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1 Fourier Series

Two landmark discoveries are typically credited in the development of analysis: Calculus (circ.
1665) and Fourier series, introduced by Joseph Fourier (1822). The latter mark the passage from
finite-dimensional to infinite-dimensional mathematics.

A choice of an orthonormal basis {ek}k=1,...,n in Rn or Cn allows for a representation of vectors

as strings of scalar components x = (xk)k=1,...,n and the inner product 〈x, y〉 as
n

∑
k=1

xkyk in Rn and

n

∑
k=1

xkyk in Cn where a + ib = a− ib. The natural generalization of the inner product and of the

norm in the “continuum limit”, for two, say continuous, functions f , g : [a, b]→ C are

〈 f , g〉 =
∫ b

a
f (t)g(t)dt; ‖ f ‖2

2 = 〈 f , f 〉

which are the Hilbert inner product and the Hilbert norm.
With this generalization we may wonder, for a given orthonormal basis (ek)k∈N, which func-

tions can be represented by their, now infinite, set of components ( fk)k∈N where fk = 〈 f , ek〉,
k ∈ N (sometimes Z is a better choice than N). A possible choice of a basis are the monomials(

xk−1)
k∈N

which can be recombined to become an orthonormal set. If [a, b] = [−1, 1], then the
eks are the Legendre polynomials (Pk)k+1∈N:

P0(x) = 1, P1(x) = x, P2(x) =
1
2
(
3x2 − 1

)
, P3(x) =

1
2
(
5x3 − 3x

)
, P4(x) =

1
8

(
35x4 − 30x2 + 3

)
, · · ·

and in general,

Pn(x) =
1
2n

n

∑
k=0

(
n
k

)2

(x− 1)n−k(x + 1)k

These polynomials satisfy the orthogonality condition∫ 1

−1
Pm(x)Pn(x)dx =

2
2n + 1

δmn

In infinite dimensions the question of which functions can be written as ∑∞
k=0 ckPk is, in this

naive formulation, not well posed. By an infinite sum we must mean some form of a limit. This
could be a uniform limit, a pointwise limit, a limit in the sense of Cèsaro averages, or, with Cn in
mind, a limit in the “distance” sense, i.e. in the sense of integral means of order two:

lim
N→∞

‖ f −
N

∑
k=0

fkPk‖2 = 0

Each of these definitions leads to quite different answers, as we shall see in due course. The last
one can only be satisfactorily answered after replacing Riemann integrals with the much more
general and well-behaved Lebesgue integration, which in turn requires measure theory that we
will study in Chapter 2.

You probably noted that in Cn a good choice of the basis often simplifies the analysis. This
is even more so in infinite dimensional (Hilbert) spaces. A very important orthonormal set (in
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the Hilbert space L2) on [0, 1] is
(
e2πikx)

k∈Z
; (finite) linear combinations of e2πikx are called trig

polynomials. Series of the form
∑

k∈Z

fke2πikx

are called Fourier series.

Exercise: Check orthonormality of this set.

If f is represented convergently by such a series and if the series converges in a suitable sense,
then f ′ = ∑k∈Z fk(2πik)e2πikx. In other words, in the “basis”

(ek)k∈Z =
(

e2πikx
)

k∈Z

if a function is represented by the sequence of coefficients ( fk)k, then its derivative is represented
by the sequence (2πik fk)k. Differentiation is transformed into multiplication, and hence a dif-
ferential equation P(d/dx) f = g (where P is some polynomial) becomes an algebraic equation,
P(2πik) fk = gk. This property makes Fourier series particularly useful, if not even crucial, in the
analysis of differential, partial differential or difference equations. Indeed, it was the discovery of
Fourier that they provide the general solution of the heat equation (a very imprecise statement at
that time), solution that was previously unknown, that triggered many important developments
in modern analysis. One needed to understand in what sense are these series convergent, to
which functions, and in what sense the solution is the most general one. Note that, because of
orthonormality, again assuming suitable convergence, we have

〈∑
k∈Z

fke2πikx, e2πijx〉 = f j

which leads to the definition of the Fourier coefficients

fk := 〈 f , e2πikx〉 =
∫ 1

0
f (t)e−2πiktdt

Note that if we aim at a good form of pointwise convergence the represented function should
have the property f (0) = f (1), and that, if convergence is uniform then f ∈ C(T), the continuous
functions on the torus T, which in one dimension is S1.

To study convergence of Fourier series, note that

N

∑
−N

fke2πikx =
∫ 1

0
f (s)DN(x− s)ds =

∫ 1

0
f (x− s)DN(s)ds = DN ∗ f (1)

where DN is the Dirichlet kernel,

Dn(x) =
n

∑
k=−n

e2πikx =
sin(2n + 1)πx

sin πx
(x ∈ C \Z) (2)

Exercise: Prove the identity above. One way is to factor out e−2πinx and note that the remaining sum
is a geometric progression.
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Remark 1.0.1. We have e0(x) = 1 and thus
∫ 1

0 e0(s)ds = 1. For any k 6= 0 however,
∫ 1

0 ek(s)ds = 0.
Thus, for all Z 3 n > 0, ∫ 1

0
Dn(s)ds = 1

Remark 1.0.2. Note that for any f ∈ C(T) and any a ∈ R, we have∫ 1

0
f (s)ds =

∫ 1+a

a
f (s)ds

-3 -2 -1 1 2 3

-5

5

10

15

20

Figure 1: The Dirichlet kernel for n = 10, D10 (left) Dn on I for n = 1, ..., 20. The peak grows like
n, with a width 1/n and oscillations of frequency n away from it (right)

Lemma 1.0.3. Let (a, b) ⊂ [− 1
2 , 1

2 ). Then

lim
n→∞

∫ b

a
Dn(x)dx =


0 if 0 /∈ [a, b]

1 if 0 ∈ (a, b)
1
2 if 0 ∈ {a, b}

(3)

If 0 /∈ [A, b], then the limit is uniform with respect to a ∈ [A, b].

Proof. First, from the definition it follows that

∫ 1
2

− 1
2

Dn(s)ds = 1; and, since Dn is even,
∫ 1

2

0
Dn(s)ds = 1

2 (4)

Assume now 0 /∈ [a, b]; by integration by parts,∣∣∣∣∫ b

a

sin((2n + 1)πs)
sin πs

ds
∣∣∣∣

=

∣∣∣∣− cos(πb(2n + 1))
sin(πb)π(2n + 1)

+
cos(πa(2n + 1))

sin(πa)π(2n + 1)
−
∫ b

a

cos(πs) cos((2n + 1)πs)
sin2(πs)(2n + 1)

ds
∣∣∣∣

6
4

π(2n + 1)

(
|a|−1 + |b|−1

)
(5)
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where we used the fact that | sin πx| > x/2 for x in [− 1
2 , 1

2 ] (justify this!) and∫ 1
sin2(πs)

ds = − 1
π

cot(πs) + C

Combining with (4), the result follows.

The local behavior of the Dirichlet kernel, the Lemma above and (1) might suggest the con-
jecture that, for any continuous function f , DN ∗ f converges to f as N → ∞, in turn entailing
that the Fourier series of a continuous function converges to the function itself. One may indeed
be tempted to think of taking a fine enough partition of [− 1

2 , 1
2 ], so that f is “basically constant”

on each subinterval, and apply Lemma 1.0.3 to derive that the only nonvanishing contribution
in (1) comes from the interval around s = 0 which “converges to f (x)”. Not only is this argu-
ment wrong, but the whole conjecture is wrong. However, this fact has only been discovered
towards the end of the 19th century, and it came as a surprise. To understand what the “cor-
rect results” really are necessitated an integration theory better than Riemann’s and many other
modern developments in analysis leading to a final answer, a deep result whose proof is very dif-
ficult of Lennart Carleson in 1966. In the subsequent sections we will clarify these issues (except
for proving Carleson’s theorem!) while developing appropriate mathematical tools, the tools of
mathematical analysis.

Exercise 1. (a) Show that |Dn| is bounded by 2n + 1 for any nonnegative integer n, by using the expres-

sion of Dn as a sum (or the fact that | sin x| 6 |x| for all x ∈ R). Let xj =
(2j + 1)

2(2n + 1)
. Show that there

are positive constants c1, c2 > 0 s.t. |Dn(x)| > c1nj−1 on each interval {x : |x− xj| < c2n−1} and all
integers j with 0 < |j| < n/2. Show that this implies that

lim
n→∞

∫ 1

0
|Dn(s)|ds = lim

n→∞

∫ 1
2

− 1
2

|Dn(s)|ds = ∞

(b) Show that for any x there is a sequence of functions ( fn)n∈N in C(T) such that sups∈T,n∈N | fn(s)| =
1 and ∫ 1

2

− 1
2

Dn(s) fn(x− s)ds→ ∞ as n→ ∞

This and the uniform boundedness theorem that we’ll see later implies that there are continuous functions
for which the Fourier series diverge at least one point.

Theorem 1.0.4. Assume f and f ′ are in C(T). Then the symmetric Fourier sums of f (the first sum
in (1)) converges in the uniform norm to f . If f is only piecewise continuously differentiable, with
bounded derivative, then the sums converge in uniform norm in any compact set that does not contain
a discontinuity. At points of discontinuity, if the lateral limits of the function exist, then the symmetric
sums converge to the half sum of these lateral limits.

Note 1.0.5. Note that we do not claim absolute convergence which cannot hold if f is discontinuous
(why?)

Proof. Let fk as usual be the Fourier coefficients of f . As we will see, we can reduce the analysis
of that of a function with at most one exceptional point where the lateral limits exist. If the
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function is smooth everywhere, let ξ be any point; otherwise choose ξ to be the discontinuity
point. Call the left (right) limit of f at ξ f (ξ−) ( f (ξ+) resp.). We seek to see whether the Fourier
sums of f converge to a limit, call it L. We have, by integration by parts, and Lemma 1.0.3

n

∑
k=−n

fke2πikξ− L =
∫ 1

2

− 1
2

( f (ξ− s)− L)Dn(s)ds =
∫ 0

− 1
2

( f (ξ− s)− L)Dn(s)ds+
∫ 1

2

0
( f (ξ− s)− L)Dn(s)ds

=
1
2
(

f (ξ+) + f (ξ−)− 2L
)
+
∫ 0

− 1
2

f ′(ξ − s)
∫ s

− 1
2

Dn(t)dtds +
∫ 1

2

0
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds (6)

Let’s take the second integral; the first one is dealt with similarly. Let m = ‖ f ′‖u = sup
x∈[− 1

2 , 1
2 ]
| f ′(x)|.

For a small ε > 0 we write

∫ 1
2

0
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds =
∫ ε

0
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds +
∫ 1

2

ε
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds (7)

Now∣∣∣∣∣
∫ 1

2

ε
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds

∣∣∣∣∣ 6 m
∫ 1

2

ε

∣∣∣∣∣
∫ s

1
2

Dn(t)dt

∣∣∣∣∣ ds 6 m
8

π(2n + 1)

∫ 1
2

ε

dt
t
6

16m
(2n + 1)π

ln ε−1

(8)
by Lemma 1.0.3 and (5). On the other hand, since

∫ 1/2
s Dn(t)dt is bounded by a constant c

independent of n 1 ∣∣∣∣∣
∫ ε

0
f ′(ξ − s)

∫ s

1
2

Dn(t)dtds

∣∣∣∣∣ 6 cmε

Clearly, there is a limit L, namely L = 1
2 ( f (ξ−) + f (ξ+)). If f is C1 throughout, L = f (ξ).

Exercise 2. Let f be as in the theorem, and assume it is discontinuous at {x1, ..., xn} ⊂ (−1/2, 1/2),
where lateral limits exist. Let F(x) =

∫ x
− 1

2
f ′(s)ds. Show that F is continuous and piecewise differen-

tiable on [−1/2, 1/2). Show that its periodic extension to the whole of R has at most one discontinuity
per period, at the points x = 1

2+j, j ∈ Z. Show that F has lateral limits everywhere. Thus the proof in
the theorem applies to F. Let θ(x) be the Heaviside function, equal zero for x < 0 and one for x > 0.
Then, a piecewise continuous function f with piecewise continuous derivative and points of discontinu-
ity {x1, ..., xm} equals F(x) + ∑m

i=1 θ(x − xi)( f (x+i ) − f (x−i )). Complete the proof of the theorem by
reducing the analysis to the θ function, for which you can apply the approach in the proof of Lemma 1.0.3.

Exercise 3. We can of course choose a different ε for each n. Show that with the choice ε = n−1 we get,
for large enough n, ∣∣∣∣∣L− n

∑
k=−n

fke2πikx

∣∣∣∣∣ = O(n−1 ln n) (9)

1Let m = 2n + 1. Again using sin πx > x/2, first note that 2
∫ π

m
0

sin mx
x = 2

∫ π
0

sin x
x . Now, for x ∈ [(2j + 1)/m, (2j +

2)/m), j > 0, sin mx < 0 and we have sin mx
x 6 sin mx/(2j + 2); on [(2j + 2)/m, (2j + 3)/m), j > 0 sin mx > 0 and we

have sin mx
x 6 sin mx/(2j + 2) implying 0 <

∫ s
1/2 Dn(t)dt < c + O(1/n) where c = 1.0598....
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Exercise 4. (a) Check the recurrence relation (n ∈N, |k| ∈N)

∫ 1
2

− 1
2

sne−2 iπ ks ds =
2−n−1(−1)k(1− (−1)n)

πk
i− i n

2kπ

∫ 1
2

− 1
2

sn−1e−2 iπ ks ds

(b) Check that the symmetric Fourier series on the interval [− 1
2 , 1

2 ] of the monomials xk, k = 0, 1, 2, 3 are
(the exponentials were re-expressed as trig functions to simplify the formulas)

1 = x0 (10)
∞

∑
k=1

(−1)k+1

πk
sin(2πkx) = x1 (if |x| 6= 1

2 ) (11)

1
12

+
1

π2

∞

∑
k=1

(−1)k

k2 cos(2πkx) = x2 (12)

3
2π3

∞

∑
k=1

(−1)k

k3 sin(2πkx) = −1
4

x + x3 (13)

3
π4

∞

∑
k=1

(−1)1+k cos (2 π kx)
k4 = −1

2
x2 + x4 +

7
240

(14)

Convergence of these series follows from Theorem 1.0.4. Note that convergence in (11) is not absolute
(why?) (all others are).

(c) Assume that f is continuously differentiable on T except for one point x0 where f is discontinuous.
Assume that f and f ′ have lateral limits at x0. Mapping T to [−1/2, 1/2), place the discontinuity of the
mapped function (keep the notation f ) at the right endpoint. Show that there is an α s.t. f + αx extends
to a continuous periodic function on R with piecewise continuous derivative.

(d) Use (12) to show that ∑
k∈N

1
k2 =

π2

6
. Rely on the previous parts of this exercise to calculate ∑

k∈N

1
k4 .

The connections between the behavior of the Fourier coefficients and the regularity (differen-
tiability, Hölder continuity etc.) of a function are also very interesting and important. Here is a
starting point:

Theorem 1.0.6. Let f ∈ Cn(T) (i.e., f is continuous together with its first n derivatives) and let ( fk)k∈Z

be its Fourier coefficients. Then fk = O(|k|−n) as |k| → ∞.
In the opposite direction, if | fk| = O(|k|−m) for some m > n + 1 for large |k|, then f ∈ Cn(T) (we’ll

be able to find stronger statements for this “converse” in due course).

Proof. The proof is by simple integration by parts, n times:

∫ 1
2

− 1
2

f (s)e−2πiksds = (−2πik)−n
∫ 1

2

− 1
2

f (n)(s)e−2πiksds and thus | fk| 6 (2πk)−n‖ f (n)‖u

if |k| ∈ N, where ‖ · ‖u is the uniform norm. The opposite direction statement is left as an
exercise of differentiation of suitably convergent function series.

Note 1.0.7. This shows that divergence of the Fourier series of general continuous functions is due to their
lack of sufficient smoothness.
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Exercise 5. In the class of continuous functions whose Fourier series converge, the rate of convergence is
arbitrarily slow. Consider the lacunary Fourier series

f (x) =
∞

∑
k=1

k−α cos(2kπx)

where α > 1. Show that this series converges absolutely and uniformly and (thus) f is continuous. Show
that the Fourier series of f is just the sum in right hand side. Since | fm| is zero if |m| 6= 2k−1 for some
k ∈ N and equals 1

2 (log2 |2m|)−α if |m| = 2k, we see that the Fourier coefficients | fm| decay slower than
any power of m. Adapt this argument to find functions for which the Fourier series converge, but the
coefficients have arbitrarily slow decay (and think of some rigorous definition of the concept of “arbitrarily
slow”). See Fourier sums of f with α = 3/2 and 1, ..., 20 terms.

Note 1.0.8. The f above is an example of a continuous but nowhere differentiable function. Try your hand
in proving this.

Note 1.0.9. A refinement of the construction above gives Fejér’s example of a continuous function whose
Fourier sums blow up at x = 0. Fejér’s function is (in our notation and conventions)

f (x) =
∞

∑
k=1

1
k2 sin

[
(2k3

+ 1)(x− 1
2 )π

]
The analysis of the convergence vs. divergence of the Fourier sums of f is quite elementary; if you are
curious, click on this link: Fejér’s counterexample link.

1.1 Fejér’s theorem

In various weaker senses, Fourier series of continuous functions do converge to their associated
functions. For f ∈ C(T) and n ∈N let

sn(x) =
n

∑
k=−n

fke2πikx

and take the Césaro means of sn,

σn(x) =
1
n

n−1

∑
k=0

sk(x) =
∫ 1

2

− 1
2

f (x− t)Fn(t)dt

where

Fn(x) = n−1
n−1

∑
k=0

Dk(x) = n−1
(

sin(nπx)
sin πx

)2

(check the explicit expression of Fn)

Theorem 1.1.1. If f is in C(T), then the sequence (σn)n∈N of Cesàro means of the sequence (sn)n∈N of
partial sums of the Fourier series of f converges uniformly to f on T.

Proof. We first claim that Fn is an approximation of the identity, by which it is meant that

1. Fn > 0, ∀n ∈N.

12/186

https://people.math.osu.edu/costin.9/6211-2018/nondif.gif
http://www.mathcounterexamples.net/continuous-function-with-divergent-fourier-series/


Math 6211+6212, Real Analysis I+II

2.
∫ 1

2

− 1
2

Fn(s)ds = 1, ∀n ∈N.

3. For any δ ∈ (0, 1
2 ], lim

n→∞

∫
|x|∈[δ, 1

2 ]
Fn(s)ds = 0.

Indeed, 1. is obvious, 2. is clear from the definition because for any k ∈ N,
∫ 1

2

− 1
2

Dk(s)ds = 1,

while 3. follows from the fact that for |x| > δ, since | sin x| > x/2, we have Fn(x) 6 4n−1.
The proof follows from these three basic properties of the Fejér kernel and from the uniform

continuity of f . Let m = ‖ f ‖u. We have m > 0 unless f = 0 in which case the proof is immediate.

Note that f (x) =
∫ 1

2

− 1
2

f (x)Fn(s)ds by 2. above. We now see that

(σn f )(x)− f (x) =
∫

06|s|6δ
Fn(s)( f (x− s)− f (x))ds +

∫
δ6|s|61

2

Fn(s)( f (x− s)− f (x))ds

Take some ε > 0. Using uniform continuity, choose δ so that wenever |s − s′| 6 δ we have
| f (s)− f (s′)| < ε/2, and choose n0 s.t. for all n > n0 we have

∫
1
2>|y|>δ Fn(s)ds 6 1

8 εm−1. With
this, we see that for all n > n0 and all x

|(σn f )(x)− f (x)| < ε

Corollary 1.1.2. If f and g are continuous and have the same Fourier coefficients, then f = g.

Proof. The Césaro sums of the Fourier series of f converge to f , and also to g.

Corollary 1.1.3. Trigonometric polynomials are dense in C(T).

Proof. This follows immediately from Theorem 1.1.1: let f ∈ C(T) and ε > 0 be arbitrary; let n0

be s.t. ‖ f − σn0 f ‖u 6 ε; note that σn0 f is a trig polynomial.

Note 1.1.4. This density does not imply that the Fourier sums of continuous functions converge. Make
sure you understand the distinction.

An important consequence of these results is Weyl’s equidistribution theorem. A sequence of
real numbers (xj)j∈N is equidistributed modulo one if, by definition, for any f ∈ C(T) we have

1
n

n

∑
k=1

f (xj)→
∫ 1

0
f (x)dx (15)

Note that this also means that, in the sense of Césaro means, ( f (xj))j∈N converges to the integral
of f .

Exercise 6. Let (xj)j∈N be equidistributed mod 1 and let frac y denote the fractional part of y. Show that
the points {frac xj : j ∈N} are dense in (0, 1).
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Theorem 1.1.5 (Weyl). Let x0 and α be real numbers. Then, the sequence (x0 + kα) is equidistributed
mod 1 iff α is irrational.

Note 1.1.6 (Rotation on the circle). We can visualize the points xk above as the points on the unit
circle obtained by starting at an angle x0 mod 2π and successively rotating by an angle α mod 2π. See
Irrational rotation animation.

Exercise 7. Show that the sequence (x0 + kα) is equidistributed mod one iff the empirical probability of
finding a point in any arc-interval on the circle (in the sense of the Note) approaches the arclength mod 2π

as the number of rotations increases without bound. We recall that the empirical probability is the ratio
between the number of favorable events divided by the total number of events. The term “equidistributed”
is suggested by this interpretation.

Proof of Theorem 1.1.5. We leave it as an easy exercise to show that irrationality of α is necessary.
Verify that irrationality is sufficient for Césaro-convergence to the integral of f for all trig mono-
mials f (x) = e2πikx, k ∈ Z, and thus for all trig polynomials. Use the density of trig polynomials
to complete the proof.

Exercise 8. Check that (15) extends to piecewise continuous functions. Monotone bounded functions are
Riemann integrable. Does (15) extend to them?

1.2 Introduction to normed spaces and Hilbert spaces

In the following, F is the field of scalars, and it is either R or C. Complex conjugation is denoted
by overline, as usual.

Definition 1.2.1. An inner product space is a vector space V over the field F together with an inner
product, i.e., with a map

〈·, ·〉 : V × V → F

which satisfies the following axioms: for all vectors x, y, z ∈ V we have

1. Conjugate symmetry: 〈x, y〉 = 〈y, x〉

2. Linearity in the first argument:

〈ax, y〉 = a〈x, y〉
〈x + y, z〉 = 〈x, z〉+ 〈y, z〉

3. Positive-definiteness:
〈x, x〉 ≥ 0

〈x, x〉 = 0⇔ x = 0 .

Note 1.2.2. We write ‖x‖2 = 〈x, x〉; ‖ · ‖ is then a norm.
The map 〈·, ·〉 : V ×V is a positive definite sesquilinear form, in this case a map which is linear

in the first variable and conjugate-linear in the second 2. In some constructions it is convenient to

2In physics the convention is a bit different, the form is conjugate-linear in the first entry and linear in the second.
Each convention has its own merits but in the end of course it does not make any real difference which convention
we choose.
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allow, more generally, semi-definite sesquilinear forms, ones that have degenerate kernel, that is
‖x‖ = 0 for some nonzero vectors. Such forms are also called weak inner products.

Theorem 1.2.3 (Cauchy-Schwarz). Let V be an inner product space and x, y be any two elements of V .
We have |〈x, y〉| 6 ‖x‖‖y‖.

Proof. Note for any a ∈ C we have

0 6 ‖x− ay‖2 = 〈x, x〉+ |a|2〈y, y〉 − 〈x, ay〉 − 〈ay, x〉 = 〈x, x〉+ |a|2〈y, y〉 − 2<(a〈x, y〉)

Write the polar decomposition 〈x, y〉 = |〈x, y〉|eiα (if 〈x, y〉 = 0 any α works). By replacing a by
|a|e−iα we see that f (|a|) = 〈x, x〉+ |a|2〈y, y〉 − 2|a||〈x, y〉| > 0. The trick is now to note that f (|a|)
is a quadratic polynomial in |a| which is nonnegative, and thus it has nonpositive discriminant:
4|〈x, y〉|2 − 4〈x, x〉〈y, y〉 6 0, which is what we intended to prove.

Rn and Cn with the usual dot products are clearly inner product spaces. Define now

`2(N) =

{
x = (xi)i∈N

∣∣∣∣∣∑i∈N

|xi|2 < ∞

}
; `2(Z) =

{
x = (xi)i∈Z

∣∣∣∣∣∑i∈Z

|xi|2 < ∞

}

These are inner-product space, with the inner product

〈x, y〉 = ∑
i∈N

xiyi and 〈x, y〉 = ∑
i∈Z

xiyi

respectively. So is the space

L2
R((a, b)) =

{
f : (a, b)→ C

∣∣∣∣∣ f Riemann integrable,
∫ b

a
| f (s)|2ds := ‖ f ‖2

2 < ∞

}

with the inner product

〈 f , g〉 =
∫ b

a
f (s)g(s)ds

Note 1.2.4. (a) If the interval is finite, then L2
R((a, b)) is the same as the space of all Riemann integrable

functions.
(b) If (a, b) is a finite interval, then the sup convergence is stronger than L2

R convergence. Indeed,
‖ · ‖2

2 6 ‖ · ‖2
u(b− a). In fact, it is strictly stronger. For instance, the sequence of characteristic functions

of any family of intervals of total length 1/n converges to zero in L2
R, but not pointwise in general, let

alone uniformly.

The conditions for Riemann integrability will prove to be too strong for a number of important
purposes, and the remedy is a more general integral, the Lebesgue integral. We see that, if (a, b)
is a finite interval, then any Riemann integrable function is in L2

R((a, b)); this is an easy exercise.
Using Cauchy-Schwarz we see that the inner product is well defined on `2(Z) and L2

R((a, b)).
In fact `2(Z) and L2

R((a, b)) have interesting connections. Let, for simplicity a = −1/2, b =

1/2. Note that, if f is Riemann integrable so is e2πikx f (x) and the Fourier coefficients of f

fk =
∫ 1/2

−1/2
f (s)e−2πiksds, k ∈ Z
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are well-defined.
Furthermore,

0 6 ‖ f −
m

∑
k=−n

fke2πikx‖ = 〈 f −
m

∑
k=−n

fke2πikx, f −
m

∑
k=−n

fke2πikx〉 = 〈 f , f 〉 −
m

∑
k=−n

| fk|2 (16)

and we see that
m

∑
k=−n

| fk|2 6 ‖ f ‖2
2

and (because of positiveness of the terms)
∞

∑
k=−∞

| fk|2 converges and.

∞

∑
k=−∞

| fk|2 6 ‖ f ‖2
2 (17)

(17) is called Bessel’s inequality. We have also proved the following.

Proposition 1.2.5. If f is Riemann integrable on [−1/2, 1/2], then the sequence of its Fourier coefficients
( fk)k∈Z is in `2(Z), and ‖( fk)k∈Z‖`2 6 ‖ f ‖2.

Corollary 1.2.6. If f ∈ C(T), then

‖
m

∑
k=−n

fke2πikx − f ‖2 → 0 as n, m→ ∞

and
∞

∑
k=−∞

| fk|2 = ‖ f ‖2
2

Proof. This is straightforward, since trig polynomials are dense in C(T) in the uniform norm, and
by Note 1.2.4 a fortiori in L2

R, and the properties above trivially hold for trig polynomials.

Exercise 9. Show that continuous functions are dense in the space of Riemann integrable functions in the
sense of L2

R((a, b)).

It follows that

Corollary 1.2.7. If f is Riemann integrable on [−1/2, 1/2] then

‖
m

∑
k=−n

fke2πikx − f ‖2 → 0 as n, m→ ∞

and
∞

∑
k=−∞

| fk|2 = ‖ f ‖2
2

Definition 1.2.8. A sequence (sk)k∈N in a normed space is Cauchy if for any ε > 0 there is an n0 s.t. for
all n1 > n0 and n2 > n0 we have

‖sn1 − sn2‖ < ε

A normed space in which every Cauchy sequence is convergent is complete.
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Proposition 1.2.9. The spaces `2(N) and `2(Z) are complete.

Proof. We show this for `2(N); the proof for `2(Z) is similar (it even follows from it).
If {xn}n∈N is a Cauchy sequence in `2(N), then for every i ∈ N the number sequence

{(xn)i}n∈N is Cauchy (indeed |(xn)i − (xm)i|2 6 ‖xn − xm‖2). Let yi = limn(xn)i. Let n0 be
s.t. (∀n, m > n0), (‖xn − xm‖ < 1). The triangle inequality implies that ∀n > n0, ‖xn‖ 6 C where

C = 1 + ‖xn0‖. It follows that, for all n,
n

∑
i=1
|yi|2 = lim

k→∞

n

∑
i=1
|(xk)i|2 6 C and since |yi| are positive

and the sums are bounded, the sum converges to ‖y‖2 6 C, that is y ∈ `2(N). Similarly, since
limk→∞ ∑n

i=0 |(xk)i − yi|2 = 0 for any n, we can use the triangle inequality to complete the proof.

Exercise 10. (a) Show that there is no Riemann integrable function whose Fourier coefficients are S =

(|k|−1)k∈Z\{0}.
(b) Clearly S ∈ `2(Z), and S is the limit of Fourier coefficients of trig polynomials. Check that these

trig polynomials form a Cauchy sequence in L2
R((−1/2, 1/2)), but it is not convergent in L2

R((−1/2, 1/2)).
(c) Check that the symmetric Fourier sums corresponding to S converge uniformly on any compact set

in (−1/2, 0) ∪ (0, 1/2).
(Bonus, 3p) In fact the the symmetric Fourier sums in part (c) above converge uniformly, on such

compact sets not containing zero to −2 log(2 |sin(πx)|).

2 Measure theory

Here is a way to extend Riemann integration enough so that the issues we encountered would
be resolved.

To start with, take a finite interval [a, b] ⊂ R. Define a “norm” on functions that relates to the
value of the Riemann integral:

‖ f ‖1 :=
∫ b

a
| f (s)|ds

The problem is that this is only semidefinite: any Riemann integrable function that is nonzero
only on a countable set has norm zero. To upgrade a semi-definite-form space to an actual
normed space, we mod-out the elements of zero norm, and we end up with a set of equivalence
classes {[ f ] : f Riemann integrable on [a, b]}, where

[ f ] = {g : ‖ f − g‖1 = 0} (18)

Check that the space of equivalence classes above is a linear space V. ‖ · ‖1 is now a norm on V.

Exercise 11. If (a, b) ⊂ R, 0 < b− a < ∞, then ‖ f ‖1 6 ‖ f ‖2 (where the norms are those of L1((a, b))
and L2((a, b)) resp.). Adapt the example in Exercise 10 to find a sequence of Riemann integrable functions
which is Cauchy in ‖ · ‖ but does not converge to a Riemann integrable function.

Note that for any a, b the functionals given on the Riemann integrable functions by

ϕa,b f =
∫ b

a
f (s)ds (19)
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are bounded w.r.t. ‖ · ‖1. Now define L1([a, b]) to be the completion of V under ‖ · ‖; the extension
by continuity of the functionals ϕa,b is an integral on L1. We are left with questions about what
exactly we achieved. Can the elements of L1 be interpreted as classes of equivalence of functions?
This is not very straightforward since the characteristic function of an interval of size 1/n on T

carried by an irrational rotation will tend in L1 to zero but pointwise it converges nowhere.
What is the equivalence relation? What are the properties of integration? We will return to this
approach later.

A more systematic and motivated approach is to start from the geometrical interpretation of
the Riemann integral of a nonnegative function: it represents the area under the graph of that
function. With this in mind, we ask more generally: which sets can have an area (volume in R3

etc.), and for those, how do we define an area?
It turns out that not every set can have a volume; call the good sets “measurable”. The

class of measurable sets however should be closed under intersection, union, and complement.
Furthermore, the union of a countable family of disjoint sets should also be measurable, with
measure equal to the sum of individual measures. Indeed this is well defined, as a sum of
positive terms. The sum could be infinity (thus, we should allow +∞ as a possible volume).
Eliminating conditions that follow from each-other we define:

Definition 2.0.1. Let X be any nonempty set. An algebra A of sets on X is a nonempty collection of
subsets of X, closed under finite unions and complements. A σ-algebra on X is an algebra which is closed
under countable unions.

Note 2.0.2. Algebras are closed under finite intersections and σ-algebras are closed under countable in-
tersections, since ∩j Aj = (∪j Ac

j )
c. The empty set and X are in A as ∅ = A ∩ Ac and X = ∅c. Closure

under unions is implied by closure under disjoint unions. Indeed, we can inductively remove the pairwise
intersections if nonempty. Namely, in the sequence (Aj)j∈N we replace Aj by Ãj := Aj ∩ (∪i<j Ai)

c; then
(check) ∪j Aj = ∪j Ãj. Check also that we have only used operations permitted in algebras/σ-algebras.

Let X be a space andM a σ-algebra on X.

Definition 2.0.3. The pair (X,M) is called a measurable space.

Some simple examples are, at one extreme, A = {∅, X} and A = {A : A ⊂ X} = P(X) at
the other.

An important concept is that of a σ-algebra generated by a family E of sets:

Definition 2.0.4. M(E), the σ-algebra generated by E is the intersection of all σ-algebras containing E
(P(X) is one of those).

Check that the intersection of a family of σ-algebras in a σ-algebra.
In a topological set obviously open sets play a special role. A σ-algebra compatible with the

topology should contain the open sets.

Definition 2.0.5. The Borel σ-algebra on a topological space X, BX, is the σ-algebra generated by the
open sets in X.

Clearly closed sets, countable intersections of open sets (called Gδ sets) countable unions of
closed sets (called Fσ sets), and many more that we will uncover, are in BX.
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2.1 Measures

The definition below generalizes some of the properties we would expect from volumes in Rn.

Definition 2.1.1. LetM be a σ-algebra on the set X. A function µ :M→ [0, ∞] is a measure onM if

1. µ(∅) = 0

2. (σ-additivity) If (Aj)j∈N is a family of mutually disjoint sets, then

µ

 ∞⋃
j=1

Aj

 =
∞

∑
j=1

µ(Aj) (20)

Definition 2.1.2. The triple (X,M, µ) whereM is a σ-algebra on X and µ is a measure onM is called
a measure space.

Exercise 12 (The counting measure). Let X be any nonempty set and takeM to be any σ-algebra on X
(including the maximal one, P(X)).

1. For any A ∈ M, let µ(A) be the number of points in A (understood to be zero if A = ∅, n if there
is a bijection between A and {1, ..., n} and +∞ otherwise). Show that µ is a measure on A ∈ M.

2. (The Dirac mass at x0) Let x0 be a point in X, and for any A ∈ M let δx0(A) be one if x0 ∈ A and
zero otherwise. Show that δx0 is a measure onM.

For a measure µ to agree with our intuition about volumes, we would require more properties
from it: invariance under Euclidean transformations (these are the isometries of Rn) and normal-
ization, namely the measure of a (hyper)cube of side a in Rn should equal an (in one dimension
µ((a, b)) = b− a). In particular, the underlying σ-algebra should be at least as large as the Borel
σ-algebra on Rn.
M, however, cannot be too large; for instance, we cannot haveM = P(Rn).

Proposition 2.1.3 (Existence of non-measurable sets). LetM be any σ-algebra on R such that there
is a measure onM that is invariant under Euclidean transformations and normalized. Then there are sets
N in R, N /∈ M.

Proof. The construction is simpler if we work mod 1, and then translation becomes rotation on
S1, the circle of circumference 1. Assume the contrary. Consider the equivalence relation on [0, 1)
mod 1 x ∼ y iff x− y ∈ Q. Let C be the collection of equivalence classes modulo ∼. Using the
axiom of choice (AC) 3, let E be a set which contains exactly one element from each class. (By
the AC there is a choice function F : C → S1 s.t. ∀C ∈ C, F(C) ∈ C; then E = F(C).) For each
r ∈ Q let Er = {x + r : x ∈ E}. By definition, if r 6= r′, Er ∩ Er′ = ∅, and Er is obtained from
E by translation by r, and thus ∀r ∈ Q, µ(Er) = µ(E). Clearly, ∪r∈QEr = S1 (∗). Therefore, if
µ(E) = 0, then µ(S1) = 0 and if µ(E) > 0, then µ(S1) = +∞ which contradict the normalization
µ(S1) = 1.

3Formally, this states: ∀X
[
∅ /∈ X =⇒ ∃ f : X →

⋃
X ∀A ∈ X ( f (A) ∈ A)

]
.
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Note 2.1.4. The AC is crucial to the proof. The existence of a set E as above is independent of ZF,
the axioms of mathematics without the AC. Furthermore, one can show that there is no definition
even in ZFC (ZF+AC) that, provably and uniquely , defines such an E. That is, these cannot be of
the form {x ∈ R : P(x)} where P is some predicate; in particular, no “specific example” can be
“constructed”. If you are “given” such an E you can’t check it really is one. Nor can one define a
σ-algebra with the properties in the Proposition. 4. (A more detailed and careful formulation of
these impossibility statements is needed to make them really rigorous and correct; that’s beyond
the scope of these notes though; see Non-measurable sets and the AC)

More strikingly, using the AC the Banach-Tarsky paradox produces a finite partition of the
unit cube in Rn, n > 3 in subsets which can be rearranged by Euclidean transformations (by cut
and paste!) to become two unit cubes (or any other number of them of any size, for that matter)
obviously violating the normalization condition. This precludes even the existence of a finitely
additive such measure on Rn. (The use of the AC means however that you definitely cannot do
this at home with Play Doh.)

2.2 Measurable functions

Let X and Y be two sets and f : X → Y be a map between them. The inverse image through f :
f−1(Y) := {x ∈ X : f (x) ∈ Y} is a map between P(Y) and P(X ) which commutes with ∪,∩ and
complements; that is, we have f−1(Y1 ∪ Y2) = f−1(Y1) ∪ f−1(Y2) etc.

Exercise 13. Let X and Y be two sets, let N be a σ-algebra on Y and f : X → Y be a map between these
sets. Show thatM := { f−1(Y) : Y ∈ N} is a σ-algebra on X .

Definition 2.2.1. Let (X ,M) and (Y ,N ) be measurable spaces. A function f : X → Y is called mea-
surable (more precisely (M,N )-measurable) if the preimage through f of any set in N is inM, that is:
f−1(N ) ⊂M.

Proposition 2.2.2. Assume (Y ,N ) is a measurable space where N is generated by E ⊂ P(Y). Let X be
a set, and f : X → Y . Then, the σ-algebra f−1(N ) is generated by f−1(E). In particular, if (X ,M) and
(Y ,N ) are measurable spaces and N is generated by E , then f is (M,N )-measurable iff f−1(E) ∈ M
for all E ∈ E .

Proof. Necessity is obvious. For sufficiency note that the collection {Y ⊂ Y : f−1(Y) ∈ M} is a
σ-algebra which contains E , thus it contains the σ-algebra generated by E .

2.3 Product σ-algebras

Let A be an index set, (Xα,Mα)α∈A, a collection of measurable spaces, and X their Cartesian
product, X = ∏

α

Xα. On X there is a naturally induced σ-algebra, namely the smallest σ-algebra

that makes all canonical projections πα measurable:

Definition 2.3.1. Let (Xα,Mα) and X be as above. The product σ-algebra on X is the σ-algebra generated
by the collection of sets {π−1

α (Eα) : Eα ∈ Mα, α ∈ A}. The product σ-algebra is denoted by
⊗
α∈A

Mα.

4More generally, this applies to any set which is not Lebesgue measurable, a notion that we’ll discuss later.
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Proposition 2.3.2. If the index set A is countable, then
⊗
α∈A

Mα is generated by the collection of all ∏α Eα

where Eα ∈ Mα.

Proof. Simply note that ∏α Eα = ∩απ−1(Eα) are measurable, and that π−1(Eα) = ∩β∈Aπ−1(Eβ)

for a suitable choice of the (Eβ)β∈A (which?)

Proposition 2.3.3. Assume Mα is generated by Eα.
⊗
α∈A

Mα is generated by F1 = {π−1(Eα) : Eα ∈

Eα, α ∈ A}.
Proof. By Proposition 2.2.2 the (πα)α∈A are measurable iff π−1

α (Eβ,α) are measurable for all Eβ,α ∈
Eα and all α.

Proposition 2.3.4. Let X1, ..., Xn be metric spaces and let X = ∏n
1 Xj be equipped with the product

metric. Then the product Borel σ-algebra,
⊗n

1 BXj is contained in the Borel σ-algebra on X, BX, and the
two coincide if Xj are separable.

Proof. By Proposition 2.3.3
⊗n

1 BXj is generated by π−1
j (Oj) where Oj are open in Xj; by definition

of the product metric, these sets are open in X, thus elements of BX. For the second part we will
find a countable base of the topology of X of the form (∏n

k=1 Ojk)j∈N where for each k, (Ojk)j∈N

form a basis in the topology of Xj. Take a countable dense set Dj in each Xj, and the countable
collection of all balls Ej = (Bj,n)n∈N of rational radii centered at some point in Dj. Clearly, for
j = 1...n, BXj is generated by Ej. Now, the set of points x ∈ X such that for any j, xj is in some
Bjn is dense in X. A ball of radius r in X is by definition the product of balls of radius r in each
Xj and the result follows.

