due Wed, March 20, 2019

1. Show that if u is a solution of

$$
\begin{equation*}
-\left(p(x) u^{\prime}\right)^{\prime}+(q(x)-\lambda w(x)) u=0 \tag{1}
\end{equation*}
$$

then $v=p u^{\prime} / u$ satisfies the Riccati equation

$$
v^{\prime}+p(x)^{-1} v^{2}=q(x)-\lambda w(x)
$$

(Note: Riccati equations can be studied by turning them into them to a linear second order equation.)
2. (Sturm-Liouville normal form) Show that the differential equation (1) transforms into one with $w=p=1$: using the transformation

$$
y(x)=\int_{a}^{x} \sqrt{\frac{w(t)}{p(t)}} d t, \quad v(y)=u(x(y))[w(x(y)) p(x(y))]^{1 / 4}
$$

then

$$
-\frac{d^{2} v}{d y^{2}}+Q(y) v=\lambda v
$$

where

$$
Q=q-\frac{(p w)^{1 / 4}}{w}\left\{p\left[(p w)^{-1 / 4}\right]^{\prime}\right\}^{\prime}
$$

Moreover, the change of variable preserves the L^{2} norm: show that

$$
\int_{a}^{b}|u(x)|^{2} w(x) d x=\int_{0}^{c}|v(y)|^{2} d y \quad \text { where } c=\int_{a}^{b} \sqrt{\frac{w(t)}{p(t)}} d t
$$

3. Given one solution $u(x)$ of (1), make a variation of constants ansatz $v(x)=c(x) u(x)$ and show that a second solution is given by

$$
v(x)=u(x) \int^{x} \frac{1}{p(t) u(t)^{2}} d t
$$

Are u and v linearly independent?

