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1. Why more functions?

Many natural phenomena are described, quantitatively, as how the rates
of change of different quantities are linked together. That is, are described by
differential equations. Often times these equations are not linear, and their
study is usually very difficult. For example, the Navier-Stokes equations are
still not completely understood. Yet these equations are really important,
since they describe the motion of fluids: movement of the air, much needed to
predict the weather, or the movement of water, much needed to understand
water currents for example.

Usually good linear approximations are sought, and can be found. Now
linear differential equations are much more manageable, as we have already
seen. Here is a nice, simple linear equation: y′′ = xy. Airy arrived at this
equation when studying the form of the intensity near an optical directional
caustic, such as that of the rainbow, but this equation often arises as a good
approximation to more complicated equations in certain instances. While
is can be established mathematically that Airy’s equation has very nice
solutions, the problem is that these cannot be expressed in terms of the
functions for which we have names (polynomials, trigonometric functions
, exponential, etc.). So the solutions of this equation are considered new
functions: the Airy functions.

Special functions are solutions of certain linear differential equations (there
are other ways of generating new interesting functions).

2. The Helmholtz equation

In Sturm-Liouville theory the simplest, and most important equation is
y′′+k2y = 0. Its generalization to two (or more) dimensions is the Helmholtz
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equation:

(1) ∇2u+ k2u = 0

where ∇2 is the Laplacian. For functions of two variables, u(x, y), the
Laplacian is defined as

∇2 =
∂2

∂x2
+

∂2

∂y2

hence

∇2u =
∂2u

∂x2
+
∂2u

∂y2

2.1. Vibrating membrane. The two-dimensional analogue of the vibrat-
ing string is the vibrating membrane. When the edges clamped to be mo-
tionless, this is the drum! The Helmholtz equation was solved for many basic
shapes in the 19th century, and it lead to many interesting linear differential
equations defining new functions.

Let us consider the membrane in form of a circular disk of radius a. Then
it is appropriate to introduce polar coordinates: if x = r cos θ, y = r sin θ
equation (1) takes the form:

(2) urr +
1

r
ur +

1

r2
uθθ + k2u = 0

We impose the boundary condition that u vanishes on the boundary of
the disc: u(a, θ) = 0 for all θ. Let us try to find solutions using the method
of separation of variables. That is, look for u in the form u(r, θ) = R(r)Θ(θ)
where Θ must be periodic of period 2π. Then (2) becomes

R′′Θ +
1

r
R′Θ +

1

r2
RΘ′′ + k2RΘ = 0

and, dividing by RΘ we obtain

R′′

R
+

1

r

R′

R
+

1

r2
Θ′′

Θ
+ k2 = 0

and to finally separate the variables, multiply be r2:

r2
R′′

R
+ r

R′

R
+

Θ′′

Θ
+ k2r2 = 0

hence

r2
R′′

R
+ r

R′

R
+ k2r2 = −Θ′′

Θ
The left side of the equation is a function of r, and the right side is a function
of θ, therefore both must be constant: denoting this constant by n2, we have

r2
R′′

R
+ r

R′

R
+ k2r2 = n2 and − Θ′′

Θ
= n2

The equation for Θ:

Θ′′ + n2Θ = 0
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has the general solution

Θ = α cosnθ + β sinnθ

Since periodic of period 2π, n must be an integer.
Now the equation for R is

r2R′′ + rR′ + (r2k2 − n2)R = 0

It is a linear equation whose solutions cannot be expressed in terms of al-
ready known functions. It can be simplified a bit if we substitute R(r) =
Jn(ρ) where ρ = kr, the equation becomes

(3) ρ2J ′′n + ρJ ′n + (ρ2 − n2)Jn = 0

which is called Bessel’s equation, and its solutions, Jn, are the special func-
tions called Bessel functions.

So the radial component R has the form

R(r) = γJn(ρ)

Now we are looking for solutions so that R(a) = 0. For this we need to
know the zeroes of the Bessel functions...

We will see that Jn has infinitely many roots for each value of n, they are
denoted by ρm,n. The boundary condition that R vanishes where r = a will
be satisfied if the corresponding wavenumbers k are given by

km,n =
1

a
ρm,n

The general solution u then takes the form of a doubly infinite sum of
terms involving products of

sin(nθ) or cos(nθ), and Jn(km,nr)

These solutions are the modes of vibration of a circular drumhead.

3. The Bessel functions

The Bessel equation (3) is defined even if n is not an integer:

(4) x2y′′ + xy′ + (x2 − α2)y = 0

where α is a complex parameter, called the order of the Bessel function.
The most important cases are when α is an integer or half-integer. Bessel

functions for integer α are also known as cylinder functions or the cylindrical
harmonics because they appear in the solution to Laplace’s equation in
cylindrical coordinates. Spherical Bessel functions with half-integer α are
obtained when the Helmholtz equation is solved in spherical coordinates.

Because this is a second-order differential equation, there must be two
linearly independent solutions. Depending upon the circumstances, however,
various formulations of these solutions are convenient. We will present here
the Bessel functions of the first kind, Jα and of the second kind, Yα. Then
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any solution of (4) can be written asa linear combination: y = c1Jα + c2Yα
for some constants c1, c2.

3.1. Bessel functions of the first kind: Jα. Let us look for solutions
of (4) as a power series at x = 0. This is a singular point of the equation,
since the coefficient of the higher derivative vanishes there. So it is not
guaranteed that we can find an integer power series solution. However, this is
a singularity of a benign type (it is called a regular singularity) and it is well
established (called Frobenius Theory) that solutions will have expansions
of the type: y(x) = xr

∑∞
n=0 anx

n for some complex number r. We may
assume a0 = 1, since if a0 = 0 then we just increase r, and if a0 is another
nonzero number, then y(x)/a0 is also a solution of the same equation, since
the equation is linear.

To determine r, we substitute y(x) = xr + a1x
r+1 + ... in the equation,

and obtain:

(5) x2
[
r(r − 1)xr−2 + a1(r + 1)rxr−1 + ...

]
+ x

[
rxr−1 + a1(r + 1)xr + ...

]
+ x2

(
xr + a1x

r+1 + ...
)

+ α2
(
xr + a1x

r+1 + ...
)

= 0

Expanding, we see that the smallest power of x is xr, and its coefficient is
r(r− 1) + r+α2. A power series is zero when all its coefficients are zero, so
we must have r(r − 1) + r + α2 = 0 hence r = ±α.

By definition, Jα is the solution with r = α. The other coefficients of the
series of y can be calculated similarly, recursively. It turns out that

Jα(x) =

∞∑
m=0

(−1)m

m! Γ(m+ α+ 1)

(x
2

)2m+α

where Γ(z) is the gamma function, a shifted generalization of the factorial
function to non-integer values, defined by

Γ(z) =

∫ ∞
0

xz−1e−x dx

It can be shown that when α = n is an integer, Jn(x) has an infinite
number of zeroes for x > 0.

3.2. Bessel functions of the second kind: Yα. For non-integer α

Yα(x) =
Jα(x) cosαπ − J−α(x)

sinαπ
and In the case of integer order n, the function is defined by taking the limit
as a non-integer ? tends to n:

Yn(x) = lim
α→n

Yα(x).