Corollary 2.3.5. BRn =
⊗n

1 BR.

To reduce some proofs in the sequel to simpler cases, we introduce elementary families. These
are collections E ⊂ P(X) such that

1. ∅ ∈ E .

2. If E1, E2 ∈ E then E1 ∩ E2 ∈ E .

3. If E ∈ E , then Ec is a finite disjoint union of elements of E
Proposition 2.3.6. If E is an elementary family, then the collection A of finite disjoint unions of elements
of E is an algebra.

Proof. If A, B ∈ A then A = ∪jEj and B = ∪kFk where the finitely many Ej, as well as the Fk, are
mutually disjoint in E . Then

A
⋂

B =
⋃
j,k

(Ej
⋂

Fk)

where it is easy to check that the sets in the collection (Ej ∩ Fk)j,k are mutually disjoint elements
of E . Then, for disjoint sets Ej and Ej,k j we have

Ac = (
n⋃

j=1

Ej)
c =

n⋂
j=1

Ec
j =

n⋂
j=1

(
⋃
k j

Ej,k j) =
⋃

k1,...,kn

n⋂
j=1

Ej,k j

again a disjoint union of elements of E .
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2.4 More about measures

Theorem 2.4.1. Let (X,M, µ) be a measure space and A, B, (Ej)j∈N measurable sets.. Then µ is

1. Monotonic: A ⊂ B⇒ µ(A) < µ(B).

2. Subadditive: µ(
⋃

j∈N

Ej) 6 ∑
k∈N

µ(Ej)

3. Continuous from below. If E1 ⊂ E2 · · · , then µ(
⋃

j∈N

Ej) = lim
j→∞

µ(Ej).

4. Continuous from above. If E1 ⊃ E2 · · · , and µ(E1) < ∞, then µ(
⋂

j∈N

Ej) = lim
j→∞

µ(Ej).

Proof. 1. We have B = A
⋃
(B \ A) and thus µ(B) = µ(A) + µ(B \ A) > µ(A).

2. We replace the union by an equivalent disjoint union:

µ(
⋃

k∈N

Ej) = µ

 ⋃
k∈N

Ek
⋂
j<k

Ec
j

 = ∑
k∈N

µ(Ek
⋂
j<k

Ec
j ) 6 ∑

k∈N

µ(Ej)

by 1.

3. Similarly, setting E0 = ∅,

µ(
⋃

k∈N

Ek) = µ

 ⋃
k∈N

Ek
⋂
j<k

Ec
j

 = ∑
k∈N

µ(Ek
⋂

Ec
k−1) = lim

n→∞

n

∑
k=1

µ(Ek
⋂

Ec
k−1) = lim

n→∞
µ(En)

4. Note that E1 = (E1 \ E2)∪ E2 = (E1 \ E2)∪ (E2 \ E3)∪ E3 = · · · =
⋂

i∈N

Ei ∪
⋃

j∈N

(Ej \ Ej+1) where

all the unions are disjoint. Hence,

µ(E) = ∑
j6n

µ(Ej \ Ej+1) + µ(En+1) = ∑
j∈N

µ(Ej \ Ej+1) + µ(
⋂

i∈N

Ei)

easily (how?) completing the proof.

Exercise 14 (Suggested by one of you). Let X be an infinite set and let κ be its cardinal. Let Y be an
infinite set of cardinality κ′ < κ. Let M an infinite σ-algebra on Y, and let its cardinality be κ′′. Show
that there is a σ-algebra of cardinality κ′′ in X. As a hint, Ex.1 p. 24 in Folland could help.

Notes about this exercise:
The order among cardinal numbers | · |, is defined as follows: |Y| 6 |X| if there exists an injective

function f : Y → X. The axiom of choice implies (and in fact is equivalent to) the statement that given
two sets X and Y we have |Y| 6 |X| or |Y| 6 |X|.

Exercise 15. Let X = Q ∩ [0, 1], let E be the family of all intervals of the form {q ∈ Q : a < q 6 b}
where a, b ∈ X, and A be the algebra generated by E .

(1) What is the σ-algebraM generated by E?
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(2) Define a set-function on E by µ((a, b]) = b− a. Show that it extends to a finitely-additive measure
on A.

(3) Does µ extend to a σ-additive measure to M? (In other words: is there a measure on M which
agrees with µ on A?)

Note 2.4.2. The condition µ(E1) < ∞ can clearly be relaxed to µ(En) < ∞ for some n since any finite
subfamily of Ek can be removed from the intersection. However the condition µ(En) < ∞ for some n is
needed. Indeed, let µ be the counting measure on P(N) and let En = {n, n + 1, ...}. Clearly ∩nEn = ∅
while µ(Ek) = +∞ for all k.

Property 2 in Definition 2.1.1 is called σ-additivity of the measure. A function µ which is only
additive for finite families of disjoint sets is called finitely additive.

A measure on (X,M) is semifinite if any E ∈ M with µ(E) 6= 0 has a subset of finite positive
measure. It is finite if µ(X) < ∞, which, by the previous theorem, implies µ(E) < ∞ for all E ∈
M. An important notion is that of σ-finite measures, meaning that there is a countable partition of
X in disjoint sets Ej, ∪jEj = X s.t. µ(Ej) < ∞ for any j. More generally E is σ-finite in (X,M, µ)

if there is a countable partition of E in disjoint sets Ej, ∪jEj = E s.t. µ(Ej) < ∞ for any j. Clearly,
the counting measure on P(N) is σ-finite. Check that the counting measure is σ-finite on P(X)

iff X is finite or countable.
Measure zero sets. A set E ∈ M is of measure zero w.r.t. (X,M, µ) if µ(E) = 0. Clearly

a countable union of measure zero sets has measure zero. A property holds µ-almost every-
where if it holds except on a set of measure zero. We simply say that the property holds almost
everywhere, abbreviated a.e., when the µ used is clear from the context.

By monotonicity, if M, N ∈ M with M ⊂ N, then µ(N) = 0 entails µ(M) = 0. It is natural to
extendM and µ so that all subsets of a set of measure zero are measurable, with measure zero.
The resulting measure is called complete. Such an extension is always possible.

Theorem 2.4.3. Let (X,M, µ) be a measure space, N = {N ∈ M : µ(N) = 0} and N = {M ⊂ N :
N ∈ N} .

1. LetM = {A ∪M : A ∈ M, M ∈ N}. ThenM is a σ-algebra.

2. Define µ on µ(A ∪M) = µ(A). Then (X,M, µ) is a measure space and µ extends µ.

Proof. Note that N is closed under countable unions and intersections. Closure under countable
unions ofM is clear: ∪i(Ai ∪Mi) = (∪i Ai) ∪ (∪i Mi). Now,

(A ∪M)c = Ac ∩Mc = Ac ∩ (Nc ∪ (N \M)) = (Ac ∩ Nc) ∪ (Ac ∩ (N \M))

which proves 1 noting that Ac ∩ (N \M) ∈ N .
2. The only part that may not be straightforward is the consistency of the definition: If

A ∪M = A′ ∪M′, then we should have µ(A) = µ(A′). For some N′ ∈ N we have

A \ A′ ⊂ (A ∪M) \ A′ = (A′ ∪M′) \ A′ = M′ ∩ (A′)c ⊂ N′ ∩ (A′)c ∈ N

and similarly A′ \ A ∈ N implying µ(A∆A′) = 0 and the result follows.
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3 Construction of measures

We start with an informal discussion on defining a measure of length λ on BR. As noted, the
measure should be translation-invariant, and such that µ((a, b)) = b− a (= +∞ for unbounded
intervals). Countable sets would have measure zero, since they can be covered by a union of
open intervals of arbitrarily small total length. Indeed, for any ε > 0 the sequence (xn)n∈N

5

is contained in the union of the intervals Jn = (xn − ε2−n, xn + ε2−n). In particular if J is an
interval with endpoints a, b λ(J) = b− a regardless of whether the interval is open, closed, or
half-open. Any open set in R is a countable union of open intervals, and, by the usual trick of
making the union disjoint, it is a countable union of disjoint intervals. This allows us to define
λ(O) for any open set O, and from it λ(C) for any closed set C. What else can we define? If
A ∈ BR has the property that for any ε there exist an open set Oε ⊃ A and a closed set Cε ⊂ A
such that λ(Oε \ Cε) < ε it is natural to try λ(A) := limε→0 λ(Oε). (Think why it would be a
bad idea to try to approximate sets with open sets from inside, or with closed sets from the
outside). Proceeding this way, it’s a pretty steep climb, where we would have to check all sorts
of consistencies, whether any A ⊂ BR has a measure, etc. The concept of outer measure is a nice
way to minimize this work.

3.1 Outer measures

Definition 3.1.1. Let X be a set. A function µ∗ : P(X)→ [0, ∞] is an outer measure on X if

1. µ∗(∅) = 0.

2. (Monotonicity) If A ⊂ B, then µ∗(A) 6 µ∗(B).

3. (Countable subadditivity) µ∗(
⋃

i∈N Ai) 6 ∑i∈N µ∗(Ai).

Note that, unlike in the σ-additive case, 3 6⇒ 2. For example, on R an outer measure is

λ∗(A) = inf

{
∑

n∈N

λ(Oi) : Oi open interval, A ⊂
⋃

i∈N

Oi

}
(21)

More generally, we have the following result.

Proposition 3.1.2. Let E ⊂ P(X) and ρ : E → [0, ∞] be such that ∅ and X are in E and ρ(∅) = 0. For
A ∈ P(X) let

µ∗(A) = inf

{
∑

n∈N

ρ(Ei) : Ei ∈ E , A ⊂
⋃

i∈N

Ei

}
(22)

Then µ∗ is an outer measure on X.

Proof. Note that (1) µ∗ is well-defined since A ∈ P(X) ⇒ A ⊂ ∪jX and (2) µ∗ is nonnegative.
Furthermore, since ∅ ⊂ ∪j∅, we have µ(∅) = 0. Monotonicity is also easy, since A ⊂ B and
B ⊂ ∪jEj ⇒ A ⊂ ∪jEj.

5Do we need the axiom of choice to present a countable set as a sequence?
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To show subadditivity, let Ai ∈ P(X), i ∈N and ε > 0. By definition, for each i there are sets
Eij ⊂ E such that Ai ⊂ ∪jEij and

∑
j∈N

ρ(Eij)− ε2−j 6 µ∗(Ai) 6 ∑
j∈N

ρ(Eij)

It follows that ⋃
j∈N

Ai ⊂
⋃

(i,j)∈N2

Eij

and

µ∗

⋃
j∈N

Ai

 6 ∑
(i,j)∈N2

ρ(Ei,j) 6 ∑
i∈N

µ∗(Ai) + ε (23)

(Justify the use of double indices.) Since (23) holds for any positive ε, subadditivity follows.

We could similarly define an inner measure on R by taking sup over compact sets contained
in a given A ∈ P(R). Then, measurable sets should be those for which the inner and outer
measure coincide. However, another clever trick allows us to save half of the effort, and rely
solely on outer measures. Returning to the length measure, we expect to have λ(A) = λ∗(A) for
any A ∈ BR. This implies that, for A ∈ BR

λ∗(B) = λ∗(B ∩ A) + λ∗(B ∩ Ac), ∀B ∈ BR (24)

The key observation is that the equality above is a property of A rather than of B (it reflects the
way A splits other sets.)

Exercise 16. Check that λ∗ satisfies (24) for all B ∈ P(R), when A is an open set.

This suggests the following.

Definition 3.1.3. Let µ∗ be an outer measure on X. A set A ⊂ X is called µ∗-measurable if

µ∗(B) = µ∗(B ∩ A) + µ∗(B ∩ Ac), ∀B ∈ P(X) (25)

Note that, by subadditivity of outer measures (24) holds whenever the left side is no less than
the right side.

Theorem 3.1.4 (Carathéodory’s theorem). If µ∗ is an outer measure on X, then the collectionM of all
µ∗-measurable sets is a σ-algebra and µ∗ (restricted toM) is a complete measure onM.

Proof. I.M is closed under complements. This is obvious.

II. Closure under finite unions. Note that if A and B are measurable and E is any set, we first
split it by A and then by B to get

µ∗(E) = µ∗(E∩A)+µ∗(E∩Ac) = µ∗(E∩A∩B)+µ∗(E∩A∩Bc)+µ∗(E∩Ac∩B)+ µ∗(E ∩ Ac ∩ Bc)︸ ︷︷ ︸
µ∗(E ∩ (A ∪ B)c)

> µ∗(E ∩ (A ∪ B)) + µ∗(E ∩ (A ∪ B)c)
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since
A ∪ B = (A ∩ B) ∪ (A ∩ Bc) ∪ (Ac ∩ B)

ThusM is an algebra.
III. Closure under countable unions follows now if we show closure under countable disjoint

unions.
Let (Aj)j∈N be disjoint, Sn = ∪n

j=1Aj and S = ∪∞
j=1Aj. For E ⊂ X, since the Aj and Sj are

measurable, we have

µ∗(E∩Sn) = µ∗(E∩Sn∩An)+µ∗(E∩Sn∩Ac
n) = µ∗(E∩An)+µ∗(E∩Sn−1) =

induction· · · =
n

∑
j=1

µ∗(E∩Aj)

Since S ⊃ Sn and E ∩ S = ∪jE ∩ Aj, we get, by subadditivity and monotonicity,

µ∗(E ∩ S) > ∑
j∈N

µ∗(E ∩ Aj) > µ∗(∪jE ∩ Aj) = µ∗(E ∩ S)⇒ µ∗(E ∩ S) = ∑
j∈N

µ∗(E ∩ Aj) (26)

Since E ∩ Sc
n ⊃ E ∩ Sc and Sn are measurable, we now get

µ∗(E) = µ∗(E ∩ Sn) + µ∗(E ∩ Sc
n) >

n

∑
j=1

µ∗(E ∩ Aj) + µ∗(E ∩ Sc) →
n→∞

µ∗(E ∩ S) + µ∗(E ∩ Sc)

implying S ∈ M. σ-additivity follows by taking E = S in (26).
IV. Completeness: Let N ∈ M be s.t. µ∗(N) = 0. By monotonicity, µ∗(E ∩ N) = 0 for any

E ⊂ X, and since N is measurable, µ∗(E) = µ∗(E ∩ Nc). Let M ⊂ N. Again using mono-
tonicity, µ∗(E ∩M) = 0. Thus, we only need to show µ∗(E ∩Mc) = µ∗(E) which follows from
monotonicity: µ∗(E ∩Mc) > µ∗(E ∩ Nc) = µ∗(E).

HW for 09/17 : Problems 1–5 on p. 24 in Folland, and turn in: Ex 10,14 and 15 in these notes.

3.2 Measures from pre-measures

Definition 3.2.1. Let A be an algebra in X. A function µ0 : A → [0, ∞] is called premeasure if

1. µ0(∅) = 0.

2. If (Aj)j∈N is a sequence of disjoint sets in A s.t.
⋃

j∈N

Aj ∈ A, then µ0(
⋃

j∈N

Aj) = ∑
j∈N

µ0(Aj).

The outer measure induced by µ0 is

µ∗(E) = inf

∑
j∈N

µ0(Aj) : Aj ∈ A, E ⊂
⋃

j∈N

Aj

 (27)

Note that, by monotonicity and the fact thatA is an algebra, the unions in (27) can be assumed
disjoint.
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Theorem 3.2.2. (a) Let A be an algebra on X and µ0 a premeasure on A. Then µ := µ∗ defined by (27)
is a measure onM, the σ-algebra generated by A and coincides with µ0 on A.

(b) If µ0 is σ-finite, then µ is the unique measure with this property. Otherwise, any other measure ν

as above has the property that µ(A) > ν(A) for all A ∈ M, and µ− ν = 0 on all sets of finite µ measure.

For the proof we need the following result.

Lemma 3.2.3. Under the conditions of the theorem,

1. µ∗|A = µ0.

2. The sets in A are µ∗-measurable.

Proof. 1. Note first that for any E ∈ A we have µ0(E) > µ∗(E). To prove the opposite inequality,
let E ∈ A and Aj as in (27), assumed w.l.o.g. to be disjoint. Then E = E∩∪j Aj = ∪j(E∩ Aj) and,
since µ0 is a premeasure,

µ0(E) = ∑
j∈N

µ0(E ∩ Aj) 6 ∑
j∈N

µ0(Aj)

implying µ0(E) 6 µ∗(E).
2. Let A ∈ A, E ⊂ X and ε > 0. There is a disjoint sequence (Aj)j∈N in A s.t. E ⊂ ∪j Aj and

µ∗(E) + ε > ∑j µ0(Aj). Thus,

µ∗(E) + ε > ∑
j∈N

µ0(Aj) = ∑
j∈N

µ0(Aj ∩ A) + ∑
j∈N

µ0(Aj ∩ Ac) > µ∗(E ∩ A) + µ∗(E ∩ Ac)

implying, since ε is arbitrary, that A is measurable.

Proof of the Theorem. (a) follows from the Lemma and Carathéodory’s theorem.
(b) We first prove that any measure µ as in the theorem has the property ν(A) 6 µ(A) onM.

If E ∈ M and Aj are disjoint sets whose union contains E, by monotonicity of ν we must have

ν(E) 6 ∑
j∈N

ν(Aj) = ∑
j∈N

µ0(Aj)

and thus ν(E) 6 µ(E).
We claim that, if Aj ∈ A are disjoint and A = ∪j Aj, then µ(A) = ν(A). Indeed, we have

ν(A) = ∑
j∈N

ν(Aj) = ∑
j∈N

µ0(Aj) = ∑
j∈N

µ(Aj) = µ(A)

If µ(E) < ∞, then, for any ε > 0 there is a disjoint family of Aj ∈ A whose union A contains E,
s.t. µ(A) = ∑j µ0(Aj) 6 µ(E) + ε and hence ν(A \ E) 6 µ(A \ E) 6 ε. Now

µ(A) = ν(A) = ν(E) + ν(A \ E) 6 ν(E) + ε

and thus µ(E) = ν(E).
If µ is σ-finite, then X = ∪j Aj where Aj are disjoint and µ(Aj) < ∞. Then,

ν(E) = ∑
j∈N

ν(E ∩ Aj) = ∑
j∈N

µ(E ∩ Aj) = µ(E)
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Exercise 17. [Done in class (*) Show that the function µ in Exercise 15 is not a premeasure.]
1. Use the function µ in Exercise 15 to define an outer measure on Q. What is the measure on Q

induced by this outer measure?
2. Describe all translation-invariant measures on P(Q).
3. Describe all finite measures on P(Q).
4. Let ρ be a finite measure on Q s.t. any singleton has positive measure and define the function f

on C \R by

f (z) = ∑
r∈Q

ρ(r)
z− r

Show that the series above converges absolutely and uniformly on compact sets in the open and lower upper
half-planes, and that for any r ∈ Q the limit of | f | when z→ r along a vertical line is +∞.

Remark. For those who took Complex Analysis, this shows that f is analytic in the open and lower
upper half-planes, and that R is a natural boundary for f . Think why there must exist points ξ ∈ R where
the limit as z→ ξ from the upper half plane either does not exist or it is not infinite.

If µ is a finite measure on BR, then its distribution function is F = x 7→ µ(−∞, x]. For instance,
for the Dirac mass at 0, F is the Heaviside function θ, extended by θ(0) = 1. 6 Distribution
functions are increasing (meaning: nondecreasing) and right continuous since µ((−∞, x]) =

limxn→x+0 µ((−∞, xn]). (What is different if we take limxn→x−0 instead?)

Exercise 18. (i) Let F be increasing and right-continuous on R. Show that F has at most countably many
discontinuities.

(ii) Let C = {xj : j ∈ N} ⊂ R, (ρj)j∈N be a sequence of positive numbers s.t. ∑∞
j=1 ρj < ∞, and A

as in (29). For A ∈ A define
µ0(A) = ∑

xj∈A
ρj

Show that µ0 is a premeasure on A. Show that there is a unique measure µ on BR which extends µ0, and
that µ is a finite measure.

(iii) Show that the distribution function of µ is discontinuous at any point in C.

Exercise 19. Define ρ : Q → Q by ρ(r) = 1 if r ∈ Z and ρ(r) = 1/|q|3 if ρ = p/q, p, q coprime.
Let A the algebra generated by the right-closed left-open intervals on R. Define µ0 on A by µ(A) =

∑r∈A∩Q ρ(r).
(a) Show that µ0 extends uniquely to a (σ−finite) measure on µ on R which is invariant under shift

by one. Are there other shifts under which it is invariant?
(b) Show that µ({x}) 6= 0 iff x ∈ Q.
(c) Let

F(x) =


µ((0, x] if x > 0

0 if x = 0

−µ((x, 0]) if x < 0

(28)

Find all the points of discontinuity of F.

6The Dirac mass will be seen to correspond to a distribution (in a different sense, that of distributions) while θ is a
function, is the integral, in the sense of distributions

∫ x
−∞ δ(s)ds.
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4 Borel measures on the real line

In this section we will classify all Borel measures on R, defined as measures on BR and find
their properties. We will show that any Borel measure on R arises from some increasing, right-
continuous function F.

We take the elementary family E of half-open intervals of the form (a, b], −∞ 6 a 6 b < ∞
and define, using Proposition 2.3.6 the algebra

A =

 n⋃
j=1

Ij : Ij ∈ E , n ∈N

 (29)

Definition 4.0.1. Let F : R → R be increasing and right-continuous. Let J = (a, b] ∈ E . We define
µ0(J) = F(b) − F(a) (where we let F(−∞) = −∞ if F is unbounded below) and extend it to A by
µ0(∪n

k=1 Ik) = ∑n
k=1 µ0(Ik) whenever Ik are disjoint intervals.

Proposition 4.0.2. The function µ0 is a premeasure on A.

Proof. I. µ0 is well-defined. It is easy to see that for any finite disjoint partition of I = (a, b] in
subintervals Ji = (ai, bi] we have µ0(I) = ∑i µ0(Ji).

Assume ∪n
k=1 Ik = ∪m

l=1 Jl , where the sets {Ik}k, as well as the sets {Jl}l are disjoint in E . The
previous reasoning shows that

n

∑
k=1

µ(Ik) = ∑
k,l

µ(Ik ∩ Jl) =
m

∑
l=1

µ(Jl)

(there is an equivalent common subpartition, in other words).
The hard part is to show σ-additivity; let {Ik}k∈N be disjoint sets in A such that A =

⋃
j∈N Ij ∈

A. We leave it as an exercise that it is enough to show σ-additivity when A ⊂ [−N, N] for some
N, in which case µ0(A) < ∞. Note that

µ0(
⋃

j∈N

Ij) =
n

∑
j=1

µ0(Ij) + µ0(
⋃
j>n

Ij)

where all sets above are in A. Thus σ−additivity reduces to continuity of µ0 from above (see
Theorem 2.4.1 for the definition).

Let Ak = ∪nk
j=1(akj, bkj] in A be a decreasing family such that ∩k∈NAk = ∅, denote c =

lim
n→∞

µ0(Ak), and let ε > 0. Since lim
n→∞

F(akj + 1/n) = F(akj), there are points a′kj ∈ (akj, bkj) such

that µ0(Ak \ Âk) 6 ε2−k for all k, where we denoted Âk = ∪j(a′kj, bkj]. Note that 7

n⋂
j=1

Aj ⊂

 n⋂
j=1

Âj

 ∪
 n⋃

j=1

(Aj \ Âj)


7In words: if x is in all Aj, then either x is in all Âj or there is a j0, x /∈ Âj0 but since x is in all Aj, x ∈ Aj0 .

29/186



Math 6211+6212, Real Analysis I+II

Hence

c 6 µ0(
n⋂

j=1

Aj) 6 µ0(
n⋂

j=1

Âj) +
n

∑
j=1

µ0(Aj \ Âj) 6 µ0(
n⋂

j=1

Âj) + ε⇒ µ0(
n⋂

j=1

Âj) > c− ε

The sequence of nested compact sets Kn = ∩n
1 Âk ⊂ ∩n

1 Ak have empty intersection. Since Kn ⊃⋂n
j=1 Âj, for small enough ε, all K′ns are nonempty unless c = 0.

Note 4.0.3. The proof in Folland uses the Heine-Borel theorem, which was discovered exactly for this
purpose!

Theorem 4.0.4. 1. For any Borel measure µ, the function F in (28) is increasing and right-continuous.
2. Conversely, for any increasing, right-continuous F : R→ R there is a unique measure µF on BR s.t.

for all a, b µF((a, b]) = F(b)− F(a). If G is a function as above s.t. or all a, b µF((a, b]) = G(b)−G(a),
then G− F is constant. The measure µ is complete on a σ-algebra containing BR.

Proof. 1. See Exercise 18.
2. Proposition 4.0.2 shows that µF is a premeasure on A. Since A generates BR, Theorems

3.2.2 and 3.1.4 show that µF extends to a complete measure on a σ-algebra M containing BR.
Clearly, if G has the same properties, then (F − G)(b) = (F − g)(a) for any finite a, b implying
the result.

The measure µF is called the Lebesgue-Stieltjes measure associated to F.

Note 4.0.5. Since µF = µ∗F onMµ we have, for E ∈ Mµ,

µF(E) = inf

{
∑

i∈N

[F(bi)− F(ai)] : E ⊂
⋃

i∈N

(ai, bi]

}
= inf

{
∑

i∈N

µ((ai, bi]) : E ⊂
⋃

i∈N

(ai, bi]

}
(30)

Since for any ε > 0 and any interval Ij = (aj, bj] there is an open interval Jj = (a′j, b′j) ⊃ Ij s.t.
µF(Jj \ Ij) 6 2−jε (check), it follows that for E ∈ Mµ,

µF(E) = inf

{
∑

i∈N

µ((ai, bi)) : E ⊂
⋃

i∈N

(ai, bi)

}
(31)

Definition 4.0.6. A Borel measure on a topological space X is regular if for any E ∈ BX we have

inf{µ(O) : E ⊂ O,O open} = µ(E) = sup{µ(F) : E ⊃ K, K compact} (32)

It is outer regular if the first equality holds, and inner regular if the second one holds.

Lemma 4.0.7. For any ε > 0 and any E ∈ B there is an O ⊃ E open s.t. µ(O \ E) < ε.

Proof. We write E = ∪n∈N(E ∩ [−n, n]) and let ε > 0. Since µ(E ∩ [−n, n]) is finite, we can find
an On s.t. µ(On) > µ(E) > µ(On)− ε2−n. The rest is straightforward.

Theorem 4.0.8. All Borel measures on R are regular.
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Proof. For outer regularity, we see that E ⊂ O implies µ(O) > µ(E) whereas Lemma 4.0.7 shows
that for any E there is an O with measure arbitrarily close to µ(E).

Using σ-finiteness and an ε2−n argument, it is enough to show inner-regularity on bounded
sets, E, for which clearly the measure is finite. For a given ε > 0, find O ⊃ Ec s.t. µ(O \ Ec) =

µ(O ∩ E) 6 ε. Now,
µ(E) = µ(O ∩ E) + µ(Oc ∩ E) 6 ε + µ(Oc)

Now K ⊂ Oc ⊂ E is compact, and

µ(K) 6 µ(E) 6 ε + µ(K)

Recall that an Fσ set is a countable union of closed sets; in R (and in σ−compact spaces) this
is the same as a countable union of compact sets. A Gδ set is a countable intersection of open
sets. In R, Fσ sets are complements of Gδ sets.

Theorem 4.0.9. Let µ be a Borel measure on R and Mµ its associated σ−algebra and E ⊂ R. The
following properties are equivalent:

1. E ∈ Mµ.

2. There is an Fσ set F s.t. F ⊂ E and µ(E \ F) = 0.

3. There is a Gδ set G s.t. G ⊃ E and µ(G \ E) = 0.

Proof. 2⇒ 1 and 3⇒ 1 follow from the completeness of the measure.
1⇒ 2 and 1⇒ 3 follow from regularity: take a sequence εn → 0 and for each n pick On open

and Kn compact s.t.
On ⊃ E ⊃ Kn and µ(On \ Kn) 6 εn

Then the sets G = ∩nOn and F = ∪nKn have the required properties.

Set-theoretically, BR is of course much richer than the collection of Fσ and Gδ sets. Measures,
as we see, cannot give justice to all these extra riches. The following is left as an easy exercise:

Proposition 4.0.10. If E, µ and Mµ are as above, µ(E) < ∞ and ε > 0, then there is a finite union of
open intervals A s.t. µ(E∆A) < ε.

Definition 4.0.11. The Lebesgue measure on BR is the measure m induced by F(x) = x. The sets in the
σ-algebra of m, L, are called Lebesgue measurable. The translation of a set E by x0, {x + x0 : x ∈ E}, is
denoted by E + x0. The dilation of E by r, {rx : x ∈ E} is denoted by rE.

Since m is generated by the interval length, it is translation-invariant as the theorem below
shows.

Theorem 4.0.12. If E ∈ L then E + x0 and rE are in L and

m(E + x0) = m(E); m(rE) = |r|m(E) (33)
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Proof. Translations and dilations commute with countable unions and complements (check). The
algebra A of unions of half-open sets is invariant under translations and dilations, and (33) holds
for intervals. It follows that BR is also invariant under translations and dilations, andm satisfies
(33) on BR. Since the translation and dilation of a null set is a null set (why?), the result follows
from Theorem 4.0.9.

Clearly, countable sets have zero Lebesgue measure. There are many uncountable ones with
measure zero, however. let’s first look at the Lebesgue measure from a very different perspective.

4.1 Push-forward of a measure

Definition 4.1.1. Let (X1,M1, µ1) be a measure space, (X2,M2) a measurable space and f : X1 → X2

a measurable function. The pushforward measure f∗(µ) is definied as

( f∗(µ))(A) = µ( f−1(A)), A ∈ M2

Exercise 20. Check that (X2,M2, ( f∗(µ)) is a measure space.

4.2 Coin tosses and the Lebesgue measure

A measure space (X,M, P) is called a probability space if P(X) = 1. The space X is called
sample space,M is called the σ-algebra of events and P is the probability measure. A ∪ B is the
event “A or B” and A ∩ B is the event “A and B”. Two events, A and B are called independent if
P(A ∩ B) = P(A)P(B).

If (Yα,Mα, Pα) are probability spaces, the product space ⊗αYα is endowed with the σ-algebra
M = ⊗αMα generated by the canonical projections. Finite intersections of sets of the form
Cβ(Aβ) = π−1

β (Aβ), Aβ ∈ Mβ are called cylinder sets. Clearly, the family of cylinder sets gen-
eratesM. The product measure is generated by P(Cβ(Aβ) ∩ Cγ(Aγ)) = Pβ(Aβ)Pγ(Aγ)- making
events in different spaces independent of each-other. We will go through the details of the gen-
eral construction later in the course. Here we focus on a particular case, relevant to the Lebesgue
measure.

Coin tosses. In a single coin toss there are two possible outcomes, H or T, where H is head
and T is tail. We let X = {H, T}. The σ-algebra of events is simplyM = P(X). The probability
measure describing a fair coin is given by P({H}) = P({T}) = 1

2 .
(a) From now on we denote H = 1, T = 0. For n tosses of the coin, the underlying space

is Xn, the set of all length-n sequences (xi)i=1...n where xi ∈ {0, 1}. The σ-algebra on Xn is
Mn = ⊗n

1M = P(Xn). The probability measure on P(Xn) describing independent coin tosses
is the uniform measure P({x}) = 2−n for any x ∈ X. Check that the probability that a sequence
starts with x1 = 1, “P(x1 = 1)” is 1/2, P(x1 = x2) = 1/2 and that the events xi = a, xj = b are
independent for x 6= j.

(b) For n > m,Mm is embedded inMn as the σ-algebra generated by the cylinders C1, ..., Cm.
Check that the definition of P is consistent w.r.t. this embedding.

(c) The space of infinitely many coin tosses is Ω = {0, 1}N = ∏i∈N Xi where ∀i, Xi = X. The
σ-algebra M on Ω is, as we know, generated by the canonical projections πi. As before, Mn is
embedded in Ω as the σ-algebraM′

n generated by π1, ..., πn. Check that A = ∪nM′
n is an algebra

generatingM.
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(d) Define the measure µ0 on A as follows. If A ∈ A, then A ∈ M′
n for some n (not unique),

identified with an A ∈ Mn. Let µ0(A) = 2−n#(A) where #(A) is the counting measure. Check
that the definition is compatible with the embeddings.

(e) Let f : [0, 1) → Ω be defined as follows. If 0.a1a2 · · · is the binary representation of
x ∈ [0, 1), then

f (x) = (a1, a2, · · · ) ∈ Ω

Check that f is measurable. Furthermore, if C is the cylinder defined by x0 = a0, ..., xk = ak, then
f−1(C) is an interval of Lebesgue measure 2−k. Show that f∗(m) is the extension of P from A to
M. This f is injective but not surjective; the set Ω \ f ((0, 1]) is the set of sequences that end in
an infinite string of zeros or of ones, a set of probability 0 (check).

(f) With this construction the Lebesgue measure on [0, 1) is becomes probability measure on
binary digits, treated as being independent. The measure of Q ∩ [0, 1) is the probability of a
sequence which becomes eventually periodic, zero (check).

HW for 09/28 : Problems 18–22 on p. 32 in Folland, and turn in: Ex 17–19 in these notes.

4.3 The Cantor set

The Cantor ternary set C is obtained by removing the open middle third from [0, 1] and then
successively removing the open middle from the remaining set of intervals. The Cantor ternary
set consists of all remaining points in [0, 1], those that are not removed at any step. Check that
the Cantor set consists of all x ∈ [0, 1] whose base 3 expansion consists of 0 and 2 only. Clearly,
there is a surjection f from C to [0, 1], by associating x ∈ C the number f (x) ∈ [0, 1] whose binary
expansion is obtained from the ternary expansion of x substituting a 1 for each 2. This shows that
card(C) = c. Check that m(C) = 0. Using the probabilistic interpretation of m and the arithmetic
interpretation of C, this is obvious: the probability that 1 is missing from the first n ternary digits
is (2/3)n. The function f described above is known as Cantor’s function.

The Cantor set, therefore, has empty interior: it cannot contain any interval of non-zero
length. It may seem that only endpoints of intervals are left, but this is not the case. 0.020202 · · · =
1
4 is clearly in C yet it is not an endpoint of any middle segment, because it is not a multiple of
any power of 1/3. Of course, this follows from cardinality too, since the set of endpoints of
removed intervals is countable.

Exercise 21. In this exercise, C is the Cantor set and f is Cantor’s function.

1. In (a) and (b): True or false? Explain.

(a) If F is an increasing, continuously differentiable function and µF is the Borel measure induced
by F, then µF(C) = 0.

(b) If F is an increasing function and there are C > 0 and α ∈ (0, 1) s.t. ∀x, y : |F(x)− F(y)| 6
C|x− y|α and µF is the Borel measure induced by F, then µF(C) = 0.

2. Show that the interior of C is empty. What is the boundary of C?

3. Let F = f and µF the Borel induced measure. Find µF([0, 1] \ C).
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4.4 Cantor’s function (a.k.a Devil’s staircase)

The Cantor function has a good number of surprising properties. It is clearly increasing, and
f (x1) = f (x2) iff x1 = .0...0n222 · · · , x2 = 0.0...0n−12. We extend f by a constant on [x1, x2],
and the extended f is defined on [0, 1] with values in [0, 1]. Note that f ([0, 1]) = [0, 1] and f
is continuous. Cantor’s function was presented as a counterexample to an (incorrect) extension
of the fundamental theorem of calculus claimed by Harnack. Indeed, f is differentiable almost
everywhere with zero derivative (check). f is flat almost everywhere, yet somehow manages to
continuously increase from zero to one. If we take F = f in our construction of Borel measures, it
gives rise to a continuous measure that is singular with respect to m (definitions will come later).

Exercise 22. Is there any Borel measure on R (a measure on the Borel sets of R) which is finite on
compact sets) for which the Borel sets of measure zero are exactly the countable sets? (One possibility is
the following. For x = 0.a1a2... ∈ (0, 1) let Ax = {x = 0.b1a1b2a2, ... : 0.b1b2... ∈ (0, 1)}. These sets are
uncountably many disjoint sets, their union is (0, 1), and each of them is uncountable.)

5 Integration

The starting point will be the functions for which we already have a good candidate for the
integral: characteristic functions (whose integral should equal the measure of the set) and from
here, of course, linear combinations of characteristic functions of bounded sets.

5.1 Measurable functions (cont.)

Proposition 5.1.1. If Xi,Mi, i = 1, ..., n + 1 are measurable spaces and fi : Xi → Xi+1, i = 1, ..., n are
measurable, then so is the composition fn ◦ · · · ◦ f1.

Proof. Straightforward verification of Definition 2.2.1.

Proposition 5.1.2. Let X, Y be topological spaces with the Borel σ-algebras. Any continuous function
from X to Y is measurable.

Proof. By definition, the inverse image of open sets is open, and open sets generate BX and
BY.

Exercise 23. Show that A ∈ R is Borel measurable iff χA is Borel measurable.

Definition 5.1.3. Let (X,M) be a measurable space and f : X → R. f is called measurable
if f−1(BR) ⊂ M. An important particular case is (X,M) = (R,L), in which case f is called
Lebesgue measurable.

Note 5.1.4. If A ∈ L, then A = B ∪ N where B is a Borel set and m(N) = 0. If f : R → R, is
Borel measurable, then f−1(A) ∈ L for any A ∈ L iff f−1(N) is measurable for every null set
(set of Lebesgue measure zero) N. This is not necessarily the case even if f is continuous, as the
next note shows. There we construct such a function which bijectively and bicontinuously maps
an uncountable null set to a set of measure zero. Then a nonmeasurable set is bijectively and
bicontinuously mapped into a set of measure zero.

This means that a composition of Lebesgue measurable functions need not be Lebesgue mea-
surable. Examine carefully all these definitions.

34/186



Math 6211+6212, Real Analysis I+II

Exercise 24. Let f be continuous and strictly increasing from R to R. Then f maps Borel sets to Borel
sets.

Note 5.1.5 (Relation to the axiom of choice). ZF is consistent with the statement “R is a countable
union of countable sets”. Therefore, there are models of ZF where the Lebesgue measurable sets
are exactly the Borel sets. Consequently also, in such models the theory of Lebesgue measure
can fail totally. A weak form of the AC guarantees that a countable union of countable sets is
countable, and rules out the quoted statement. This is the axiom of countable choice, stating
that there is a choice function for any countable family of sets. It is weaker than the axiom of
dependent choice. 8 The axiom of dependent choice is considered more benign than the full AC,
in that no spectacularly counterintuitive result (such as the Banach-Tarski paradox) exists based
on it.

Note 5.1.6. Here we construct a continuous bijection from [0, 2] to [0, 1] such that h−1(C) has
positive measure. We start from the Cantor function f . It is not a bijection, but g := x 7→ f (x) + x
applies bijectively [0, 1] to [0, 2]. The forward image of C is C = C + [0, 1], a set of measure 1. The
function h = g−1 has the emphasized property above. Let E now be a nonmeasurable set in C
(how do we know it must exist?). Then h : C → C. Any subset of C has measure zero, and one of
these, say N1, must have the property h−1(N1) = E.

Definition 5.1.7 (Measurability on a set). Let E ∈ M and f : E→ (Y,N ). f is called measurable on
E if it is measurable from (E,ME) to (Y,N ), whereME = {E ∩ A : A ∈ M}.

The proofs of Propositions 5.1.8–5.1.13 are straightforward and left as an exercise.

Proposition 5.1.8. Let (X,M) be a measurable space and f : X → R. Then the following are equivalent:

1. f is measurable.

2. For any a ∈ R, f−1((a, ∞)) is measurable.

3. For any a ∈ R, f−1([a, ∞)) is measurable.

4. For any a ∈ R, f−1((−∞, a)) is measurable.

5. For any a ∈ R, f−1((−∞, a]) is measurable.

Exercise 25. Choose a convenient characterization from the list above and show that any increasing
function from R to R is measurable.

Definition 5.1.9. If X is a set, (Yα,Mα)α∈A are measurable spaces and ( fα)α∈A are functions from
X to Yα, then the σ-algebra generated by ( fα)α∈A is the smallest σ-algebra in X s.t. all fα, α ∈ A
are measurable. An example is the product space Y = ⊗αYα and the canonical projections πα:
they generate the product σ-algebraM.

Proposition 5.1.10. Let (XM) be a measurable space, and Y,M, Yα,Mα be as in Definition 5.1.9. Then
f : X → Y is measurable iff πα ◦ f is measurable for any α (i.e., f is measurable iff it is componentwise
measurable).

