0 a.e.

We will from now on write F = 0 on a set to mean F = 0 a.e. on that
set.

Proof. By analyticity, LF = 0 in the open RHP and by continuity, for s ∈ R,
LF (is) = 0 = F̂F where F̂F is the Fourier transform of F (extended by

zero for negative values of p). Since F ∈ L1 and 0 = F̂F ∈ L1, by the
known Fourier inversion formula, F = 0. �

More however can be said. We can draw interesting conclusions about F
just from the rate of decay of LF .

2.11. A Laplace inversion formula.

Theorem 16. Assume c ≥ 0, f(z) is analytic in the closed half plane
Hc := {z : < z ≥ c}. Assume further that supc′≥c |f(c′ + it)| ≤ g(t) with

g(t) ∈ L1(R). Let

(18) F (p) =
1

2πi

∫ c+i∞

c−i∞
epxf(x)dx =: (L−1F )(p)

Then for any x ∈ {z : < z > c} we have

(19) LF =

∫ ∞
0

e−pxF (p)dp = f(x)

Proof. Note that for any x′ = x′1 + iy′1 ∈ {z : < z > c}

(20)

∫ ∞
0

dp

∫ c+i∞

c−i∞

∣∣∣ep(s−x′)f(s)
∣∣∣ d|s| ≤ ∫ ∞

0
dpep(c−x

′
1)‖g‖1 ≤

‖g‖1
x′1 − c

and thus, by Fubini we can interchange the orders of integration:

(21) U(x′) =

∫ ∞
0

e−px
′ 1

2πi

∫ c+i∞

c−i∞
epxf(x)dx

=
1

2πi

∫ c+i∞

c−i∞
dxf(x)

∫ ∞
0

dpe−px
′+px =

1

2πi

∫ c+i∞

c−i∞

f(x)

x′ − x
dx

Since g ∈ L1 there must exist subsequences τn,−τ ′n tending to ∞ such that
|g(τn)| → 0. Let x′ > <x = x1 and consider the box Bn = {z : <z ∈
[x1, x

′],=z ∈ [−τ ′n, τn]} with positive orientation. We have

(22)

∫
Bn

f(s)

x′ − s
ds = −f(x′)

while, by construction,

(23) lim
n→∞

∫
Bn

f(s)

x′ − s
ds =

∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds−

∫ c+i∞

c−i∞

f(s)

x′ − s
dx
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On the other hand, by dominated convergence, we have

(24)

∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds→ 0 as x′ →∞

�

3. Asymptotic series

A simple example of an asymptotic series is the Taylor series of a C∞

function.

Remark 1. The Taylor series of a function f at a point a converges to f
in an open interval around a iff f is analytic at a. This is a pretty strong
requirement!

Example 2. What can happen at a point of nonanalyticity? Take f(x) =

e−1/x2 for x 6= 0 and zero at x = 0. You can check that all derivatives of f
at zero exist, and they are zero. Thus the Taylor series of f at zero exists
and it is the zero series. Which, of course, converges to the zero function,
6= f(x).

Based on the integral of e−1/x2 , in the next example we define a function
which, while still nonanalytic, has a nonzero Taylor series. Consider

(1)
df

dx
= e−1/x2

To simplify the terms of the ODE, write f(x) = e−1/x2g(x):

(2) x3g′ + 2g = x3

The fact that the coefficient of g′ vanishes at third order is responsible for
very singular behavior at zero. There are various ways to find a power
series solution for this equation, which will turn out to be nothing else but
the Taylor series of g. One is to substitute a power series with unkown
coefficients into (2), form a recurrence relation for the coefficients and solve
for them. We get

(3) g(x) =
x3

2
− 3x5

4
+

15x7

8
− 105x9

16
+

945x11

32
+ · · ·

3.0.1. The method of dominant balance. We aim at understanding the small
solutions g of our ODE, for small x. Generally, the various terms in an
equation such as x3g′ + 2g − x3 = 0 do not go to zero at the same rate,
and in a first approximation we want to identify the largest. Of course we
cannot have a single largest term, or else equality to zero is impossible. In
absence of a more systematic method, one takes all possible pairs of terms,
assuming they are the largest, and then check for consistency.

If x3g′ � 2g and x3 � g we get x3g′ ≈ x3, g′ ≈ 1 thus g ≈ C + x, which
means 2g � x3 again invalidating our assumption.



MORE ON THE FOURIER TRANSFORM 15

If the largest terms are x3g′ and 2g, then x3g′ � x3 and 2g � x3 and

x3g′+ 2g ≈ 0 or g ≈ Ce1/x2 . This is consistent, as in this case x3 � Ce1/x2 ,
and is a possible dominant balance. It does not give us small solutions
though.

We are left with one case: 2g � x3g′, x3 � x3g′ 2g ≈ x3 giving g ≈ x3/2.
Now, x3g′ ≈ 3x5/2, and since x5 � min(x3, g), another consistent balance.

However, g ≈ x3/2 is just the leading approximation. To obtain more
accuracy, we use the method of successive approximations:

g[0] ≈ x3

2
; g[1] ≈ x3

2
− 1

2
x3(g[0])′ =

x3

2
− 3x5

4

and in general

g[n] ≈ x3

2
− 1

2
x3(g[n−1])′

which is easy to automatize, and gives again (3). Examining the coefficients
of this series, we see that they are of the form cn = an/bn where bn = 2n

and an = (−1)n+11 · 3 · 5 · · · = (−1)n+1(2n− 1)!!. The ratio test shows that
the radius of convergence of this series is zero, and the series is asymptotic.
What does this mean?

