Homework 7

due Fri April 8, 2019

The Fourier transform of $f(x)$, in frequency convention, has the form $\hat{f}(\xi)=\int_{-\infty}^{\infty} \mathrm{e}^{-2 \pi i x \xi} f(x) d x$, with the inverse $f(x)=\int_{-\infty}^{\infty} \mathrm{e}^{2 \pi i x \xi} \hat{f}(\xi) d \xi$. Use this convention to compute the following.

1. Show that the inverse Fourier transform of $\frac{1}{a+2 \pi i \xi}$ (where $a \in \mathbb{R}$) is $e^{-a x} \Theta(x)$ (where Θ denotes the Heaviside function).

Hint. It may be easier to calculate the Fourier transform of $e^{-a x} \Theta(x)$.)
2. Show that the inverse Fourier transform of $\frac{2 a}{a^{2}+4 \pi^{2} \xi^{2}}$ (where $a \in \mathbb{R}$) is $e^{-a|x|}$.
3. Show that the Fourier transform of $\mathrm{e}^{-a x^{2}}($ where $a>0)$ is $\frac{\sqrt{\pi}}{\sqrt{a}} \mathrm{e}^{-\frac{\pi^{2} \xi^{2}}{a}}$.

Hint. $\int_{-\infty}^{\infty} \mathrm{e}^{-t^{2}} d t=\sqrt{\pi}$.
4. Show that the Fourier transform of $\frac{1}{x}$, as a distribution, is $-i \pi \operatorname{sgn}(\xi)$. Explain why we need to consider distributions.
5. Show that the Fourier transform of $\delta^{(n)}(x)$ is $(2 \pi i \xi)^{n}$.