8The axiom of dependent choice states the following: Let R be a binary relation on a non-empty set S. Suppose
that ∀a ∈ S∃b ∈ S : aRb. Then there exists a sequence in S, (xn)n∈N s.t ∀n ∈ N : xnRxn+1. This axiom is equivalent
to the Baire category theorem for complete metric spaces.
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For some purposes it is convenient to consider functions with values in [−∞, ∞]. This is
equivalent to letting g = tanh ◦ f and allowing for the range of g to be [−1, 1]. The arithmetic
disallows for ∞−∞ but allows for 0 ·∞ defined to be zero.

Proposition 5.1.11. The functions “+”: (x, y) 7→ x + y and “·”: (x, y) 7→ xy are measurable. If
f , g : R→ R are measurable so are ( f , g) : R→ R2, f + g = ” + ”(( f , g)) and f g = ” · ”(( f , g)).

Proposition 5.1.12. If f : X → R is measurable, then so is | f |. If f , g : X → R are measurable, then so
are f ∨ g = max{ f , g} = 1

2 | f − g|+ 1
2 ( f − g), f ∧ g = min{ f , g}, f+ = f ∨ 0 and f− = f ∧ 0. The

functions sgn= χ[0,∞) − χ(−∞,0] and csgn= z/|z|χ|z|>0, are measurable.

Let (gi)i∈N from X to R be measurable. Let infi gi =: g, lim infn∈N gn = h. Then

{x : g(x) > a} = ∩i∈N{x : gi(x) > a} and {x : h(x) > a} = ∪n∩i>n︸ ︷︷ ︸
∃n:∀i>n

{x : gi(x) > a}

Proposition 5.1.13. Let (gi)i∈N from X to R be measurable. Then so are infi gi, supi gi, lim infi gi and
lim supi gi. If G(x) = limi→∞ gi(x) exists for all x, then G is measurable.

(for the last statement note that the limit, when it exists, coincides with limsup).

Exercise 26. Extend, where possible, these results to functions defined on X with values in C.

Note 5.1.14. A measurable function f between a probability space (X,M, P) and a measure space
(Y,N , µ) is called a random variable. If Y = R, then Ff (x) := P( f 6 x) is the cumulative distri-
bution function.

Here is a probabilistic interpretation of the Cantor function. In base 3, start with the initial
string “0.”. At each n ∈ N flip a coin. If the result is H, then append a 2 to the previous string,
otherwise append a zero. The probability that the resulting number is 6 x is f (x). This is made
precise in the following exercise.

Exercise 27. In §4.2 replace “1” by “2” in all sequences and sequence spaces.
(a) With this interpretation, show that there is a bijection between Ω and the Cantor set. (The image

through this bijection of the measure P that we constructed on C is a uniform measure on C.)
(b) The identity map restricted to C, J, is measurable relative to C, thus a random variable. Show that

the cumulative distribution function for J is the Cantor function.

There is an equivalent jump process (with discrete time n ∈ N). A particle sits in the center
of the middle third interval. Right before the interval is removed, it randomly jumps away with
equal probability to the middle of the right or middle of the left interval. And so on. The
probability of its eventual location point being 6 x is f (x).

5.2 Simple functions

Definition 5.2.1. Let (X,M) be a measurable set. A measurable function from X to C which has discrete
range, {z1, ..., zn} ⊂ C is called a simple function. Let A1, ..., An be measurable sets in X and z1, ..., zn

complex numbers. Then the linear combination

n

∑
j=1

zjχAj (34)
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is clearly a simple function if ∪Aj = X. We convene that, if one of the zi happens to be zero, we keep a
term 0 · χAi in (34).

We denote the space of simple functions by s.

An analogy with counting the money in a jar with coins is often used to illustrate the fun-
damental difference between Riemann integration and Lebesgue integration. One method is to
take the coins out one by one and add the values as we go. The second one is to take out all the
coins, sort them by value, count the number of coins in each pile, multiply by the value and then
calculate the total. The first method corresponds to Riemann integration, while the second one
to Lebesgue. Mathematically the difference is partitioning the domain or the range of a function.

Theorem 5.2.2. 1. Let f : X → [0, ∞] be measurable. There is an increasing sequence ( fi)i∈N in s
pointwise convergent to f , uniformly so on any set where f is bounded.

2. Let f : X → C be measurable. There is a sequence ( fi)i∈N in s, such that (| fi|)i∈N is an increasing
sequence, and fn → f pointwise everywhere, and uniformly on any set where f is bounded.

Proof. 1. For each n ∈ N partition the interval [0, 2n] in the range of f in 22n left-open-right-
closed intervals (Jnk)k=1,...,22n of length 2−n. Let vn,k be the left end of Jnk, Ank = f−1(Jnk), Bn =

f−1((2n, ∞]) and define
fn = ∑

k62n

vnkχAnk + 2nχBn ∈ s

Pointwise convergence is immediate. Let A be a set where f is bounded. Then, for some n0 and
all n > n0 we have A ⊂ Bc

n. By construction, on Bc
n0

, | f − fn| 6 2−n.
2. We write f = (< f )+ −<( f )− + i(= f )+ − (= f )−. The result follows by applying 1. to each

term above.

Proposition 5.2.3. Assume (X,M, µ) is a measure space and µ is complete. Assume g, ( fn)n∈N are
measurable from X to R. Then

1. If f : X → R and f = g a.e., then f is measurable.

2. If fn → f pointwise a.e., then f is measurable.

Proof. Straightforward.

Proposition 5.2.4. Let (X,M, µ) be the completion of (X,M, µ) and assume f isM-measurable. Then
there exists anM-measurable g which coincides with f a.e.

Proof. For characteristic functions this property is clear from Theorem 2.4.3, and it extends by
linearity s. Let (ϕn)n∈N in s be a sequence converging pointwise to f . Choose a sequence ofM-
measurable functions (ψn)n∈N which coincide with (ϕn)n∈N except on some null sets (Nn)n∈N.
Let N = ∪n∈NNn. Then the sequence (χX\Nψn)n∈N converges pointwise everywhere, thus to a
measurable function, and the limit equals f on X \ N.

HW 08/08 : 32,33 on p. 40, 8,10 on pp. 48,49 in Folland; turn in: Ex 21,22 in the notes.
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5.3 Integration of positive functions

Lemma 5.3.1. Let (X,M) be a measurable space and µ, ν measures on (X,M). Then µ + ν and cµ are
measures on (X,M) for any c > 0.

Proof. Straightforward verification.

In this section the space (X,M, µ) is fixed. Let L+ be the convex cone of nonnegative mea-
surable functions:

L+ = { f ∈ M : f > 0}

Let ϕ ∈ L+ ∩s. Then, for some n ∈N, ran(ϕ) = {a1, ..., an} ⊂ [0, ∞) and

ϕ =
n

∑
j=1

ajχAj ; Aj := f−1({aj}) (35)

It is natural to define the integral of ϕ by

∫
ϕdµ =

n

∑
j=1

ajµ(Aj) (36)

where, as usual 0 ·∞ = 0. Other notations are
∫

ϕ(x)dµ(x),
∫

ϕ(x)µ(dx) or simply
∫

ϕ when the
context is clear. Likewise, when A ∈ M we define∫

A
ϕdµ =

∫
χA ϕdµ (37)

Proposition 5.3.2. Let ϕ = ∑n
i=1 aiχAi , ψ = ∑m

i=1 bjχBi ∈ L+ ∩s. Then

1. (Compatibility with the cone structure)
∫

ϕdµ > 0, ∀c > 0 :
∫

cϕ = c
∫

ϕ and
∫
(ϕ + ψ) =∫

ϕ +
∫

ψ.

2. A 7→
∫

A ϕ is a measure onM.

Proof. 1. Nonnegativity and multiplicativity by constants are clear. Linearity follows easily if we
note that the range of ϕ+ψ is {ai + bj : 1 6 i 6 n, 1 6 j 6 m} (ai + bj are not necessarily distinct),
and that these values are taken on the disjoint sets Cij = Ai ∩ Bj, 1 6 i 6 n, 1 6 j 6 m.

2. When ϕ = χB for some measurable B,
∫

ϕ = µ(A ∩ B) which is a measure onM. The rest
follows from Lemma 5.3.1.

Note that 1. implies

ϕ 6 ψ⇒
∫

ϕdµ 6
∫

ψdµ

Definition 5.3.3. If f ∈ L+, we define ∫
f dµ = sup

ϕ∈s∩L+

ϕ6 f

∫
ϕdµ

Proposition 5.3.4. Def. 5.3.3 coincides with (37) for f ∈ s∩ L+. The integral is nonnegative, commutes
with the cone operations (cf. Proposition 5.3.2, 1.), addition and multiplication by nonnegative numbers.
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Proof. For additivity, see Theorem 5.3.6 below. The rest is straightforward.

Exercise 28. Show multiplicativity with a constant when c = +∞.

The first important theorem about the properties of the integral is

Theorem 5.3.5 (The monotone convergence theorem). If ( fn)n∈N is an increasing sequence in L+,
then

lim
n→∞

∫
fndµ =

∫
lim
n→∞

fn dµ

Proof. The limit (possibly +∞) limn→∞
∫

fn(x) = f (x) clearly exists for any x ∈ X, and since
∀n : f > fn, we have

lim
n→∞

∫
fndµ 6

∫
f dµ

For the opposite inequality choose α ∈ (0, 1) and a ϕ 6 f in s ∩ L+ s.t. α
∫

f dµ 6
∫

ϕdµ. By
monotonicity, the sets An = {x ∈ X : fn(x) > αϕ} are measurable and increasing, and since
fn → f , An ↗ X. Since α < 1 is arbitrary, using monotonicity of the integral and sequence, the
result follows from

lim
n→∞

∫
X

fndµ > lim
n→∞

∫
An

fndµ > α lim
n→∞

∫
An

ϕdµ = α
∫

X
ϕdµ > α2

∫
f dµ

Theorem 5.3.6. 1. The integral is additive on L+.

2. If ( fn)n∈N is a sequence in L+, then∫
∑

n∈N

fn dµ = ∑
n∈N

∫
fn dµ

Proof. 1. We have already shown linearity on s ∩ L+. We can use approximation by simple
functions and the monotone convergence theorem to prove the rest. If (ϕn)n∈N, (ψn)n∈N increase
to f and g respectively as in Theorem 5.2.2, then ϕn +ψn ↗ f + g, and by dominated convergence∫

f dµ +
∫

gdµ = lim
n→∞

(∫
ϕndµ +

∫
ψndµ

)
= lim

n→∞

∫
(ϕn + ψn)dµ =

∫
( f + g)dµ

2. An application of the monotone convergence theorem.

Theorem 5.3.7. For f ∈ L+,
∫

f dµ = 0 iff f = 0 a.e.

If f = 0 a.e. and 0 6 ϕ 6 f then clearly ϕ = 0 a.e. implying (check)
∫

ϕdµ = 0. If
∫

f dµ = 0,
consider the disjoint sets A0 = f−1({0}) and An = f−1((n−1, (n − 1)−1]), n ∈ N. We have
∑n+1∈N χAn = 1 and, by monotone convergence,

0 =
∫

f dµ = ∑
n∈N

∫
f χAn dµ > ∑

n∈N

n−1µ(An)

implying that µ(An) = 0 for all n and thus f = 0 a.e.
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Corollary 5.3.8. Assume ( fn)n∈N are in L+ and increase a.e. to f . Then, by monotone convergence,∫
f dµ = lim

n→∞

∫
fndµ

Proof. Let A = {x ∈ X : limn fn(x) = f (x)}. We have µ(Ac) = 0 (in particular A is measurable).
Then ∫

f (1− χA)dµ = lim
n→∞

∫
fn(1− χA)dµ = 0

and the result follows from Theorem 5.3.7.

The second important result is the following.

Theorem 5.3.9 (Fatou’s lemma). If ( fn)n∈N is a sequence in L+, then

lim inf
n∈N

∫
fndµ >

∫
lim inf

n∈N
fndµ

Proof. Let f = lim infn fn and gn = infk>n fk. We have gn ↗ f and gn 6 fn and thus, for all n we
have, by monotone convergence,∫

f dµ = lim
n

∫
gndµ 6

∫
fndµ⇒ lim inf

n∈N

∫
fndµ >

∫
f dµ

Here is a useful illustration of what may go wrong to make the inequality strict (Rudin) Let
X = [0, 2] and E = (1, 2], and for n ∈N let

fn =

{
χ(1,2], if n is even

χ[0,1], if n is odd
(38)

Note that lim infn fn = 0. However, for all n we have∫
[0,2]

fn = 1 >
∫
[0,2]

lim inf
n

fn = 0

The following two results are left as simple exercises.

Proposition 5.3.10. If ( fn)n∈N are functions in L+ and fn → f a.e., then
∫

f dµ 6 lim infn
∫

fndµ.

Proposition 5.3.11. If f ∈ L+ and
∫

f dµ < ∞, then {x : f (x) = ∞} is a null set and {x : f (x) > 0}
is sigma-finite.

6 Integration of complex-valued functions

As before, we fix (X,M, µ). Consider now functions f : X → C (in this setting ∞ /∈ran( f )).

Definition 6.0.1. If f : X → C define∫
f dµ =

(∫
(< f )+dµ−

∫
(< f )−dµ

)
+ i
(∫

(= f )+dµ−
∫
(= f )−dµ

)
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Figure 2: The sequence in (38).

The function f is said to be integrable if all four integrals above are finite. Equivalently, f is integrable
if
∫
| f |dµ < ∞. More generally, if A ⊂ X, then f is integrable on A if f χA is integrable, that is,∫

A | f | < ∞.

Proposition 6.0.2. The set of integrable functions is a vector space and the integral is a linear, complex-
valued functional on it.

Proof. Multiplicativity by scalars is straightforward. Assume f , g are integrable and let h = f + g.
Since |h| 6 | f |+ |g|, h is integrable. To show linearity, it is enough to show linearity of the real
part and imaginary part separately, and clearly the same argument applies for both, reducing the
question to that of real-valued functions. Here we use a simple useful trick to obtain linearity
linearity from cone additivity. Let C be a convex cone over a vector space V with the property
that any v ∈ V can be written uniquely as v+ − v−, v+, v− ∈ C. Let ϕ be compatible with the
structure of C. In the setting at hand, v+ = f+χ f>0 − f−χ f60 (other decompositions amount to
the same since f+(x) = f−(x)⇒ f (x) = 0). Extend ϕ to V by ϕ(v) = ϕ(v+)− ϕ(v−). Additivity
on C now translates into additivity on V 9.

Proposition 6.0.3. If f is integrable, then∣∣∣∣∫ f dµ

∣∣∣∣ 6 ∫ | f |dµ

Proof. Let α = csgn(
∫

f ), β = α and g = <(β f ). Then,∣∣∣∣∫ f
∣∣∣∣ = β

∫
f = <

(
β
∫

f
)
=
∫
< (β f ) =

∫
g =

∫
g+ −

∫
g− 6

∫
g+ +

∫
g− =

∫
|g| 6

∫
| f |

Exercise 29. Check that f = 0 a.e. iff
∫
| f | = 0.

9Uniqueness of the decomposition is not needed. Instead, one can check consistency of the definition: If v+− v− =
w+ − w−, then v+ + w− = w+ + v−, hence ϕ(v+) + ϕ(w−) = ϕ(v+ + w−) = ϕ(w+ + v−) = ϕ(w+) + ϕ(v−)
immediately implying consistency
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We see that, insofar as the theory of integration goes, two functions that differ on a null set are
indistinguishable. It is then natural to work with the equivalence classes of integrable functions
modulo values on null sets, rather than with individual functions.

Definition 6.0.4. Denote f ∼ g iff f − g = 0 a.e. We define L1 = L1(µ) = L1(µ, X) to be the vector
space of equivalence classes of integrable functions from X to C.

Clearly, an equivalence class of functions is not a function. However, it is standard practice
to still call the elements of L1 functions, and make the distinction explicitly when (rarely) this is
needed. If we are dealing with the equivalence class of a continuous (or monotonic, or smooth
etc.) function, there is a natural representative of that class and working with the classes or
with the representatives is the same. If there is no way to naturally pick an element of the class,
it doesn’t matter much which one is referred to anyway. Note that, by Proposition 5.2.4 any
equivalence class contains a Borel measurable function (still nonunique). Another advantage of
working with equivalence classes is the following:

Proposition 6.0.5. L1 is a normed vector space with

‖ f ‖1 =
∫
| f |

Proof. This is an easy exercise.

Definition 6.0.6. If ( fn)n∈N is an L1 sequence, we say that fn → f a.e., if for some representatives of fn

and f , the sequence of functions ( fn)n converges to f a.e.

Exercise 30. Check that this definition implies that convergence a.e. holds regardless of the choices of
representatives.

Proposition 6.0.7. 1. If f ∈ L1, then the set {x : F(x) 6= 0} is σ-finite for any F ∈ f .

2. If f ∈ L1, then ∀A :
∫

A f dµ = 0 iff f = 0 a.e.

Proof. 1. Follows immediately from Proposition 5.3.11.
2. f = 0 a.e. implies χA f = 0 a.e. for all measurable A. Conversely, if

∫
A f = 0 for all A, then

g = < f and h = = f have the same property. Define again the disjoint sets An = {x : g+(x) ∈
(n−1, (n− 1)−1]}. Since g− = 0 on A = ∪An, f = f+ on A. Then,∫

A
f (x) = 0 > ∑

n∈N

n−1µ(An)

We thus have µ(A) = 0 and g+ = 0 a.e.; similarly g− = 0 a.e.

Theorem 6.0.8 (The dominated convergence theorem). Assume the L1 sequence ( fn)n∈N converges
a.e. to f and there is a g ∈ L1 such that ∀n : | fn| 6 g. Then f ∈ L1 and∫

| fn − f |dµ→ 0 and thus
∫
( fn − f )→ 0⇔

∫
fn →

∫
f

Proof. Since fn(x)→ f (x), we have | f (x)| 6 g(x) implying | f − fn| 6 2g a.e. Since lim supn | f (x)−
fn(x)| = 0 a.e., Fatou’s Lemma implies∫

2gdµ =
∫

lim inf
n∈N

(2g− | f − fn|)dµ 6
∫

2gdµ− lim sup
n∈N

∫
| f − fn|dµ
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implying the result.

Proposition 6.0.9. Assume ( f j)n∈N is an L1 sequence s.t. ∑∞
n=1
∫
| fn|dµ < ∞. Then, ∑∞

n=1 f j converges
a.e. to an L1 function f , and

∫
∑n∈N f j =

∫
f .

Proof. Take g = ∑n∈N | fn|. The rest is an easy exercise.

Theorem 6.0.10. 1. (Density of simple functions in L1) For any f ∈ L1 and any ε > 0 there is an
L1-simple function ϕ s.t. ∫

| f − ϕ|dµ < ε

2. If µ is a Borel measure on R, then ϕ can be chosen of the form ∑ anχJn , a finite sum, where the Jn

are finite unions of open intervals.

3. (Density of Cc(R) in L1(R)) If µ is a Borel measure on R, then, for any f ∈ L1, there is a continuous
function g with compact support s.t. ∫

| f − g|dµ < ε

Proof. 1. Let (ϕn)n∈N be a sequence of simple functions converging to f , as in Theorem 5.2.2.
Then |ϕn| 6 f and dominated convergence implies limn→∞

∫
|ϕn − f |dµ = 0. Thus, for any ε > 0

there is an n s.t., for ϕ = ϕn,
∫
|ϕ− f |dµ < ε

2. Let ϕ be as above, ε > 0, and write ϕ = ∑ ajχAj . The statement follows from the fact that,
by Proposition 4.0.10 for any ε > 0 and any j there is an open set O which is a finite union of
intervals s. t.

∫
|χAj − χO |dµ = µ(O∆Aj) < ε/j.

3. For each interval J and any ε > 0 there is a continuous function g s.t.
∫
|g − χJ | < ε

(construct such a function).

Exercise 31. Derive the monotone convergence theorem from the dominated convergence theorem.

7 The link with the Riemann integral

Riemann integration can be recast in terms of the Jordan content (or Jordan measure; however,
it is only finitely additive). Consider as “simple sets” finite unions of intervals. For the purpose
of Riemann integration, the intervals, Jn = (Ik)N3k6n will constitute a partition of some fixed
interval, [a, b]. Consider the family of simple functions

sR :=

{
n

∑
k=1

akχIk : Ik ∈ Jn, n ∈N

}

Definition 7.0.1. A bounded function f on an interval [a, b] is Riemann integrable if

sup
ϕ6 f ; ϕ∈sR

∫ b

a
ϕdx = inf

ϕ> f ; ψ∈sR

∫ b

a
ψdx (39)

The common limit, when it exists, is the Riemann integral
∫ b

a f (x)dx. Here
∫ b

a ϕdx = ∑k6n ak(xk−1− xk)

where the xks are the endpoints of the intervals Jk.
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Note 7.0.2. Letting ak = infIk f in the decomposition of the functions ϕ and bk = supIk
f in the decom-

position of the functions ψ, we recognize the usual definition of the Riemann integral.

Theorem 7.0.3. 1. If f is Riemann integrable on [a, b] then it is in L1 and
∫ b

a f (x)dx =
∫
[a,b] f dm.

2. f is Riemann integrable iff it is continuous except on a null set.

Proof. 1. As usual, we can construct an increasing sequence (ϕn)n∈N and a decreasing sequence
(ψn)n∈N for which the integrals converge to the same limit. By monotonicity and boundedness,
these two sequences are pointwise convergent on [a, b], say to ϕ and ψ resp, and ψ− ϕ > 0. Since
for all n, |ϕn| 6 | f |+ |ϕ1| and |ψn| 6 | f |+ |ψ1|, dominated convergence applies and∫

[a,b]
ϕdm =

∫
[a,b]

ψdm =
∫ b

a
f dx

Since
∫
[a,b] |ψ − ϕ|dm =

∫
[a,b](ψ − ϕ)dm = 0, we have ϕ = f = ψ a.e., f is measurable, and∫

[a,b] f dm =
∫
[a,b] ϕdm =

∫ b
a f dx.

2. Take the ϕk, ψk as in Note 7.0.2. Note that there must exist a sequence of partitions Pk of
[a, b] such that, as n → ∞ we have supInk

|ϕn − ψn| → 0 a.e., which implies continuity a.e. (work
out the details of this and its converse; see also Exercise 23 in Folland).

Exercise 32. (Dominated and monotone convergence failure for Riemann integration) Find a
monotone sequence of Riemann integrable functions converging to χQ. Can such a sequence consist of
continuous functions?

Remark 7.0.4. 1. The Lebesgue integral is a proper extension of the Riemann integral. Hence the often
used notation

∫ b
a f (x)dx for

∫
[a,b] f dm.

2. Whenever f ∈ L1 is Riemann integrable, substitutions, integration by parts etc. can be applied to
the Lebesgue integral, as long as the functions remain Riemann integrable and in L1 all along.

8 Some applications of the convergence theorems

Theorem 8.0.1. Let [a, b] ⊂ R, f : X × [a, b] → C be s.t. ∀t ∈ [a, b], f (·, t) ∈ L1(X, µ). Let
F = t 7→

∫
X f (x, t)dµ.

1. Assume there is a g ∈ L1(X, µ) s.t. supt∈[a,b] f (x, t) 6 g(x) and ∀x : f (x, t) is continuous in t at
t = t0. Then F is continuous at t0.

2. Assume f is continuous in t for t ∈ [c, d] ⊂ [a, b], ∂ f
∂t exists for t ∈ (a, b) and supt∈(c,d) |

∂ f
∂t | 6 g ∈

L1(X, µ). Then F is differentiable on (c, d) and F′(t) =
∫

X
∂ f (x,t)

∂t dµ(x).

Proof. Both continuity and differentiability can be stated in terms of limits of sequences.
For 1., dominated convergence implies that limn→∞ F(tn) = F(t0) for any sequence (tn)n∈N

converging to t0.
For 2., note first that, by the MVT, the function

h = (x, s, t) 7→ f (x, s)− f (x, t)
s− t

χs 6=t +
∂ f
∂t

χs=t
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is bounded in absolute value by g and differentiability of F at t0 is equivalent to sequential
continuity of h(·, s, t0) at s = t0.

Exercise 33. Let f ∈ L1(R). The Fourier transform of f is defined as

f̂ = k 7→
∫

R
f (x)e−2πikxdx

1. Show that f̂ is continuous.

2. (The Riemann-Lebesgue Lemma). Show that limk→±∞ f̂ (k) = 0. (Hint: Prove this when
f = χ[a,b] and use Theorem 6.0.10.)

Exercise 34. Let f ∈ L1(R, m) and let F(x) =
∫ x
−∞ f dm. Note that F(x) =

∫
R

f χ(−∞,x)dm. Show that

F is continuous.

Definition 8.0.2 (Definition of the Gamma function). For z in the right half plane {z : <z > 0} define
the Gamma function by

Γ(z) =
∫

R+
tz−1e−tdt

Integration by parts shows that Γ(x + 1) = xΓ(x) (the recurrence formula). The recurrence
formula shows that Γ is analytic in C, except for simple poles at Z \N. Induction shows that

Γ(n) = (n− 1)!, ∀n ∈ N. Show that the Euler-Poisson integral
∫ ∞

−∞
e−x2

dx =
√

π implies that

Γ( 1
2 ) =

√
π.

Lemma 8.0.3 (Watson’s Lemma). Let F ∈ L1(R+), and assume

lim
s→0+

s−βF(s) = 1

where <(β) > −1. Then

lim
x→∞

xβ+1
∫ ∞

0
F(s)e−sxds = Γ(β + 1)

The same is true in the limit ρ→ ∞ if x = ρeiϕ and eiϕ is in the right half plane.

Proof. It suffices to prove the result for G = Fχs6ε for any choice of ε > 0 since, by dominated

convergence, lim
x→∞

∫ ∞

x0

F(s)(e−xsxβ+1)ds = 0. Choose ε s.t. sup06s6ε |G(s)| < 2. We have

lim
x→∞

xβ+1
∫ ∞

0
e−xsG(s)ds = lim

x→∞

∫ ∞

0

G(t/x)
(t/x)β

e−ttβdt = Γ(β + 1) (40)

where we used dominated convergence. Fill in the details and extend to the complex case.

Note 8.0.4. Often, Watson’s lemma is stated as follows: if F(s) ∼ sβ for small s, then, for large x,∫ ∞
0 e−xsF(s)ds ∼ Γ(β+1)

xβ+1 .

Exercise 35. 1. Let f (x) =
∫ ∞

0
(1 + s)−1e−xsds. Use Watson’s lemma and induction to show that,

for any n,

lim
x→∞

xn+2(−1)n+1

(n + 1)!

(
f (x)−

n

∑
j=0

j!
(−1)j

xj+1 )

)
= 1
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2. Show that z 7→ f (1/z) in 1. extended by f (0) = 0 is infinitely differentiable at zero from the right,
and it has the right-sided Taylor series

∞

∑
n=0

n!(−1)nzn+1

Exercise 36. Let g(s) = s− ln s. Check that x−x−1Γ(x + 1) =
∫ 1

0
e−xg(s)ds +

∫ ∞

1
e−xg(s)ds. Note that

g is monotonic and differentiable on (0, 1) and (1, ∞), and that

lim
s→1

g(s)− 1
(s− 1)2 = 2

Change variable to u = g(s) and apply Watson’s lemma to prove Stirling’s formula

n! =
√

2πn
(n

e

)n
(1 + o(1)) as n→ ∞

Exercise 37. Define `2(N) =

{
f : N→ C|‖ f ‖2 := ∑

n∈N

| f (n)|2 < ∞

}
. Let ( fk)k∈N be a Cauchy

sequence in `2(N). Show that the limit limn→∞ fn(k) =: f (k) exists for all k. For each k, choose N(k) so
that ‖ fN(k+1) − fN(k)‖2 6 2−k and use dominated convergence to show that

fN(1) + ∑
k∈N

(
fN(k+1) − fN(k))

)
converges in `2 to conclude that `2 is a complete normed space.

Note 8.0.5. The following observation may help in dealing with the operations needed in measure
theory proofs. If An are sets given by {x ∈ X : P(n1, n2, ..nk)(x))} where P is some property
(“predicate”) with k parameters, say integer-valued, then⋃

n1∈N

An = {x ∈ X : (∃n1)(P(n1, n2, ..nk)(x))} (41)

⋂
n2∈N

⋃
n1∈N

An = (∀n2)(∃n1)P(n1, n2, ..nk)(x)} (42)

and so on, a dictionary that you can refine yourselves. This dictionary also suggests why one
needs the AC for proving existence of Borel or Lebesgue non-measurable sets in R.

In view of (41),(42), we will sometimes use the shorthand

µ(P(x)) := µ ({x : P(x)})
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We also see that

If P⇒ Q then µ(P) 6 µ(Q)

µ(∃n : Pn) 6∑
n

µ(Pn)

µ(P1) < ∞⇒ µ(∀n : Pn) 6 inf
n

µ(Pn) (43)

9 Topologies on spaces of measurable functions

Among the important types of convergence are pointwise convergence, convergence in Lp, p ∈
[1, ∞] (defined so far for p = 1, 2, ∞, the latter being uniform convergence) and convergence in
measure introduced next.

Definition 9.0.1. A sequence of measurable functions ( fn)n∈N converges in measure to f if

sup
ε>0

lim
n→∞

µ({x : | fn(x)− f (x)| > ε} = 0

A sequence ( fn)n∈N is Cauchy in measure if

sup
ε>0

lim
m,n→∞

µ({x : | fn(x)− fm(x)| > ε} = 0

Exercise 38. 1. The topology of convergence in measure is metrizable. Check that

ρ( f , g) = inf
ε>0

[
ε + µ(| f − g| > ε)

]
is one such metric.

2. Let X = R. Is the topology of pointwise convergence metrizable?

Theorem 9.0.2 (Completeness). Assume ( fn)n∈N is Cauchy in measure. Then ( fn)n∈N converges in
measure to a measurable f , and a subsequence ( fnj)j∈N converges pointwise a.e. to f . The limit is unique
modulo values on null sets.

Proof. We first find a subsequence Fj which converges pointwise a.e to f . For each n let j(n) be
s.t. for all j′ > j(n) we have

µ
(
| f j′(x)− f j(n)(x)| > 2−n

)
6 2−n

Let Fn = f j(n). It follows that, for all n,

µ
(
|Fn+1(x)− Fn(x)| > 2−n) 6 2−n and (44)

µ
(
(∃m > n)|Fn(x)− Fm(x)| > 2−n) 6 2 · 2−n (45)
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Let N be the set where (Fn) does not converge. For x ∈ N,

(∃k)(∀n)(∃m > n) : |Fn(x)− Fm(x)| > k−1 ⇒ (∀n)(∃m > n) : |Fn(x)− Fm(x)| > 2−n

and thus, by (45) and (43), µ(N) = 0. Thus (Fj)j∈N converges pointwise a.e. to some f , implying
in particular that f is measurable. Since µ(|Fj − f | > 2−j) 6 ∑ µ(|Fj − Fj+1| > 2−j = 2 · 2−j,
we have Fj → f in measure as well. Returning to the definition of the Fj, we have fn → f in
measure.

Proposition 9.0.3. L1 convergence implies convergence in measure (and in particular the existence of a
pointwise a.e. convergent subsequence).

Proof. Assume ( fn)n∈N are in L1 and ‖ fn − f ‖1 → 0. Then for any y > 0 we have

µ(| f − fn| > y) 6 y−1
∫
| fn − f |dµ︸ ︷︷ ︸

this is called Markov’s inequality

6 ‖ fn − f ‖1 (46)

Theorem 9.0.4 (Egoroff). Assume µ(X) < ∞ and that the sequence of measurable functions ( fn)n∈N

converges pointwise a.e. to f . Then, for any ε > 0 there is an A s.t. µ(X \ Aε) < ε and ( fn)n∈N converges
uniformly on Aε.

Proof. Let ε > 0. For any k ∈ N we have µ((∀n)(∃m > n)| fm(x)− f (x)| > 1/k} = 0. For each
k ∈ N choose Ak with µ(Ak) > µ(X)− ε

2k and ∃N(k) s.t. supx∈Ak ,m>N(k) | fm(x)− f (x)| 6 k−1.
The sought-for set is ∩k Ak.

Corollary 9.0.5 (Lusin’s theorem). Let f : [a, b] → C be Lebesgue measurable. Then for any ε > 0
there is a set Aε ⊂ [a, b] of measure > b− a− ε s.t. f |Aε

is continuous.

Proof. This follows easily from Egoroff’s theorem and Theorem 6.0.10. See also the problem set
of Prof. Falkner, p. 48 for a direct proof.

Exercise 39. Prove Lusin’s theorem by showing first that it holds for characteristic functions. If A ⊂ [a, b]
then there exist K ⊂ A ⊂ O s.t. µ(O \ K) < ε and χA is continuous on K ∪Oc.

If µ(X) < ∞, then uniform convergence of L1 functions implies L1 convergence, which implies
convergence in measure, which in turn implies pointwise convergence a.e. of a subsequence. In
general, these implications cannot be reversed. When µ(X) = ∞, aside from the results above,
there is basically a sea of counterexamples.

Exercise 40. Consider the sequence fn = χJn where Jn is the interval where |x− (log2 n mod 1)| 6 n−1.
Show that ‖ fn‖1 → 0 but fn is pointwise everywhere divergent.

HW 10/22 : 20,21,26,28,34,42 in Folland; turn in: Ex 33,35 in the notes. We end this section with
a useful general result about constructing σ-algebras.

Definition 9.0.6. Let X be a set. A monotone class S ⊂ P(X) is a collection of sets with the following
properties:
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1. If An ⊂ X and An ⊂ An+1 ∀n ∈N, then
⋃

n∈N

An ∈ S .

2. If An ⊂ X and An ⊃ An+1 ∀n ∈N, then
⋂

n∈N

An ∈ S .

Note 9.0.7. Clearly any σ-algebra is a monotone class, and the intersection of a family of mono-
tone classes is a monotone class. Thus, given a collection of sets G, there is always a smallest
monotone class containing G, called the monotone class generated by G.

Theorem 9.0.8. Let X be a set and A an algebra in X. The monotone class generated by A coincides with
the σ-algebra generated by A.

Proof. Let S be the monotone class generated by A. We first note that is suffices to show that S
is closed under finite unions and complements. Indeed, it then follows that S is closed under
countable unions (since

⋃
j6n

Aj is increasing).

1. (Closure under finite unions) We fix an A ∈ A stay S : let C(A) = {B ∈ S : B ∪ A ∈ S}.
Clearly, A ⊂ C(A). If (Bj)j is an increasing sequence in C(A), then A ∪⋃n

1 Bj = A ∪ Bn, and

A ∪
⋃

n∈N

Bn =
⋃

n∈N

A ∪ Bn ∈ S

since S is a monotone class, and thus C(A) is closed under countable monotone unions. A very
similar argument shows that C(A) is closed under countable monotone intersections.

Therefore C(A) is a monotone class containing A, hence C(A) = S . Repeating this argument,
but now with A ∈ S , closure under finite unions follows.

2. (Closure under complements). The proof is similar: let C = {A ∈ S : Ac ∈ S . Clearly,
A ⊂ C. Now, the complement of a monotone union is a monotone intersection and vice-versa,
and thus C = S .

10 Product measures and integration on product spaces

Let (X,S , µ), (Y, T , λ) be measure spaces. We will define the product measure and integral on
X×Y via iterated integrals∫

X×Y
f (x, y)d(µ× λ) :=

∫
X

dµ
∫

Y
f (x, y)dλ =

∫
Y

dλ
∫

X
f (x, y)dµ; (µ× λ)(A) =

∫
X×Y

χAd(µ× λ)

whose consistency needs some work.

Definition 10.0.1. Rectangles are sets of the form A× B, A ∈ S , B ∈ T . The family E of elementary
sets is the set of all finite disjoint unions of rectangles.

LetM be the σ-algebra generated by E .

Proposition 10.0.2. 1. M = S × T .

2. E is an algebra.

3. M is the monotone class generated by E .
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Figure 3: A2 × B2 is the orange rectangle and the multicolored one is A1 × B1.

Proof. 1. is simply Proposition 2.3.2.
2. Clearly X×Y and ∅ are in E . Check that

(A1 × B1) ∩ (A2 × B2) = (A1 ∩ A2)× (B1 ∩ B2)

(the magenta region in Fig. 3) and

(A1 × B1) \ (A2 × B2) = [(A1 ∩ A2)× (B1 \ B2)] ∪ [(A1 \ A2)× B1]

(the dark yellow rectangle union the green one). It is now straightforward to show that E is
closed under intersections and set differences.

3. This now follows from Theorem 9.0.8.

Definition 10.0.3 (Sections). We will denote Ex = {y : (x, y) ∈ E} and Ey = {x : (x, y) ∈ E}. If f is
M measurable, then we write fx = y 7→ f (x, y) and f y = x 7→ f (x, y).

Theorem 10.0.4 (Sections are measurable). 1. If E ∈ M, then Ex ∈ T for any x ∈ X, and
Ey ∈ S for any y ∈ Y.

2. If f isM measurable, then fx is T −measurable and f y is S−measurable.

Proof. 1. As usual, we let M′ be the family of sets in X × Y s.t. Rectangles are in M′ since
(A× B)x = B if x ∈ A and ∅ otherwise. Using the fact that T is a σ-algebra we see that

1. X×Y ∈ M′;

2. (Ec)x = (Ex)c, entailing thatM′ is closed under complements;

3. (∪Ej)x = ∪(Ej)x, henceM′ is closed under countable unions.

ThusM′ is a σ-algebra containing E .
2. This is clearly the case for characteristic functions of sets inM. Since ( f + ag)x = fx + agx,

all simple functions have this property, and the result follow from Theorem 5.2.2.
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Theorem 10.0.5. Let (X,S , µ), (Y, T , λ) be σ− finite measure spaces. Let Q ∈ S × T , and define

ϕ = x 7→ λ(Qx); ψ = y 7→ µ(Qy) (47)

Then, ϕ is S-measurable, ψ is T -measurable, and∫
X

ϕdµ =
∫

Y
ψdλ (48)

Proof. We see from Theorem 10.0.4 that the definitions (47) and (48) make sense. Note also that
λ(Qx) =

∫
Y χQ(x, y)dλ(y), and thus we can write (48) as∫

X
dµ
∫

Y
χQdλ =

∫
Y

dλ
∫

X
χQdµ (49)

Let (Xn)n∈N, (Ym)n∈N be disjoint, of finite measure, and s.t. X = ∪n∈NXn and Y = ∪m∈NYm.
LetM′ be the family of all sets inM for which the statement in the theorem holds. We list some
of the properties ofM′ that we will subsequently verify:

1. M′ contains all measurable rectangles;

2. M′ is closed under countable monotone unions, ∪Ei, Ei ⊂ Ei+1;

3. M′ is closed under countable disjoint unions;

4. M′ is closed under countable monotone intersections. Since any E ∈ S ×T equals ∪m,n[E∩
(Xn × Ym)] it is enough to check this when (Ei)i∈N is a decreasing family of sets in S × T
s.t. E1 ⊂ A× B where µ(A) + µ(B) < ∞.

For a. note that, if E = A× B, then λ(Qx) = λ(B)χA(x) and µ(Qy) = µ(A)χB(y).
For b. let ϕi = λ((Ei)x), ϕ = λ(Ex), ψi = µ((Ei)

y), ϕ = µ(Ey). Continuity from below of λ

and µ implies that ϕi ↗ ϕ, ψi ↗ ψ, and (48) follows from monotone convergence.
c.: For finite unions this is clear, since the characteristic function of a disjoint union is the sum

of the characteristic functions of the individual sets. For countable ones, this now follows from
b.

d. Same as b., using continuity from above and dominated convergence.
LetM′′ be the class of all Q ∈ S × T s.t., for all m and n, Q ∩ (Xn ×Ym) ∈ M′. (b.&d.) show

thatM′′ is a monotone class containing E , and thusM′′ = S ×T . Therefore Q∩ (Xn×Ym) ∈ M′

for all m, n, and since these sets are disjoint, c. implies that their union is in M′ completing the
proof.

Definition 10.0.6. Let (X,S , µ), (Y, T , λ) be σ− finite measure spaces. For Q ∈ S × T define

(µ× λ)(Q) =
∫

X
λ(Qx)dµ(x) =

∫
Y

µ(Qy)dλ(y)

Proposition 6.0.9 shows that µ× λ is σ− additive on S × T . Check that µ× λ is σ−finite.

Theorem 10.0.7 (Fubini). Let (X,S , µ), (Y, T , λ) be σ− finite measure spaces and f measurable on
X×Y.
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1. If ran( f ) ⊂ [0, ∞] and

(νx f )(x) =
∫

Y
fxdλ; (νy f )(y) =

∫
X

f ydµ

then νx f is S−measurable, νy f is T −measurable, and∫
X×Y

f d(µ× λ) =
∫

X
νx f dµ =

∫
Y

νy f dλ

or, spelled out,∫
X×Y

f d(µ× λ) =
∫

X
dµ(x)

∫
Y

f (x, y)dλ(y) =
∫

Y
dλ(y)

∫
X

f (x, y)dµ(x) (50)

2. If ran( f ) ⊂ C and if ∫
X

νx| f |dµ =
∫

X
dµ
∫

Y
| f |xdλ < ∞

then f ∈ L1(µ× λ).