3.1. The asymptotic series (3), cont. Going back to the ODE and using
the method of integrating factors, or equivalently of variation of parameters,
we get

(4) g(x) = e
1
x2

∫ x

0
e−

1
s2 ds+ Ce

1
x2

Let us try to understand the behavior of the term J = e
1
x2

∫ x

0
e−

1
s2 ds for

small x. Given all these fractions, we are better of substituting x = 1/t
where now t→∞:

J = et
2

∫ ∞
t

s−2e−s
2
ds

3.2. The method of integration by parts. In order to obtain the be-
havior of integrals such as J , which contain both exponentials and powers,
a simple method is to integrate by parts, at each step aiming at making the
power smaller, and this means differentiating the power, in our case:

(5) J = et
2

∫ ∞
t

s−2(2se−s
2
)/(2s)ds = et

2

∫ ∞
t

s−2(−e−s2)′/(2s)ds

=
1

2t3
− 3

2
et

2

∫ ∞
t

s−4e−s
2
ds
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Continuing integration by parts, we get

(6) J =
ex

2

2

∫ ∞
x

e−s
2

s2
ds

=
1

2t3
− 3

2t5
+

15

8t7
+ · · ·+ (−1)n

(2n− 1)!!

2n−1
et

2

∫ ∞
t

s−(2n−1)e−s
2
ds

We note that the successive terms that we get in this way correspond exactly
to (3), while this procedure gives us an identity at each order, and thus a
way to control the error in the approximations. The error is given by

(7) (−1)n
(2n− 1)!!

2n−1
et

2

∫ ∞
t

s−(2n−1)e−s
2
ds

and we see that the integrand gets smaller and smaller as n becomes large.
We also see that this error term is alternating in sign, and thus J itself

always fits between two successive terms of the asymptotic series

J <
1

2t3
; J >

1

2t3
− 3

2t5
; J <

1

2t3
− 3

2t5
+

15

8t7

etc. The error itself is of the same order as the next term of the asymptotic
expansion. Indeed, by L’Hospital,

(8)

∫ ∞
t

e−s
2

s2m
ds

e−t
2

t2m+1

→ 1

2
as t→∞

How can we evaluate J when t is large? The series still does not converge.
But it provides successive approximations of J .

Figure 1. The size of the error as a function of n for two
values of t.
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3.3. More general asymptotic series. Classical asymptotic analysis typ-
ically deals with the qualitative and quantitative description of the behavior
of a function close to a point, usually a singular point of the function. This
description is provided in the form of an asymptotic expansion. The expan-
sion certainly depends on the point studied and, as we have noted, often
on the direction along which the point is approached (in the case of several
variables, it also depends on the relation between the variables as the point
is approached). If the direction matters, it is often convenient to change
variables to place the special point at infinity.
Asymptotic expansions are formal series1 of simpler functions fk,

f̃ =

∞∑
k=0

fk(t)(9)

in which each successive term is much smaller than its predecessors (one
variable is assumed for clarity). For instance if the limiting point is t0
approached from above along the real line this requirement is written

(10) fk+1(t) = o(fk(t)) or fk+1(t)� fk(t) as t ↓ t0
denoting

lim
t→t+0

fk+1(t)/fk(t) = 0(11)

We will often use the variable x when the limiting point is +∞ and z when
the limiting point is zero. Simple examples are the Taylor series, e.g.

sin z + e−
1
z ∼ z − z3

6
+ ... (z → 0+)

and the expansion in the Stirling formula

ln Γ(x) ∼ x lnx− x− 1

2
lnx+

1

2
ln(2π) +

∞∑
n=1

B2n

2n(2n− 1)x2n−1
, x→ +∞

where Bk are the Bernoulli numbers.
(The asymptotic expansions in the examples above are the formal sums

following the “∼” sign, the meaning of which will be explained shortly.)
Examples of expansions that are not asymptotic expansions are

∞∑
k=0

xk

k!
(x→ +∞)

1That is, there are no convergence requirements. More precisely, they are defined as
sequences {fk}k∈N∪{0}, the operations being defined in the same way as if they represented

convergent series; see also §3.4.
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which converges to exp(x), but it is not an asymptotic series for large x since
it fails (10); another example is the series

(12)
∞∑
k=0

x−k

k!
+ e−x (x→ +∞)

(because of the exponential terms, this is not an ordered simple series satis-
fying (10)). Note however expansion (12), does satisfies all requirements in
the left half plane, if we write e−x in the first position.

We also note that in this particular case the first series is convergent, and
if we replace (12) by

(13) e1/x + e−x

then (13) is a valid asymptotic expansion, of a very simple kind, with two
nonzero terms. Since convergence is relative to a topology, this elementary
remark will play a crucial role when we will speak of Borel summation.
Functions asymptotic to a series, in the sense of Poincaré. The
relation f ∼∼∼ f̃ between an actual function and a formal expansion is defined
as a sequence of limits:

Definition 3. A function f is asymptotic to the formal series f̃ as t→ t+0
if

(14) f(t)−
N∑
k=0

f̃k(t) =: f(t)− f̃ [N ](t) = o(f̃N (t)) (∀N ∈ N)

We note that condition (14) can then be also written as

f(t)−
N∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N)(15)

where g(t) = O(h(t)) means lim supt→t+0
|g(t)/h(t)| < ∞. Indeed, this fol-

lows from (14) and the fact that f(t)−
∑N+1

k=0 f̃k(t) = o(f̃N+1(t)).

3.4. Asymptotic power series. In many instances the functions fk are
exponentials, powers and logarithms. This is not simply a matter of choice
or an accident, but reflects some important fact about the relation between
asymptotic expansions and functions which will be clarified later.

