
Math 5102 Homework 4
due Wed, March 20, 2019

1. Show that if u is a solution of

−(p(x)u′)′ + (q(x)− λw(x))u = 0 (1)

then v = pu′/u satisfies the Riccati equation

v′ + p(x)−1v2 = q(x)− λw(x)

(Note: Riccati equations can be studied by turning them into them to a
linear second order equation.)

2. (Sturm-Liouville normal form) Show that the differential equation (1)
transforms into one with w = p = 1: using the transformation
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Moreover, the change of variable preserves the L2 norm: show that∫ b
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|u(x)|2w(x)dx =
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3. Given one solution u(x) of (1), make a variation of constants ansatz
v(x) = c(x)u(x) and show that a second solution is given by

v(x) = u(x)

∫ x 1

p(t)u(t)2
dt

Are u and v linearly independent?