3. If f ∈ L1(µ× λ), then f y ∈ L1(µ) a.e., and fx ∈ L1(λ) a.e. Furthermore, νx f and νy f are in L1

and (50) holds.

Proof. (a) If Q ∈ S × T and f = χQ, then this follows from Theorem 10.0.4. Hence, the property
holds for all simple functions. Consequently, if 0 6 s1 6 s2 6 · · · is a sequence of simple
functions s.t. sn ↗ f pointwise in X×Y, then, for all n,∫

X
νxsndµ =

∫
X×Y

snd(µ× λ)

Now, as n → ∞, monotone convergence implies νxsn ↗ fx and
∫

X×Y snd(µ× λ) ↗
∫

X×Y f d(µ×
λ).

(b) This is simply (a) applied to | f |.
(c) Clearly it is enough to show this when ran( f ) = R, in which case we write f = f+ − f−

and we note that (a) separately applies to f+ and to f−. Since f+ and f− are bounded by | f |,
νx f+ ∈ L1(µ) and νx f− ∈ L1(λ). Thus, except for a null set, both νx f+ and νx f− are finite and
on this set νx f = νx f+ − νx f− and the result follows.

In Real and Complex Analysis, pp. 166-167, Rudin shows that the various hypotheses in
Theorems 10.0.5, 10.0.7 cannot be omitted.

Note 10.0.8. Even if µ, λ are complete, µ× λ need not be. Indeed, any straight line is a null set w.r.t.
the two-dimensional Lebesgue measure. The set {0} ×V ⊂ R2, where V is a nonmeasurable Vitaly set, is
contained in a null Borel set, {0} ×R, but it is not measurable (why?).

The following extension of Theorem 10.0.7 to the completion of the measures µ, λ, µ × λ is
left as an exercise:

Theorem 10.0.9. Let (X,S , µ), (Y, T , λ) be complete σ− finite measure spaces. Let (µ × λ)∗ be the
completion of the product measure, and (S × T )∗ be the associated σ-algebra on X × Y. Then Theorem
10.0.7 applies with one difference: the measurablility of fx, f y is guaranteed only a.e., and thus νx f , νy f
are only defined a.e.
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Exercise 41. 1. Use the relation
1
x2 =

∫ ∞

0
te−xtdt and Fubini to show that

∫ ∞

0

sin2 x
x2 dx =

π

2

2. Show that ∫ ∞

0

sin x
x

dx := lim
N→∞

∫ N

0

sin x
x

dx =
π

2

(Note that x−1 sin x in not in L1(R+), and thus the first integral above is improper, and it is defined as a
limit.)

Exercise 42. Use any of the theorems developed so far to solve the following problems.

1. Assume f (x) = ∑
k>0

akxk and g(x) = ∑
k>0

bkxk converge for all x in the open unit disk. Then

f (x)g(x) =
∞

∑
k=0

xk
k

∑
j=0

ajbk−j where the series converges in the open unit disk.

2. Assume ∑
k>0
|ak| < ∞. Then ∑

k>0
ak is convergent, and all rearrangements of the series are convergent

to the same value. That is, if f : N→N is any bijection, then ∑
k>0

ak = ∑
k>0

a f (k).

3. Assume F, G ∈ L1([0, ∞) and that, for<x > 0, f (x) =
∫

R+ F(p)e−pxdp and g(x) =
∫

R+ G(p)e−pxdp.
Then

f (x)g(x) =
∫

R+

(∫
[0,p]

F(s)G(p− s)ds
)

e−xpdp

4. Justify Archimedes’ method of approximating π by showing that the area of the unit disk D is the
limit as n → ∞ of the areas of regular polygons with n sides inscribed in D. How many sides do
you need to guarantee that the value you get is within at most 10−10 away from π?

11 The n−dimensional Lebesgue integral

The Lebesgue measure mn on Rn is the completion of the product measure on (Rn,⊗n
1BR,×n

1 m)

where m is the Lebesgue measure on R. The completion of the σ-algebra ⊗n
1BR is denoted by Ln

(remember, this completion is not ⊗n
1L!) Common notations for the integral with respect to this

measure are ∫
Rn

f dm;
∫

Rn
f (x)m(dx);

∫
Rn

f (x)dnx;
∫

f (x)dx

while the measure mn is often written simply m.

11.1 Extensions of results from 1d

Theorem 11.1.1. If Q ∈ Ln, then

1. m(Q) = inf
O⊃Q

µ(O) = sup
K⊂Q

µ(K).
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2. There exist an Fσ set F and a Gδ set G s.t. F ⊂ Q ⊂ G and µ(G \ F) = 0.

3. If m(Q) < ∞ then, for any ε > 0, m(Q∆ ∪n
j=1 Rj) < ε for some disjoint rectangles Rj whose sides

are intervals.

Proof. By theorem 3.2.2 mn is the extension of mn, as restricted to the algebra E of elementary
sets. In particular, for any ε > 0 there is a disjoint family of rectangles Rk containing Q s.t.
µ(∪∞

1 Rk ∩ Qc) < ε. With this, the proof of Theorem 4.0.8 translates with little change to a proof
of 1; the proof of 2. is the same, up to notations to that of Theorem 4.0.9. Finally, for 3, by
the usual 2−n argument, it is enough to prove the result for a rectangle, and thus for a side of
a rectangle. The latter follows in the usual way: If A ⊂ R has finite measure, then there is an
O ⊃ A s.t. µ(O) < µ(A) + ε/2. Now O = ∪∞

j=1 Ij for some open intervals Ij, and thus there is an
N s.t. µ(O \ ∪N

j=1 IJ) < ε/2.

Theorem 11.1.2. Continuous functions are dense in L1(Rn); so are simple functions, ∑N
1 anχRn , where

Rn are products of intervals.

Proof. The second statement follows easily from the previous theorem. If Rn = ∏n
1 χIj for some

intervals Ij ⊂ R, then χRn = ∏n
1 χIj , which can be approximated by a product of continuous

functions of one variable. Then the result holds for ∑N
1 anχRn , where Rn are products of intervals,

and density takes care of the rest.

Theorem 11.1.3. Let R ∈ Rn be a product of closed intervals and f bounded on R.

1. If f is Riemann integrable on R, then f is Lebesgue measurable and the Riemann integral of f on R
equals

∫
R f dm.

2. f is Riemann integrable on R iff the set of discontinuities of f has measure zero.

Proof. Again, basically a copy of the 1-d proof.

The theory of Jordan content in Rn is very similar to that in R.

Theorem 11.1.4 (Behavior of set-measure w.r.t. linear-affine transformations).

1.
∫

χA(x + a)dx =
∫

χA(x)dx.

2. If c 6= 0, then
∫

χA[(c−1x1, ..., xn)]dx = |c|
∫

χA(x)dx

3.
∫

χA[(x1, .., xk, xk+1, ..., xn)]dx =
∫

χA[(x1, .., xk+1, xk, ..., xn)]dx.

4.
∫

χA[(x1, x2, ..., xn)]dx =
∫

χA[(x1 + x2, x2, ..., xn)]dx.

Proof. For 1–3, it suffices to show the result for products ∏n
j=1 χ(Ij), where Ij are intervals. But,

by Fubini, the integral is the product of one-dimensional integrals and the proof is immediate.
4. By the above, it suffices to show this in R2. We have, by Fubini,∫

χ(x1 + x2, x2)dx =
∫

dx2

∫
χ1(x1 + x2)dx1 =

∫
dx2

∫
χ1(x1)dx1

by 1.
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Exercise 43. Assume R is a product of intervals, Ω is some open set in Rm and g : R × Ω → C is
continuous. Then

1.
y 7→

∫
χR(x + g(x, y))dm(x)

is continuous in Ω.

2. Let T ∈ GL(Rn) and assume g is continuous on TR×Ω. Then

y 7→
∫

χTR(x + g(x, y))dm(x)

is continuous in y ∈ Ω.

Note: since χR is Borel measurable and x 7→ x + g(x, y) is continuous, the composition is measurable.

Theorem 11.1.5. If M ∈ GL(Rn) and f ∈ L1 or f > 0 is Ln−measurable, then∫
f (x)dx = |det T|

∫
f (Tx)dx

Corollary 11.1.6. If A is measurable, then m(TA) = |det T|m(A).

Note 11.1.7. Note that the corollary implies that m(T−1(N)) = 0 for every null set in BRn . Then,
if B is a Borel set, then f−1(B) = B1 ∪ N1 where N1 is a null set in Ln. We have T−1(B1 ∪ N1) =

T−1(B1) ∪ T−1(N1), and if N is a null Borel set containing N1, then T−1(N1) ⊂ T−1(N) is of measure
zero, and thus measurability of f ◦ G follows.

Proof. Writing an open set as a countable union of boxes, we see that m(H(O)) 6 αm(O) and
the result follows. By density, it is enough to show the equality above for linear combinations of
χR where R are products of intervals, thus for just one such χR. Recalling that GL is generated
by the simple transformations 2-4 in Theorem 11.1.4, the rest is a corollary of that theorem.

Theorem 11.1.8 (Change of variables). Let Ω be an open set in Rn and G : Ω → G(Ω) be an Rn

diffeomorphism. If f is Lebesgue measurable on G(Ω) then f ◦ G is measurable on Ω. If f > 0 or
f ∈ L1(G(Ω)) then ∫

G(Ω)
f dm =

∫
Ω
( f ◦ G) |det DxG| dm

Corollary 11.1.9. If Q ∈ Ω is Ln−measurable, then G(Q) is measurable and

m(G(Q)) =
∫

Q
|det DxG|dm

Proof. Measurability follows from the Corollary, as in Note 11.1.7. By density and theorem 11.1.1
it suffices to prove this when f is continuous and Q = R, a product of closed intervals. Let
Mx = DxG and Jx = |det Mx|. We first prove the following.

Note 11.1.10. Let Ω be an open set in Rn and G : Ω → G(Ω) be an Rn diffeomorphism. Let K ∈ Ω be
compact and 2d 6dist(K, ∂Ω). From the Taylor series with remainder theorem we see that the function

ϕ := (x, y, ε) 7→
{

ε−1 (G(x)− G(x + εy) + εMxy) ; ε 6= 0

0; ε = 0
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is uniformly continuous in the compact set K1 = {(x, y, ε) : 0 6 ε 6 d, x ∈ K, x + εy ∈ K}. Indeed,
continuity follows from the fact that G ∈ C1 and uniform continuity follows from the fact that K is
compact.

Lemma 11.1.11. For 0 < ε < d and x0 ∈ R let R0 = x0 + εR. We have

lim
ε→0

ε−n
(∫

R0

f (G(x))Jxdx−
∫

G(R0)
f dm

)
= 0

uniformly in x0.

Proof. Let x = x0 + εy and z0 = G(x0). Then x ∈ R0 ⇔ y ∈ R and

lim
ε→0

ε−n
∫

R0

f (G(x))Jxdx = lim
ε→0

∫
R

f (z0 + εMx0 y + εϕ(x0, y, ε))Jx0+εydy = m(R) f (z0)Jx0 (51)

uniformly in x0.
Next, define ψ for G−1 as in Note 11.1.10. Note that z0 + εu ∈ G(R0) means x0 + εM−1

x0
u +

εψ(z0, u, ε) ∈ R0 or u + Mx0 ψ(z0, u, ε) ∈ Mx0 R which means

lim
ε→0

ε−n
∫

G(R0)
f dm = lim

ε→0

∫
f (z0 + εu+ εMx0 ψ(z0, u, ε))χMx0 R(u+ Mx0 ψ(z0, u, ε))du = Jx0 m(R) f (z0)

(52)
uniformly in the parameters, by Exercise 43, implying the result.

To end the proof of the theorem, take ε = 1/N and a partition of R in Nn boxes, Bk =

xk + N−1R and check that

∫
R

f (G(x))Jxdm = lim
N→∞

Nn

∑
k=1

f (G(xk))Jxk m(Rk) = lim
N→∞

Nn

∑
k=1

∫
G(Rk)

f dm =
∫

G(R)
f (u)du

12 Polar coordinates

This is an important set of coordinates adapted to SO(n) symmetry. Let Sn−1 be the unit sphere
in n dimensions, and, for x ∈ Rn \ {0} let

Φ(x) =
(
|x|, x
|x|

)
:= (r, x′)

which is a diffeomorphism between Rn \ {0} and R+× Sn−1. On R+× Sn−1, the natural measure
is m∗, the push-forward of Φ.

Next, we are are looking at a simple example of the inverse problem of constructing a product
measure, the disintegration of a measure: we want to write m∗ as a product measure. It is easy to
see what the first component of the product should be. Taking as a measurable set a ball of
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radius R centered at zero, we see that the measure induced by Φ on R+ is

m
(

Φ−1({(r, s) : r 6 R, s ∈ Sn−1)
)
= CnRn

where Cn is a constant (unimportant at this stage, which will be determined shortly). This
implies that the measure on R+ should be (up to an irrelevant constant) Cnnrn−1dr. Absorbing
the constant in the measure of the sphere, we simply take dρ = rn−1dr.

Theorem 12.0.1. There is a unique measure σ on Sn−1 s.t. m∗ = ρ× σ. Furthermore, if f ∈ Λ1(Rn),
then ∫

f dm =
∫

R+

∫
Sn−1

f (rx′)dσ(x′)rn−1dr

Proof. We know that the last equation holds as soon as we find a σ s.t. m∗ = ρ× σ. To see what
σ should be we now concentrate on the x′ component. Let A ∈ BSn−1 and define

Ar = {r′x′ : r′ 6 r, x′ ∈ A} = Φ−1((0, r′]× E)

We need to have

m(A1) =
∫ 1

0

∫
E

dσ(x′)rn−1dr = n−1σ(E)

which implies that we should have σ(E) = n m(A1) which we take as a definition. By the
behavior of the Lebesgue measure under dilations, we have m(Ar) = rnm(A1). Take now a
rectangle R = J × B, J = (r1, r2] an interval in R+ and B measurable in Sn−1. Then R = Ar2 \ Ar1

implying
µ∗(R) = m(Ar2)−m(Ar1) = ρ(J)σ(A)

From this point on, it is standard to construct from this a measure on the σ-algebra on BRn . It
agrees with m on rectangles, which completes the proof (try to complete it yourself, then look in
Folland).

The following is a neat trick to σ(Sn−1), by calculating an integral in two ways.

Proposition 12.0.2. 1. For a>0

∫
Rn

exp

(
−a

n

∑
k=1

x2
i

)
dm =

(π

a

)n/2

2.

σ(Sn−1) =
2πn/2

Γ(n/2)

Proof. 1. By Fubini, ∫
Rn

exp

(
−a

n

∑
k=1

x2
i

)
dm =

(∫
R

e−ax2
dx
)n

(53)

and thus, using polar coordinates in R2 we get

∫
R

e−ax2
dx =

(
2π
∫ ∞

0
e−ar2

rdr
)1/2

=
π

a
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which, using (53) implies the result.
2. Now we write the left side of (53) in polar coordinates in Rn. Let S = σ(Sn−1).

πn/2 =
∫

Rn
exp

(
−

n

∑
k=1

x2
i

)
dm = S

∫ ∞

0
e−r2

rn−1dr = 1
2S
∫ ∞

0
e−uun/2du = 1

2 Γ( n
2 )S (54)

and the result follows.

Exercise 44. Show that, for n ∈N,∫
R

xne−βx2
dx =

1
2
(
(−1)2n + 1

)
β−n− 1

2 Γ
(

n +
1
2

)

13 Signed measures

Definition 13.0.1. A signed measure on (X,M) is a function ν :M→ [−∞, ∞] s.t.

1. ν(∅) = 0.

2. at least one of the values +∞, −∞ is not in ran(ν).

3. If (Aj)j∈N are disjoint and measurable, then ν(
⋃

j∈N

Aj) =
∞

∑
j=1

ν(Aj) and ν(Aj) < ∞ for all j or else

ν(Aj) > −∞ for all j.

Note 13.0.2. The second condition is needed since if we had two sets A± s.t. ν(A±) = ±∞, then
additivity would imply the nonsensical statement ν(A+ ∪ A−) = ν(A+) + ν(A+)− ν(A− ∩ A−).

Proposition 13.0.3. In the setting of Definition 14.1.1, if Aj are measurable and |ν(∪j∈N Aj)| < ∞, then
the series 2) converges absolutely.

Proof. The definition implies that all rearrangements of the series converge, hence the series
converges absolutely.

Definition 13.0.4. f is called extended integrable if f+ ∈ L1 or f− ∈ L1.

Exercise 45. 1. Show that, if µ is a measure and f is extended integrable, then ν := A 7→
∫

A f dµ is
a signed measure.

2. Let ν be a signed measure. Show that:

(a) if (Aj)j∈N are increasing sets, then ν(∪j Aj) = limj→∞ ν(Aj);

(b) if (Aj)j∈N are decreasing sets and |ν(A1)| < ∞, then ν(∩j Aj) = limj→∞ ν(Aj).

Definition 13.0.5. If ν is a signed measure and A is a measurable set s.t. all of its measurable subsets
have nonnegative measure, then A is called a positive set for ν. A negative set for ν is a positive set for −ν

and a null set for ν is a set which is both positive and negative.

Note 13.0.6. Any subset of a positive set is a positive set.
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Proposition 13.0.7. If (Aj)j∈N are positive sets, then so is their union.

Proof. Define as usual the disjoint sets Bj = Aj \ ∪k6j Ak, whose union equals ∪j Aj. Since Bj ⊂ Aj
for all j, the Bjs are also positive sets. Now, if E ⊂ ∪Aj, then

ν(E) = ∑
j∈N

ν(E ∩ Bj) > 0

13.1 Two decomposition theorems

Theorem 13.1.1 (The Hahn decomposition theorem). Let ν be a signed measure on (X,M). Then
there exists a disjoint measurable decomposition X = X+ ∪ X−, unique up to null sets, and s.t. ±ν is
positive on X±.

Proof (R. Doss, PAMS 80,2,(1980)). Assume w.l.o.g. that +∞ is the excluded value of ν.

Lemma 13.1.2 (Quasi-positive sets). Let A be a set of finite measure. Then, for any ε > 0 there is an
Aε ⊂ A. s.t. all its subsets have measure > −ε.

Proof. By contradiction. Let B1 ⊂ A, ν(B1) < −ε. Since ν(A) = ν(B1) + ν(A′), A′ = A \ B we
have ν(A′) > ν(A) and it therefore A′ contains a set B2 (clearly disjoint from B1) s.t. ν(B2) < −ε.
Inductively, we construct a set of Bk contained in A \ ∪j<kBj with ν(Bk) < −ε. But then B = ∪Bk
has measure −∞ and ν(A) = ν(B) + ν(A \ B) = −∞, contradiction.

Lemma 13.1.3. If A is of finite measure, then A contains a positive set P, ν(P) > ν(A).

Take ε = 1/n and P = ∩A1/n, a decreasing intersection of sets of finite measure > ν(A).
Check that if B ⊂ P, then ν(B) > 0.

To complete the proof of the theorem, we find a set of maximal measure and its corresponding
P will be the positive set of X. Let

M = sup
P∈M,ν(P)>0

ν(P)

If Pn are s.t. ν(Pn) → M, then X+ = ∪Pn is clearly a positive set. Then X− = Xc
+ is a negative

set, for if A ⊂ X \ P and ν(A) > 0, then ν(A ∪ P) = ν(A) + ν(P) > M. Uniqueness up to null
sets is a simple exercise.

Definition 13.1.4. 1. The measure λ is absolutely continuous w.r.t. ν, written λ� ν , if every null
set of ν is a null set for λ.

2. ν is concentrated on X1 ∈ M if any measurable set E ⊂ Xc
1 is a null set.

3. ν1 and ν2 are mutually singular, ν1 ⊥ ν2 , if ν1 and ν2 are concentrated on disjoint sets, X1, X2.

Exercise 46. Check that

1. The relation� is transitive.

2. ⊥ is symmetric.
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3. (ν� λ and ν ⊥ λ)⇒ ν = 0.

4. (ν1 ⊥ ν and ν2 ⊥ ν)⇒ ν1 + ν2 ⊥ ν.

Theorem 13.1.5 (The Jordan decomposition theorem). Any signed measure ν can be uniquely writ-
ten as the difference of two mutually singular positive measures: ν = ν+ − ν−.

Proof. Take a Hahn decomposition X = X+ ∪ X−, and define ν+(A) = ν(A ∩ X+) and ν−(A) =

−ν(A ∩ X−). The rest is a simple exercise.

Definition 13.1.6 (Total variation). If ν is a signed measure, its total variation |ν| is the positive measure
ν+ + ν−.

Exercise 47. Check the following. N is a null set for ν iff it is null for |ν|; thus ν and |ν| are mutually
absolutely continuous, and ν� µ⇔ |ν| � µ. We have ν ⊥ λ iff |ν| ⊥ λ iff both ν+, ν− are ⊥ λ. Also,
ν� µ⇔ |ν| � µ

Lemma 13.1.7. If (X,M, µ) is a measure space and f ∈ L1(X), then ν := A 7→
∫

A f dm is a measure
onM and ν� µ.

Proof. We have proved already that ν is a measure on L. If χA is the characteristic function of a
null set, then χA f = 0 a.e.

14 The Lebesgue-Radon-Nikodym theorem

This theorem is, in a sense, a converse of Lemma 13.1.7.

Theorem 14.0.1 (Lebesgue-Radon-Nikodym). 1. Let µ and ν be finite measures on X,M. Then
there exists a µ−null set N and an f ∈ L1(µ) s.t. for every A ∈ M,

ν(A) = ν(A ∩ N) +
∫

A
f dµ (55)

With λ = A 7→ ν(A ∩ N) we write dν = dλ + f dµ.

2. (Generalization) Let now ν be a signed σ−finite measure and µ a σ−finite positive measure on
X,M. Then there exists a unique decomposition ν = λ + ρ into σ−finite signed measures λ, ρ s.t.
λ ⊥ µ and ρ� µ. Furthermore, there is an f as above s.t. dρ = f dµ, uniquely defined a.e.

Proof: G. Koumoulis, AMM, V115,6 (2008). The proof is based on a general strategy to con-
struct such objects, by constructing f as the supremum of functions s.t. ∀A,

∫
A f dµ 6 ν(A).

If F is a countable family inM we let ∪F = ∪F∈F F. We first show the following.

Lemma 14.0.2. Let X,M, µ) be a finite measure space. Then, for any family of measurable sets E there
is a countable disjoint subfamily F ⊂ E s.t. if E ∈ E ∩ P(X \ ∪F ), then µ(E) = 0.

Proof 1, using the AC. (A proof without using the full AC is given below.) Let Z be the collection
of subfamilies G of E consisting of disjoint, non-null sets. The partial order on Z is inclusion.
Since µ is finite, any G as above is countable. Then F is any maximal element of Z.
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Proof 2, without the full AC. Let G be the collection of non-null sets in E . We construct F as fol-
lows. Let E0 ∈ E . If E0 ∈ X \ E0 ⇒ E0 /∈ P , then we are done. If not, let

k1 = min
{

k ∈N : ∃E1 ∈ E ∩ P(X \ E0) with µ(E1) > k−1
}

(56)

and choose an E1 as above. Unless the construction ends in a finite number of steps, construct
En similarly, replacing k1 by kn, E1 by En, E0 by ∪n−1

0 Ej. Note that the values ki can repeat only
finitely many times. Therefore, if E ∈ E ∩ P(X \ ∪∞

0 Ej), then µ(E) = 0.

We now prove 1. Let H = {h : X → [0, ∞] : h measurable and ∀A ∈ M,
∫

A
hdµ 6 ν(A)}.

Clearly H is nonempty since 0 ∈ H. Also, H is closed under taking the maximum of two
functions, h1 ∧ h2. Indeed, if X1 = {x : h1(x) > h2(x)} and X2 = {x : h1(x) < h2(x)} then
X = X1 ] X2, hence∫

A
h1 ∧ h2dµ =

∫
A∩X1

h1dµ +
∫

A∩X2

h2dµ 6 ν(A ∩ X1) + ν(A ∩ X2) = ν(A)

Let α = supH ‖h‖1. Then α 6 ν(X) and there is a sequence, which we can assume is increas-
ing, of hn s.t.

∫
hndµ → α. By the monotone convergence theorem, hn → f ∈ H,

∫
f dµ = α.

Redefining f on a null set we may assume f : X → [0, ∞).
Let λ = A 7→ ν(A)−

∫
A f dµ, a positive measure.

Lemma 14.0.3. For any non-null A ∈ M and n ∈N, there is an E ⊂ A s.t. µ(E) > nλ(E).

Proof. For any n ∈ N and any A ∈ M,
∫
( f + n−1 χA)dµ > α, hence f + n−1 χA /∈ H. Thus

there is a B ∈ M s.t.
∫

B( f + n−1 χA)dµ > ν(B). Hence, µ(A ∩ B) > n
(
ν(B)−

∫
B f dµ

)
= λ(B) >

nλ(A ∩ B).

For each n, define En = {E ∈ M : µ(E) > nλ(E)}, and note that En are closed under
countable unions. Clearly, there are no null sets in En. For each En let Fn be as in Lemma 14.0.2.
Defining En = ∪Fn, we have En ∈ En. Now we must have µ(X \ En) = 0, or else, by the Lemma
above, we would find an E ⊂ X \ En in En. Let N = X ∪j Ej, a µ−null set. Since X \ N ⊂ ∩En, we
have λ(X \ N) = 0. Thus λ is concentrated on N and µ on X \ N, and

ν(A)−
∫

A
f dµ = λ(A) = λ(A ∩ N) = ν(A ∩ N)−

∫
A∩N

f dµ = ν(A ∩ N)

.
2. If µ, ν are σ−finite positive measures, by taking intersections we can write X = ∪Aj where

Aj are disjoint and µ− and ν-finite. On each Aj we let µj = µ ∩ Aj, νj = ν ∩ Aj, λj = λ ∩ Aj
and f j = f χAj as in 1. Then µ = ∑ µj, ν = ∑ νj etc. is the desired decomposition. The signed
measure case is an easy exercise. If we have two such functions f1, f2 then

∫
A( f1 − f2)dµ = 0 for

all A implying uniqueness.

Corollary 14.0.4. Let ν and µ be measures. Then ν� µ iff limn µ(En) = 0⇒ limn ν(En) = 0.

Definition 14.0.5. If ν� µ and f is as in Theorem 14.1.6, then we write f =
dν

dµ
.
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Corollary 14.0.6. 1. Assume ν, µ are σ−finite measures, µ is positive, ν � µ and ϕ ∈ L1(µ). If
f = dν/dµ, then f ϕ ∈ L1(µ) and ∫

gdν =
∫

ϕ f dµ

2. If λ is a positive measure, µ� λ and dµ = gdλ, then dµ/dλ = f g.

Proof. By density of simple functions, since 1 and 2 hold for characteristic functions.

Corollary 14.0.7. If µ and ν are mutually absolutely continuous, then (dν/dµ) 6= 0 a.e., and dµ/dν =

1/(dν/dµ) a.e.

The following result, whose proof is immediate, will be useful.

Proposition 14.0.8 (Existence of an upper bound). If (µj)j=1,...,n are measures, then µk 6 ∑j µj for all
k 6 n.

HW 11/13 (Recitation day) : 4,5,6,7 p. 88 in Folland; turn in: Ex 41,42 in the notes.

Lemma 14.0.9. Let µ be a measure and ν� µ a signed measure, both assumed σ−finite, and let f be s.t.
ν = f dµ. Then d|ν| = | f |dµ.

Proof. Let X+ and X− be the Hahn decomposition for ν. If A± ⊂ X±, then ν(A) =
∫

A±
f dµ,

which implies ± f are positive when restricted to X±. Then, f χ
X+ = f+ and f χ

X− = f−, and
the rest is straightforward.

14.1 Complex measures

Definition 14.1.1. A complex measure on (X,M) is a function ν :M→ C s.t.

1. ν(∅) = 0.

2. If (Aj)j∈N are disjoint and measurable, then ν(
⋃

j∈N

Aj) =
∞

∑
j=1

ν(Aj).

Note 14.1.2. 1. The range of a complex measure does not include the point at infinity: as we
know, in the special case of signed measures, allowing for ±∞ leads to contradictions.

2. Convergence of the infinite sum in Condition 2. implies absolute convergence.

3. Writing ν = νr + iνi, we see that νr and νi are signed measures with values in R, hence
|νr|(X), |νi|(X) are both finite, and the range of ν is a bounded set in C.

Definition 14.1.3. The variation of a complex measure ν is the set function

|ν|(E) = sup
]Ai=E

∑
i∈N

|ν(Ai)| ∀E ∈ M (57)

The total variation of ν is defined as |ν| = |ν|(X).

Note 14.1.4. 1. Observe that A ⊂ B implies |ν|(A) 6 |ν|(B) and |ν|(X) 6 |νr|(X) + |νi|(X),
and thus the set function |ν| is bounded. Clearly, |ν(A)| 6 |ν|(A) for any measurable A.
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2. The definitions of�, ⊥ and their properties are the same as for signed measures.

Exercise 48. 1. Show that |ν| is finitely additive and continuous from below, and is thus a positive
measure onM.

Lemma 14.1.5. Let µ be a measure on (X,M), and f ∈ L1(µ) and define ν = A 7→
∫

A f dµ where
A ∈ M. Then, |ν|(A) = A 7→

∫
A | f |dµ for all A ∈ M.

Proof. Since f ∈ L1, limn→∞ |µ|(| f | > n) = 0. Since the measures and the σ-algebra can be
restricted to any set, it is enough to prove this when A = X.

Choose ε > 0 and let n be s.t. |µ|(| f | > 2n) < ε. Partition the box B = {z : |<(z)| 6
n, |=(z)| 6 n} into N2 congruent sub-boxes Bk. If Ek = f−1(Bk) and E ⊂ Ek, we have ν(E) =

αE,k|µ(E)|, αk,E ∈ Bk and thus |ν|(E) = |αk,E||µ|(E). Since |ν|(X) = ∑k |ν|(Ek) = ∑N2

k=1 |αk||µ|(Ek),
the result follows by taking N → ∞, ε → 0 and noting that ∑k αk χEk + n χ| f |>n converge point-
wise to | f |.

The following generalization is immediate.

Theorem 14.1.6 (Lebesgue-Radon-Nikodym, L-R-N). Let ν be a complex measure and µ a σ−finite
positive measure on X,M. Then there exists a unique decomposition ν = λ + ρ into complex measures
λ, ρ s.t. λ ⊥ µ and ρ� µ. Furthermore, there is an f s.t. dρ = f dµ, uniquely defined a.e.

Corollary 14.1.7. We have dν = f d|ν| where f ∈ L1, and | f | = 1 a.e.

Proof. Note 14.1.4 shows that ν � |ν|. By Exercise 48, we have d|ν| = | f |d|ν|, and using unique-
ness of the L-R-N derivative, | f | = 1 a.e.

15 Differentiation

One of the new major ideas of calculus was the discovery of duality between areas to tangents
expressed by the fundamental theorem of calculus. The extension to Lebesgue integrals in Rn

requires significant technical machinery and in the process we will encounter two important
objects in analysis. We start with the following elementary theorem.

Theorem 15.0.1. Let µ be a complex Borel measure on R1 and let F be its distribution function, F(x) =
µ((−∞, x]). Then the following statements are equivalent:

1. F is differentiable at x and f ′(x) = A.

2. For every ε > 0 there is a δ > 0 s.t. ∣∣∣∣ µ(I)
m(I)

− A
∣∣∣∣ < ε

for any open interval of length < δ containing x.

Proof. Straight from the definition of differentiation.
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We want to extend this type of result to Rk, where k will be the same throughout this section.
We also denote Bx,r = {x′ ∈ Rk : |x′− x| < r}. Let µ be a complex Borel measure on Rk. Consider
the quotients

(Qrµ)(x) =
µ(Bx,r)

m(Bx,r)
(58)

where m = mk is the Lebesgue measure.

Definition 15.0.2. The symmetric derivative Dµ at x is defined as

(Dµ)(x) = lim
r→0

(Qrµ(x))

at those points where the limit exists.

Theorem 15.0.3 (The Vitali covering theorem, finite version). If O is the union of a finite collection
of balls Bxi ,ri , 1 6 i 6 N, then there exists a set S ⊂ {1, ..., N} so that

1. The balls Bxi ,ri with i ∈ S are disjoint

2. O ⊂ ∪i∈SBxi ,3ri .

3. m(O) 6 3k ∑
i∈S

m(Bxi ,3ri).

Proof. A key (elementary) property here, that you should check, is:
Claim. If r′ 6 r and Bx′,r′ ∩ Bx,r 6= ∅, then Bx′,r′ ⊂ Bx,3r.
Re-index the set so that r1 > r2 > · · · > rN . Let B1 be the first one and discard all other balls

that intersect B1. If there is any left, choose the first and call it B2, and so on until the process
terminates with some Bn. The collection is clearly disjoint, and by the claim, O ⊂ ∪jBj proving
2., and by the scaling properties of the Lebesgue measure, 3. follows.

Definition 15.0.4 (Weak L1). Weak L1 is defined as

WL1 = { f measurable : ‖ f ‖WL1 := sup
λ>0

λm(| f | > λ) < ∞}

Note 15.0.5. We have L1 ( WL1: Markov’s inequality shows the inclusion and x 7→ 1/x in R shows
that it is strict.

The Hardy-Littlewood maximal operator takes a locally integrable function f : Rk → C and
returns another function M f that, at each point x ∈ Rk, gives the maximum average value that
| f | can have on balls centered at that point.

Definition 15.0.6. The Hardy-Littlewood maximal operator of M f is given by

M f (x) = sup
r>0

1
m(Bx,r)

∫
Bx,r

| f (y)| dy

The maximal function of a positive measure µ is defined by

(Mµ)(x) = sup
r>0

(Qrµ)(x)

The maximal function of a complex measure µ is M|µ|.
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Lemma 15.0.7. Let µ be a positive Borel measure. The function Mµ : Rk → [0, ∞] is lower semicontinu-
ous, hence measurable.

Proof. Let E = {Mµ > λ} for some λ > 0 and x ∈ E. There is an r and a λ′ > λ s.t.

µ(Bx,r) = λ′m(Bx,r)

Let δ > 0 be s.t.
λ′

λ
>

(r + δ)k

rk

If |x′ − x| < δ, then Bx′,r+δ ⊃ Bx,r and therefore

µ(Bx′,r+δ) > λ′m(Bx,r) =
λ′rk

(r + δ)k m(Bx′,r+δ) > λm(Bx′,r+δ)

Hence Bx,δ ⊂ E, proving that E is open.

Theorem 15.0.8 (Weak Type Estimate). If µ is a complex Borel measure on Rk and λ > 0, then

m(Mµ > λ) 6 3kλ−1|µ|

In particular, for k > 1 and f ∈ L1(Rk) there is a constant Ck > 0 s.t. for all λ > 0, we have:

m(M f > λ) < 3kλ−1‖ f ‖L1(Rk)

The second statement reads: M is a continuous operator from L1 to weak L1 with a bound 3k.
The following strong-type estimate is an immediate consequence of the Weak Type Estimate

and the Marcinkiewicz interpolation theorem (that we’ll study in Chapter 5):

Theorem 15.0.9 (Strong Type Estimate). For k > 1 and f ∈ Lp(Rk), 1 < p 6 ∞ there is a constant
Cpk > 0 s.t.

‖M f ‖Lp(Rk) ≤ Cpk‖ f ‖Lp(Rk)

This statement reads: M is a continuous operator from Lp to Lp for any p > 1.

Proof of Theorem 15.0.8. Fix µ and λ > 0 Let K be a compact subset of {Mµ > λ}. If x ∈ K,
then for some δ > 0

|µ|(Bx,δ) > λm(Bx,δ)

Extract a finite collection from these Bx,δ which cover K. By the finite Vitali covering theorem it
contains a disjoint subcollection Bj, ..., Bn that satisfies

m(K) 6 3k
n

∑
1

m(Bi) 6 3kλ−1
n

∑
1
|µ|(Bi) 6 3k|µ|λ−1

where the last inequality uses the disjointness of the balls. The regularity of Borel measures
completes the proof.
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15.1 Lebesgue points

Definition 15.1.1. Let f ∈ L1(Rk). The point x ∈ Rk is a Lebesgue point of f if

lim
r→0

1
m(Bx,r)

∫
Bx,r

| f − f (x)|dm = 0 (59)

Note 15.1.2. Clearly, if f is continuous, then all points are Lebesgue points.

The following is a fundamental result in the theory of Lebesgue differentiation.

Theorem 15.1.3. If f ∈ L1(Rk), then almost every x ∈ Rk is a Lebesgue point of f .

Proof. Let

(Tr f )(x) =
1

m(Bx,r)

∫
Bx,r

| f − f (x)|dm and (T f )(x) = lim sup
r→0

(Tr f )(x)

We will show that (T f )(x) = 0 a.e. Let n ∈N, choose g ∈ C(Rk) s.t. ‖ f − g‖1 < 1/n and denote
h = f − g. Since g is continuous, we have Tg = 0. Simply writing |h(y)− h(x)| 6 |h(y)|+ |h(x)|,
we get, for any x,

(Th)(x) 6 |h(x)|+ sup
r

1
m(Bx,r)

∫
Bx,r

|h|dm = |h(x)|+ (Mh)(x)

Now, Tr f 6 Trg + Trh = Trh, implying

T f 6 Mh + |h|

Let λ > 0. The set {x : (T f )(x) > 2λ} is contained in the measurable set {x : (Mh)(x) >

λ or |h(x)| > λ} whose measure is

6 m(Mh > λ) + m(|h| > λ) 6 λ−1(3k + 1)n−1

Since this holds for any n it follows that {T f > 2λ} is contained in a null set. Now {x : (T f )(x) >
0} ⊂ {x : ∃m > 0(T f )(x) > m−1}, also a null set.

15.1.1 Differentiation of absolutely continuous measures

Theorem 15.1.4. Assume µ is a complex Borel measure on Rk and that µ� m. Then Dµ (cf. Definition
15.0.2) exists a.e. and equals dµ/dm.

Proof. Let f = dµ/dm. Then,

f (x) = lim
r→0

1
m(Bx,r)

∫
Bx,r

f dm = lim
r→0

µ(Bx,r)

m(Bx,r)
a.e.[m]

Thus, (Dµ)(x) exists and equals f (x) at every Lebesgue point of f .
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15.1.2 Nicely shrinking sets

Definition 15.1.5. Let x ∈ Rk. The sequence (En)n∈N of Borel sets is said to shrink nicely to x if there is
an α > 0 and a sequence of balls (Bx,rn)n∈N s.t. rn → 0 and for all j Ej ⊂ Bx,rj and m(Ej) > αm(Bx,rj)

Theorem 15.1.6. Assume for each x ∈ Rk the sequence (En(x))n∈N shrinks nicely to x. Let f ∈ L1.
Then, at every Lebesgue point of f we have

lim
n→∞

1
m(En(x))

∫
En(x)

f dm = f (x)

(local averages of integrable functions converge to their local values.)

Proof. Write the result in the equivalent form

lim
n→∞

1
m(En(x))

∫
En(x)
| f − f (x)|dm = 0 (60)

If the (En) are balls, then (60) holds at any Lebesgue point of f . The result now follows by easy
estimates since, for some sequence of balls we have m(Bx,rn) > m(En) > αm(Bx,rn).

Proposition 15.1.7. Let µ be a complex Borel measure s.t. µ ⊥ m. Then

Dµ = 0 a.e. [m]

Proof. Clearly, it is enough to show this for positive measures. Define now (Mnµ)(x) = sup0<r<n−1(Qrµ)(x).
In the same way as for M, we can check that Mn is upper semicontinuous, and thus

(Dµ)(x) := lim
n→∞

(Mnµ)(x) (61)

is measurable. Note also that Mnµ 6 Mµ.
Choose λ > 0, ε > 0 and a compact set K s.t., by the regularity of Borel measures, µ(K) >

|µ| − ε. Let µ1 be the restriction of µ to K, and µ2 = µ− µ1. We see that |µ2| < ε, and if x ∈ Kc

we have
(Dµ)(x) = (Dµ2)(x) 6 (Mµ2)(x)

hence
m(Dµ > λ) 6 m(K) + m(Mµ2 > λ) 6 3kλ−1|µ2| 6 3kλ−1ε (62)

Since (62) holds for arbitrary ε > 0, λ > 0, the result follows.

Corollary 15.1.8. Assume that for each x ∈ Rk the sequence (Ek(x))k shrinks nicely and µ is a complex
Borel measure s.t. µ ⊥ m. Then

lim
k→∞

µ(Ek(x))
m(Ek(x))

= 0 a.e.[m] (63)

As another corollary, we have the following strengthening of Theorem 15.1.4.

Theorem 15.1.9. Assume for each x ∈ Rk the sequence (Ek(x))k shrinks nicely and µ is a complex Borel
measure on Rk. Let dµ = dλ + f dm be the L-R-N decomposition of µ. Then,

lim
k→∞

µ(Ek(x))
m(Ek(x))

= f (x) a.e. [m]
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(in particular, the limit exists a.e.)