A special role is played by power series which are series of the form

(16) S̃ =
∞∑
k=0

ckz
k, z → 0+

With the transformation z = t− t0 (or z = x−1) the series can be centered
at t0 (or +∞, respectively).
Remark. If a ck is zero then Definition 3 fails trivially in which case (16)
is not an asymptotic series. This motivates the following definition.
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Definition 4 (Asymptotic power series). A function possesses an asymp-
totic power series if

(17) f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N)

We use the boldface notation ∼∼∼ for the stronger asymptoticity condition
in (14) when confusion is possible.
Example Check that the Taylor series of an analytic function at zero is its
asymptotic series there.

In the sense of (17), the asymptotic power series at zero of e−1/x2 is the

zero series. It is however surely not the case that e−1/x2 behaves like zero

as x → 0 on R. Rather, in this case, the asymptotic behavior of e−1/x2 is

e−1/x2 itself (only exponentials and powers involved).
Asymptotic power series form an algebra; addition of asymptotic power

series is defined in the usual way:

A

∞∑
k=0

ckz
k +B

∞∑
k=0

c′kz
k =

∞∑
k=0

(Ack +Bc′k)z
k

while multiplication is defined as in the convergent case( ∞∑
k=0

ckz
k

)( ∞∑
k=0

c′kz
k

)
=
∞∑
k=0

 k∑
j=0

cjc
′
k−j

 zk

Remark 5. If the series f̃ is convergent and f is its sum (note the ambiguity

of the “sum” notation) f =
∑∞

k=0 ckz
k then f ∼ f̃ .

The proof of this remark follows directly from the definition of conver-
gence.

Lemma 6. (Uniqueness of the asymptotic series to a function) If f(z) ∼
f̃ =

∑∞
k=0 f̃kz

k as z → 0 then the f̃k are unique.

Proof. Assume that we also have f(z) ∼ F̃ =
∑∞

k=0 F̃kz
k. We then have (cf.

(14))

F̃ [N ](z)− f̃ [N ](z) = o(zN )

which is impossible unless gN (z) = F̃ [N ](z) − f̃ [N ](z) = 0, since gN is a
polynomial of degree N in z. �

Corollary 7. The asymptotic series at the origin of an analytic function is
its Taylor series at zero. More generally, if F has a Taylor series at 0 then
that series is its asymptotic series as well.

The proof of the following lemma is immediate:
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Lemma 8. (Algebraic properties of asymptoticity to a power series) If f ∼
f̃ =

∑∞
k=0 ckz

k and g ∼ g̃ =
∑∞

k=0 dkz
k then

(i) Af +Bg ∼ Af̃ +Bg̃

(ii) fg ∼ f̃ g̃

Sometimes it is convenient to check a formally weaker condition of asymp-
toticity:

Lemma 9. Let f̃ =
∑∞

n=0 anz
n. If f is such that there exists a sequence

pn →∞ such that(
∀n∃pn

)
s.t. f(z)− f̃ [pn](z) = o(zn) as z → 0

then f ∼ f̃ .

Proof. We let m be arbitrary and choose n > m such that pn > m. We have

f(z)− f̃ [m] = (f(z)− f̃ [pn]) + (f̃ [pn] − f̃ [m]) = o(zm) (z → 0)

by assumption and since f̃ [pn] − f̃ [m] is a polynomial for which the smallest
power is zm+1 (we are dealing with truncates of the same series). �

3.5. Integration and differentiation of asymptotic power series. While
asymptotic power series can be safely integrated term by term as the next
proposition shows, differentiation is more delicate. In suitable spaces of
functions and expansions, we will see the asymmetry largely disappears if
we are dealing with analytic functions in suitable regions.

Anyway, for the moment note that the function e−1/z sin(e1/z2) is asymp-
totic to the zero power series as z → 0+ although the derivative is unbounded
and thus not asymptotic to the zero series.

Proposition 10. Assume f is integrable near z = 0 and that

f(z) ∼ f̃(z) =
∞∑
k=0

f̃kz
k

Then

∫ z

0
f(s)ds ∼

∫
f̃ :=

∞∑
k=0

f̃k
k + 1

zk+1

Proof. This follows from the fact that
∫ z

0 o(s
n)ds = o(zn+1) as can be seen

by immediate estimates. �

Asymptotic power series of analytic function, if they are valid in wide
enough regions can be differentiated.
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Asymptotics in a strip. Assume f(x) is analytic in the strip Sa = {x :
|x| > R, |=(x)| < a}. Let α < a and and Sα = {x : |x| > R, |=(x)| < α} and
assume that

(18) f(x) ∼ f̃(x) =

∞∑
k=0

ckx
−k (|x| → ∞, x ∈ Sα)

It is assumed that that the limits implied in (18) hold uniformly in the given
strip.

Proposition 11. If (18) holds, then, for α′ < α we have

f ′(x) ∼ f̃ ′(x) :=
∞∑
k=0

− kck
xk+1

(|x| → ∞, x ∈ Sα′)

Proof. We have f(x) = f̃ [N ](x)+gN (x) where clearly g is analytic in Sa and
|gN (x)| ≤ Const.|x|−N−1 in Sα. But then, for x ∈ Sα′ and δ = 1

2(α−α′) we
get

|g′N (x)| = 1

2π

∣∣∣∣∣
∮
|x−s|=δ

gN (s)ds

(s− x)2

∣∣∣∣∣ ≤ 1

δ

Const.

(|x| − |δ|)N+1

= O(x−N−1) (|x| → ∞, x ∈ Sα′)
By Lemma 9, the proof follows. �

3.6. Watson’s Lemma. In many instances integral representations of func-
tions are amenable to Laplace transforms

(19) (LF ) (x) :=

∫ ∞
0

e−xpF (p)dp

The behavior of LF for large x relates to the behavior for small p of F .
It is shown in the later parts of this book that solutions of generic analytic

differential equations, under mild assumptions can be conveniently expressed
in terms of Laplace transforms.

For the error function note that∫ ∞
N

e−s
2
ds = N

∫ ∞
1

e−N
2u2du =

√
xe−x

2

∫ ∞
0

e−xp√
p+ 1

dp; x = N2

For the Gamma function, writing
∫∞

0 =
∫ 1

0 +
∫∞

1 in

(20) n! =

∫ ∞
0

e−ttndt = nn+1

∫ ∞
0

en(−s+ln s)ds

we can make the substitution t− ln t = p in each integral and obtain

n! = nn+1e−n
∫ ∞

0
e−npG(p)dp
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3.7. The Riemann-Lebesgue lemma.

Theorem 12. If f is in L1(Rd) that is to say, if the integral of |f | is finite,
then the Fourier transform of f satisfies

f̂(z) :=

∫
Rd
f(x) exp(−iz · x) dx→ 0 as |z| → ∞

Proof. We prove this in one dimension; the generalization is easy. Let first
φ be a Schwarz function. Then, integrating by parts, we get∫

R
φ(x) exp(−izx) dx = − 1

−iz

∫
R
φ′(x) exp(−izx)→ 0

as z →∞. �

Let now f ∈ L1 and recall that S is dense in L1. Take φ ∈ S so that
‖f − φ‖1 < ε. Then,

(21) lim
z→∞

∣∣∣∣∫
R
f(x) exp(−izx) dx

∣∣∣∣
≤ lim

z→∞

(∣∣∣∣∫
R
f(x)− φ(x) exp(−izx) dx

∣∣∣∣+

∣∣∣∣∫
R
φ(x) exp(−izx) dx

∣∣∣∣) < ε

and since ε is arbitrary, the result follows.

3.8. The method of stationary phase. Let f be a smooth function and
Σ be the set of critical points of f (i.e. points where ∇f = 0. Assume g
is continuous and decays fast enough (e.g., exponentially or is compactly
supported). Further, assume that all critical points of f are nondegenerate
(i.e., the Hessian of f is nonzero at each point in Σ). Then,∫
Rn
g(x)eikf(x) =

∑
x0∈Σ

eikf(x0)|det(Hess(f))|−1/2eπi/4sign(Hess(f))(2π/k)n/2g(x0) + o(k−n/2)

For n = 1, this reduces to:

∫
R
g(x)eikf(x)dx =

∑
x0∈Σ

g(x0)eikf(x0)+sign(f ′′(x0))iπ/4

(
2π

k|f ′′(x0)|

)1/2

+ o(k−1/2)

Here is a sketch of the proof, in one dimension. We assume that g is smooth
with compact support, say [−a, a].

The main statement is local, i.e., we can assume that there is only one x0,
and without loss of generality we take x0 = 0. We have f ′(0) = 0, f ′′(0) 6= 0.
Also without loss of generality we may assume f ′′(0) > 0. By symmetry, it
is enough to show that the contribution to the integral of the interval (0,∞)
is half of the stated result.

Claim Under these assumptions, there is an interval, say (−ε, ε) s.t. f is
decreasing on (−ε, 0) and on (0, ε) and, since f ′ 6= 0 on [−a, 0) ∪ (0, a], f is
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increasing on (0, a]. Furthermore, the change of variables u = u(x) defined
by f(x) = f ′′(0)u2/2 is differentiable on (0, a] and dx/du = 1 at u = x = 0.

Exercise 13. Prove this claim.

Now we can write

(22)

∫ ∞
0

g(x)eikf(x)dx =

√
2√

f ′′(0)

∫ ∞
0

g(x(u))eiku
2
du (take now u2 = v)

=
1√

2f ′′(0)

∫ ∞
0

g(x(
√
v))eikvv−1/2dv

where g(x(
√
v)) = h(v) is smooth, with compact support [−A,A] for some

A. Now we integrate by parts:

(23)

∫ ∞
0

g(x(
√
v))eikvv−1/2dv

=

(
h(v)

∫ v

∞
eikuu−1/2du

) ∣∣∣∞
0
−
∫ ∞

0

(∫ v

∞
eikuu−1/2du

)
h′(v)dv

=
1√
k

(
√
π
√
ih(0)−

∫ A

0

(∫ √kt
∞

eiktt−1/2du

)
h′(v)dv

)
Since the last integral goes to zero, the result follows.

Proposition 14. Assume f ∈ Cn−1[a, b] and f (n) ∈ L1([a, b]). Then we
have

(24)

∫ b

a
eixtf(t)dt = eixa

n∑
k=1

ckx
−k + eixb

n∑
k=1

dkx
−k + o(x−n)

= eixt

(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)

(ix)n

)∣∣∣∣∣
b

a

+ o(x−n),

where ck = −f (k−1)(a)/ik and dk = f (k−1)(b)/ik.

Proof. This follows by integration by parts and the Riemann-Lebesgue lemma
since

(25)

∫ b

a
eixtf(t)dt = eixt

(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)

(ix)n

)∣∣∣∣∣
b

a

+
(−1)n

(ix)n

∫ b

a
f (n)(t)eixtdt

�

Corollary 15. (1) Assume f ∈ C∞[0, 2π] is periodic with period 2π. Then∫ 2π
0 f(t)eintdt = o(n−m) for any m > 0 as n→ +∞, n ∈ Z.
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(2) Assume f ∈ C∞0 [a, b] vanishes at the endpoints together with all

derivatives; then f̂(x) =
∫ b
a f(t)eixt = o(x−m) for any m > 0 as x→ ±∞.