15.2 Metric density

Definition 15.2.1. Let E be Lebesgue measurable in Rk. The metric density of E at x is

lim
r→0

m(E ∩ Bx,r)

m(Bx,r)

when the limit exists.

Proposition 15.2.2. The metric density of a Lebesgue measurable set in Rk exists a.e., and it is 1 for a.e.
for x in E and 0 a.e. in Ec.

Proof. Write the metric density using the characteristic function of E.

We see that for x ∈ R, either most points in tiny neighborhoods of x are in E or most points
are in the complement! This property has a topological flavor to it. See Approximate continuity,
below.

Approximate continuity, from the Encyclopedia of Mathematics

Consider a (Lebesgue)-measurable set E ⊂ Rn, a measurable function f : E → R and a point
x0 ∈ Rn where E has Lebesgue density 1. The approximate upper and lower limits of f at x0 are
defined, respectively, as

1. The infimum of a ∈ R∪ {∞} such that the set { f ≤ a} has density 1 at x0;

2. The supremum of a ∈ {−∞} ∪R such that the set { f ≥ a} has density 1 at x0

They are usually denoted by

ap lim sup
x→x0

f (x) and ap lim inf
x→x0

f (x)

(some authors use also the notation lim ap and lim ap). It follows from the definition that
ap lim inf ≤ ap lim sup: if the two numbers coincide then the result is called approximate limit
of f at x0 and it is denoted by

ap lim
x→x0

f (x) .

The approximate limit of a function taking values in a finite-dimensional vector space can be
defined using its coordinate functions and the definition above.

Observe that the approximate limit of f and g are the same if f and g differ on a set of
measure zero. A useful characterization of the approximate limit is given by the following
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Proposition 15.2.3. Consider a (Lebesgue)-measurable set E ⊂ Rn, a measurable function f : E → R

and a point x0 ∈ Rn. f has approximate limit L at x0 if and only if there is a measurable set F ⊂ E which
has density 1 at x0 and such that

lim
x∈F,x→x0

f (x) = L .

In general, the existence of an ordinary limit does not follow from the existence of an ap-
proximate limit. An approximate limit displays the elementary properties of limits –uniqueness,
and theorems on the limit of a sum, difference, product and quotient of two functions– these
properties follow indeed easily from Proposition 15.2.3.

If the domain E of f is a subset of R we can define one-sided (right and left) approximate
upper and lower limits: we just substitute all density 1 requirements with the right-hand or the
left-hand density 1 requirement, that are, respectively,

lim
r↓0

λ(G∩]x0, x0 + r[)
r

= 1 and lim
r↓0

λ(G∩]x0 − r, x0[)

r
= 1

for a generic measurable set G ⊂ R (here λ denotes the Lebesgue measure on R). For instance, to
define the approximate upper limit L at x0 of a function f : E→ R we require that the right-hand
density of E at x0 is 1: L is then the infimum of the numbers a ∈ R∪ {∞} such that { f ≤ a} has
right-hand density 1 at x0. The corresponding notation is

ap lim sup
x→x+0

f (x) .

Approximate limits are used to define approximately continuous and approximate differen-
tiable functions.

Definition 15.2.4. Consider a (Lebesgue) measurable set E ⊂ Rn, a measurable function f : E → Rk

and a point x0 ∈ E where the Lebesgue density of E is 1. f is approximately continuous at x0 if and only
if the approximate limit of f at x0 exists and equals f (x0).

It follows from Lusin’s theorem that a measurable function is approximately continuous at
almost every point. Points of approximate continuity are related to Lebesgue points. A Lebesgue
point is always a point of approximate continuity. Conversely, if f is essentially bounded, the
points of approximate continuity of f are also Lebesgue points.

16 Total variation, absolute continuity

This section is devoted to Borel measures and measurable functions on R. Given that a complex
measure µ can be uniquely decomposed into positive measures µi: µ = µ1 − µ2 + i(µ3 − µ4), for
many of the results below we can assume w.l.o.g. that µ itself is positive. (The same applies to
complex measurable functions.)

Recall the definitions of the distribution function of a measure (p. 28) and of the variation of
a complex measure (p. 62).
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Exercise 49. Show that the following is an equivalent definition of the variation of a measure:

|ν|(E) = sup

{
n

∑
i=1
|ν(Ai)| : n ∈N,

n⊎
1

Ai = E

}
∀E ∈ M (64)

Definition 16.0.1. Let µ be a complex Borel measure and take its canonical decomposition into four
positive measures µi. Let Fi be the distribution functions of µi. We define the distribution function of µ as
Fµ = F1 − F2 + i(F3 − F4). Equivalently, Fµ(x) = µ((−∞, x]).

Let F = Fµ be the distribution function of the complex Borel measure µ. We define the total variation
function of F as TF(x) = |µ|((−∞, x]).

Exercise 50. Let µ and F be as in the definition above.

1. Show that

TF(x) = sup

{
n

∑
j=1
|F(xj)− F(xj−1)| : n ∈N,−∞ < x0 < ... < xn = x

}
(65)

2. Using the fact that |µ| is a Borel measure, show that TF is increasing and right-continuous.

Definition 16.0.2. If F : R→ C, we define the total its variation function TF by (65).
We say that F is of bounded variation, F ∈ BV, if limx→∞ TF(x) < ∞. The total variation of F on

[a, b] is defined by

TF([a, b]) := sup

{
n

∑
j=1
|F(xj)− F(xj−1)| : n ∈N, a = x0 < ... < xn = b

}
= TF(b)− TF(a)

Note 16.0.3 (Geometrical interpretation). Since all norms on Rk are equivalent, a real-valued
function is in BV[a, b] iff

sup

{
n

∑
j=1

√
(xj − xj−1)2 + (F(xj)− F(xj−1))2 : n ∈N, a = x0 < ... < xn = b

}
< ∞

that is, the lengths of the polygonal lines with vertices on the graph of F are bounded. Thus, F ∈
BV iff the graph {(x, F(x)) : x ∈ [a, b]}, completed by vertical lines at the points of discontinuity,
is a rectifiable curve.

Note 16.0.4. Let F ∈ BV. As sees in Exercise 50, TF is increasing, and thus TF(±∞) = limx→±∞ TF(x),
exist. Then, for any sequence xj ↘ −∞, ∑j |F(xj)− F(xj−1)| < ∞. This implies that for any ε

there is an x0 so that ∑j>0 |F(xj)− F(xj−1)| < ε for any decreasing unbounded sequence x0, x1, ...,
hence TF(−∞) = 0.

Note 16.0.5. 1. If F is real-valued and monotonic and [a, b] ⊂ R, then the total variation of F
on [a, b] is finite. (Indeed, with xj > xj−1 we have |F(xj)− F(xj−1)| = F(xj)− F(xj−1).)

2. If F is monotonic on R, then F(x+) and F(x−) exist for all x ∈ R, and they define a right
continuous and left continuous function, resp. Furthermore, for all x ∈ R we have

F(x) ∈ [F(x−), F(x+)] (66)
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In particular, the points of discontinuity F are exactly those of x 7→ F(x+), and therefore
F only has jump discontinuities, and there are at most countably many of them. (Recall
Exercise 18.)

3. Linear combinations of BV functions are BV functions.

4. If F is real-valued, then the functions TF ± F are increasing. Indeed, if b > a then TF(b)−
TF(a) > |F(b)− F(a)|, hence TF(b)− F(b) > TF(a)− F(a) and TF(b) + F(b) > TF(a) + F(a).

5. If F ∈ BV is real-valued, then F is bounded and can be written as the difference of two
increasing bounded functions: F = 1

2 (TF + F)− 1
2 (TF − F). This is, in a sense, a converse of

1.+3. The fact that F is bounded follows from |F(y)− F(x)| 6 TF(+∞)−TF(−∞) = T(+∞).

6. By 5. and 2., if F ∈ BV, then F has lateral limits at any point and has at most countably
many discontinuities.

7. If F ∈ BV, then |F| ∈ BV. This follows from the triangle inequality: ||a| − |b|| 6 |a− b|.

Exercise 51. 1. Let µ be the Borel measure with distribution function G(x). Use Theorem
15.1.9 to show that f = G′ exists a.e., is in L1 and f = dµ/dm.

Proposition 16.0.6. Let F ∈ BV and denote G±(x) = F(x±). Then, F′ exists and equals G±′ a.e.

Proof. We can assume w.l.o.g. that F is increasing. Note that G+ and and x 7→ −G−(−x) are
right-continuous and increasing, thus G± are differentiable a.e. So it suffices to prove the result
for G = G+. Let H = G− F, a positive function and let S be the countable set of singularities of
F (which is also the set of singularities of G) and let ρ(s) = G+(s)−G−(s) . Define a measure on
R by λ(A) = ∑s∈S ρ(s) (compare with Exercise 18). Clearly λ ⊥ m. Check that for any x, y we
have

|H(y)− H(x)| 6 λ([x, y]) (67)

and note that (67) implies that H′ = 0 a.e.

16.1 NBV, AC

The space of normalized functions of bounded variation is defined as

NBV = {F ∈ BV : F right continuous and F(−∞) = 0}

Proposition 16.1.1. If F ∈ BV is right continuous, then TF ∈ NBV.

Proof. We have already shown that TF(−∞) = 0. Take a sequence xn ↘ x0 and, for each n,
a sequence of finite partitions (x(m)

j ) of [x0, xn] s.t. limm→∞ ∑j |F(x(m)
j ) − F(x(m)

j−1)| = TF(xn) −
TF(x0). Noting once more that, for any a < b, we have TF(b)− TF(a) > |F(b)− F(a)|, the rest
follows by dominated convergence.

Note 16.1.2. If F ∈ BV is right-continuous, then G given by F− F(a) on [a, b], zero for x < a and
F(b) for x > b is right-continuous and in NBG. Define µF on [a, b] as µG restricted to [a, b].

Theorem 16.1.3. F ∈ NBV iff F(x) defines a Borel measure, F(x) = µ((−∞, x]).
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Proof. F ∈ NBV iff both <F and =F are in NBV, and thus we may assume w.l.o.g. that F is
real-valued. Now Proposition 16.1.1 implies TF ∈ NBV and thus the two increasing functions in
the canonical decomposition of F are also NBV, by Note 16.0.5 3. The rest is immediate.

Definition 16.1.4. If F ∈ BV([a, b]) is right-continuous, we say that F is absolutely continuous if
µF � m where µF is defined on [a, b] as in Note 16.1.2.

Note 16.1.5. F ∈ AC([a, b]) ⇒ F ∈ BV([a, b]) and F is continuous. Continuity is clear. To bound
the variation of F, take a pair ε, δ as in the definition of AC and choose n > δ−1. Partitioning
[a, b] into n congruent subintervals, we see that the total variation of F cannot exceed nε.

However, AC is a strictly stronger condition than continuity+BV. Take the Cantor function F:
it is continuous and increasing, thus BV. Since F is constant on any excluded interval, with bj the
left endpoint of the intervals excluded up to stage n, and aj the right endpoint of the preceding
interval, we have

∑
j62n+1−1

|F(bj)− F(aj)| = 1

while

∑
j62n+1−1

(bj − aj) =

(
2
3

)n

Proposition 16.1.6. If F ∈ BV([a, b]) is right-continuous, then µF � m iff for any ε > 0 there is a
δ > 0 s.t. for any finite disjoint collection of intervals (aj, bj) ⊂ [a, b], j = 1, ..., n

n

∑
j=1

(bj − aj) < δ⇒
n

∑
j=1
|F(bj)− F(aj)| < ε (68)

Proof. If µF � µ, then (68) is a direct consequence of the definition of absolute continuity. Con-
versely, fix ε > 0, let δ (68) be s.t. the last inequality in (68) holds with ε/2 instead of ε. Let E
be s.t. m(E) < δ. Choose an open set O ⊃ E s.t. m(O) < δ, write O as a countable union of
intervals Jk, and let n be s.t. ∑∞

n |µ|(Jk) < ε/2. Then ∑∞
1 |µ|(Jk) < ε.

Proposition 16.1.7. If f ∈ L1([a, b], m), then F := x 7→
∫ x

a f (s)ds ∈ AC. Conversely, F ∈ AC([a, b])
implies f = F′ exists a.e., and F(x) = F(a) +

∫ x
a f (s)ds.

Proof. This is an immediate consequence of Lemma 13.1.7 and Theorem 15.1.6.

We have proved the following important result:

Theorem 16.1.8 (The Fundamental Theorem of Calculus). Let [a, b] ⊂ R and F : [a, b] → C. The
following are equivalent:

1. F ∈ AC([a, b]);

2. F(x) = F(a) +
∫ x

a
f (s)ds for some f ∈ L1([a, b], m);

3. F′ exists a.e., F′ ∈ L1([a, b], m) and F(x) = F(a) +
∫ x

a
F′(s)ds

An interesting result (see Rudin) is
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Theorem 16.1.9. Let F : [a, b] → C be differentiable everywhere with derivative in L1. Then, for any
x ∈ [a, b],

F(x) = F(a) +
∫ x

a
F′(s)ds

16.2 Lebesgue-Stieltjes integrals

Let F ∈ NBV and µF the associated measure. Then
∫

gdµF is also denoted by
∫

gdF, and is called
a Lebesgue-Stieltjes integral.

Proposition 16.2.1. If F and G are continuous and in NBG, then FG is continuous and in NBG and
d(FG) = FdG + GdF. We can write this as a generalization of integration by parts:∫

(a,b]
FdG +

∫
(a,b]

GdF = F(b)G(b)− F(a)G(a)

Proof. This follows from continuity and the fact that

F(y)G(y)− F(x)G(x) = G(y)(F(y)− F(x)) + F(x)(G(y)− G(x))

16.3 Types of measures on Rn

Definition 16.3.1. Let µ be a complex Borel measure on Rn. Then,

1. µ is called discrete if µ = ∑j∈N µ({xj})δxj for a discrete set {xj : x ∈ N} ⊂ Rk (δx is the Dirac
mass at x);

2. µ is called continuous if µ({x}) = 0 for all x ∈ R.

3. Let µ be continuous, and dµ = dλ + f dm be the L-R-N decomposition of µ. Then µsc = λ is the
singular continuous part of µ, and µac = f dm is the absolutely continuous part of µ

Note 16.3.2. Clearly, if µ is not continuous, then there exists an at most countable set of points {xj : x ∈
N} ⊂ Rk with µ({xj}) 6= 0. Let µd = ∑j∈N µ({xj})δxj is continuous. Then µ − µd is continuous.
Therefore, any complex Borel measure on Rk can be uniquely decomposed as

µ = µd + µsc + µac

An example of a measure which is singularly continuous is dF where F is Cantor’s function.

Exercise 52. A function F is said to have the Lusin N property on [a, b] if for any null subset N,
m( f (N)) = 0 .

• Let f be continuous and increasing. Show that it has the Lusin property iff it is AC. Some
hints: for the if part monotonicity allows you to write the forward image of an interval.
For the only if part, (1) define G(x) = x + F(x) and show that G is continuous, increasing
and has the Lusin property. (2) Show that µ(A) = m(G(A)) defines a positive bounded
measure, and use L-R-N to complete the proof.
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HW 11/28: 31,37,42 in Folland; turn in: Ex 52 above.

For a history of some important theorems in topology, see Folland’s article A Tale of Topology.

17 Semicontinuouos functions

Definition 17.0.1. Let f be a real-valued (or extended-real valued 10) function on X, a topological space.
Then f is called lower semicontinuous if for any α ∈ R the set

{x : f (x) > α}

is open, and upper semicontinuous if for any α ∈ R the set

{x : f (x) < α}

is open.

Check that a function f : X → R is continuous iff it is both upper and lower semicontinuous.
Examples of functions that are only semi-continuous are:

a. Characteristic functions of open sets: these are lower semicontinuous.
b. Characteristic functions of closed sets: these are upper semicontinuous.
c. The sup of any collection of lower semicontinuous functions is lower semicontinuous. The

inf of any collection of upper semicontinuous functions is upper semicontinuous.
Though it’s straightforward, it’s useful to go through the arguments and check all this.

17.1 Urysohn’s lemma

In a normal space, closed sets are separated by open sets. It means, if C1, C2 are closed, then
there are disjoint open sets O1,O2 containing C1, C2, respectively. This property is, interestingly,
equivalent to an apparently stronger property, that there is a continuous function f which is zero
on C1 and one on C2. That is, indicator functions can be smoothened in a way that does not alter
their functionality.

Note 17.1.1. In a normal space, for any closed set C and open set O ⊃ C there is an open sets O1 s.t.

C ⊂ O1 ⊂ O1 ⊂ O

(check this: C ∩Oc = ∅; thus, we can separate C from Oc by open sets...)

Theorem 17.1.2 (Urysohn’s lemma). Let X be normal. For any two nonempty closed disjoint subsets
A, B of X, there is an f ∈ C(X, [0, 1]) such that f (A) = {0} and f (B) = {1}.

Equivalently,
“For any C ⊂ O, C closed and O open, there is an f ∈ C(X, [0, 1]) such that f (C) =

{1} and f (O \O1) = {0} (O1 as above).”

10In the sense of the one point compactification of R.
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Note that this does not say that f can only be zero on A, or 1 on B, a property which is stronger.
This theorem is quite deep. The idea is to squeeze a countably infinite family of (distinct) open
sets between A and B, order them using the rationals in [0, 1], {Or}r∈Q in such a way that the
order of the rationals is preserved

s > r ⇒ Os ⊂ Or ((*))

(meaning also that the sets are densely ordered.) Define f (x) = r if x ∈ Or and extend f by
continuity. Basically.

It’s not obvious that such a construction is possible and that it yields the right answer; we
need more work.

Proof (following Rudin). Let r0 = 0, r1 = 1, and let Q = (r2, r3, r4, ...) be an enumeration of the
rationals in (0, 1). Let O0,O1 be open sets such that

C ⊂ O1 ⊂ O1 ⊂ O0 ⊂ O0 ⊂ O

Inductively, suppose that for all n > 1 we have constructed Or1 , ...,Orn so that for all i, j 6 n we
have

rj > ri ⇒ Orj ⊂ Ori

Order the ri, i 6 n : 0 < r′1 < ... < r′n < 1. Take the next rational in rn+1 in Q, and find the i so
that

0 < r′1 < r′2 < ... < r′i < r′n+1 ≡ rn+1 < r′i+1 < ... < r′n < 1

Now choose a Orn+1 so that
Or′i+1

⊂ Orn+1 ⊂ Orn+1 ⊂ Or′i

In this way, we get a family {Or}r∈Q∩(0,1) with the property (*) above.
Let now

fr(x) =

{
r if x ∈ Or

0 otherwise
; f = sup

r
fr; gs(x) =

{
1 if x ∈ Os

s otherwise
; g = inf

s
gs ((**))

f is lower semicontinuous, g is upper semicontinuous, f (X) ⊂ [0, 1], f (C) = {1}, f (O0) = {0}.
We show that f = g, which implies continuity. Note that fr(x) > gs(x) only if r > s, x ∈ Or

and x /∈ Os. But then Or ⊂ Os which is impossible. This proves f 6 g.
Assume f (x) < g(x) for some x ∈ [0, 1]. Then f (x) < r < s < g(x) for some rationals r, s.

Since f (x) < r we have that fr(x) = 0 implying x /∈ Or. Similarly, since g(x) > s we must have
x ∈ Os. This contradicts (*).

17.2 Locally compact Hausdorff spaces

Definition 17.2.1. A Hausdorff space X is locally compact (LCH) if every point has a compact neighbor-
hood.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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In the following, X will be a locally compact space (LCH). A set is said to be precompact if
its closure is compact.

Lemma 17.2.2. E ⊂ X is closed iff E ∩ K is closed for any compact K.

Proof. Exercise.

Proposition 17.2.3. For any x and any open set O containing x there is a precompact open set O′ 3 x
with O′ ⊂ O.

Proof. Let O′′ be any precompact neighborhood of x. We can replace O with O ∩ O′′; thus,
w.l.o.g., we assume O is precompact. Then ∂O and x are closed and Note 17.1.1 completes the
proof.

Proposition 17.2.4. Let K be compact and O ⊃ K open in X. Then there exists a precompact O′ s.t.
K ⊂ O′ ⊂ O′ ⊂ O.

Proof. By Proposition 17.2.3 K can be covered with precompact open sets {Oα} with closure in O
and thus by a finite subset of them {Oi}i6n.

Theorem 17.2.5 (Urysohn’s Lemma, LCH version). Let K ⊂ O as in Proposition 17.2.4. Then there
is an f ∈ C([0, 1], X) and a precompact O′,O′ ⊂ O s.t. f (K) = {1} and f (O′c) = {0}.

Proof. Straightforward application of Urysohn and of the previous results.

Also with a similar proof we have the following

Theorem 17.2.6 (Tietze Extension Theorem). Let K be compact and f ∈ C(K). Then there exists
g ∈ C(X) s.t. g|K = f .

Definition 17.2.7. A space is σ−compact if it is the countable union of compact sets.

Proposition 17.2.8. If X is second countable, then X is σ−compact.

Proof. Let T = {Oi}i∈N be a countable base. Each x ∈ X has, by assumption, a precompact
neighborhood O′x. Since T is a base, there is an i(x) and an Oi(x) ⊂ O′x s.t. x ∈ Oi(x). Then,
Oi(x) ⊂ O′x is compact and X = ∪

i(x),x∈X
Oi(x), a countable union since it is a subfamily of T .

Proposition 17.2.9. If X is σ− compact, then there is a countable family of precompact open sets
{On}n∈N such that On ⊂ On+1 for all n and X = ∪n∈NOn.

Proof. Let On be as in Proposition 17.2.8 above; then O′n = ∪n
1Oj is such a family.

17.3 Support of a function

Definition 17.3.1. If f is a complex-valued function on X, then the support of f is defined as
supp( f ) = {x : f (x) 6= 0}.

We say f is supported in O if supp( f ) ⊂ O, and we write f ≺ O. If f ∈ C(X, [0, 1]), C is
closed and f (C) = {1}, then we write C ≺ f .

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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17.4 Partitions of unity

Definition 17.4.1.

1. A partition of unity on a set E in a topological space is a collection of continuous functions
{ρα}α∈A with values in [0, 1] with the property that

• for any x there is a neighborhood of x where only finitely many ρα are nonzero.

• ∑α ρα = 1 on E.

2. A partition is subordinate to an open cover Oα if ∀α ρα ≺ Oα.

Partitions of unity have many uses in mathematics. An interesting application is in defining
integrals on manifolds (with respect to some form). One relies on coordinates to define the
integral on a coordinate patch and then uses a partition of unity subordinate to the coordinate
patch covering to extend the integral to the whole manifold.

Theorem 17.4.2. Let K ⊂ X be compact. For any open cover {Oj}j6n of K there exists a partition of
unity on K, {ρj}j6n with ρj ≺ Oj, j 6 n.

Proof. (adapted from Rudin) For each x ∈ K, x is in some Oj, and there is an Ox ⊂ Oj precompact
containing x. By compactness ∃{x1, ..., xn} s.t K ⊂ ∪kOxk . For each j let O′j = ∪{Oxk : Oxk ⊂ Oj}.
By Urysohn’s lemma, define for each j a continuous function gj s.t. O′j ≺ gj ≺ Oj. Let

ρ1 = g1; ρ2 = g2(1− g1); ...; ρn = gn(1− gn−1) · · · (1− g1)

Clearly ρj ≺ Oj. By induction we check that

ρ1 + · · ·+ ρn = 1− (1− g1) · · · (1− gn)

Now, for x ∈ K at least one gi is 1, and thus the sum above is 1 on K.

17.5 Continuous functions

Let X be CH.

Definition 17.5.1. • The topology of uniform convergence on the functions from X to R or C is
given by fn → f if ‖ fn − f ‖u → 0 where ‖ · ‖u ≡ ‖ · ‖∞ is the usual sup norm on X.
• BC(X) is the space of bounded continuous functions on X.
• The space Cc(X) of functions with compact support is { f ∈ C(X) : supp( f ) is compact}.
• C0(X) is the space of continuous functions vanishing at infinity:

C0(X) = { f ∈ C(X) : ∀n ∈N, | f |−1([n−1, ∞)) is compact}

• fn → f uniformly on compact sets if ‖ fn − f ‖K = supx∈K ‖ fn − f ‖ → 0 for all K compact.

Note 17.5.2. Cc(X) ⊂ C0(X) and C0(X) ⊂ BC(X). The space C(X) is closed in the space of real
or complex functions on X.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Definition 17.5.3. The one-point (or Alexandroff) compactification of X is defined as X∗ = X ∪
{∞} where ∞ 6∈ X. The topology on X∗ is given as follows: O is open in X∗ if it is open in X or
if O 6⊂ X and Oc is compact in X.

Proposition 17.5.4. X∗ is CH. The inclusion X → X∗ is an embedding. f is continuous on X∗ iff
∃c ∈ C ( f − c)|X ∈ C0(X) and f (∞) = c.

Proof. Exercise.

Note 17.5.5. We can identify the continuous functions on an LCH that vanish at infinity with the
continuous functions on a CH that vanish at a point.

Sup-norm convergence on X is stronger than uniform convergence on compact sets. The
closure of Cc(X) w.r.t the sup norm on on X is C0(X).

17.6 The Stone-Weierstrass theorem

This is the sweeping generalization of the theorem of approximation by continuous functions by
polynomials. Now X will be a compact space, and C(X) is the space of continuous functions
with the sup norm.

Algebras. Let K be a field, and let A be a vector space over K equipped with an additional
binary operation ” · ”, called multiplication from A× A to A. Then A is an algebra over K if the
following identities hold for all elements x, y, and z of A, and all elements (often called scalars) a
and b of K :

1. Right distributivity: (x + y) · z = x · z + y · z

2. Left distributivity: x · (y + z) = x · y + x · z

3. Compatibility with scalars: (ax) · (by) = (ab)(x · y)

In the following, we will work with algebras in C(X, R) or C(X, C), where · is usual multiplica-
tion. These two algebras are clearly associative and commutative (abelian), and they are closed
in the sup norm, or in the norm of uniform convergence on compact sets.

Lemma 17.6.1. Let X = {0, 1}. The only subalgebras of C({0, 1}, R) are C({0, 1}, R), {0} and the
one-dimensional ones { f : f (0) = 0}, { f : f (1) = 0}, { f : f = const.}.

Note 17.6.2. C({0, 1}) is isomorphic to R2 with componentwise multiplication.

Proof. It is easy to check that the subsets mentioned are algebras. Conversely, let A be a sub-
algebra of C({0, 1}). Assume there is an f ∈ A s.t. f (0) f (1) 6= 0 and f (0) 6= f (1). Then, as
you can check by taking the determinant, f 2 is linearly independent from f , and, by Note 17.6.2,
A = C({0, 1}). If f (0) = f (1) 6= 0 for all f ∈ A, then A is the algebra of constants. If f (0) = 0
or f (1) = 0 but not both, then A is { f : f (0) = 0} or { f : f (1) = 0}. If ∀ f ∈ A f (0) = f (1) = 0,
then clearly A = {0}.

Definition 17.6.3. A ⊂ C(X) is called a lattice if f , g ∈ A implies f ∧ g and f ∨ g are also in A.

Note 17.6.4. If A is a linear subspace of C(X), then it is a lattice if f ∈ A ⇒ | f | ∈ A.

Definition 17.6.5. A subset A of C(X, R) is said to separate points if x 6= y ∈ X ⇒ ∃ f ∈ A, f (x) 6=
f (y).

Here X is always an compact Hausdorf space.
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Theorem 17.6.6 (The Stone-Weierstrass theorem). Let X be a CH space and A ⊂ C(X, R) a closed
subalgebra that separates points. If 1 ∈ A, then A = C(X, R); otherwise, there is an x0 ∈ X s.t.
A = { f ∈ C(X, R) : f (x0) = 0}.

Lemma 17.6.7. 1. In C(X, R), x 7→ |x| is in the closure of polynomials that vanish at zero, in the sup
norm on compact sets.

If A is a closed subalgebra of C(X, R), then A is a lattice.

Proof. 1. For |t| < 1/2, by the Taylor series with remainder theorem, the Maclaurin series of
g = t 7→

√
1− t,

S(t) = 1− ∑
n>1

cntn, cn =
1
2 (1−

1
2 )(2−

1
2 ) · · · (n− 1− 1

2 )

n!
=

1
2 Γ(n− 1

2 )

n!Γ( 1
2 )

> 0

converges to g. Using Stirling’s formula we see that 2
√

πcn = n−3/2(1 + o(1)) for large n. The
Weierstrass M test shows that S converges uniformly to a continuous function f on [−1, 1] and
since f − g = 0 on [− 1

2 , 1
2 ], we have f (t) =

√
1− t on [−1, 1]. Note that Pn(x) = 1−∑n

k=1 ck(1−
x2)k − ∑∞

n+1 ck is a sequence of polynomials with Pn(0) = 0, converging uniformly to |x| on
[−1, 1]. If a 6= 0, then aPn(x/a) converge to |x| uniformly on [−a, a].

2. If f ∈ A and ‖ f ‖ = a 6= 0, then ‖| f | − aPn(a−1 f )‖u → 0 as n→ ∞.

Lemma 17.6.8. Let A be a lattice in C(X, R) and f ∈ C(X, R). If for any couple of points {x, y} there
is a g ∈ A s.t. f = g on {x, y}, then f ∈ A.

Proof. Using the stated property and compactenss, for each ε > 0 we construct a g ∈ A s.t.
‖ f − g‖u < ε as follows. For x, y ∈ X we let gxy ∈ A be the function that coincides with f
on {x, y}, and define the open sets Uxy = {z ∈ X : f (z) < gxy(z) + ε} and Lxy = {z ∈ X :
f (z) > gxy(z)− ε}. For fixed y, {Uxy, x ∈ X} cover X (since x ∈ Uxy) and thus, by compactness,
X = ∪j∈NUxj,y for some finite set {x1, ..., xn}. With Γy = ∨n

1 gxjy, we have f < Γy + ε on X and
f > Γy − ε on ∩n

j=1Lxjy which is an open set containing y. Now, {∩n
j=1Lxjy, y ∈ X} cover X,

and thus X = ∪m
k=1 ∩n

j=1 Lxjyk for some finite set {y1, ..., ym}. Then g = ∧m
1 Γyk has the property

‖ f − g‖u < ε completing the proof.

Proof of Theorem 17.6.10. Clearly, for any x, y ∈ X, the restriction Axy = {g restricted to {x, y} :
g ∈ A} is also an algebra, a subalgebra of C({x, y}, R). If for any {a, c, x, y} ∈ X×R there is a
g ∈ A s.t. g(x) = a, g(y) = b, then , by Lemma 17.6.8, A = C(X, R). Otherwise, there is a pair
{x, y} s.t. Axy is a proper subalgebra of C({x, y}, R). Since A separates points, there are only
two possibilities A = { f : f (x) = 0} or A = { f : f (y) = 0}. Neither of these cases is possible if
1 ∈ A.

Corollary 17.6.9. Polynomials are dense in Rn.

The complex-valued version of Stone-Weierstrass needs stronger conditions. Clearly, E+ =

{e2πikx : k ∈ N} is a family in C([0, 1], C) that separates points. Let E− = {e2πimx : 0 6 m ∈ Z}.
Note that

∫ 1
0 ekemdx = 0 for any ek ∈ E+, em ∈ E−, see §1. Since convergence in ‖‖u implies

convergence in ‖‖2 (why?), the algebra A generated by E+ is orthogonal to E−, and in particular
cannot be dense in C([0, 1], C). In fact, the elements of A can be identified with the boundary
values on S1 of the functions analytic in D, vanishing at zero, and continuous up to the boundary.

Here X is always an compact Hausdorf space.
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However, we know already (cf. Theorem 1.1.1) that the algebra generated by E+ ∪ E− is C(T), so
what we have to do (at least in this example) is simply require that f ∈ A ⇒ f ∈ A. Indeed, this
is sufficient in general:

Theorem 17.6.10 (Complex Stone-Weierstrass theorem). Let X be a CH space and A ⊂ C(X, C)

a closed subalgebra that separates points and is closed under complex conjugation. If 1 ∈ A, then A =

C(X, C); otherwise, there is an x0 ∈ X s.t. A = { f ∈ C(X, C) : f (x0) = 0}.

Proof. Note that f ∈ A implies < f and = f are in A. By Theorem 17.6.10 u(x) + iv(x) ∈ A for
any u, v in C(X, R).

Note 17.6.11. By Urysohn’s lemma, in any normal space, continuous functions separate points.

Exercise 53.

1. Use Stone-Weierstrass to show that {e2πikx : k ∈ Z} form a complete orthonormal set in
L2([0, 1]) (meaning that any f ∈ L2([0, 1]) is an L2 limit of trig polynomials).

2. Assume f ∈ C([0, 1]) is s.t. ∀0 6 n ∈ Z,
∫ 1

0
sn f (s)ds = 0. Show that f = 0.

3. (The moment problem) The moments of a Borel measure µ are defined as µn =
∫ 1

0 sndµ, 0 6
n ∈ Z, provided the integrals exist. The measure µ is determinate if the moments {µn, n >
0} are unique to µ. Show that compactly supported measures, say on [0, 1], are determinate.

4. Let X1, X2 be compact metric spaces. Show that the algebra generated by continuous func-
tions of one variable is dense in C(X1 ×X2, R): more precisely the family{

(x, y) 7→
n

∑
j=1

f j(x)gj(y) : n ∈N, f j ∈ C(X1), gj ∈ C(X2), 1 6 j 6 n

}

is dense in C(K1 × K2).

5. If X is a compact metric space (thus separable) with metric ρ, then C(X) is separable. (Hint:
if {xm, m ∈N} is a dense set in X, then Fmn = ∧{n−1, ρ(x, xm)}, (m, n ∈N2), is a family of
continuous functions that separates points.)

18 Sequences and nets

A sequence in a topological space X is a function whose domain is an interval of integers with
values in X.

Definition 18.0.1. Let X be a topological space.

1. O ⊂ X is sequentially open if each sequence (xn)n∈N in X converging to a point of O is
eventually in O (i.e. there exists N s.t. ∀n > N xn ∈ O).

2. C ⊂ X is sequentially closed if the limit of any convergent sequence (xn)n∈N in C is also in
C.
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3. A space X is sequential if every sequentially open subset of X is open, or equivalently,
every sequentially closed subset of X is closed.

Exercise 54.

1. Every first-countable space is sequential. In particular, second countable, metric, and dis-
crete spaces are sequential.

2. The cocountable topology on X consists of ∅ and all cocountable subsets of X, that is all sets
whose complement is countable. Check that the only closed sets are X and its countable
subsets. Show that if X is uncountable, the cocountable topology on X is not sequential.

Definition 18.0.2. 1. A directed set is a nonempty set A together with a reflexive and transitive
binary relation 4 s.t. every pair of elements has an upper bound, i.e. ∀a, b ∈ A ∃c ∈ A s.t.
a 4 c and b 4 c.

2. Let A be a directed set and X be a topological space with topology T . A function f : A→ X
is called a net. We write f = (xα)α∈A.

3. We say that (xα) is eventually in Y ⊂ X if ∃α ∈ A s.t. ∀β ∈ A, β < α⇒ xβ ∈ Y.

4. (xα) is said to converge to x if for every neighborhood O of x, (xα) is eventually in O.

Exercise 55. Show that the neighborhood system of a point x in a topological space with ⊂ for
4 is a directed system.

Definition 18.0.3. 1. Let E ⊂ X. The net (xα) is frequently in E if ∀α ∈ A ∃β < α in A s.t.
xβ ∈ E.

2. A point x ∈ X is an accumulation point or cluster point of a net if for every neighborhood
O of x, the net is frequently in O.

18.1 Subnets

Definition 18.1.1. A function h : B → A is monotone if β1 4 β2 ⇒ h(β1) 4 h(β2). B is a cofinal
subset of A if for every α ∈ A there is a β ∈ B s.t. β < α. The function h is final if h(B) is a cofinal
subset of A.

If A and B ⊂ A are directed sets and (xα)α∈A and (yβ)β∈B are nets in A and B resp., then
(yβ)β∈B is a subnet of (xα)α∈A if there is a monotone final function h s.t. for all β ∈ B, yβ = xh(β).

Note 18.1.2. A subnet of a sequence is not necessarily a subsequence! See Ex. 57 below.

Exercise 56. Show that

1. A function f between two topological spaces is continuous at x iff for any net (xα) converg-
ing to x we have limα∈A f (xα) = f (x).

2. A net has a limit if and only if all of its subnets have limits. In a Hausdorff space, the limit
of a net is unique, and every subnet converges to this limit.

3. A space X is compact if and only if every net (xα) ∈ X has a subnet with a limit in X.
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4. A net in the product space has a limit if and only if each projection has a limit.

5. A point x in X is a cluster point of a net if and only if there is a subnet which converges to
x.

6. limsup and liminf along a net are defined in complete analogy with their counterpart on
sequences. Show that lim sup(xα + yα) 6 lim sup xα + lim sup yα.

19 Tychonoff’s theorem

If {Xi}i∈I are topological spaces, then the product space is defined as X = ∏
i∈I

Xi =

{
f : I →

⋃
i∈I

Xi

∣∣∣∣∣ (∀i)( f (i) ∈ Xi)

}
. The fact that X is nonempty for general nonempty Xi is equivalent to

the axiom of choice, AC.
The product topology is defined to be the coarsest topology (i.e. the topology with the

fewest open sets) for which all the projections πi (πi(x) = xi) are continuous. That is, the sets
n⋂

j=1

π−1
ij

(Nij) where Ni are open sets in Xi form a base for the topology on X. In this topology a net

( fα)α∈A converges iff ∀i ∈ I, fα(i) converges, that is, the topology is that of pointwise convergence
of functions.

Definition 19.0.1. 1. A basic neighborhood N of f ∈ X is determined by a finite subset F of I
together with all the neighborhoods Oj of f (j) =: f j in Xj, j ∈ F. N consists of all h ∈ X s.t.
∀j ∈ F, h(j) ∈ Oj. We say that N is supported by F, N = N({Oj : j ∈ F}). Note that basic
neighborhoods generate the topology on X.

2. A partially defined member of X is a function g defined on some J ⊂ I, i.e. g ∈ ∏j∈J Xj.

3. If (xα)α∈A is a net in X, partial cluster point z is a partially defined member of X with
domain J ⊂ I s.t. z is a cluster point of (xα|J).

Theorem 19.0.2 (Tychonoff). 11 Assume {Xi}i∈I are compact for all i ∈ I. Then X = ∏
i∈I

Xi is compact

in the product topology.

Proof 1, based on nets, adaptation of Chernoff, (1992) .
We may assume that the spaces Xi are nonempty. Using Zorn’s lemma, given a net (xα) we

show that there is a cluster point z of (xα) with domain I.
Let P be the set of all partial cluster points of (xα)α∈A. Since by assumption (xα)|X1 has a

cluster point, P is nonempty. Order P by function extension. A function being a set of pairs, this
is the same as inclusion. That is, g1 ⊂ g2 if the domain of g1 is contained in the domain of g2 and
g2 = g1 on the domain of g1.

11Adaptation of a Bourbaki proof, see also Loomis, see p.11
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Let L = {zλ : λ ∈ Λ} be a chain in P , and let z0 = ∪λ∈Λzλ. Since any two members of L
agree on their common domain, z0 is a partially defined member of X. Moreover, z0 is a partial
cluster point of (xα) as well. Indeed, every basic neighborhood of z0 has finite support F. By
construction, F ⊂ zλ for some λ, z0 = zλ on F, and (zλ)|F is a partial cluster point of (xα). Then
z0 is an upper bound for L.

Let z be a maximal element of P . If the dom(z)= I, the conclusion follows. Assuming it is
not, let k ∈ I \ J. Since z must be a cluster point of (xα|J)α∈A, there is a subnet (xβ) s.t. (xβ|J)
converges to z. Now, since Xk is nonempty and compact, the net (xβ|Xk) has a cluster point
x ∈ Xk. Define the function h on J ∪ {k} by h = g on J and h|Xk = x. Then h is a partial cluster
point of (xα), and thus h ∈ P extends g strictly.

Proof 2, similar to Folland’s. Let F be a family of closed sets in X with the finite intersection prop-
erty (f.i.p.). We want to show

⋂
F∈F

F 6= ∅. Clearly this is the case if the same holds for any larger

family F ′. A subtle point in the proof is to take the largest such set. Note that any chain of
families (not necessarily of closed sets) with the f.i.p. Fα ⊂ Fα′ ⊂ · · · has an upper bound, with
the f.i.p, namely their union. By Zorn’s lemma, there is a maximal family with the f.i.p.,M⊃ F .
In the following “construct”, “choose” etc. are just ways of speaking, as we rely on the AC.

We now construct a point in X which should be in all F ∈ F (and, in fact, all M ∈ M). For any
i, {πi(M)|M ∈ M} is a family of closed sets in Xi with the f.i.p. Then, for each i there is an
mi ∈

⋂
M∈M

πi(M). Choose an mi for each i and let m = (mi)i∈I .