3.9. The WKB ansatz. This applies to linear equations (ODEs, PDEs
etc) at irregular singularities, where exponential behavior is expected. An
example is the Airy equation,

y′′ = xy

when x→∞. You can convince yourselves that, as a power series in inverse
powers behavior of x, only the zero series works, and that corresponds to
the zero solution.

The WKB ansatz is: (1) look for exponential behavior, y = eW (x). This
gives

W ′′ +W ′
2

= x

(2) Find the dominant balance as x → ∞. The rule of thumb is that

W ′′ �W ′2. The equation above becomes

W ′ = ±
√
x−W ′′

or
f = ±

√
x− f ′

where f = W ′, to which we apply the method of successive approximations,

f [n+1] = ±
√
x− f ′[n]

This gives

W (x) ∼ ±2x3/2

3
− 1

4
log (x) + C +± 5

48

(
1

x

)3/2

+
5

64x3
+ · · ·

Formally for now, this shows that there are two linearly independent solu-
tions to the Airy equations (denoted Ai,Bi) whose behavior for large x is,
up to a constant

x−1/4e±
2x3/2

3

(
1± 5

48

(
1

x

)3/2

+ · · ·

)
3.10. Watson’s Lemma. This important result states that the asymptotic
series at infinity of (LF )(x) is obtained by formal term-by-term integration
of the asymptotic series of F (p) for small p, provided F has such a series.

Lemma 16. Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1 as

p→ 0+ for some constants βi with <(βi) > 0, i = 1, 2. Then

LF ∼
∞∑
k=0

ckΓ(kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H.

Proof. Induction, using the simpler version, Lemma 17, proved below. 2



MORE ON THE FOURIER TRANSFORM 25

Lemma 17. Let F ∈ L1(R+), x = ρeiφ, ρ > 0, φ ∈ (−π/2, π/2) and
assume

F (p) ∼ pβ as p→ 0+

with <(β) > −1. Then∫ ∞
0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ→∞)

Proof. If F1(p) = p−βF (p) we have limp→0 F1(p) = 1. Let χA be the
characteristic function of the set A and φ = arg(x). For any a > 0 we have

∣∣∣∣∫ ∞
a

F (p)e−pxdp

∣∣∣∣ ≤ e−|x|a cosφ‖F‖1 = O(|x|β+1e−|x|a cosφ) = o(x−β−1)

(26)

Thus, we only need to show that∫ a

0
F (p)e−pxdp =

∫ ∞
0

pβF1(p)χ[0,a](p)dp ∼ Γ(β + 1)x−β−1 (ρ→∞)

where χ
[0,a](p) is the characteristic function of the interval [0, a]. After the

change of variable s = p|x|,

(27)

xβ+1

∫ ∞
0

pβF1(p)e−pxχ[0,a](p)dp = eiφ(β+1)

∫ ∞
0

sβF1(s/|x|)χ[0,a](s/|x|)e−se
iφ

ds

→ eiφ(β+1)

∫ ∞
0

sβe−se
iφ

ds = Γ(β + 1)

as |x| → ∞, where we took the limit inside the integral which is justified by
the exponential decay of the integrand.

4. Example 1: The Gamma function

One of the remarkable formulas for the Gamma function is

(28) Γ(x) =
√

2πxx−
1
2 e−x exp

(∫ ∞
0

(p/2) coth (p/2)− 1

p2
e−xpdp

)
We first note that the integrand in (28) is analytic. Indeed, at p = 0,

(p/2) coth(p/2) = 1 +
p2

12
− p4

720
+ · · ·

In fact,

(29)
(p/2) coth (p/2)− 1

p2
e−xp =

1

12
− p2

720
+

p4

30240
− p6

1209600
+ · · ·

where the series has nonzero radius of convergence.

Exercise 18. What is the radius of convergence of the series above?
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Watson’s Lemma gives
(30)∫ ∞

0

(p/2) coth (p/2)− 1

p2
e−xpdp ∼ 1

12x
− 1

360x3
+

1

1260x5
− 1

1680x7
+ · · ·

In fact, essentially by definition, the coefficients of the series above are

B2n

2n(2n− 1)

where B2n are the Bernoulli numbers. Hence,
(31)

exp

(∫ ∞
0

(p/2) coth (p/2)− 1

p2
e−xpdp

)
∼ 1 +

1

12x
+

1

288x2
− 139

51840x3
− · · ·

Exercise 19. Justify this exponentiation.

(32)

Γ(x) ∼
√

2πxx−
1
2 e−x

(
1 +

1

12x
+

1

288x2
− 139

51840x3
− 571

2488320x4
+ · · ·

)
which is Stirling’s formula. The pattern of signs of the terms in Stirling’s
formula is + +−−+ +−− · · · . Can you explain why?

4.0.1. The Airy equation. Let us look again at the Airy equation,

(33) y′′ − xy = 0

Here, the behavior of solutions at infinity, that we have already obtained by
WKB is

(34) y ∼ Cx−
1
4 e−

2
3
x3/2

We use the transformation y(x) = g(2
3 x

3
2 ) to achieve the important nor-

malization where the asymptotic exponential has linear exponent,
that is (2/3)x3/2 = t and get

(35) g′′ +
1

3t
g′ − g = 0

In view of (34) we have

(36) g(t) ∼ Ct−
1
6 e±t

To eliminate the exponential behavior of one solution, say of the decaying
one, we substitute g = he−t, and get

(37) h′′ −
(

2− 1

3t

)
h′ − 1

3t
h = 0

To obtain a second solution, we can resort to the substitution g = het.
Taking inverse Laplace transform we get

(38) p(2 + p)H ′ +
5

3
(1 + p)H = 0
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with the solution

(39) H = Cp−
5
6 (2 + p)−

5
6

Exercise 20. Use Watson’s Lemma to find 6 terms in the asymptotic ex-
pansion of h(t).

and thus

(40) h(t) = L
(
Cp−

5
6 (2 + p)−

5
6

)
and, comparing the asymptotic expansion obtained from (40) with that of
Airy functions we get

(41) Ai(x) =
3−

1
6 exp(−2

3x
3/2)

π
1
2 Γ(1

6)

∫ ∞
0

e−
2
3
x
3
2 pp−

5
6 (2 + p)−

5
6dp

Exercise 21. Apply Watson’s Lemma to h(t) and find the asymptotic be-
havior of Ai(x) as x→∞.