If we show that
n⋂

j=1

π−1
ij

(Oij) (Oi open nbd of mi) intersect nontrivially each F, this will imply

that m ∈ F for all our F. This is because each F is closed and for each F it follows that any open
nbd of m intersects nontrivially F, implying, by elementary topology, m ∈ F.

The property above is implied by the following: for any Oi as above, π−1
i (Oi) ∈ M.

Now, for any M ∈ M we have, by construction, πi(M) ∩Oi 6= ∅. Thus πi(M) ∩Oi 6= ∅
implying πi(M) ∩Oi 6= ∅ which in turn means M ∩ π−1

i (Oi) 6= ∅. Then, adjoining any single
set π−1

i (Oi) toM, the f.i.p. is preserved. But, then by the maximality ofM, π−1
i (Oi) ∈ M, and

this holds for any i ending the proof .

Exercise 57. Check that the space [0, 1]R is compact. Show that there is a directed set A and a net
x : A→N, which is a subnet of 1, 2, ... along which any sequence a1, ..., an, ... in [0, 1] converges.

Theorem 19.0.3. If I is countable and {Xi}i∈I are second countable and compact, then ZF+DC (the axiom
of dependent choice) imply X = ∏

i∈I
Xi is compact.

Proof. It is easy to check that X is also second countable.
Let f : N → X be a sequence. Since X1 is compact, there is a subsequence defined by an f1

s.t. ( f ◦ f1)1 : N → X1 is convergent. Inductively, there is a subsequence defined by an fn s.t.
all ( f ◦ fn)i, i = 1, 2, ...n are convergent. Define g by g(k) = fk(k). Then, as you can easily check,
( f ◦ g)i, i ∈N are all convergent, implying that ( f ◦ g) : N→ X is convergent.
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20 Arzelá-Ascoli’s theorem

Definition 20.0.1. 1. The family F of complex-valued functions on X is pointwise equibounded
if ∀x ∈ X supF∈F |F(x)| = M(x) < ∞.

2. The family F is equicontinuous if ∀ε∃δ s.t. ∀x, y ∈ X and F ∈ F , d(x, y) < δ ⇒ |F(x)−
F(y)| < ε.

Theorem 20.0.2. 1. Let X be a separable metric space. If X is compact, then every sequence {Fn}n∈N :
X → C of equicontinuous and pointwise equibounded function has a subsequence which converges
uniformly in X.

2. More generally, if X is a separable metric space, then every sequence {Fn}n∈N : X → C of equicon-
tinuous and pointwise equibounded function has a subsequence which converges uniformly on com-
pact sets in X.

Proof. Let d be a metric on X and let E be a countable dense subset of X.
1. C(X) with the uniform norm is a metric space, thus sequential. The space Y = ∏

e∈E
{z ∈

C : |z| 6 M(e)} is compact. Let (Fn,E)n∈N be the restriction of (Fn)n∈N to E. This is a sequence
in Y, and there is a subsequence defined by a g : N → N s.t. (Fg(n,E))n∈N converges. Take
ε > 0 and let δ > 0 be s.t. if d(x, y) < δ, then (∀n) (|Fn(x)− Fn(y)| < ε/3). Since E is dense,
Oe := {x : d(x, e) < δ}, e ∈ E cover K, and by compactness, there is a finite set En = {e1, ...en} s.t.
for all x ∈ K, d(x, En) < δ. For ek ∈ En, let mk be s.t. ∀n, n′ > mk, |Fg(n),E(ek)− Fg(n′),E(ek)| 6 ε/3,
and m = max{mk}. By the triangle inequality, |Fg(n)(x) − Fg(n′)(x)| < ε for all n, n′ > m and
x ∈ X, and the result follows.

2. Since X is a separable metric space, it is σ−compact. Let Kj be an increasing sequence of
compact sets that cover X. Let (Fg1) be a subsequence of (Fn) uniformly convergent on K1, and
inductively for j > 2, (Fgj) be a subsequence of (Fgj−1) uniformly convergent on Kj. Then, the
diagonal sequence Fg1(1), ..., Fgj(j), ... converges uniformly on any Km.

Note 20.0.3. Equicontinuity can be replaced with the weaker condition ∀e ∈ E there is an r s.t. for
all y with d(y, e) < r and all F we have |F(e)− F(y)| < ε, which can be seen using the compact
cover formulation of compactness.

Uniform convergence implies that the limit F of the subsequence is also continuous, and
in fact adjoining F to the sequence, the new sequence is also equicontinuous and pointwise
equibounded.

An important example of an equibounded, equicontinuous family is the following. Consider
the ball B1 of radius one in L1((a, b)) and the linear map K : B1 → B|b−a| given by KF =

∫ x
a F.

Check that K(B1) is an equibounded, equicontinuous family.
Such a linear map is called compact operator.
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Part II: 6212
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Hilbert spaces are defined by abstracting the structure needed for the properties above to
hold.

21 Norms, seminorms and inner products

Definitions
Given a vector space V over a subfield K of the complex numbers, a norm on V is a

nonnegative-valued scalar function p : V → [0,+∞) with the following properties: for all a ∈ K

and all u, v ∈ V,
1.

p(u + v) 6 p(u) + p(v)

(p is subadditive, or: p satisfies the triangle inequality).
2. p(av) = |a|p(v) (p is absolutely homogeneous, or absolutely scalable).
3. If p(v) = 0 then v = 0 is the zero vector (p is positive definite).
A seminorm on V is a function p : V → R with the properties 1 and 2 above.
Every vector space V with seminorm p induces a normed space V/W, called the quotient

space, where W is the subspace of V consisting of all vectors v in V with p(v) = 0 (check that W
is a subspace). The induced norm on V/W is defined by:

p(W + v) = p(v)

Two norms (or seminorms) p and q on a vector space V are equivalent if there exist two positive
constants c1 and c2 such that c1q(v) 6 p(v) 62 q(v) for every vector v in V.

A topological vector space is called normable (seminormable) if the topology of the space
can be induced by a norm (seminorm).

An inner product 〈x, y〉 over a vector space is a complex-valued function that satisfies the
following properties:

1. The inner product of a pair of elements is equal to the complex conjugate of the inner
product of the swapped elements:

〈y, x〉 = 〈x, y〉 . (1)

2. The inner product is linear in its first argument. For all complex numbers a and b,

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 . (2)

3. The inner product of an element with itself is positive definite:

〈x, x〉 ≥ 0 (3)

where the case of equality holds precisely when x = 0. It follows from properties (1) and (2) that
a complex inner product is antilinear in its second argument, meaning that

〈x, ay1 + by2〉 = ā〈x, y1〉+ b̄〈x, y2〉 . (1+2)

It is easily checked that the quantity ‖x‖ :=
√
〈x, x〉 is a norm on H.

86/186



Math 6211+6212, Real Analysis I+II

22 Hilbert spaces

A Hilbert space H is a real or complex inner product space that is also a complete metric space
with respect to the distance function induced by the inner product (that is, the distance between
x, y ∈ H is ‖x− y‖).

Theorem 22.0.1 (Cauchy-Schwarz). For any x, y ∈ H we have |〈x, y〉| 6 ‖x‖‖y‖.
We have equality iff x, y are linearly dependent.

Proof. There is nothing to prove if x = 0 or y = 0, so we assume this is not the case. Note now
that for any z, ‖z‖ > 0. In particular, for any a ∈ C we have

0 6 ‖x− ay‖2 = 〈x, x〉+ |a|2〈y, y〉 − 2<(a〈y, x〉) = f (a) (69)

We write 〈y, x〉 = |〈x, y〉|eiα (if 〈x, y〉 = 0 any α works). For t ∈ R,

f (te−iα) = 〈x, x〉+ t2〈y, y〉 − 2t|〈x, y〉| > 0

is a nonnegative quadratic polynomial in t and thus it has nonpositive discriminant: 4|〈x, y〉|2 −
4〈x, x〉〈y, y〉 6 0, which is what we intended to prove.

Proposition 22.0.2. The function x → ‖x‖ =
√
〈x, x〉 is a norm.

Proof. First of all, by the definition of the inner product and norm, ‖x‖ = 0 iff x = 0 and
‖λx‖ = |λ|‖x‖. To prove the triangle inequality, we note that

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2<〈x, y〉 6 ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

22.1 Example: `2

Definition 22.1.1. Let

`2 = {x : N→ C|‖x‖2 = ∑
i∈N

|x(i)|2 =: ∑
i∈N

|xi|2 < ∞}

and define
〈x, y〉 = ∑

i∈N

xiyi

which, by Cauchy-Schwarz is well-defined on `2.

Proposition 22.1.2. `2 is complete thus it is a Hilbert space.

Proof. If {xn}n∈N is a Cauchy sequence in `2, then for every i ∈ N the number sequence of the
ith component {(xn)i}n∈N is Cauchy (indeed |(xn)i − (xm)i|2 6 ‖xn − xm‖2). Let yi = limn(xn)i.

We need to show that y ∈ `2, and y is the limit of xn. Let n0 be s.t. (∀n, m > n0), (‖xn− xm‖ <
1). The triangle inequality implies that ∀n > n0, ‖xn‖ 6 C where C = 1 + ‖xn0‖. It follows that,

for all n,
n

∑
i=1
|yi|2 = lim

k→∞

n

∑
i=1
|(xk)i|2 6 C and since |yi| are positive and the sums are bounded, the
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sum converges to ‖y‖2 6 C, that is y ∈ `2. Similarly, since limk→∞ ∑n
i=0 |(xk)i − yi|2 = 0 for any

n, by the above we can use dominated convergence to show that ‖xk − y‖ → 0.

Proposition 22.1.3. The inner product is a continuous function from H × H to C. In particular, if
{(xn, yn)}n∈N converges to (x, y) then 〈xn, yn〉 → 〈x, y〉.

Proof. By Cauchy-Schwarz, as ‖h1‖, ‖h2‖ → 0 we have,

|〈x + h1, y + h2〉 − 〈x, y〉| = |〈x, h2〉+ 〈h1, y〉+ 〈h1, h2〉| 6 ‖x‖‖h1‖+ ‖y‖h2‖+ ‖h1‖‖h2‖ → 0

Proposition 22.1.4 (The parallelogram law).

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (P.L.)

Proof. A straightforward calculation, see (69) above.

We see that a Hilbert space is a complete normed space where the norm comes from an inner
product. A natural and important question arises: given a norm, can we always define an inner
product that induces the norm? The answer is no and, remarkably, (P.L.) is the necessary and
sufficient condition for the norm to come from an inner product.

Proposition 22.1.5. Let S be a complete normed space, with norm ‖ · ‖. Then the norm comes from an
inner product iff it satisfies the parallelogram law.

Proof. We have already shown that an inner-product-induced norm satisfies the parallelogram
law. In the opposite direction, a calculation assuming the existence of an inner product leads the
following explicit formula for the inner product, called the polarization identity:

〈x, y〉 = 1
4
(
‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2) ∀ x, y ∈ H

(for Hilbert spaces over R it has the form 〈x, y〉 = 1
4

(
‖x + y‖2 − ‖x− y‖2)).

It remains to check that assuming the parallelogram law the formula above defines an inner
product (meaning: with properties (1)...(3) above). This is elementary, but by no means trivial!
See original proof by P. Jordan & J. von Neumann, Annals, 1935. A geometric argument based
on Euclid’s three line theorem is N. Falkner, MAA 100,3, (1993).

Corollary 22.1.6. The inner product is continuous.

22.2 Orthogonality

The notion of orthogonality, x ⊥ y if by definition 〈x, y〉 = 0 obviously extends to general Hilbert
spaces. So does the following

Proposition 22.2.1 (Pythagorean equality). If x1, ..., xn are pairwise orthogonal, then∥∥∥∥∥ n

∑
i=1

xi

∥∥∥∥∥
2

=
n

∑
i=1
‖xi‖2
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Proof. ∥∥∥∥∥ n

∑
i=1

xi

∥∥∥∥∥
2

=

〈
n

∑
i=1

xi

∣∣∣∣∣ n

∑
i=1

xi

〉
= ∑

i,j6n
〈xi, xj〉 =

n

∑
i=1
〈xi, xi〉 =

n

∑
i=1
‖xi‖2

Definition 22.2.2. The linear span (linear hull, or simply span) of a set of vectors S = {vα : α ∈ A} over
the scalar field K is

span(S) =

{
k

∑
i=1

λivi

∣∣∣∣∣ k ∈N, vi ∈ S, λi ∈ K

}

22.3 The Gram-Schmidt process

Given a family {xi}i∈N of linearly independent vectors, we can construct, from them, an or-
thonormal family {ei}i∈N, inductively: start with v1 = x1; let c be s.t. v2 = cv1 + x2 ⊥ v1

(which gives c = −〈x2, v1〉/‖v1‖2). Having constructed v1, ..., vn pairwise orthogonal, choose
cn1, ..., cnn s.t. vn+1 = cn1x1 + ... + cnnxn + xn+1 is orthogonal on v1, ..., vn (this is a linear sys-
tem with nonzero determinant). Then {vi}i∈N is an orthogonal family with the property that
span({x1, ..., xn}=span({v1, ..., vn} for all n. All these vi are nonzero vectors, and an orthonormal
family is simply given by ei = vi/‖vi‖.

Proposition 22.3.1. Let {xi}i∈N be a set of vectors in H and let V be the closure of span({xi}i∈N). We
assume that V is infinite dimensional (the finite dimensional case is similar, and simpler). Then there exists
an orthonormal set {ei}i∈N such that V is the closure of span({ei}i∈N).

Proof. We can assume w.l.o.g. that {xi}i∈N are linearly independent, since we can inductively

eliminate the dependent vectors without affecting the span. With πvx =
〈v, x〉
〈v, v〉v, the Gram-

Schmidt procedure is:

v1 = x1, e1 =
v1

‖v1‖

v2 = x2 − πv1 x2, e2 =
v2

‖v2‖
...

...

vk = xk −
k−1

∑
j=1

πvj xk, ek =
vk

‖vk‖
.

· · ·

Note that, for all k ∈ N, we have span{x1, ..., xk} =span{v1, ..., vk}, implying that span{xi : i ∈
N} = span{vi : i ∈N} =span{ei : i ∈N}, hence the closures of these spans also coincide.

22.4 A very short proof of Cauchy-Schwarz

Proof. In case x, y are linearly dependent the inequality is an equality. Otherwise w.l.o.g., we may
assume ‖x‖ = ‖y‖ = 1. Define e1 = x and let e2 be obtained from e1 and y by Gram-Schmidt.
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Then y = y1e1 + y2e2 and
|〈x, y〉|2 = |y1|2 6 |y2

1|+ |y2
2| = 1

22.5 Orthogonal projections

In the following, H is a Hilbert space.

Definition 22.5.1 (The orthogonal complement of a space). If S is a subspace ofH, then its orthogonal
complement, S⊥ is the closed linear subspace (check these properties!) of H defined by

S⊥ = {x ∈ H : (∀y ∈ S)(〈x, y〉 = 0)}

The sum of two subspaces V1,V2 is defined by

V1 + V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}

If V1 ∩ V2 = {0}, then the sum is direct, written V1⊕V2 and for any x ∈ V1⊕V2 there is a unique pair
v1, v2, vi ∈ Vi s.t. x = v1 + v2 (check!).

Lemma 22.5.2 (Orthogonality and an extremal property). IfM is a closed subspace of H, then

1. there is a unique µ ∈ M s.t. ∀m ∈ M, m 6= µ, ‖x−m‖ > ‖x− µ‖.

2. If µ is as in 1., then x− µ ∈ M⊥. Conversely, if y ∈ M is s.t x− y ∈ M⊥, then y = µ.

Proof. 1. Let d = infy∈M ‖x− y‖. Since 0 ∈ M, d 6 ‖x‖. Thus there is a sequence {ym}m∈N in
M s.t. d− ‖x− ym‖ → 0. We show that this sequence is convergent to some µ ∈ M. Note that
this proves both existence and uniqueness of a µ ∈ M s.t. ‖x− µ‖ is minimal.

Since M is a closed subspace of the complete Hilbert space H, it suffices to show that
{ym}m∈N is Cauchy. Here we use the parallelogram law:

‖ym − yn‖2 = ‖(x− yn)− (x− ym)‖2 = 2‖x− yn‖2 + 2‖x− ym‖2 − ‖2x− yn − ym‖2

= 2‖x− yn‖2 + 2‖x− ym‖2− 4‖x− 1
2 (yn + ym)‖2 6 2‖x− yn‖2 + 2‖x− ym‖2− 4d2 → 0 as n, m→ ∞

2. Next we show that x− µ ∈ M⊥. Let y ∈ M be arbitrary and define m = µ− αy. Then

‖x−m‖2 = ‖x− µ‖2 + |α|2‖y‖2 + 2<(α〈x− µ, y〉

Assume 〈x− µ, y〉 6= 0, write 〈x− µ, y〉 = |〈x− µ, y〉|eiϕ and choose α = −|α|eiϕ. We get

‖x−m‖2 = ‖x− µ‖2 + |α|2‖y‖2 − 2|α||〈x− µ, y〉| < d2

if |α| < 2|〈x− µ, y〉|‖y‖−2, a contradiction.
Finally, if y ∈ M is s.t. x− y ∈ M⊥, then in particular x− y ⊥ y− µ, hence

‖x− µ‖2 = ‖x− y‖2 + ‖y− µ‖2 = d2 + ‖y− µ‖2 ⇒ y = µ
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Corollary 22.5.3. If M is a closed subspace of H, then any x ∈ H can be uniquely written as x =

m + m⊥ with m ∈ M and m⊥ ∈ M⊥. Hence H =M⊕M⊥.

Definition 22.5.4 (Orthogonal projections). LetM be a closed subspace of H andM⊥ its orthogonal
complement. Let x = m + m⊥ with m ∈ M and m⊥ inM⊥and define

πMx = m; πM⊥x = m⊥

The operator πM is called the orthogonal projection onM.

Proposition 22.5.5. 1. The operator πM is the identity onM, and is idempotent: (πM)2 = πM.
2. Furthermore, πM⊥ is the orthogonal projection onM⊥ and (πM⊥)2 = πM⊥ .
3. We have (M⊥)⊥ =M.

Proof. 1. If t ∈ M, then the unique decomposition of t inM⊕M⊥ is t = t+ 0 and thus πMt = t.
Since, by definition, πMx ∈ M for any x ∈ H, we have (πM)2 = πM.

2. The space M⊥ is also linear and closed, because of the continuity of the scalar product.
Now, by the uniqueness of the decomposition x = m + m⊥ and the fact that m ⊥ M⊥, Lemma
22.5.2 implies that m⊥ = πM⊥x.

3. Clearly any vector in M is in (M⊥)⊥. Conversely, x ∈ (M⊥)⊥ ⇒ πM⊥x = 0 ⇒ x =

πMx ∈ M.

Corollary 22.5.6. 1. The closure of a subspaceM⊂ H isM = (M⊥)⊥.
IfM is a closed subspace of H, then

πM + πM⊥ = I

where I is the identity on H.

22.6 Bessel’s inequality, Parseval’s equality, orthonormal bases

Theorem 22.6.1 (Bessel’s inequality). Let {ei}i∈N be an orthonormal sequence in H. Then

∞

∑
i=1
|〈x, ei〉|2 6 ‖x‖2

Proof. Let Hn = span({e1, ..., en}) := {c1e1 + · · · cnen|ci ∈ C}. Clearly, Hn is a closed subspace of
H. We can then write

x = πHn x + x⊥ =
n

∑
i=1
〈x, ei〉ei + x⊥

and, by the Pythagorean equality,

‖x‖2 = ‖πHn x‖2 + ‖x⊥‖2 > ‖πHn x‖2 =
n

∑
i=1
|〈x, ei〉|2

Since this holds for any n, taking n→ ∞, the result follows.
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Corollary 22.6.2. Let {eα}α∈A be an orthonormal family in H. Then, for any x ∈ H

∑
α∈A
|〈x, eα〉|2 := sup

α1,...,αn∈A,n∈N

n

∑
i=1
|〈x, eαn〉|2 6 ‖x‖2

and the set {α ∈ A : 〈x, eαn〉 6= 0} is countable.

Proof. Only countability needs to be shown. It is well known however that an uncountable sum
of strictly positive numbers is infinity.

Definition 22.6.3. An orthonormal set {eα}α∈A is called an orthonormal basis (Hilbert space basis)
in the Hilbert space H if any x ∈ H can be written as a finite or countable infinite linear combination

x =
∞

∑
k=1

ckeαk

Note 22.6.4. 1. An orthonormal basis is not a vector space basis (unless H is finite-dimensional).

2. Using Bessel’s inequality, Cauchy-Schwarz and dominated convergence, we see that ck = 〈x, ek〉,
hence

x =
∞

∑
k=1
〈x, eαk〉eαk (70)

3. If {eα}α∈A is an orthonormal basis and 〈x, eα〉 = 0 for all α ∈ A, then x = 0.

Proposition 22.6.5. Any separable Hilbert space H has a countable orthonormal basis.

Proof. Let {vi}i∈N be a countable dense set in H. The closure of the span of {vi}i∈N is, of course,
H, and so is the span of {ei}i∈N, constructed by Gram-Schmidt. Note that, by Bessel’s inequality,

∞

∑
k=1
|〈x, ek〉|2 6 ‖x‖2 ⇒

∞

∑
k=1
〈x, ek〉ek ∈ H

The difference x−
∞

∑
k=1
〈x, ek〉ek is orthogonal to all the ek, k ∈N, thus, by Note 22.6.4 3, is zero.

Theorem 22.6.6. If {ei}i∈N is an orthonormal set in a separable Hilbert space H, then the following are
equivalent:

a. (Completeness) If ∀j, 〈x, ej〉 = 0, then x = 0.

b. (Parseval’s identity) ∀x ∈ H, ‖x‖2 =
∞

∑
k=1
|〈x, ek〉|2.

c. {ei}i∈N is an orthonormal basis for H.

Proof. (b.⇒ a.) is clear.
(a.⇒ c.) We see that x−∑k∈N〈x, ek〉ek is orthogonal to all ej, j ∈N, and thus it is zero.
(c.⇒ b.) This is simply the Pythagorean theorem plus the continuity of the norm.

Exercise 58. Let H be a Hilbert space, separable or not, and let {eα}α∈A be an orthonormal set in H.
Then, the following statements are equivalent.
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1. (Completeness condition) ∀α, 〈x, eα〉 = 0 holds iff x = 0

2. (Density condition) The span of {eα}α∈A is dense in H.

3. (Orthonormal basis condition) For any x ∈ H, 〈x, eα〉 = 0 except for a countable set (eαk)k∈N

and
x = ∑

k∈N

〈x, eαk〉eαk

4. (Maximality condition) If {e′β}β∈B is an orthonormal set in H which contains {eα}α∈A, then
{e′β}β∈B = {eα}α∈A.

5. (Parseval’s identity condition) ∀x ∈ H, ‖x‖2 = ∑
α∈A
|〈x, eα〉|2.

Exercise 59. Show that the S = {1, x, x2, ...} is a linearly independent set in H = L2([−1, 1])
whose span is dense in H. Thus Gram-Schmidt produces an orthonormal system of polynomials

Pn out of S. (
√

2
2n+1 Pn are the Legendre polynomials.) Thus, any f ∈ H can be written as

f = ∑k∈N ckPk. Show that, although as mentioned, the span of S is dense in H, the set { f ∈ H :
f = ∑k∈N ckxk} is a strict subspace of H. Is it closed? Can you identify it?

Note 22.6.7. Nonseparable Hilbert spaces rarely occur in applications. A prototypical example is

`2(A) :=

{
f : A→ C

∣∣∣∣∣∑
α∈A
| f (α)|2 < ∞

}

when A is not countable.
Also, Corollary 22.6.2 shows that even in non-separable Hilbert spaces we only need a countable

family at a time.

Theorem 22.6.8. In a Hilbert space H, any orthonormal set S is contained in an orthonormal basis for
H.

Proof. Let E be the family of all orthonormal sets containing S ordered by inclusion. If C is
a chain in E , then it has a maximal element, namely the union of the sets in C as it is easily
verified. Now, Zorn’s Lemma implies that E has a maximal element, which by Exercise 58 4, is a
basis for H.

An example of a Hilbert basis in `2 is the set ek = (0, .., 1, 0...), with 1 in the kth position.

Definition 22.6.9. Let H1,H2 be Hilbert spaces and U : H1 → H2 be linear and norm preserving, that
is ‖Ux‖2 = ‖x‖1 for all x ∈ H1. Then U is called an isometry.

Let H1,H2 be Hilbert spaces and U : H1 → H2 be linear, inner product preserving, 〈Ux, Uy〉 =
〈x, y〉, and onto. Then U is called unitary.

Proposition 22.6.10. U is unitary iff it is an isometry and onto.

Note 22.6.11. Unitary maps are isomorphisms, w.r.t the structure of a Hilbert space.

Proof. If U is unitary, then ‖Ux‖2 = 〈Ux, Ux〉 = 〈x, x〉 = ‖x‖2. Conversely, the polarization
identity shows that any isometry preserves the inner product.
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Proposition 22.6.12 (Any two separable Hilbert spaces are isomorphic). Any separable Hilbert space
H is isomorphic to `2.

Proof. Let {en}n∈N be an orthonormal basis inH. Define U : H → `2 by U(x) = (〈x, e1〉, ..., 〈x, en〉, ...)
and check that this is an isometry.

For a nonseparable Hilbert space with a Hilbert basis {eα}α∈A, a similar statement holds,
except `2 = `2(N) is replaced by the more general `2(A), for an adequate set A.

23 Normed vector spaces

Definition 23.0.1. 1. A vector space V endowed with a norm ‖ · ‖ is called a normed vector space.

2. Two norms ‖‖1, ‖‖2 on the vector space V are equivalent if there exist two positive constants c1 c2

s.t. ∀v ∈ V, c1‖v‖1 6 ‖v‖2 6 c2‖v‖1.

3. A Banach space is a normed space which is complete w.r.t the norm topology, that is the distance
between x, y is ‖x− y‖.

4. A series ∑n∈N vn of vectors in a normed space is absolutely convergent if ∑n∈N ‖vn‖ converges.

Proposition 23.0.2. An absolutely convergent series ∑n∈N vn is Cauchy. In the opposite direction, if
∑n∈N vn is Cauchy, then there exists a strictly increasing sequence (ni)i∈N in N s.t. n1 = 1 and s.t.,
with wi = ∑

ni6j<ni+1

vj, the series ∑
i∈N

wi is absolutely convergent.

Proof. Assume ∑
n∈N

vn is absolutely convergent, and let ε > 0. Then, the series of norms ∑
n∈N

‖vn‖

is Cauchy and there is an n0 s.t. for all m > n > n0 we have∥∥∥∥∥ m

∑
j=n

vj

∥∥∥∥∥ 6 m

∑
j=n
‖vj‖ < ε

Hence ∑
n∈N

vn is Cauchy.

In the opposite direction, assume ∑n∈N vn is Cauchy. Choose ε i = 2−i, i ∈ N, let n1 = 1 and,

inductively for i > 1, define ni > ni−1 so that ∀n > m > ni we have

∣∣∣∣∣ ∑
m6j6n

vi

∣∣∣∣∣ 6 ε i. Defining

wi = ∑
ni6j<ni+1

vj, the result follows.

Theorem 23.0.3. A normed vector space V is complete iff every absolutely convergent series in V con-
verges.

Proof. Note first that, in a linear space, every Cauchy sequence converges iff every Cauchy series
converges. Let ∑n∈N vn be Cauchy in V. With the construction of Proposition 23.0.2, the series
wi = ∑

ni6j<ni+1

vj is absolutely convergent, thus convergent, to some v ∈ V. Then, for any integer

m ∈ [ni, ni+1),

∥∥∥∥∥v− ∑
j>m

vj

∥∥∥∥∥ 6
∥∥∥∥∥ ∑

m6j<ni

vj

∥∥∥∥∥+
∥∥∥∥∥v−∑

k>i
wi

∥∥∥∥∥ hence ∑
n∈N

vn also converges to v.
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Proposition 23.0.4. 1. If V1, V2 are normed vector spaces, then the product space V1×V2 is a normed
vector space under the product norm defined, for vi ∈ Vi, by ‖(v1, v2)‖ := ‖v1‖1 + ‖v2‖2.

2. If V ′ is a closed linear subspace of V, then the quotient space V/V ′ is a normed vector space under
the quotient norm

‖v + V ′‖ := inf
v′∈V′
{‖v + v′‖} (71)

Proof. This is easy to check.

Note 23.0.5. Recall that all norms in Cn are equivalent. Therefore, the product norm is equivalent to
many other choices, s.a. max{‖‖1, ‖‖2}.

23.1 Functionals and linear operators

Definition 23.1.1. 1. A linear operator (or map) between two vector spaces V1, V2 over the same
scalar field is a function L : V1 → V2 which satisfies L(ax + by) = aLx + bLy for all x, y ∈ V1 and
all scalars a, b.

2. A linear operator having the scalar field as the target space is called linear functional.

3. An operator L : V1 → V2 between two normed vector spaces V1, V2 is called bounded if there exists
a constant C ∈ [0, ∞) s.t., for all v ∈ V1 we have

‖Lv‖2 6 C‖v‖1 (72)

4. If V1, V2 are normed vector spaces, then L(V1, V2) denotes the space of linear bounded operators from
V1 to V2.

5. A Banach algebra is a Banach space which is an algebra for which the norm of the product is
bounded by the product of the norms, that is, ‖xy‖ ≤ ‖x‖ ‖y‖.

6. If X is a normed vector space over K = R or C, then the space of its bounded linear functionals
X∗ := L(X, K) is the very important dual of X.

Note 23.1.2. 1. L ∈ L(V1, V2) iff L is linear from V1 to V2 and

‖L‖ := sup
‖v‖1=1

‖Lv‖2 < ∞ (73)

The quantity ‖L‖ is called the norm of the linear map L.

2. L(V1, V2) is a normed space with the operator norm.

Proposition 23.1.3. Let Y be a complete normed space and X a normed space. Then:
a) L(X, Y) is a complete normed space, and
b) L(Y, Y) with the operator norm is a Banach algebra.

Proof. a) If (Tn)n is a Cauchy sequence in L(X, Y), then for any x ∈ X (Tnx)n is Cauchy in Y,
thus convergent. Now, Tx = limn Tnx defines a linear operator T ∈ L(X, Y), since it is easy to
check that ‖T − Tn‖ → 0 and ‖Tn‖ → ‖T‖ as n→ ∞.
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b) Let T1, T2 ∈ L(Y, Y). We have

‖T1T2y‖ = ‖T1(T2y)‖ 6 ‖T1‖‖T2y‖ 6 ‖T1‖‖T2‖‖y‖; thus ‖T1T2‖ 6 ‖T1‖‖T2‖

The result follows from a).

Homework, due Jan 22, 2019 (Tue)
Folland: 7,9,10,16 (pp.155–156) and turn in:

Exercise 60 (Recitation exercise). Let X be Hausdorff. Prove that X∗ (the one-point compactifi-
cation of X) is Hausdorff iff X is locally compact (LCH).

Exercise 61. 1. LetH be a Hilbert space, M a closed subspace ofH and P = πM the orthogonal
projection on M. Show that P is bounded and that for all x, y in H we have

〈Px, y〉 = 〈x, Py〉 (∗)

For a bounded operator, the symmetry property above is called self-adjointness.

2. Recalling that orthogonal projections are also idempotent (P2 = P), prove the following
converse: Let P be a bounded operator from H to itself which is self-adjoint (that is satisfies
(*)) and idempotent. Show that there is a closed subspace M of H such that P = πM.

23.2 The Hahn-Banach theorem

This is a fundamental theorem that guarantees the existence of extensions of bounded linear
functionals defined on subspaces of a given normed linear space.

Let X be a normed space over K = R or C. Then, since K is complete, X∗ is a Banach space.
Let ϕ ∈ X∗.

Assume first K = C. If we write ϕ(x) = u(x) + iv(x) where u, v are real-valued, then u, v are
linear. Note that

iϕ(x) = ϕ(ix) = u(ix) + iv(ix) = iu(x)− v(x)

hence
u(ix) = −v(x); v(ix) = u(x); ϕ(x) = u(x)− iu(ix) (74)

Proposition 23.2.1. Let X be a normed space and ϕ ∈ L(X, C). If ϕ = u+ iv, where u, v are real-valued,
then u, v ∈ L(X, R) with ‖u‖ = ‖v‖ = ‖ϕ‖.

Proof. For any x ∈ X we have u(x) = <ϕ(x) and thus |u(x)| 6 |ϕ(x)| implying ‖u‖ 6 ‖ϕ‖. In the
opposite direction, let ε > 0. Choose x s.t. ‖ϕ(x)‖ > (1− ε)‖ϕ‖‖x‖, and write ϕ(x) = |ϕ(x)|eiθ .
Then, ϕ(e−iθx) = |ϕ(x)| = u(xe−iθ). Since ε is arbitrary, it follows that ‖u‖ > ‖ϕ‖.

Definition 23.2.2. A sublinear functional p on X is a map from X to R s.t. for all x, y ∈ X and λ > 0,

p(x + y) 6 p(x) + p(y) and p(λx) = λp(x)

Norms and seminorms are examples of sublinear functionals.
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Theorem 23.2.3 (The Hahn-Banach theorem). Let X be a vector space over R and M ⊂ X a subspace.
Let ϕ be a linear functional on M s.t. ϕ(m) 6 p(m) ∀m ∈ M, for some sublinear functional p defined on
X. Then, there exists a linear functional Φ : X → R which extends ϕ s.t. Φ(x) 6 p(x) ∀x ∈ X.

The extension is highly non-unique, in general.

Proof. We first show that, given an x ∈ X \ M, there is an extension Φ of ϕ to span(M ∪ {x}).
For this we define a Φ(x) and, for t ∈ R and m ∈ M, let Φ(m + tx) = ϕ(m) + tΦ(x) where we
need to arrange

Φ(m + tx) 6 p(m + tx)

for all real t. Definitely this holds when t = 0. For t 6= 0, writing σ =sgn(t), we have

Φ(m + tx) = |t|
(

ϕ(m′) + σΦ(x)
)

(where m′ = m/|t|) and we need to arrange

sup
s>0,m∈M

ϕ(m)− p(m− sx)
s

6 Φ(x) 6 inf
t>0,m′∈M

p(m′ + tx)− ϕ(m′)
t

Clearly, this is possible iff the inf on the right side is no less than the sup on the left side, which
in turn holds if, for all m ∈ M, s, t > 0, we have

ϕ(m)− p(m− sx)
s

6
p(m + tx)− ϕ(m)

t

which can be rewritten as

ϕ((s + t)m) 6 p(sm + stx) + p(tm− stx)

which holds since

p((s + t)m) = p(sm + stx + tm− stx) 6 p(sm + stx) + p(tm− stx)

The rest of the proof is just a straightforward application of Zorn’s lemma: order the functions
Φ with the required properties (thought of as sets pairs of points) by set inclusion, and note that
the union of a chain of functions Φ is again a function with the required properties.

Theorem 23.2.4 (The Hahn-Banach theorem, complex version). Let X be a vector space over C and
M ⊂ X a subspace. Let ϕ be a linear functional on M s.t. |ϕ(m)| 6 p(m) ∀m ∈ M, for some seminorm
on X. Then, there exists a linear functional Φ : X → R which extends ϕ s.t. |Φ(x)| 6 p(x) ∀x ∈ X.

Proof. A simple exercise, using the third equality in (74).

Some important consequences of the complex Hahn-Banach theorem are in characterizing the
duals of normed vector spaces.

Theorem 23.2.5. Let X be a normed vector space.

1. If M is a closed subspace of X and x /∈ M, then there exists a functional ϕ ∈ X∗ s.t. ‖ϕ‖ = 1 and
ϕ(x) =dist(x, M) := infm∈M ‖x−m‖.
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2. For any x 6= 0 in X there is a ϕ ∈ X∗ s.t. ‖ϕ‖ = 1 and ϕ(x) = ‖x‖.

3. The functionals in X∗ separate the points of X.

4. (The double dual, X∗∗.) The points x ∈ X induce linear functionals x̂ on X∗ by

x̂(ϕ) = ϕ(x)

The map x 7→ x̂ is a linear isometry from X into (possibly a subspace of) X∗∗.

Proof. 1. Let M′ be the space generated by M and x and define, for y = m + tx ∈ M′, ϕ(y) =

tdist(x, M). Now we simply check that Hahn-Banach applies to extend ϕ from M′ to the whole
of X.

2. Follows from 1, taking M = {0}.
3. If x 6= y, then z = x− y 6= 0 and the result follows from 2.
4. It is clear that the functional x̂ is linear. Now,

|x̂(ϕ)| = |ϕ(x)| 6 ‖ϕ‖‖x‖

thus ‖x̂‖ 6 ‖x‖, while 2. above implies ‖x̂‖ > ‖x‖.

Definition 23.2.6. 1. (the weak topology) Let X be a normed vector space. The weak topology on
X is the topology induced by X∗ on X, defined as the coarsest topology s.t. all elements of X∗ are
continuous. Equivalently, a net (xα)α∈A in X converges weakly to x iff ∀ϕ ∈ X∗, the net of complex
numbers (ϕ(xα))α∈A converges to ϕ(x).

2. (the weak∗ topology) This is a topology on X∗ which is weaker than the weak topology on X∗.
This is the topology of pointwise convergence: (ϕα)α∈A converges to ϕ iff (ϕα(x))α∈A converges to
ϕ(x) for for any x in X.

Three topologies play an important role on bounded linear operators between two normed
spaces. The finest is the operator norm topology, Tn → T iff ‖Tn − T‖ → 0, and the following
two.

Definition 23.2.7. Let X, Y be Banach spaces and let (Tα)α∈A be a generalized sequence of operators.

1. (Tα)α∈A converges to T in the strong operator topology iff, for all x ∈ X, (Tαx)α∈A converges to
Tx in the norm of Y.

2. (Tα)α∈A converges to T in the the weak operator topology iff, for all x ∈ X, (Tαx)α∈A converges
to Tx in the weak topology on Y.

An important result about weak∗ topology is the weak∗ compactness of the closed unit ball
in X∗:

Theorem 23.2.8 (Banach-Alaoglu). If X is a normed vector space, the closed unit ball B∗ = {ϕ ∈
X∗|‖ϕ‖ 6 1 is compact in the weak∗ topology.
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Proof. This is a quite straightforward consequence of Tychonoff’s theorem. The set of all complex-
valued functions on X s.t. for all x ∈ X | f (x)| 6 ‖x‖ is the set

F = ∏
x∈X

Fx; Fx := {z ∈ C||z| 6 ‖x‖}

By Tychonoff’s theorem, F is compact in the topology of pointwise convergence, the same as
the weak∗ topology on the subset B∗ of F consisting of linear functionals. Thus the statement
is equivalent to saying that B∗ is a closed subset of F, which in turn is the same as saying that
linearity is preserved when taking limits of convergent nets, which is immediate.

Recall that dual spaces are always complete. Given the natural embedding X̂ of X in X∗∗

given by 4., the closure of X̂ is identified with the completion of X.

Definition 23.2.9. X is reflexive if X∗∗ = X̂.

An important example of a reflexive space is a Hilbert space as follows from the following
theorem.

23.3 The Riesz representation theorem

Let H be a Hilbert space, say over C, and y ∈ H. The function x 7→ 〈x, y〉 from H to C is a
continuous linear functional on H. The converse is an important result.

Proposition 23.3.1 (The Riesz representation theorem). If Λ is a continuous linear functional from
H to C, then there is a unique y ∈ H s.t.

∀x ∈ H, Λx = 〈x, y〉 (75)

In particular, H is isomorphic to its dual, H∗

Proof. Uniqueness follows from the fact that 〈x, y〉 = 〈x, y′〉 for all x ∈ H iff y = y′.
Existence of a y: Let M = {x ∈ H : Λx = 0}. Clearly M is a closed linear subspace of H.

Now if M = H then 0 is the only y s.t. (75) holds, and we are done. Otherwise, we claim that
M⊥ is one dimensional. Indeed, let 0 6= e ∈ M⊥; note that this implies Λe 6= 0. We rescale e so
that Λe = 1. Let 0 6= x ∈ M⊥ and let Λx = b (again, necessarily b 6= 0). Then

x− be ∈ M⊥ and x− be ∈ M (since Λ(x− be) = 0) ⇒ x− be = 0

This means x is linearly dependent on e, and M⊥ is one-dimensional. Let y = e
‖e‖2 . For x ∈ H

we have

x = πMx + πex = πMx +
〈x, e〉
‖e‖2 e; hence Λx = 〈x, y〉

and it follows that, for all x ∈ H, |Λx| 6 ‖x‖‖e‖ hence

‖Λ‖ 6 1
‖e‖
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For the norm, we note the inequality above and the fact that by definition
|Λe|
‖e‖ =

1
‖e‖ , and thus

‖Λ‖ = 1
‖e‖ = ‖y‖

23.4 Adjoints

Let A : H → H be a bounded operator. Its adjoint is defined as the operator A∗ with the property

∀x, y ∈ H, 〈Ax, y〉 = 〈x, A∗y〉

Exercise 62. A. Use the Riesz representation theorem to show that A∗ defined above exists and is unique.
Check that A∗∗ = A.