4.1. Laplace’s method.

Proposition 22. Assume f, g : [a, b]→ R are smooth

(1) If f is strictly decreasing on [a, b], then, as x→∞,∫ b

a
g(s)exf(s)ds = exf(a)g(a)

x−1

|f ′(a)|
(1 + o(1))

(2) If f has a unique nondegenerate maximum at s0, as x→∞,then∫ b

a
g(s)exf(s)ds = exf(s0)g(s0)

√
2πx−1/2√
|f ′′(s0)|

(1 + o(1))

Proof. Both follow from Watson’s lemma. Alternatively, for 1 change vari-
able f(s) = u and integrate by parts, and for 2 mimic the proof in the
section with the stationary phase method. �

Exercise 23. Prove the Proposition by the second method indicated.

5. Reminder: Analytic functions

A continuous function defined in some open disk D in C is called analytic
in D if for any z0 ∈ D f ′(z0) exists (and then it follows that all derivatives
exist) where f ′ is defined in the complex plane in the same way as you know
it from calculus:

f ′(z) = lim
|h|→0

f(z + h)− f(z)

h
or

f(z + h)− f(z) = f ′(z)h+ o(h)

A function which is analytic everywhere is called entire. Writing f = u+ iv,
z = x+ iy, f ′(z) = a+ ib and h = dx+ idy we have

df =
∂u

∂x
dx+

∂u

∂y
dy + i

∂v

∂x
dx+

∂v

∂y
dy = (a+ ib)(dx+ idy)
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and thus

∂u

∂x
dx+

∂u

∂y
dy = adx− bdy(42)

∂v

∂x
dx+

∂v

∂y
dy = ady + bdx(43)

giving

(44)
∂u

∂x
=
∂v

∂y
(= a);

∂u

∂y
= −∂v

∂x
(= −b)

These are the Cauchy-Riemann or CR equations.

Proposition 24. The field
(
u(x, y), v(x, y)

)
is conservative. Furthermore,

u, v satisfy Laplace’s equation

(45) ∆V =
∂2V

∂x2
+
∂2V

∂y2
= 0

Proof. The CR equations imply ∇ × u = 0 = ∇ × v. Using the infinite
differentiability of f and the CR equations, (45) merely states the equality
of mixed partial derivatives.

Given a curve γ = (x(t), y(t), the complex integral of the analytic function
f along γ is defined as follows∫

γ
f(z)dz =

∫
γ
(u+ iv)(dx+ idy) =

∫
γ
(udx− vdy) + i

∫
γ
(udy + vdx)

�

Note that the integral only depends on the endpoints, or if a
curve is closed, it is zero. This follows from the CR equations, or, which
is the same, from the fact that the field (u, v) is conservative.

6. Steepest descent (Saddle point) method

6.1. Motivation: Fourier coefficients of a periodic analytic func-

tion. Take f(x) =
1

a+ cos(x)
where a > 1. Then f is periodic of period 2π

and is analytic at all points whose imaginary part is not large (how large
is too large?). For the sake of getting nice expressions for the Fourier co-
efficients fk, take a = cosh(1). If we apply Proposition 14 (the method of
integration by parts, really) we get that fk = o(k−n), for any n ∈ N. Which
means “very fast”. But this is not very precise. On the other hand, we
can calculate the Fourier coefficients in closed form, since we are dealing
with trigonometric integrals, of the kind studied in Calc 1. Here is an even
simpler method: write cosx = 1

2(ζ + 1/ζ) (ζ = eix) and cosh 1 = 1
2(e+ 1/e)

and expand f by partial fractions in ζ:

f =
2e2

(e2 − 1) (ζ + e)
− 2e

(e2 − 1) (eζ + 1)
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For the first term, we would expand in Taylor series in ζ, clearly convergent
for |ζ| < e which is the case when ζ = eix. Upon substituting ζ = eix the
expansion becomes exactly the Fourier series of the first term (why?). We
cannot do this for the second term, but we can rewrite it, and f , as

f =
2e2

(e− 1)(1 + e)(ζ + e)
− 2

ζ

1

(e− 1)(1 + e)
(

1 + 1
eζ

)
and

(
1 + 1

eζ

)
can also be expanded in geometric series. All in all, we get

fk =
2

e|k|−1 − e|k|+1

and we see that the coefficients decrease exponentially in k, |fk| = O(e−|k|.
*

Proposition 25. Let f be periodic of period 2π, analytic in a strip |=z| ≤ a
and continuous up to the boundary. Then, for large |k|, f̂k = O(e−a|k|) .