B. For fixed y, 〈x, A∗y〉 is a linear functional, and by the Riesz representation theorem

‖A∗y‖ = sup
‖u‖=1

|〈u, A∗y〉| = sup
‖u‖=1

|〈Au, y〉| 6 ‖A‖‖y‖

This implies ‖A∗‖ 6 ‖A‖. Then ‖A‖ = ‖A∗∗‖ 6 ‖A∗‖, hence ‖A‖ = ‖A∗‖. Thus A∗ is a bounded
operator with the same norm as A. Check that ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.

Note 23.4.1. 1. Let H be a Hilbert space. Let (en)n∈N be a countably infinite orthonormal basis in
H. Check that the sequence (en)n∈N converges weakly to zero, but is has no norm-convergent
subsequence. Check that the weak topology on a Hilbert space H is the same as the norm topology
iff H is finite-dimensional.

2. It can be shown that if B is a Banach space (and more generally, in fact) and the weak topology on
X∗ coincides with the weak∗ topology on X∗, then B is reflexive.

24 Consequences of the Baire category theorem

Definition 24.0.1. A Baire space topological space such that every intersection of a countable collection of
open dense sets in the space is also dense.

As a reminder, the Baire category theorem states

Theorem 24.0.2 (Baire category theorem, BCT). 1. Every complete metric space is a Baire space.
Equivalently, a non-empty complete metric space is not a countable union of nowhere-
dense sets [equivalently, nowhere-dense closed sets].

2. Every locally compact Hausdorff space is a Baire space.

This theorem has a number of fundamental consequences in analysis. In the following, we
use the notations for open balls in a normed space:

Ba(x) = {y ∈ X : ‖y− x‖ < a}; Ba(0) ≡ Ba

Theorem 24.0.3 (Uniform boundedness principle). 1. Assume X is a Banach space, Y is a normed
space, and A ⊂ L(X, Y). Then(

∀x ∈ X, sup
T∈A
‖Tx‖ < ∞

)
⇔ sup

T∈A
‖T‖ < ∞
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2. (Generalization) If X and Y are normed spaces and there is a non-meager set X1 ⊂ X such that
(∀x ∈ X1, sup

T∈A
‖Tx‖ < ∞), then supT∈A ‖T‖ < ∞.

Proof. 1. (⇐) is trivial. (⇒) For n ∈N let

En = {x ∈ X : sup
T∈A
‖Tx‖ 6 n} = ∩T∈A{x ∈ X : ∀T ∈ A, ‖Tx‖ 6 n}

Clearly, En are closed and X = ∪
n∈N

En. Then, there is an m s.t. Em has nonempty interior: ∃a, x0

s.t. Ba(x0) ⊂ Em. Take any u ∈ X with ‖u‖ = 1. Then both x0 and x0 + au are in Ba(x0) and

Tu = 1
a T(au) = 1

a T(x0 + au− x0)

hence ‖Tu‖ 6 1
a‖T(x0 + au)‖+ 1

a‖Tx0‖ 6
2m
a

and thus sup
‖u‖=1
T∈A

‖Tu‖ 6 2m
a

2. Copy the proof above, basically.

Theorem 24.0.4 (The open mapping theorem). Let X, Y be Banach spaces and T ∈ L(X, Y) be
surjective. Then if O is open in X, T(O) is open in Y.

Proof (an adaptation of Reed-Simon p. 82). We start with some straightforward preparatory steps
to reduce the complexity of the more difficult part of the proof.

a) It is enough to prove that for any x and Nx a neighborhood of it, T(Nx) is a neighborhood
of T(x).

b) Since, by linearity, ∀y,Ny we have

T(y +Ny) = T(y) + T(Ny)

it suffices to prove that ∃N0 a neighborhood of 0 ∈ X s.t. T(N0) is a neighborhood of 0 ∈ Y.
Note also the scaling property

T(Br) = rT(B1)

c) Clearly b) holds if there exist r, r′ > 0 s.t.

T(BX
r ) ⊃ BY

r′

From now on we will omit the superscripts X but keep the superscripts Y.

d) Again by linearity it is enough to show that for some r, T(Br) contains some ball, not neces-
sarily centered at zero, that is, T(Br) has nonempty interior.

Now, since (∀y ∈ Y)(∃x ∈ X)(y = Tx) (and clearly x ∈ T(Bn) for some n) we must have

Y =
∞⋃

n=1

T(Bn) ⊆
∞⋃

n=1

T(Bn)

Hence, by BCT (∃n ∈ N)(T(Bn)
◦ 6= ∅) 12. By linearity, this happens for all n: there exist

12 A◦ is as usual the interior of A.

101/186



Math 6211+6212, Real Analysis I+II

ε > 0, y ∈ Y s.t.
T(B1/2) ⊃ BY

2ε(y0) (76)

Finally, for any y ∈ BY
ε , y0 and y0 + y ∈ BY

2ε(y0), so y ∈ T(B1/2) + T(B1/2) ⊂ T(B1). Hence

T(B1) ⊃ BY
ε (77)

What we really need however is nontrivially stronger 13, namely that,

∃n, T(Bn)
◦ 6= ∅

which follows from the lemma below.

Lemma 24.0.5. Let T ∈ L(X, Y). If T(B1) contains a ball BY
ε , then T(B1) ⊂ T(B2).

(In fact T(B1) ⊂ T(B1+δ) for any δ > 0.)

Proof. Let y ∈ T(B1) and ε as above. There are points x in B1 s.t. T(x) is arbitrarily close to
y. Let x1 ∈ B1 be s.t. y − T(x1) ∈ BY

ε/2 ⊂ T(B1/2) (by scaling). Now let x2 ∈ B1/2 be s.t.
(y− T(x1))− T(x2) ∈ BY

ε/4 and, inductively, let xn+1 ∈ B1/2n be s.t. y− T(x1)− · · · − T(xn+1) ∈
BY

ε/2n . But you see that x = ∑n xn converges to an element in B1/2+1/4+... ⊂ B2, and by continuity
y = Tx, thus y ∈ BY

2 . (By modifying the selection of {xn}, you can prove the result above with
1 + δ instead of 2.)

Theorem 24.0.6 (Inverse mapping theorem). If T ∈ L(X, Y) is one to one onto, then T−1 is also
continuous, T−1 ∈ L(Y, X) (continuous linear bijections are bicontinuous).

Proof. T is one-to-one, thus onto, thus open, implying by definition continuity of T−1.

Definition 24.0.7. If T ∈ L(X, Y), its graph is

Γ(T) = {(x, y) ∈ X×Y : y = Tx} = {(x, Tx) : x ∈ X}

Theorem 24.0.8 (Closed graph theorem). Let X, Y be Banach spaces and T : X → Y be linear. Then
T ∈ L(X, Y) iff Γ(T) is a closed subset of X×Y w.r.t the product norm.

(Note that here we do not assume injectivity or surjectivity.)

Proof. Assume T is continuous. If {(xn, T(xn))}n∈N converges to (x, y) then xn → x and Txn → y.
By continuity however, T(xn)→ Tx, thus y = Tx and (x, y) ∈ Γ(T).

In the opposite direction, since Γ(T) is a linear closed subspace of X × Y, it is itself a Banach
space. Recall that the canonical projections π1 : Γ(T) → X, π2 : Γ(X) → Y are continuous.
Note that π1(x, Tx) = x is a linear bijection between X and Γ(T), thus, by the inverse mapping
theorem, its inverse is continuous too. To finish the proof we simply note that T = π2(π

−1
1 ) is a

composition of continuous functions.
13Note that T(B1) ⊂ T(B1), but the inclusion can be strict as Exercise 64 below shows. BCT also implies that not all

T(Bn) are nowhere dense, but this means by definition that the closure of some T(Bn) has nonempty interior, which
is the same as above.
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Note 24.0.9. We see that a bounded operator between Banach spaces can fail to have a bounded inverse
only for the trivial reason that it does not have an inverse at all (that is, if it is not surjective or not
injective).

Definition 24.0.10. 1. More generally, if X, Y are Banach spaces and D(A) ⊂ X, then an oper-
ator A : D(A)→ Y is called closed if Γ(A) is closed.

2. If, in 1. above, X = Y = H is a Hilbert space, A : D(A) → H is called symmetric, or
formally self-adjoint, if for all x, y ∈ D(A) we have 〈Ax, y〉 = 〈x, Ay〉.

3. If D(A) is dense in H, the domain of the adjoint is defined as

D(A∗) = {y ∈ H : ∃z ∈ H s.t ∀x ∈ D(A), 〈Ax, y〉 = 〈x, z〉}

and we write z = A∗y (this z is unique) and A∗ : D(A∗)→ H is called the adjoint of A.

4. An operator as in 3. above is called self-adjoint if A = A∗ (meaning A is symmetric, and
D(A) = D(A∗).)

Exercise 63. (A) Show that the definition of A∗ in 3. above is correct (i.e. z is indeed unique),
and that A∗ : D(A∗)→ H is linear.

(B) Show that differentiation, ∂ := f 7→ f ′ defined on

D(∂) = {g ∈ AC([0, ∞)) ∩ L2(R+) : g(0) = 0}

is closed, but not bounded.
(C) Show that p := −i∂ defined on D(∂) above is symmetric but not self-adjoint.

Exercise 64. a) Let H = L2[0, 1]. Then the operator A defined on H by

(A f )(x) =
∫ x

0
f (s)ds

is bounded (check).

b) Show that M =ran(A) 6= H.

c) Show that (the linear space) ran(A) is not closed. (This implies A is not invertible from H
to H.) Note that Γ(A) is closed nevertheless. (Γ(A) is a closed subspace of H×H which
does not mean that the direct images of the projections π1,2 of Γ(A) are closed!)

d) What is M⊥?

e) Show that A(H)◦ = ∅ while A(H) = H.

Corollary 24.0.11. Corollary 1: Let ‖ · ‖1 and ‖ · ‖2 be two norms defined on X. Assume X is a Banach
space in both norms, and that furthermore, for some C1 > 0 and all x ∈ X we have ‖x‖1 6 C1‖x‖2. Then
the two norms are equivalent, that is, there is a C2 > 0 s.t. for all x ∈ X, ‖x‖2 6 C2‖x‖1.

Proof. Exercise. (Hint: take T = I, that is, Tx = x for all x.)

103/186



Math 6211+6212, Real Analysis I+II

Homework, due Jan 30, 2019 (Wed)
Folland: 28,30,34,37 (pp.164–165) and turn in Exercises 63 and 64 in the notes.

25 Lp spaces

Lp, p ∈ [1, ∞] spaces play a central role in all branches of analysis.

Definition 25.0.1. Let (X,M, µ) be a measure space. For f measurable on X and p ∈ R+ define

‖ f ‖p =

(∫
X
| f |pdµ

)1/p

We will show shortly that ‖‖p is a norm iff p > 1. We first check that the triangle inequality
fails for p ∈ (0, 1)

Proposition 25.0.2. [Some elementary identities]

1. If a, b > 0 and p ∈ (0, ∞), then

(ap + bp)1/p 6 a + b if p > 1 and (ap + bp)1/p > a + b if p < 1 (78)

2. If a, b > 0, a 6= b and λ ∈ (0, 1), then

aλb1−λ < λa + (1− λ)b (79)

and we have equality above if a, b > 0 and a = b or ab = 0.

Proof. 1. With x = b/a the inequality is equivalent to 1 + xp 6 (1 + x)p for x > 0; let f (x) =

1 + xp − (1 + x)p. We have f (0) = 0 and f ′(x) = p[xp−1 − (1 + x)p−1] 6 0 if p > 1 and f ′(x) > 0
otherwise and (78) follows.

2. With x as in 1., the proof is very similar: the function is now f (x) = xλ − λx − (1− λ)

which has a unique maximum at x = 1.

Corollary 25.0.3. For p ∈ (0, 1), the triangle inequality fails in any (X,M, µ) which has disjoint sets of
positive measure.

Proof. If p ∈ (0, 1), µ(E1) > 0, µ(E2) > 0 and E1 ∩ E2 = ∅ it follows that

‖ χE1 +
χE2‖p > ‖ χE1‖p + ‖ χE2‖p

Note 25.0.4. 1. Failure of the triangle inequality and other oddities when p ∈ (0, 1) make Lp for
p ∈ (0, 1) spaces quite pathological and not very useful.
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2. For p > 1, induction shows that for any n ∈N and positive numbers a1, ..., an we have

n

∑
i=1

ap
i 6

(
n

∑
i=1

ai

)p

(80)

and, relying as usual on approximation by simple functions, we could easily show that ‖‖p is a
norm for p > 1. However, we get this inequality as a byproduct of another important inequality,
Hölder’s inequality.

Theorem 25.0.5 (Hölder’s inequality). Let (X,M, µ) be a measure space. Let p ∈ (1, ∞) and let q be
the conjugate exponent, or conjugate index satisfying q−1 + p−1 = 1. Then, for any two measurable
functions f , g we have

‖ f g‖1 6 ‖ f ‖p‖g‖q

If f ∈ Lp and g ∈ Lq, then f , g ∈ L1 and in this case we have equality iff for some a, b > 0, a + b > 0
we have α| f |p = β|g|q.

Proof. W.l.o.g. we may assume ‖ f ‖p, ‖g‖q are not zero or infinity, and furthermore, that ‖ f ‖p =

‖g‖q = 1, and, by replacing f , g by their absolute values, we assume f > 0, g > 0. By Proposition
25.0.2 2., and since p−1 + q−1 = 1, we have (pointwise)

f g 6 p−1 f p + q−1gq (81)

which by integration gives

‖ f g‖1 6 p−1‖ f ‖p
p + q−1‖g‖q

q = 1 = ‖ f ‖p‖g‖q

Clearly, equality holds if we have equality a.e. in (81), and the result follows, again by Proposition
25.0.2 2.

Theorem 25.0.6 (Minkowski’s inequality). Let p ∈ [1, ∞) and f , g ∈ Lp. Then,

‖ f + g‖p 6 ‖ f ‖p + ‖g‖p (82)

Proof. For p = 1 or if ‖ f + g‖p = 0 this is clear. If p > 1 and ‖ f + g‖p 6= 0 we have

‖ f + g‖p
p =

∫
| f + g|p dµ =

∫
| f + g| · | f + g|p−1 dµ ≤

∫
(| f |+ |g|)| f + g|p−1 dµ

=
∫
| f || f + g|p−1 dµ +

∫
|g|| f + g|p−1 dµ 6

(
‖ f ‖p + ‖g‖p

) (∫
| f + g|(p−1)

(
p

p−1

)
dµ

)1− 1
p

=
(
‖ f ‖p + ‖g‖p

)
‖ f + g‖p−1

p (83)

by Hölder’s inequality if p 6= 1 (since q = p/(p− 1)). The conclusion is now straightforward.

Exercise 65. Use measure-theoretic arguments to prove Minkowski’s inequality directly from
(80).

Theorem 25.0.7. For any p ∈ [1, ∞), Lp is a Banach space w.r.t. ‖‖p.
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Proof. By Minkowski’s inequality ‖‖p satisfies the triangle inequality and the rest of the proper-
ties of a norm are immediate.

Next, recalling Theorem 23.0.3 we show that a series of Lp functions which is absolutely
convergent converges in Lp. Let ( fk)k∈N be a sequence in Lp s.t.

∑
k∈N

‖ fk‖p = S < ∞ (84)

The trick is now to let A(x) = ∑∞
k=1 | fk| and AN(x) = ∑N

k=1 | fk|. The sum of the infinite series A,
exists pointwise as a function with values in [0, ∞]. Next we check that A ∈ Lp, which follows by
monotone convergence from the fact that AN ↗ A, and

∀N ∈N, ‖AN‖p 6
N

∑
k=1
‖ fk‖p 6 S (85)

which implies that Ap thus A are finite a.e. This, in turn, implies that F = ∑∞
k=1 fk is convergent

a.e. Now, |F| 6 A pointwise shows that F ∈ Lp. It remains to show that F − ∑N
k=1 fk con-

verges to zero in Lp which follows from pointwise convergence to zero, (84), (85) and dominated
convergence.

The following result is shown in a similar way using Theorem 5.2.2 2, and the proof is left as
an exercise.

Proposition 25.0.8. The set of simple functions of the form ∑k6n ck χEk with µ(Ek) < ∞ is dense in Lp,
p ∈ [1, ∞).

25.0.1 The space L∞

This space is the limit, in a precise sense, of Lp as p → ∞. The norm in L∞ is similar to a sup
norm, now allowing for the functions to be defined a.e.

Definition 25.0.9 (essup norm). We let (X,M, µ) be a measure space and f measurable on X. Define
the essential supremum of f by

essup( f ) = ‖ f ‖∞ = inf{C ≥ 0 : | f (x)| ≤ C a.e.[µ]}

Equivalently,
essup( f ) = ‖ f ‖∞ = inf{C ≥ 0 : µ(| f (x)| > C) = 0}

L∞(X,M, µ) is a set of equivalence classes f modulo null sets

L∞(X,M, µ) = { f : X → C : f measurable , ‖ f ‖∞ < ∞}

Note that in each equivalence class in L∞ there are functions bounded everywhere by their norm, and that
the dependence of L∞(M, µ) on the measure is relatively weak: If µ � ν and ν � µ, then L∞(M, µ) =

L∞(M, ν)

Proposition 25.0.10. Assume (X,M, µ) is a measure space and f ∈ L∞(M, µ) ∩ Lp0(M, µ) for some
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p0 > 1. Then f ∈ Lp(M, µ) for all p > p0 and

‖ f ‖∞ = lim
p→∞
‖ f ‖p

Proof. We can assume w.l.o.g. that ‖ f ‖∞ 6= 0 and by homogeneity, that ‖ f ‖∞ = 1. Then, for
p > p0, we have | f |p 6 | f |p0 a.e., and thus ‖ f ‖p is decreasing in p, implying f ∈ Lp(M, µ) for all
p > p0 and that the limit exists. We write∫

| f |pdµ =
∫
| f |p−p0 | f |p0 dµ =

∫
| f |p−p0 dν; dν := | f |p0 dµ

and noting that (p− p0)/p→ 1 as p→ ∞ it is enough to prove the property for finite measures.
We have

‖ f ‖p 6 ν(X)1/p → 1 as p→ ∞

Let now ε > 0 and E be the set of positive measure where | f | > 1− ε. We have

‖ f ‖p > (1− ε)ν(E)1/p → 1 as p→ ∞

The proof of the following theorem is an easy exercise.

Theorem 25.0.11. 1. If f and g are measurable on X then ‖ f g‖1 6 ‖ f ‖1‖g‖∞.

2. ( fn)n∈N is Cauchy in ‖‖∞ iff there is a set X′ ⊂ X of full measure s.t. fn converges pointwise
uniformly on X′.

3. ‖‖∞ is a Banach space.

4. Simple functions are dense in L∞.

Proposition 25.0.12. If µ(X) = M < ∞, 0 < p < q 6 ∞ and f is measurable, then ‖ f ‖p 6 ‖ f ‖q Mα,
where α = p−1 − q−1, and, in particular, Lp(X, µ) ⊃ Lq(µ).

Proof. The case q = ∞ is immediate, so assume q is finite. Replacing f by | f |, we may assume
f > 0. We have

‖ f ‖p
p = ‖ f p · 1‖1 6 ‖ f p‖q/p‖1‖q/(q−p) = ‖ f ‖q Mα

The notation `p(X) stands for Lp(X) when the measurable space is (X,P(X)) and the mea-
sure is the counting measure.

Proposition 25.0.13. For any set A and 0 < p < q 6 ∞, `p(A) ⊂ `q(A), and ‖‖p > ‖‖q.

Proof. We assume A is an infinite set, since otherwise the proof is trivial. Note first that for a sum
∑α∈A |xα|p to be finite we must have xα = 0 for all but countably many α, and for ∑αn,n∈N |xαn |p
to be finite we must have |xαn |p → 0 as n → ∞, in particular |xαn | < 1 for all large n. But then
|xαn |q 6 |xαn |p for all large n implying the statement.

Note 25.0.14. 1. If any open set in X has nonzero measure, then the uniform norm on contin-
uous functions is the same as the ‖‖∞.
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2. IfM = [0, ∞) with the Lebesgue measure, and p > 1, then x−a χ
[0,1] is in Lp if a < 1/p and

x−a χ
[1,∞) is in Lp if a > 1/p. See also Proposition 25.0.15 2. below.

The last example shows there is no nontrivial inclusion between Lp spaces (except in special
cases as in the propositions above). However, the collection of Lp spaces possesses important
interpolation properties, of which we first note some elementary ones.

Proposition 25.0.15. Let 0 < p < r 6 ∞.

1. For any q ∈ (p, r) and f ∈ Lq there exist f1 ∈ Lp and f2 ∈ Lr s.t. f = f1 + f2, that is
Lq ⊂ Lp + Lr.

2. For q ∈ (p, r), write q−1 as the a convex decomposition, q−1 = λp−1 + (1− λ)r−1, λ ∈ (0, 1).
We have ‖ · ‖q 6 ‖ · ‖λ

p ‖ · ‖1−λ
r and in particular Lp ∩ Lr ⊂ Lq.

Proof. 1. Let f ∈ Lq and write f = f χ| f |>1 + f χ| f |61. Clearly the first function is in Lp and the
second one in Lr.

2. We may assume r < ∞, since the case r = ∞ is straightforward, and as before we take a
nonnegative measurable function f . By Hölder’s inequality, we have

‖ f ‖q
q = ‖ f q‖1 = ‖ f λq f (1−λ)q‖1 6 ‖ f qλ‖p/(qλ)‖ f q(1−λ)‖r/(q(1−λ)) = ‖ f ‖λq

p ‖ f ‖(1−λ)q
r

The case r = ∞ is straightforward (and also follows as a limit from the above).

We now prove a useful, measure-theoretic lemma.

Lemma 25.0.16. Let (X,M, µ) be a finite measure space, g ∈ L1 and C ⊂ C a closed set. If for all
E ∈ M with µ(E) > 0 the averages of g are in C, i.e.

µ(E)−1
∫

E
gdµ ∈ C

then µ({x : g(x) /∈ C}) = 0.

Proof. The complement Cc is a countable union of closed disks of the form Brn(xn). We show that
for any of them, say Br(x) we have µ({x : g(x) ∈ Br(x)}) 6= 0. Indeed, otherwise∣∣∣∣x− µ(E)−1

∫
E

gdµ

∣∣∣∣ = ∣∣∣∣µ(E)−1
∫

E
(g− x)dµ

∣∣∣∣ 6 µ(E)−1
∫

E
|g− x|dµ 6 r

a contradiction, since Cc is open and dist(Br(x), C) > 0.

Lemma 25.0.17. 1. Let (X,M, µ) be a measure space and assume µ is σ-finite. Then, there
exists a w ∈ L1(µ) s.t. 0 < w(x) < 1 everywhere in X. In particular, dµ̃ = wdµ is finite, and
µ and µ̃ are mutually absolutely continuous.

2. With w as above, the map f 7→ w1/p f is an isometric isomorphism between Lp(µ̃) and
Lp(µ).
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Proof. 1. Let (En)n∈N be sets of finite measure s.t. X = ∪nEn. Such a w is given by

w = ∑
n∈N

wn where wn(x) =


2−n

1 + µ(En)
x ∈ En

0 x /∈ En

2. This follows easily from the fact that 0 < w < 1.

Exercise 66. Assume f : R → C is periodic with period 2π and absolutely continuous on
any compact set in R. Check that the Fourier coefficients of f ′ are well defined. Assume
the sequence of Fourier coefficients of f ′ is in `p(Z) for some p ∈ [1, ∞).

(a) Show that the Fourier series of f converges uniformly and absolutely to some con-
tinuous function, f̃ .

(b) Show that f̃ = f .

26 The dual of Lp

The following summarizes the picture when the measure is σ-finite (more generally, semifinite).
For 1 6 p < ∞, the dual of Lp is isometrically isomorphic to Lq where q is the conjugate exponent
to p; because of the isomorphism the dual of Lp, p ∈ [1, ∞) is identified with Lq. It follows that
Lp is reflexive for all p ∈ (1, ∞). If p = 1, then q = L∞ and if the measure is sigma-finite then the
dual of L1 is L∞. In general, the dual of L∞ is much larger than L1 14.

Theorem 26.0.1. In the following (X,M, µ) is a measure space, Lp = Lp(X,M, µ) and q is the
conjugate exponent to p. ((1, ∞) are dual exponents.)

1. Let 1 6 p 6 ∞ and g ∈ Lq. Then, Φg defined by

Φg( f ) =
∫

X
f gdµ

is a bounded linear functional on Lp and

‖Φg‖ 6 ‖g‖q (86)

2. Assume µ is σ-finite. Let 1 6 p < ∞ and let Φ be a bounded linear functional on Lp. Then,
there exists a unique g ∈ Lq such that

Φ( f ) =
∫

X
f gdµ (87)

14This statement uses a strong form of the axiom of choice, and there are models of ZF where the dual of L∞ is L1;
see M. Väth, Indag. Mathem., N.S. 9 (4), pp. 619–625 (1998).
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Moreover, if Φ and g are as in (87), then

‖Φ‖ = ‖g‖q (88)

Note 26.0.2. Theorem 26.0.1,1 above implies Theorem 6.14 in Folland.

Exercise 67. Assume (X,M, µ) is a σ−finite measure space. Based on Theorem 26.0.1
show that the dual of Lp is indeed isometrically isomorphic to Lq for all 1 6 p < ∞ (as
usual, we assume 1/p + 1/q = 1).

Proof. (adapted from Rudin). 1. This follows immediately from Hölder’s inequality.
2. We first prove uniqueness. By linearity, it suffices to show that Φ = 0⇒ g = 0. Let E ⊂ X

have finite measure. Then, 0 = Φ( χE) =
∫

E g, and thus g = 0 a.e. (check!)
For existence, we show that Φ induces a complex measure λ, that λ� µ and dλ

dµ ∈ Lq.

(A) It is helpful to analyze first the case when µ is finite. Note that in this case any measurable
characteristic function is in all Lp, 1 6 p 6 ∞. Let E be a measurable subset of X and define

λ(E) = Φ( χE) (89)

If E1, ..., En are mutually disjoint and their union is E, then χE = ∑n
1

χEi , implying finite additiv-
ity of λ. Now, if (Ei)i∈N are mutually disjoint and their union is E, then χE − χ∪n

1 Ei =
χ

E\∪n
1 Ei

,
hence

‖ χE − χ∪n
1 Ei‖

p
p = µ(E \ ∪n

1 Ei)→ 0 as n→ ∞ (90)

The continuity of Φ now implies

λ(E \ ∪n
1 Ei)→ 0 as n→ ∞ (91)

Thus λ is a complex σ-additive measure, which furthermore is absolutely continuous w.r.t. µ,
because µ(E) = 0 ⇒ ‖ χE‖p = 0. Now, the Radon-Nikodym theorem implies that there is a
g ∈ L1(µ) s.t.

Φ( χE) =
∫

E
gdµ =

∫
X

χEgdµ, ∀E ∈ M (92)

By linearity, the density of simple functions in Lp and continuity of Φ, we have

Φ( f ) =
∫

X
f gdµ (93)

for any f ∈ Lp.
(i) If p = 1 we are nearly done. Indeed, for any E

|λ(E)| =
∣∣∣∣∫E

gdµ

∣∣∣∣ = |Φ( χE)| 6 ‖Φ‖‖ χE‖1 = ‖Φ‖µ(E) (94)

which implies that the total variation of λ satisfies |λ|(X) 6 ‖Φ‖µ(X) and, by Lemma 25.0.16,

‖g‖∞ 6 ‖Φ‖ (95)
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Combining with (86), we get that the dual of L1 is L∞ since

‖g‖∞ = ‖Φ‖ (96)

(ii) Let now p > 1. Since the measure is finite, we have L∞ ⊂ Lp ⊂ L1 for all p > 1, and L∞

is dense in Lp. We need to show that g ∈ Lq. Let α = csgn(g) (= sgn(g)), En = {x : |g(x)| 6 n}
and define G = χEn α|g|q−1. Clearly, G ∈ L∞, |G|p = |g|q on En, and (93) gives

∫
En

|g|qdµ =
∫

En

Ggdµ = |Φ(G χEn)| 6 ‖Φ‖
(∫

En

|g|qdµ

)1/p

hence, by solving the inequality for the first integral above,∫
X

χEn |g|qdµ 6 ‖Φ‖q, ∀n ∈N (97)

and, by monotone convergence, ‖g‖q 6 ‖Φ‖. Continuity of Φ and of the right side of (93) now
implies that (93) holds on Lp.

Let now µ(X) = ∞ but assume µ is σ-finite. Here we use the isomorphism provided by
Lemma 25.0.17. Let Φ ∈ (Lp(µ))∗ and define Ψ on (Lp(µ̃))∗ be given by

Ψ( f ) = Φ(w1/p f ) (98)

The isomorphism implies ‖Ψ‖(Lp(µ̃))∗ = ‖Φ‖(Lp(µ))∗ . Since µ̃ is finite, there is a G ∈ Lq(µ̃) s.t.

Ψ( f ) =
∫

X
f Gdµ̃ for all f ∈ Lp(µ̃) (99)

For p = 1 let g = G, and for p > 1 let g = w1/qG. If p = 1 we have ‖g‖∞ = ‖G‖∞ = ‖Ψ‖(L1(µ̃))∗ =

‖Φ‖(L1(µ))∗ , while for p > 1,∫
X
|g|qdµ =

∫
X
|G|qdµ̃ = ‖Ψ‖q

(Lp(µ̃))∗ = ‖Φ‖
q
(Lp(µ))∗ (100)

this implies (88) and, since Gdµ̃ = w1/pgdµ we get, for all f ∈ Lp(µ),

Φ( f ) = Ψ(w−1/p f ) =
∫

X
w−1/p f Gdµ̃ =

∫
X

f gdµ (101)

Corollary 26.0.3. Lp is reflexive for p ∈ (1, ∞).

Exercise 68. C[0, 1] is dense in Lp[0, 1] for all 1 6 p < ∞ (note the inequalities, L∞ is not
included!) and Φ = f 7→ f (0) is a linear functional on C[0, 1]. However, Φ does not extend
to a bounded functional on Lp. Why not?
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26.1 The dual of L∞ is not L1

An “example” of a continuous functional on L∞ is obtained using Hahn-Banach (which uses the
axiom of choice, hence the quotation marks). Let Φ = f 7→ f (0) defined on C[−1, 1]. By Hahn-
Banach this extends (nonuniquely, of course) to L∞. But Φ cannot be given by an L1 element (for
f in C[−1, 1] write Φ as

∫
f dm where m is the Dirac measure at zero). Note also the effect of

using the axiom of choice: the extended functionals associate some generalized value at a point
to functions in L∞.

Homework: 4,9,10,12,13 pp. 186–7 in Folland, and turn in Exercises 66 and 67 in these
notes.

26.2 Inequalities in Lp spaces

Proposition 26.2.1 (Chebyshev’s inequality). Let 0 < p < ∞, α > 0 and f ∈ Lp. Then,

µ({x : | f (x)| > α}) 6 α−p‖ f ‖p
p

Proof. This follows immediately from Markov’s inequality, (46).

Definition 26.2.2. An operator T of the form

(Tϕ)(t) =
∫

X
K(t, x)ϕ(t)dµ(t) (102)

(under suitable assumptions on K and ϕ) is called an integral operator (more precisely, a
linear integral operator), and K is called the kernel of T.

Proposition 26.2.3. Assume (X,M, µ), (Y,N , ν) are σ− finite measure spaces and K : X×
Y → C a kernel which is uniformly L1 w.r.t. µ and ν, that is, there is a C > 0 s.t.

‖K(·, y)‖L1(µ) 6 C for a.e. y [ν]; and ‖K(x, ·)‖L1(ν) 6 C for a.e. x[µ] (103)

Then, for any 1 6 p < ∞ T is a bounded operator from Lp to Lp with norm ‖T‖Lp→Lp 6 C
and the integral in (102) converges absolutely.

Proof. If p = 1 this follows directly from Fubini-Tonelli, while for p = ∞ it follows from majoriz-
ing | f | by its norm.
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Assume now 1 < p < ∞, write |K| = |K|1/q|K|1/p and apply Hölder’s inequality:

∫
|K(x, y) f (y)|dν 6 ‖K(x, ·)‖1/q

L1(ν)

(∫
|K(x, y)|| f (y)|pdν

) 1
p

6 C
1
q

(∫
|K(x, y)|| f (y)|pdν

) 1
p

(104)
By Fubini-Tonelli,

∫ (∫
|K(x, y)|| f (y)|dν

)p

dµ 6 C
p
q

∫ ∫
|K(x, y)|| f (y)|pdνdµ 6 C1+ p

q ‖ f ‖p (105)

and the result follows by taking the p-th root.

Writing Minkowski’s inequality for the nonnegative functions fi as

(∫ (
∑

i
fi

)p) 1
p

6∑
i

(∫
f p
i

)1/p

suggests a generalization, in which the sum is replaced by an integral:

Theorem 26.2.4 (Minkowski’s inequality for integrals). Assume (X,M, µ), (Y,N , ν) are
σ− finite measure spaces and f : X×Y a nonnegativeM⊗N -measurable function. Then,

(∫
X

(∫
Y

f (x, y)dν

)p

dµ

) 1
p

6
∫

Y

(∫
X

f (x, y)pdµ

) 1
p

dν

Proof. If p = 1 this is simply Fubini-Tonelli. If now 1 < p < ∞ we use the Lp − Lq duality
to estimate the integrals via (88). Take a nonnegative g ∈ Lq, and note that, by Hölder and
Fubini-Tonelli,

∫
X

(∫
Y

f (x, y)dν

)
g(x)dµ =

∫
X

∫
Y

f (x, y)g(x)dµdν 6 ‖g‖q

∫
Y

(∫
X

f (x, y)pdµ

) 1
p

dν (106)

Corollary 26.2.5. Let 1 6 p 6 ∞, f (·, y) ∈ Lp(µ) a.e.[dν] and assume y 7→ ‖ f (·, y)‖p ∈
L1(ν). Then, f (x, ·) ∈ L1(ν), x 7→

∫
f (x, y)dν ∈ Lp(µ) and∥∥∥∥∫ f (·, y)dν

∥∥∥∥
p
6
∫
‖ f (·, y)‖pdν

Proof. This is a straightforward consequence of the previous theorem, except for the case p = ∞,
which is a result of the nonnegativity of integrals.
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Let now K be a measurable kernel on (R+)2 which, for all λ > 0, satisfies λK(λx, λy) = K(x, y)
and ∫ ∞

0
|K(x, 1)|x−1/pdx = C < ∞

for some 1 6 p 6 ∞. Let f ∈ Lp and g ∈ Lq where q is the dual exponent to p, and define the
integral operators

T f (y) =
∫ ∞

0
K(x, y) f (x)dx, Sg(x) =

∫ ∞

0
K(x, y)g(y)dy

Proposition 26.2.6. Under the hypotheses above T is a bounded operator from Lp to Lp, S
is a bounded operator from Lq to Lq and we have ‖T‖p = ‖S‖q = C.

Proof. Assume as before that f , g are nonnegative. Let f (z·) = y 7→ f (zy). We first note the
following scaling properties.

‖ f (z·)‖p
p =

∫ ∞

0
f (yz)pdy = z−1

∫ ∞

0
f (u)pdu

∫ ∞

0
|K(x, y) f (x)|dx =

∫ ∞

0
|yK(yz, y) f (yz)|dz =

∫ ∞

0
|K(z, 1) f (zy)|dz

∫ ∞

0
|K(1, y)|y−1/qdy =

∫ ∞

0
|K(y−1, 1)|y−1− 1

q dy =
∫ ∞

0
|K(u, 1)|u−

1
p du = C (107)

Using Proposition 26.2.3 we get

‖T f ‖p 6
∫ ∞

0
|K(z, 1)|‖ f (z·)‖pdz = ‖ f ‖p

∫ ∞

0
|K(z, 1)|z−1/pdz = C

The statement about S follows in the same way, now using (107).

Corollary 26.2.7. Consider the following integral operators, with kernel K(x, y) = y−1 χ{(x,y):x<y}:

T f (y) =
1
y

∫ y

0
f (x)dx; Sg(x) =

∫ ∞

x
y−1g(y)dy

Then, for 1 6 p < ∞, T : Lp → Lp and S : Lq → Lq are bounded with norm p
p−1 = q.

Proof. This follows from Proposition 26.2.6, noting that
∫ ∞

0
|K(x, 1)|x−1/pdp =

∫ 1

0
x−1/pdp =

p
p− 1

= q.
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26.3 Weak Lp

Let f be measurable on a measure space (X,M, µ). The distribution function of f , λ f : (0, ∞)→
[0, ∞] (compare to the definition following Exercise 17) is given by

λ f (α) = µ({x : | f (x)| > α})

Proposition 26.3.1.

1. λ f is decreasing and right continuous.

2. | f | 6 |g| ⇒ λ f 6 λg.

3. | fn| ↗ | f | ⇒ λ fn ↗ λ f .

4. f = g + h⇒ λ f (α) 6 λg(α/2) + λh(α/2).

Proof. Continuity follows from the continuity from below of µ, since {x : | f (x)| > α} = ∪j{x :
| f (x)| > α + 1/j}. The rest is straightforward.

Assume now that λ f (α) < ∞ for all α > 0. By the usual construction of measures from distribu-
tion functions, ν given by ν((a, b]) = λ f (b)− λ f (a) defines a measure on R+.

Proposition 26.3.2. If λ f (α) < ∞ for all α > 0 and ϕ : R+ is measurable and nonnegative, then∫
X

ϕ(| f |)dµ = −
∫ ∞

0
ϕ(α)dλ f (α)

Note 26.3.3. We can think of this formula as a representation of the integral as one in terms
of possible values of the function against the “probability density” of a value to occur.

Another way to view it is as a generalized change of variable. Indeed, let f be contin-
uous with sufficient decay and g a diffeomorphism. Then, check that∫

R
f (g(x))dx =

∫
g(R)

f (u)dµ(u); µ = m(g−1)

Proof. We first prove the result when ϕ is a characteristic function of an interval.∫
X

χ
(a,b] ◦ f = −µ({x : a < | f (x)| 6 b}) = −(λ f (b)− λ f (a)) = −

∫ ∞

0
χ
(a,b]dλ f (108)

From here the result can be extended to characteristic functions of general measurable sets, then
to simple functions and finally to any nonnegative measurable function, as usual.
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In particular, we have

‖ f ‖p
p =

∫
X
| f |pdµ = −

∫ ∞

0
αpdλ f (α) (109)

Proposition 26.3.4. Let f be measurable on the measure space (X,M, µ). We have∫
X
| f |pdµ = p

∫ ∞

0
αp−1λ f (α)dα (110)

Proof. If ‖ f ‖p = ∞ then the right side is +∞ as well. Otherwise, let first f be a simple function.
Then, both f and λ f vanish for large values of the argument. Noting that αp is continuous, we
have, by Proposition 16.2.1,

p
∫ ∞

0
αp−1λ f (α)dα = −

∫ ∞

0
αpdλ f (α)

For a general f , there is a sequence of simple functions that converge monotonically to | f |, and
the rest follows from monotone convergence.

Exercise 69. Check that, if ‖ f ‖p < ∞, then

[ f ]p :=
(

sup
α>0

αpλ f (α)

)1/p

< ∞

but the converse is not true.
Show that

[ f + g]p 6 2
(
[ f ]pp + [g]pp

)1/p
; and [c f ]p = |c|[ f ]p

Definition 26.3.5. Let (X,M, µ) be a measure space. For p ∈ (0, ∞), Lp,w(X, µ), or weak
Lp, is defined as

Lp,w(X, µ) = { f measurable : [ f ]p < ∞}

Proposition 26.3.6. Weak Lp is a topological space, ‖ f ‖p 6 [ f ]p, and thus Lp ⊂ Lp,w. The
inclusion can be strict.

Proof. Chebyshev’s inequality implies ‖ f ‖p 6 [ f ]p. An example of a strict inclusion is Lp(R+)

where x−1/p ∈ Lp,w but not in Lp. The rest follows from Exercise 69 above.

The following decomposition result is sometimes useful; its proof is a simple exercise.
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Proposition 26.3.7. Let f be measurable and real-valued. Take A > 0, define EA = {x :
| f (x)| > A} and

hA = f χEc
A
+ A sgn( f ) χEA ; gA = f − hA

Then,
λhA(α) = λ f (α) χ

α<A; λgA(α) = λ f (A + α)

26.4 Lp interpolation theorems

An essential ingredient in the interpolation theorems in this section is the following consequence
of the maximum principle in complex analysis.