Proof. Consider the path

γ = [0, 2π] ∪ [2π, 2π + ia] ∪ [2π + ia, 0 + ia] ∪ [0 + ia, 0]

Since f is analytic inside this path and continuous to the boundary, we have∮
γ f(z)e−ikzdz = 0. Note however that, by periodicity∫

[2π,2π+ia]
f(z)dz =

∫
[0,ia]

f(z)dz

and thus, ∫
[2π,2π+ia]+[ia,0]

f(z)e−ikzdz = 0

hence, for k < 0,

(46)∫
[0,2π]

f(z)e−ikzdz =

∫
[ia,2π+ia]

f(z)e−ikzdz =

∫
[0,2π+ia]

f(s+ia)e−ik(s+ia)ds

= eka
∫

[0,2π+ia]
f(s+ ia)e−iksds = O(e−|k|a)

since ∫
[0,2π+ia]

|f(s+ ia)e−iks|ds ≤ 2π max
s∈[0,2π]

|f(s+ ia)|

For positive k, take similarly a box in the lower half plane. �

We say that we deformed the contour of integration homotopically, from
[0, 2π] to [ia, 2π + ia]. For functions which are not periodic, or for more
complicated cases, we need to understand how to deform the contour to get
best estimates.
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Figure 2. The function |e−z2+iz|

The next two examples reflect a common type of integral representations,

(47) I(ν) =

∫ ∞
−∞

g(z)eνf(z)dz

Take first a Fourier transform that we can calculate in closed form,

I =

∫ ∞
−∞

e−z
2+iνzdz =

√
πe−

ν2

4

and assume we did not know how to calculate it, but we still want to deter-
mine the large ν behavior. How should we change the contour? It is natural
to push the various parts of the contour in such a way that the integrand
becomes smaller in absolute value. Since the function is entire, it cannot
have any minima or maxima, only saddle points. That does not mean that
along the path we can’t have maxima or minima! We push the contour to go
over the saddle points along which, relative to the path, the absolute value
of the function is minimal.

We imagine that the path is made of infinitely stretchable rubber, and we
let the contour fall down under its own weight, until it stops, hanging over
some saddles.
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Figure 3. The function |e−z4+iz|

6.2. Steepest descent method: an outline. We seek to determine the
asymptotic behavior of I(ν) in (47) as ν → +∞ for f and g that are analytic
in some some region of the complex plane2, and C is some simple curve that
may be finite or infinite. The problem is to determine the asymptotics of I
as ν → +∞. 3

The idea of the steepest descent method is to use the analyticity of the
integrand in (47) in z to deform C homotopically into one or more paths,
each of which characterized by v = =f = C, a constant. Along such a path,
eiνv is constant, it can be taken out of the integral, and inside the integral
we are left with eνu which is real-valued, and now we can apply Laplace’s
method.

6.3. An example. Typically, C is homotopic to a finite number of finite
or infinite piecewise smooth curves of constant imaginary part, each with
finitely many non-differentiability points. As we will see in a moment, non-
differentiable points of the steepest descent decomposition correspond to
singularities of f and zeros4. We write

(48) f(z) = u(x, y) + iv(x, y)

2The region of analyticity will be dictated by the need to deform C into one or more
steepest descent paths and will depend on the specifics of the problem.

3More generally, if ν → ∞ along some complex ray arg ν = φ, we can replace ν by |ν|
and f by eiφf to obtain asymptotics along complex rays.

4 It is understood that a zero of f is a point where f is analytic and f ′ = 0.
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and note that f ′ = 0 implies that ∂u
∂x = ∂v

∂y = ∂u
∂y = − ∂v

∂x = 0, and, since u

and v are harmonic, such points are saddle points.
We define special points to be singularities of f , endpoints, saddle points

and the point at infinity. If f ′ 6= 0, the path of constant imaginary part
(v = const) is a smooth curve (since ∇v 6= 0). Let t 7→ γ(t) = α(t) + iβ(t)
be a parameterization one of these smooth pieces. We have

(49)
du

dt
=
∂u

∂x
α′(t) +

∂u

∂x
β′(t)

and also, since v is constant,

(50) 0 = v′ =
∂v

∂x
α′(t) +

∂v

∂y
β′(t)

At a point where, say ux := ∂u/∂x 6= 0 and α′ 6= 0 we solve for α′ from (50),
and use the Cauchy-Riemann equations to obtain

(51) dγ =
α′

ux
〈ux, uy〉 dt

where uy = ∂u/∂y and thus dγ is tangent at every point to the steepest
variation direction of u. If α′/ux > 0, it is a direction of steepest ascent of
u, and of steepest descent otherwise. Between every two special points as
defined above, we choose to traverse the curve in the steepest descent direc-
tion, reversing the sign of the integral if needed; hence the name “steepest
descent” for the method. Note that the saddle points are of finite order since
(∀n)(f (n)(z0) = 0) implies f ≡ 0.

For simplicity we assume for now that the homotopic deformation of C
does not cross singularities of f . Between each two special points, the inte-
gral becomes

(52) eiνC
∫ 1

0
eνu(α(t),β(t))g(γ(t))γ′(t)dt

where C is the constant value of v 〈γ′x, γ′y〉 = γ′x + iγ′y and similarly for g.
The integral (52) is one in which the exponent is monotonic and thus

one-to-one, and all conditions of Laplace’s method apply. In particular, we
can take as a new variable u(α(t), β(t)) and reduce the question to a Laplace
transform of the type

∫ a
0 e
−uνG(u)du for a ∈ (0,∞] to which Watson’s

lemma applies. Generally, multiple steepest descent paths, each with a
different value of C, are involved in homotopic deformation of

∫
C ; these paths

may also join up at sinks where <f → −∞ such as ∞ or other singularities
of f . Multiple descent paths will definitely be needed when =f is different at
the end points of C, as in the example in §6.4. In such cases, the calculation
of I(ν) generally requires adding up the contributions from each steepest
descent path

∫
Cs in the manner outlined in the last paragraph. Therefore,

the only new element in the steepest descent method is to determine steepest
curves which are homotopically equivalent to the original path C. It should
be further noted that without homotopic deformation into descent paths,
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(47) will typically be an oscillatory integral; asymptotics obtained through
the stationary phase method often leads to substantially weaker results. The
stationary phase method, however, does not require analyticity of f and g.

Note 26. Also, it is important to note that Watson’s lemma applies in a half
plane, and the resulting asymptotic expansion depends only on the behavior
of the integrand near zero. If the curve of steepest descent starting at some
point z0 is clumsy, it can be replaced with a segment of line in the same
direction, or even in the same open half-plane centered on the direction of
steepest descent at z0

6.4. Simple illustrative example. Consider

(53) I(ν) =

∫ 1

0

eiνz
2

z + 1
dz for ν → +∞

This first example is taken to be as simple as possible, to the point of being
a bit oversimplified. In particular, the stationary phase method (most often
suboptimal in C) would apply with the same result, and in the deformation
of contour process we do not cross singularities of the integrand, nor do
saddle points interfere with the deformation. Indeed, the steepest descent
line at the saddle z = 0 is vertical, and, since each point on the curve is
moved along a steepest descent path z = 0 simply moves up too. However,
for arg ν 6= 0 (more precisely, when =ν = 0) this situation changes. In the
notation of (47), f(z) = iz2, g(z) = 1

z+1 . Steepest descent paths emanating
at z = 0 are determined by

(54) =f = =f(0) = 0 implying <z2 = 0, i .e. z = re±iπ/4 for r ∈ (−∞,∞)

However, since <f → −∞, along the ray z = {eiπ/4 : r ∈ [0,∞)} as r →∞,

it follows that∞eiπ/4 is a sink that is connected to z = 0 along the steepest
descent path z = reiπ/4. The steepest descent path from the other end point
z = 1 in the integral (53) is found by setting

(55) =f = =f(1) = 1 implying <z2 = 1, i .e. x2 − y2 = 1

A simple way to determine the local descent direction at a point z0 is to
analyze the differential df = f ′(z0)dz and determine the direction of dz
for which df ∈ R− (note that df = du since dv = 0). In our example
df = 2izdz = 2idz and df < 0 if dx = 0, dy > 0. Since only one branch
of the hyperbola passes through (1, 0) and it asymptotes to y = x, i.e.

approaches the sink ∞eiπ/4, by simple estimates a homotopic deformation

of the
∫ 1

0 may be made to coincide with descent paths z = reiπ/4, 0 ≤ r <∞
followed by integration along steepest descent path C that connects ∞eiπ/4
to 1 along the hyperbola5 x2 − y2 = 1. Therefore,

(56) I(ν) =

∫ ∞eiπ/4
0

eiνz
2

1 + z
dz +

∫
C

eiνz
2

1 + z
dz ≡ I1(ν) + I2(ν)

5We do not have the option of going along re−iπ/4 , 0 < r < ∞ since <f → +∞ and
so contribution at ∞e−iπ/4 cannot be ignored as it can be for a sink.
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For I1(ν), using z = reiπ/4 for 0 < r <∞, we obtain after change of variable
and application of Watson’s Lemma

(57) I1(ν) = eiπ/4
∫ ∞

0

e−νr
2

1 + reiπ/4
dr = eiπ/4

∫ ∞
0

e−νpdp

2p1/2[1 + p1/2eiπ/4]

∼ 1

2
eiπ/4

∞∑
j=0

(−1)jΓ

(
j + 1

2

)
eijπ/4ν−(j+1)/2

For I2(ν), we know that −p := f(z) − f(1) = iz2 − i is real valued and

monotonically decreasing on the parabolic path C from z = 1 to z =∞eiπ/4,
since f ′ 6= 0 on this path. Therefore, solving for z, inversion leads to

(58) z = Z(p) = (1 + ip)1/2,

where we can readily check that for this branch of square-root, as p→ +∞,
z →∞eiπ/4 as required. Therefore,

(59) I2(ν) = −eiν
∫ ∞

0

e−pν

1 + Z(p)
Z ′(p)dp.

Taylor expansion gives

(60)
Z ′(p)

1 + Z(p)
=
i

2
(1 + ip)−1/2

[
1 + (1 + ip)1/2

]−1
=
∞∑
j=0

ajp
j ,

where the first few coefficents are: a0 = i
4 , a1 = 3

16 , a2 = − 5i
32 , a3 = − 35

256 .
Applying Watson’s Lemma to (59), it follows

(61) I2(ν) ∼ −eiν
∞∑
j=0

ajν
−j−1Γ(j + 1),

The full asymptotic expansion of I(ν) = I1(ν) + I2(ν) is then obvious from
(57) and (61).

Note 27. (1) The Taylor expansion in (60) can be written explicitly, and in
a simple way, in terms of the binomial series by multiplying the numerator
and the denominator by

[
1− (1 + ip)1/2

]
and expanding it out.

(2)If we replace the integrand eiνz
2

z+1 in (53), by eiνz
2

z−z0 , where z0 is in the

upper-half plane region between eiπ/4R+ and steepest descent contour C
connecting ∞eiπ/4 to 1, for e.g. z0 = 1+i

2 , then the singulariy at z =
z0 interferes with the homotopic deformation into steepest descent paths.
Nonetheless, since this singularity is a pole, after collecting residue at z = z0,
we can use the same descent paths as in Example 6.4. Since =z2

0 > 0, the
residue contribution will be exponentially small in ν relative to (61) and
(57). If this z0 were a branch point instead, in addition to the steepest
descent paths, the homotopically deformed path will include a contour that
wraps around z0. Nonetheless, as in the case of the pole, the contribution
of the branch point is exponentially small in ν.
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Note 28. The end result of this procedure, after changes of variables, is
indeed a sum of Laplace transforms on [0, a), a ∈ [0,∞] to which Watson’s
lemma applies.
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