Theorem 26.4.1. [The Hadamard three-lines theorem] Let f be holomorphic and bounded
in the vertical strip {z = x + iy|a ≤ x ≤ b} and continuous up to its boundary. If

M(x) = sup
y
| f (x + iy)|

then log M is a convex function on [a, b].
Equivalently, if x = ta + (1− t)b with 0 ≤ t ≤ 1, then

M(x) ≤ M(a)t M(b)1−t

Proof. After an affine transformation of the variable z it can be assumed that a = 0 and b = 1.
The function

Fn(z) = f (z)M(0)z−1M(1)−zez2/ne−1/n

is entire. We see that, for any n, |Fn(z)| 6 1 on the boundary of the strip and, with z = x + iy,
|Fn(z)| → 0 uniformly in x, 0 ≤ x ≤ 1 as |y| → ∞. Hence |Fn| 6 1 on the boundary of the
rectangle {z = x + iy|0 ≤ x ≤ 1, |y| = m} if m is large enough, and by the maximum principle
|Fn| 6 1 in the strip. The result follows by letting n→ ∞.

Exercise 70. Prove Hölder’s inequality as a corollary of the three-lines theorem as follows.
Let p, q be conjugate exponents in (1, ∞), assume f ∈ Lp, g ∈ Lq and define

h(z) =
∫
| f |pz|g|q(1−z)

Check that h satisfies the hypotheses of Theorem 26.4.1 with a = 0, b = 1 and that this
implies Hölder’s inequality.
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Exercise 71. Let θ1 ∈ (−π, π) and let θ2 ∈ R be s.t. 0 < θ2 − θ1 < 2π. Define the open
sector S =

{
reiθ : r > 0 and θ1 < θ < θ2

}
. Let f be holomorphic in S, continuous and

bounded on S. For θ ∈ [θ1, θ2], set

M(θ) = sup
r>0
| f (reiθ)|

Prove that
M(θ) 6 M(θ1)

θ2−θ
θ2−θ1 M(θ2)

θ−θ1
θ2−θ1

Theorem 26.4.2 (Riesz-Thorin interpolation theorem). Let (X,M, µ) and (Y,N , ν) be σ-
finite measure spaces and let 1 6 p0, p1, q0, q1 6 ∞. Denote

1
pt

=
1− t

p0
+

t
p1

;
1
qt

=
1− t

q0
+

t
q1

(t ∈ (0, 1)) (111)

Assume T is a linear map from Lp0(µ) + Lp1(µ) to Lq0(ν) + Lq1(ν) s.t.

‖T‖Lp0→Lq0 6 M0 and ‖T‖Lp1→Lq1 6 M1

Then
‖T‖Lpt→Lqt 6 Mt := M1−t

0 Mt
1, ∀t ∈ (0, 1)

Furthermore, log Mt is a convex function of t ∈ (0, 1).

Proof. Note that the case p0 = p1 follows from Proposition 25.0.1, replacing f by T f and taking
λ = t, p0 = r, p1 = p.

We now assume p0 < p1. We first prove the result for simple functions, by constructing
interpolating expressions to which the three-line theorem applies. The duality expressed in (88)
comes in handy at this stage. We then use the density of simple functions in Lp to complete the
proof.

Using the form (73) of the norm of T, take f = ∑n
j=1 |aj|eiθj χEj and g = ∑n

k=1 |bk|eiθk χEk to be
simple functions with ‖ f ‖pt = 1, ‖g‖q′t = 1, where q′t is the conjugate exponent to qt. Extending
(115) to the strip S = {z = x + iy|x ∈ (0, 1), y ∈ R}, define

1
pz

= α(z) =
1− z

p0
+

z
p1

;
1
qz

= β(z) =
1− z

q0
+

z
q1

(z ∈ S) (112)

We also extend f , g to S, as follows

fz :=
n

∑
j=1
|aj|

α(z)
α(t) eiθj χEj ; gz =

n

∑
k=1
|bk|

1−β(z)
1−β(t) eiθk χEk ; t ∈ (0, 1); z ∈ S

if β(t) 6= 1 and gz = g otherwise.
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Now we define the functional whose norm will provide us with the result. Let

Φ(z) =
∫

Y
gz · (T fz) dν (113)

Expanding out we get, if β(t) 6= 1,

Φ(z) = ∑
j,k
|aj|

α(z)
α(t) |bk|

1−β(z)
1−β(t) χEk eiθj+iθk

∫
Y

χFk

(
TχEj

)
dν

and, if β = 1,

Φ(z) = ∑
j,k
|aj|

α(z)
α(t) |bk| χEk eiθj+iθk

∫
Y

χFk

(
TχEj

)
dν

Since z 7→ exp(bz) is entire and, for real b, bounded in any vertical strip of finite width, the
functional Φ satisfies the analyticity and boundedness assumptions in S.

Note also that for any simple function h, with h(x) = ∑n
j=1 |cj|eiϕj χEj(x), and any x ∈ X, at

most one of the terms in the sum is nonzero. Hence, hp = ∑n
j=1 |cj|peipϕj χEj . In particular,

| fz|a =
n

∑
j=1
|aj|

a<α(z)
α(t) χEj ; |gz|a =

n

∑
k=1
|bk|

a−a<β(z)
1−β(t) χEk (114)

Let’s check the bounds for fz, gz on <z = 0. Using (114) we have, for s ∈ R,

| fis| = | f |
pt
p0 ; |gis| = |g|

q′t
q′0

We now use Hölder in the definition (113), the bound ‖T‖Lp0→Lq0 6 M0, and the fact that f ∈ Lpt

iff | fis| ∈ Lp0 , to get

|Φ(is)| 6 ‖T fis‖q0‖gis‖q′0
6 M0‖ fis‖p0‖gis‖q′0

= M0‖ f ‖pt‖g‖q′t = M0

Similarly,
|Φ(1 + is)| 6 M1

and the result in the theorem follows, for simple functions. Extending this to general Lpt requires
another interesting step.

Let f ∈ Lpt and fn a sequence of simple functions s.t., for all n, | fn| 6 f and fn → f pointwise.
Now we use the decomposition in Proposition 25.0.15: with E = {x|| f (x)| > 1}, let g = f χE

and h = f − g = f χEc . Then, f ∈ Lpt implies g ∈ Lp0 and h ∈ Lp1 . Define also gn = χE fn,
hn = χEc fn. By dominated convergence,

gn → g in Lp0 , hn → h in Lp1

By the assumptions on T,

Tgn → Tg in Lq0 and Thn → Th in Lq1

Therefore, there is a subsequence s.t. Tgnk → Tg and Thnk → Th pointwise a.e., hence T fnk → T f
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pointwise a.e. Now, the Fatou Lemma gives

‖T f ‖qt 6 lim inf
n→∞

‖T fn‖qt 6 lim inf
n→∞

M1−t
0 Mt

1‖ fn‖pt = M1−t
0 Mt

1‖ f ‖pt

Convexity follows by applying this result for different pairs of indices p between p0 and p1.

Another powerful interpolation theorem is due to Marcinkiewicz, which uses weak Lp assump-
tions instead.

Exercise 72. (A) On L1(T) + L2(T) define the Fourier transform operator f 7→ f̂ by

f̂ (k) =
∫ 1

0
f (t)e−2πiktdt

Use L1 and L2 estimates to prove that f 7→ f̂ is bounded from Lp(T) to `q(Z) for p ∈ [1, 2],
where p−1 + q−1 = 1.

(B) Let (ϕn)n∈N be a sequence of functions in Lp([0, 1]). For which p ∈ [1, ∞], if any,
is it true that weak convergence of the sequence (meaning as functionals on Lq) implies
strong convergence? (Prove or provide corresponding counterexamples).

Exercise 73. For f , g ∈ L1(Rn) define the convolution

( f ∗ g)(t) :=
∫ ∞

−∞
f (τ)g(t− τ) dτ

Prove the following theorem, known as Young’s inequality for convolution.

Theorem 26.4.3. Let p, q, r ∈ [1, ∞] satisfy p−1 + q−1 = 1 + r−1. For f ∈ Lp(Rn) + L1(Rn)

and g ∈ Lq(Rn), we have f ∗ g ∈ Lr(Rn) and

‖ f ∗ g‖r 6 ‖ f ‖p‖g‖q

Homework: Problems 20,22,35,41 in Folland, Chap. 6 and turn in Ex. 72 above.

Definition 26.4.4. Let T be now a map from a vector subspace D of (X,M, µ) to the
measurable functions on (Y,N , ν). Let p, q ∈ [1, ∞].

1. T is called sublinear if |T( f + g)| 6 |T f |+ |Tg| and |T(c f )| = c|T f | for all c > 0.

2. A sublinear map T is of strong type (p, q) if D ⊃ Lp(µ) and ‖T f ‖q 6 ‖ f ‖p 6 C for
some C ∈ R+ and all f ∈ Lq. We will abbreviate this by ‖T‖Lp→Lq 6 C.
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3. The sublinear map T is of weak type (p, ∞) if it is of strong type (p, ∞). If q < ∞ the
sublinear map T is of weak type (p, q) if D ⊃ Lp(µ), T maps Lp(µ) to Lq,w(ν) and
[T f ]q 6 C‖ f ‖p for some C ∈ R+ and all f ∈ Lp.

Theorem 26.4.5 (The Marcinkiewicz interpolation theorem). Let (X,M, µ) and (Y,N , ν)

be σ-finite measure spaces and let 1 6 p0 6 p1 6 ∞, 1 6 q0 6 q1 6 ∞ and assume further
that p0 6 q0, p1 6 q1, q0 6= q1. Let D = Lp0(µ) + Lp1(µ) and T be sublinear from D to Y be
of weak types (p0, q0) and (p1, q1). Denote

1
pt

=:
1
p
=

1− t
p0

+
t

p1
;

1
qt

=:
1
q
=

1− t
q0

+
t

q1
(t ∈ (0, 1)) (115)

Then T is strong type (p, q). More precisely, if [T f ]q0 6 C0‖ f ‖p0 and [T]q1 6 C1‖ f ‖p1 , then

‖T‖Lp→Lq 6 B where B depends on p, p0, p1, p1, q1, q0, q1. As p→ pj, B = O
(

t−
1
q (1− t)−

1
q
)

, j =
0, 1.

Proof. The case p0 = p1 is an easy version of the proof for p0 < p1, that we assume. We also
take q0, q1 < ∞ for the moment. With p, q as in (115) and f ∈ Lp(µ), we estimate ‖T f ‖q by
decomposing first f as in Proposition 26.3.7: f = gA + hA, and use distribution functions to link
Lp,w and Lp estimates.

We write for the norm ‖T‖q
q,

‖T‖q
q = q

∫ ∞

0
αq−1λT f (α)dα = 2qq

∫ ∞

0
αq−1λT f (2α)dα (116)

where we wrote 2α to use 4. in Proposition 26.3.1:

λT f (2α) 6 λTgA(α) + λThA(α) (117)

We now link the p0 norm of gA, hA to λ f , with the aim at ultimately finding a bound in terms of
‖ f ‖p.

We have

‖hA‖
p1
p1 = p1

∫ ∞

0
βp1−1λhA(β)dβ = p1

∫ A

0
βp1−1λ f (β)dβ (118)

and similarly,

‖gA‖
p0
p0 = p0

∫ ∞

0
βp0−1λ f (β + α)dβ = p0

∫ ∞

A
(β− A)p0−1λ f (β)dβ 6 p0

∫ ∞

A
βp0−1λ f (β)dβ (119)

We now estimate the contribution of λThA , via (117), to ‖T‖q
q and the weak norm estimate. For

any α > 0 we have
C1‖hA‖p1 > [ThA]p1 > λ

1/p1
ThA

α

hence

λThA(α) 6 α−q1 Cq1
1 ‖hA‖

q1
p1 6 α−q1 Cq1

1 pq1
1

(∫ A

0
βp1−1λ f (β)dβ

)q1/p1

(120)
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hence

2qq
∫ ∞

0
αq−1λThA(α)dα 6 2qqCq1

1 pq1/p1
1

∫ ∞

0
αq−q1−1

(∫ A

0
βp1−1λ f (β)dβ

)q1/p1

dα (121)

This is true for any A > 0, and the optimal choice turns out to be A = ασ where

σ :=
p0(q0 − q)
q0(p0 − p)

=
p−1(q−1 − q−1

0 )

q−1(p−1 − p−1
0 )

=
p−1(q−1 − q−1

1 )

q−1(p−1 − p−1
1 )

=
p1(q1 − q)
q1(p1 − p)

(122)

Now we apply Minkowski’s inequality to switch the order of integration in the estimates:

∫ ∞

0
αq−q1−1

(∫ ∞

0
χ

β<ασ βp1−1λ f (β)dβ

) q1
p1

dα 6

[∫ ∞

0

(∫ ∞

0
χ

ασ>βα
q1
p1
(q−q1−1)dα

) p1
q1

βp1−1λ f (β)dβ

] q1
p1

(123)
Take first q1 > q0. In this case q− q0 > 0, σ > 0 and ασ > β⇔ α > β

1
σ . Hence,

∫ ∞

0

(∫ ∞

0
χ

ασ>βα
q1
p1
(q−q1−1)dα

) p1
q1

βp1−1λ f (β)dβ =
∫ ∞

0

(∫ ∞

β
1
σ

α
q1
p1
(q−q1−1)dα

) p1
q1

βp1−1λ f (β)dβ

= (q− q1)
−p1/q1

∫ ∞

0
βp1−1+p1(q−q1)/q0σλ f (β)dβ = |q− q1|−p1/q1

∫ ∞

0
βp−1λ f (β)dβ =

‖ f ‖p
p

p|q− q1|p1/q1

(124)

Note that this is now a norm estimate. Similar calculations show that the inequality above holds
when q1 < q0 and that the counterpart integral for gA is bounded by

‖ f ‖p
p

p|q− q0|p0/q0
(125)

Combining the estimates, we get

‖T f ‖q 6 B‖ f ‖p; B = 2q1/q

(
Cq0

0 (p0/p)q0/p0

|q− q0|
+

Cq1
1 (p1/p)q1/p1

|q− q1|

)1/q

(126)

The remaining range of p, q only requires small modifications, basically in the choice of A,
which is set to solve the equation λThA(α) = 0 in the cases p1 = q1 = ∞ and q0 < q1 = ∞, p0 <

p1 < ∞, and from the equation λTgA(α) = 0 if q1 < q0 = ∞, p0 < p1 < ∞. See details in
Folland.

26.5 Some applications

1. The Hilbert transform This is an important operator in a number of areas of mathemat-
ics.
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Definition 26.5.1. The Hilbert transform of a function f is defined to be

(H f )(x) =
1
π

p. v.
∫ +∞

−∞

f (τ)
x− τ

dτ :=
1
π

lim
ε→0

∫
|t|>ε

f (x− t)
dt
t

(127)

whenever the limit exists.

It is easy to see that the limit does exist if f is a smooth function, but it is far from clear if H
makes sense on Lp spaces.

The Calderon-Zygmund decomposition, a fundamental technique in harmonic analysis, is
used to show thatH is bounded from L1 into L1,w. The approach is somewhat similar to that used
for the weak estimates of the Hardy-Littlewood maximal operator. Using the Fourier transform
we will show that H is bounded from L2 into L2. The Marcinkiewicz interpolation theorem
entails that H is bounded in all Lp, p ∈ (1, 2]. Now,∫

X
gH f dµ = −

∫
X

fHgdµ

shows boundedness from Lp into Lp p ∈ (2, ∞).
2. The Hardy-Littlewood maximal operator, M. (See Definition 15.0.6.) We have

Proposition 26.5.2. M is bounded from from L1(Rd) into L1,w(Rd) and from Lp(Rd) into
Lp(Rd), for d > 1 and 1 < p 6 ∞.

Proof. Theorem 15.0.8 exactly states that M is bounded from L1 into L1,w, and it is obvious that M
is bounded between L∞ and L∞. The rest is a straightforward application of the Marcinkiewicz
interpolation theorem.

27 Radon measures

In order to better understand properties of various mathematical objects it is often very useful to
analyze the natural functions (ones compatible with the structure) defined on them. These would
be linear functionals on topological vector spaces, representations in the case abstract algebraic
structures and in the case of topological spaces, the space of continuous functions defined on
them (in fact specifying the continuous functions determines the topology). We can go one step
further, look at continuous functions as a topological space (in the topologies mentioned in the
previous section) and analyze its dual.

We will focus on Cc(X) and C0(X), see Definition 17.5.1, where X is LCH. Roughly, it turns
out that the continuous functionals on C0 are given by finite measures with nice regularity prop-
erties (finite Radon measures), and that any finite Borel measure on such spaces X is Radon, thus
regular.
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Notation. In this section X will denote a locally compact Hausdorff space, O will de-
note open sets and K will denote compact sets. Two important subspaces of continuous
functions on X are Cc(X) and C0(X); we start with Cc(X), see Definition 17.5.1. Recall
Urysohn’s lemmma, partitions of unity and the symbol ≺ indicating the support of a func-
tion. When we write K ≺ ϕ or ϕ ≺ O it will be understood that ϕ ∈ Cc(X, [0, 1]), ϕ = 1 on
K and zero outside O.

Definition 27.0.1. 1. A measure µ is called locally finite if µ(K) < ∞ for any compact
K.

2. Recall that, if (X,M, µ) is a measure space, with X LCH, then µ is called inner
regular if for all E ∈ M we have µ(E) = supK⊂E µ(K), outer regular if µ(E) =

infO⊃E µ(O) and regular if it is bouth inner and outer regular.

3. Recall also that, if µ∗ is an outer measure onM, then E is called µ∗ measurable if

∀A ⊂ X, µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) (128)

4. A linear functional Λ on a space of functions D is a positive linear functional if
Λ f > 0 for any f > 0 in D. Of course, this is the same as requiring

f 6 g⇒ Λ f 6 Λg, ∀ f , g ∈ D

The following continuity property is automatic from positivity.

Proposition 27.0.2. Let Λ be a positive linear functional on Cc(X) and let K ⊂ X be
compact. There is a CK > 0 s.t., for all f with support in K we have

|Λ f | 6 CK‖ f ‖K

where ‖ f ‖K is the sup norm on K.

Proof. Since we can write f = u+ − u− + i(v+ − v−) where the functions in the decomposition
are continuous and nonnegative, it is enough to prove the result when f itself is nonnegative. Fix
a ϕ ∈ Cc(X, [0, 1]) s.t. ϕ(K) = {1}, i.e. K ≺ ϕ. Then, with n = ‖ f ‖K, we have

f = ϕ f 6 nϕ hence Λ f 6 nΛϕ = CK‖ f ‖K; CK = Λϕ

Candidates for positive functionals on Cc(X) are integrals with respect to positive Borel mea-
sures,

Λ f =
∫

X
f dµ (129)
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where µ must be locally finite:

Proposition 27.0.3. If (129) is a positive linear functional on Cc(X), then µ(K) < ∞ for any
K.

Proof. Using the density of C(K), thus of Cc(X), in L1(µ, K), we extend by continuity Λ to
L1(µ, X); clearly positivity is preserved. Take a compact K and an f ∈ Cc(X, [0, 1]) s.t. K ≺ f .
Then χK 6 f and

0 6 µ(K) =
∫

X

χKdµ 6
∫

X
f dµ < ∞

Relying on the fact that X is an LCH, the functionals are given by (129) with µ a Radon measure
defined below.

In fact, we prove in the sequel that a positive linear functional naturally generates an outer
Radon measure µ∗, defined as follows:

Definition 27.0.4. An outer measure µ∗ is Radon if

1. For any compact K, µ∗(K) < ∞15(µ∗ is locally finite).

2. any open set is µ∗−measurable. Thus Borel sets are µ∗−measurable.

3. ∀E ⊂ X, µ∗(E) = inf{µ∗(O) : O ⊃ E} (outer regularity; as usual O denotes open
sets)

4. ∀O, µ∗(O) = sup{µ∗(K) : K ⊂ O} (inner regularity on open sets).

By the Caratheodory theorem, µ defined as the restriction of µ∗ to the σ-algebra M of µ∗-
measurable sets is a measure on M, and with µ∗ a Radon outer measure, µ is called a Radon
measure. Caratheodory’s construction shows that Radon measures are complete.

Lemma 27.0.5. A Radon measure is inner regular on all measurable sets of finite measure,
and more generally on all measurable σ-finite sets.

Proof. Indeed, 1) assume first m = µ(E) < ∞ and let O ⊃ E, µ(O \ E) < ε/2, O′ ⊃ O \ E,
µ(O′) < ε. Let K ⊂ O, µ(K) > m− ε. Then K′ = K ∩ (O′)c ⊂ E is compact and µ(K′) > m− 2ε.

2. Take now an E with µ(E) = ∞. By assumption E = ∪j∈NEj where µ(∪j6nEj) → ∞. By 1)
above, there is a family Kj ⊂ ∪j∈NEj with µ(Kj)→ ∞.

15In more general spaces one requires that every point has a neighborhood of finite measure; for LCH this is
equivalent to the given condition.
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Exercise 74. [When are sets outer-Radon measurable?] If µ∗ is a Radon outer measure, show
that E ⊂ X is µ∗-measurable iff E∩K is measurable for every K. (Hint: Reduce the problem
to measurability of all E ∩O, µ(O) < ∞.)

Homework: Problems 1,2,3,4 in Folland, Chap. 7 and turn in Ex. 73, 74 above, due Fri
March 8.

Theorem 27.0.6 (Riesz representation theorem). Let Λ be a positive linear functional on
Cc(X). Then, there exists a unique Radon measure on a σ-algebra M ⊃ B(X) s.t. (129)
holds.

Furthermore, for all O
µ(O) = sup

ϕ≺O
Λϕ (130)

and for all K
µ(K) = inf

K≺ f
Λϕ (131)

Proof. 1. Uniqueness

Assume we have two measures µ1,2 with the properties above. Using outer regularity and inner
regularity on open sets, it is enough to show they coincide on compact sets. Let K be arbitrary
and O ⊃ K be s.t. µ2(O) < µ2(K) + ε. Let ϕ ∈ Cc(X, [0, 1]) be s.t. K ≺ ϕ ≺ O; reasoning as in
Proposition 27.0.3, we have

µ1(K) =
∫

X

χKdµ1 6
∫

X
ϕdµ1 = Λϕ =

∫
X

ϕdµ2 6
∫

X

χOdµ2 = µ2(O) 6 µ2 + ε

and interchanging 1↔ 2 we have |µ1(K)− µ2(K)| < ε.

Construction of µ and M

It is natural to define the following set function on open sets:

µ(O) = sup{Λϕ : ϕ ≺ O} (132)

Now we note that
µ(O) 6 ∑

j∈N

µ(Oj) if O ⊂ ∪j∈NOj (133)

Indeed, for any ϕ ≺ O, K = suppϕ ⊂ ∪n
1Oi for some n. With ρi ≺ Oi a partition of unity, we see

that ϕ = ∑n
1 ϕρi and

Λϕ =
n

∑
i=1

Λ(ϕρi) 6
n

∑
i=1

µ(Oi) since ϕρi ≺ Oi
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Therefore, by Proposition 3.1.2, the set function

µ∗(E) = inf{µ(O) : E ⊂ O} = inf{∑
j

µ(Oj) : E ⊂ ∪
j
Oj} (by (133)); E ⊂ X (134)

is an outer measure on P(X).

Note 27.0.7. It is clear that µ∗(O) = µ(O) for any open set O. Remember also that, to
check measurability, it is enough to show that the left side of (128) is > its right side when
µ∗(A) < ∞.

J

I Now we show that open sets are µ∗-measurable.
. We start by showing that for any open sets O,O′ we have

µ∗(O′) = µ∗(O′ ∩O) + µ∗(O′ \ O) or equivalently µ(O′) = µ(O′ ∩O) + µ∗(O′ \ O) (135)

Take K ≺ ϕ ≺ O′ ∩O s.t. Λϕ > µ(O′ ∩O)− ε and ψ ≺ O′ \ K s.t. Λψ > µ(O′ \ K)− ε. Clearly,
ϕ + ψ ≺ O′. Hence,

µ(O′) > Λϕ + Λψ > µ(O′ ∩O) + µ(O′ \ K)− 2ε

Noting now that O′ \ O = O′ \ (O′ ∩O) ⊂ O′ \ K we see that µ∗(O′ \ O) 6 µ∗(O′ \ K) and (135)
follows.

. Assume now µ∗(A) < ∞ and take O′ ⊃ A s.t. µ∗(A) > µ(O′)− ε. Then,

µ∗(A) > µ(O′)− ε = µ∗(O′ ∩O) + µ∗(O′ ∩Oc)− ε > µ∗(A ∩O) + µ∗(A ∩Oc)− ε (136)

Note 27.0.8. At this stage, applying the Caratheodory theorem, we see that µ is a measure
on a σ− algebra which contains the open sets, and hence it contains B(X).

I µ satisfies (131) Take ε ∈ (0, 1), ϕ s.t. K ≺ ϕ, and define Oε = {x : ϕ(x) > 1− ε}. For any
ψ ≺ Oε we have ψ 6 (1− ε)−1ϕ, implying

µ(K) 6 µ(Oε) = sup
ψ≺Oε

Λψ 6 (1− ε)−1Λϕ

(in particular µ(K) < ∞). In the opposite direction, we want to find an ϕ, K ≺ ϕ s.t. µ(K) >
Λϕ− ε. Let O ⊃ K be s.t. µ(O) 6 µ(K) + ε and take K ≺ ϕ ≺ O. Then Λϕ 6 µ(O) 6 µ(K) + ε

as desired. J
I µ is inner regular on open sets. Let m < µ(O); choose ϕ ≺ O s.t. Λϕ > m, and let
K = supp(ϕ). For any O′ ⊃ K we have ϕ ≺ O′, hence µ(O′) > Λϕ entailing µ(K) > Λϕ > m. J
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I (∀ϕ ∈ Cc(X))(Λϕ =
∫

X
ϕdµ) We can assume ϕ ∈ Cc(X, [0, 1]). Let K = supp(ϕ), ε > 0 and

y1 < 0 < y2 < · · · < 1 < yn be s.t ∀i max
i
{yi − yi−1} < ε and µ(ϕ−1({yi})) = 0 16 (137)

Let O ⊃ K, µ(O) < ∞. Then ϕ−1((yi−1, yi)) ∩ O := Oi are open, mutually disjoint and µ(K \
∪iOi) = 0, by (137). For i = 1, ..., n choose Ki ⊂ Oi so that µ(Oi \Ki) <

ε
n and ψi s.t. Ki ≺ ψi ≺ Oi.

If ε′

n := µ(Oi)−Λψi, then ε′ < ε. By the mean value theorem, ∀i ∃vi ∈ [yi−1, yi] s.t

∫
X

ϕdµ = ∑
i

∫
Oi

ϕdµ =
n

∑
i=1

viµ(Oi) = Λ

(
n

∑
i=1

viψi

)
− ε′ ⇒

∣∣∣∣∣
∫

X
ϕdµ−Λ

n

∑
i=1

ψivi

∣∣∣∣∣ < ε (138)

Write ϕ− ∑i viψi = ϕ1 + ϕ2 with ϕ1 = ∑i(ϕ− vi)ψi and ϕ2 = ϕ− ϕ ∑i ψi. By (138), ‖ϕ1‖u < ε,
hence |Λϕ1| < ε. Now ‖ϕ2‖u 6 1 and ϕ2 ≺ ∪i(Oi \ Ki); hence, by (131), |Λϕ2| < ε. The triangle
inequality and (138) now give ∣∣∣∣∫

X
ϕdµ−Λϕ

∣∣∣∣ < 3ε J

This completes the proof of Theorem 27.0.6. �

Proposition 27.0.9. Assume X is σ-compact. Let µ be a Radon measure and M be the
σ-algebra of µ-measurable sets. Then

(a) For any E ∈M and ε > 0 there is a closed set C and an open O s.t. C ⊂ E ⊂ O and
µ(O \ C) < ε.

(b) µ is a regular Borel measure.
(c) If E ∈M, then there is a pair (F, G) of Fσ, Gδ sets s.t. F ⊂ E ⊂ O and µ(O \ F) = 0.

Proof. Let X = ∪nKn where Kn are compact. Let E ∈ M. Clearly, µ(E ∩ Kn) < ∞ and thus, by
outer regularity, for any ε > 0, there are On ⊃ E ∩ Kn with µ(On \ [E ∩ Kn]) < ε2−n−1. With
O = ∪nOn, we have O \ E ⊂ ∪n(On \ [E ∩ Kn]) and thus

µ(O \ E) < ε/2

The same is true for Ec, and thus there is an open set O′ ⊃ Ec s.t. µ(O′ \ Ec) < ε/2. If C = (O′)c,
then C is closed and E \ C = E ∩O′ = O′ \ Ec implying the result.

Note that every closed set C is σ-compact, since C = ∪(C ∩ Kn). By continuity from below,
µ(C) = limn µ(∪n

j=1[C ∩ Kj]) proving inner regularity of closed sets, thus by (a), of all sets.
(c) Apply (a) with ε = j−1, j ∈ N: there exist Cj ⊂ E ⊂ Oj s.t. µ(Oj \ Cj) < ε. Now

F = ∪Fj ⊂ E ⊂ G = ∩Oj and the result follows.

27.1 The Baire σ-algebra

Another natural σ-algebra when studying Cc(X) is the Baire σ-algebra B0(X), the smallest σ-
algebra with respect to which all functions in Cc(X) are measurable. The elements of B0(X) are

16This is possible, since otherwise µ(K) = ∞ in contradiction with (131).
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called Baire sets. Clearly B0(X) ⊂ B(X); the two coincide if X is second countable (see Exercise
5/p. 216 in Folland).

27.2 Regularity of Borel measures

In this section we assume that X has the additional property that

every open set O ⊂ X is σ-compact (139)

This is the case if X is second countable.

Theorem 27.2.1. Assume X satisfies (139). Then, every locally finite Borel measure λ on X

is regular (and thus Radon).

Proof. The functional Λ f =
∫

X
f dλ is well-defined on Cc(X) (since continuous functions are

measurable, and f = 0 outside K implies | f | 6 ‖ f ‖ χ(K) ⇒ Λ| f | 6 ‖ f ‖λ(K)). Then, there is a
regular Radon measure µ s.t. ∫

X
f dλ =

∫
X

f dµ

We now show that λ = µ.
Take an open set O, and, recalling that X is an LCH, let O = ∪j∈NKj, as in Proposition 17.2.9,

where the compact sets Kj can be arranged to be increasing, and then Ki ↗ O. For each i, let
Ki ≺ ϕi ≺ O. Now, since χKi 6 ϕi 6 χO we have ϕi → χ(O); defining gk = maxj6k ϕj, we have
gk ↗ χO as k→ ∞, and by the monotone convergence theorem,

λ(O) = lim
k→∞

∫
X

gkdλ = lim
k→∞

∫
X

gkdµ = µ(O) (140)

Now, with E ∈ B(X) arbitrary, by the regularity of the measure µ, for any ε > 0, there is a
pair C ⊂ E ⊂ O with ε > µ(O \ C) = λ(O \ C) (since O \ C is open). If µ(O) = ∞ then
µ(E) = λ(E) = ∞. Otherwise, λ(O \ E) 6 λ(O \ C) = µ(O \ C) 6 ε, hence

|µ(O)− µ(E)| 6 ε and |λ(O)− λ(E)| 6 ε⇒ |µ(E)− λ(E)| < 2ε

Corollary 27.2.2. Locally finite Borel measures on Rn are regular.

Proposition 27.2.3. If µ is a Radon measure on X, then Cc(X) is dense in Lp, 1 6 p < ∞.

Proof. Given the density of simple functions, it suffices to show that χE can be approached arbi-
trarily in p norm, when µ(E) < ∞. Take then K ⊂ E ⊂ O with µ(O \ K) < ε and let K ≺ ϕ ≺ O.
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Then, ϕ and χE are equal outside of O \ K, and their difference is at most one. This means that
‖ϕ− χE‖p < ε1/p.

Note 27.2.4. Recall that, if X is LCH, then C0(X) is a closed subspace of BC(X) w.r.t. ‖ · ‖u,
thus it is a Banach space w.r.t. ‖ · ‖u space, and that Cc(X) is dense in C0(X).

28 The dual of C0(X)

Let’s first determine what are the positive, continuous linear functionals on C0(X). Let Λ be
such a functional; clearly its restriction to ϕ ∈ Cc(X) is a positive linear functional and thus

Λϕ =
∫

X
ϕdµ; (∀ϕ ∈ Cc(X)) (141)

where µ is a Radon measure. Since X is LCH, Cc(X) is dense in C0(X), so the question is which
Λ as (141) extend to continuously C0(X). Assume Λ does indeed extend continuously and let
ϕ ≺ X. Clearly, ‖ϕ‖u 6 1 and, by (130)

µ(X) = sup
ϕ≺X

Λϕ 6 ‖Λ‖‖ϕ‖u 6 ‖Λ‖ < ∞ (142)

Conversely, if µ(X) < ∞, then Λ in (141) has norm at most µ(X).

Definition 28.0.1. A measure s.t. (142) holds is called a finite Radon measure.

We found:

Proposition 28.0.2. Λ is a continuous positive linear functional on C0(X) iff it is given by
(141) for a finite Radon measure µ.

We now turn to general, complex, continuous linear functionals on C0(X), that is, we want to
find (C0(X))∗. Since the real and imaginary part of a continuous linear functional are real-valued
continuous linear functionals, it suffices to determine these. We will see that, by an appropriate
decomposition of the functional, the real-valued continuous linear functionals are still of the form
(130), for a signed measure µ s.t. |µ|(X) < ∞.

Definition 28.0.3. A subset C of a vector space V is a reproducing positive cone if
1.x, y ∈ C and a, b > 0 imply ax + by ∈ C
2.C ∩ (−C) = 0
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3.∀z ∈ V∃x, y ∈ C s.t. z = x− y

It is easy to check that C+
0 = C0(X, [0, ∞)) is a reproducing positive cone in C0(X). For, if

f , g ∈ C+
0 , max{ f , g} ∈ C+

0 , min{ f , g} ∈ C+
0 .

Lemma 28.0.4. Let C be a reproducing positive cone in V. Any additive function L : C →
[0, ∞), i.e. an L s.t., for all a, b > 0 and x, y ∈ C, L(ax + by) = aLx + bLy, extends as a
linear functional on V.

Proof. Note that if x, x′, y, y′ are in C and x − y = x′ − y′ then Lx − Ly = Lx′ − Ly′ (apply L to
x + y′ = x′ + y). If, for z ∈ V, we set Lz = Lx− Ly where z = x− y, then L is well defined and
linear, and extends L from C to V as it is easy to check.

The following constructions and proofs are motivated by the expectation, that, in analogy with
the Riesz representation theorem above, continuous functionals on C0(X) should be in bijection
with complex measures on X.

Lemma 28.0.5. If Λ ∈ C∗0 (X) is real-valued, then there exist positive functionals Λ± ∈
C∗0 (X) s.t. Λ = Λ+ −Λ−.

Proof. Define first Λ+ on the cone C+
0 by

Λ+ f = sup
g∈C+

0 ,g6 f
Λg, for f ∈ C+

0 (143)

Check that f ∈ C+
0 ⇒ Λ+ f > 0. We show that

f , g ∈ C+
0 and a, b > 0⇒ Λ+(a f + bg) = aΛ+ f + bΛ+g

The fact that Λ+(|a| f ) = |a|Λ+ f follows from (143). It remains to check that Λ+( f1 + f2) =

Λ+ f1 + Λ+ f2 on C+
0 . The key observation here is that g 6 f1 + f2 in C+

0 iff ∃g1, g2 ∈ C+
0 s.t.

g = g1 + g2 and gi 6 fi
17.) Extend Λ+ as Lemma 28.0.4. Now, Λ− := Λ+ −Λ is evidently linear

and positive, and thus Λ is the difference of two positive functionals.
Clearly, ‖g‖ 6 ‖ f ‖ whenever 0 6 g 6 f . Since since |Λ+ f | 6 sup06g6 f |Λg| 6 ‖Λ‖‖ f ‖, we

have ‖Λ±‖ 6 ‖Λ‖.

Exercise 75. Let µ be a finite signed Radon measure and Λ f =
∫

X
f dµ. Let µ = µ+ − µ−

be the Hahn-Jordan decomposition of µ. Show that the linear functional Λ+ obtained in
Lemma 28.0.5 is given by Λ+ f =

∫
X

f dµ+.

17In the less obvious direction, define g1 = min{g, f1}, g2 = g− g1, and check the condition.
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Note 28.0.6 (Reminder: complex measures). 1. If µ is a complex measure on a sigma-
algebra M on X, then its total variation measure |µ| is the positive finite measure
given by

|µ|(E) = sup
⊕iEi=E

∞

∑
i=1
|µ(Ei)|; E, E1, E2, ... ∈ M (144)

and we have

dµ = eiθ(x)d|µ| for some measurable θ : X → [−π, π) (145)

Definition 28.0.7. µ is a signed Radon measure if µ = µ1 − µ2 and µ1, µ2 are Radon mea-
sures. µ is a complex Radon measure if µ is a complex measure (finite, in particular) and
µ = µ1 + iµ2 where µ1, µ2 are signed Radon measures.

Corollary 28.0.8. Λ ∈ C∗0 (X) iff Λ f =
∫

X
f dµ where µ is a complex Radon measure.

Proposition 28.0.9. ‖µ‖ = |µ|(X) is a norm on the linear space M(X) of complex Radon
measures.

Proof.

‖µ + ν‖ = |µ + ν|(X) = sup
⊕iEi=X

∑
i
|µ(Ei) + ν(Ei)| 6 sup

⊕iEi=X
∑

i
|µ(Ei)|+ sup

⊕iEi=X
|ν(Ei)| = ‖µ‖+ ‖ν‖

and the rest is straightforward.

Lemma 28.0.10. If µ is a complex Radon measure and Λ = f 7→
∫

X
f dµ, Λ : C0(X) → C,

then
‖µ‖ = ‖Λ‖

Proof. In one direction, with ‖ f ‖ = 1, |Λ f | 6
∫

X
| f |d|µ| 6 |µ|(X) = ‖µ‖. In the opposite

direction, by (145) d|µ| = υdµ with |υ| = 1. Let K be s.t |µ|(X \ K) = ε and take a ϕ s.t. K ≺ ϕ.
Then,

‖µ‖ =
∫

X
d|µ| =

∫
K

d|µ|+ ε =

∣∣∣∣∫K
ϕυdµ

∣∣∣∣+ ε 6
∫

X
|ϕυ|d|µ|+ ε 6 ‖Λ‖+ ε
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Theorem 28.0.11 (The Riesz representation theorem). The map µ → Λµ is an isometric
isomorphism of M(X) to C∗0 (X).

Proof. The bijection was shown in Corollary , and Lemma 28.0.10 completes the proof.

Locally finite Borel measure in Rn are Radon, as discussed. By Theorem 1.16 (Folland) µ is a
locally finite Borel measure on R+ iff it is a Lebesgue-Stieltjes measure, that is it is given by
µ((a, b]) = F(b)− F(a) for some right-continuous, increasing, bounded F. Thus Λ ∈ C∗0 (R) iff
Λ f =

∫
R

f dF for some F = F1 − F2 + i(F3 − F4) with Fi as above.
Note that C0([0, 1]) ⊂ L2([0, 1]), and the continuous functionals on L2[0, 1]) are given by the

Riesz representation theorem, f 7→ Λϕ f =
∫
[0,1] f ϕdm where m is the Lebesgue measure and

ϕ ∈ L2. Now L2([0, 1]) ⊂ L1([0, 1]) (by Cauchy-Schwarz) and thus the subclass of continuous
functionals on Cc([0, 1]) that extend to L2 are generated by a subclass of measures µ s.t. dµ =

ϕdm, ϕ ∈ L2. We may view then dF as a generalization of the differential of F. We’ll make more
sense of all this in distribution theory.

Definition 28.0.12. The weak* topology on M(X) is called the vague topology. It means µn → µ if∫
f dµn →

∫
f dµ for all f .

Exercise 76. (a) Is X = N with the discrete topology a LCH space?
(b) What is C0(X)∗, if X is as in a)?

29 Fourier series, cont.

Note 29.0.1. Recall that

F = f 7→ ∑
k∈Z

cke2πikx, ck =
∫

T
f (s)e−2πiksds = 〈 f , ek〉

is an isomorphism between L2(T) and `2(Z). Recall also that the Fourier series of a
characteristic function χ of an interval on T converges to χ at any point of continuity
of χ and to 1/2 otherwise. Finally, we know that, if f ∈ Cn(T), n > 1, then the Fourier
series of f converges pointwise uniformly to f , together with n− 1 derivatives. We keep
the notation Sn( f ) for the nth symmetric partial Fourier sum of ( f ).

Theorem 29.0.2 (The Riemann-Lebesgue Lemma, first iteration...). Assume f ∈ L1([−π, π]). Then,

lim
|n|→∞

∫ 1/2

−1/2
f (s)e2πinsds = 0 (146)

Proof. Take first f ∈ L2(T). The integral above equals cn = 〈 f , en〉. By Bessel’s inequality,
∑n∈Z |cn|2 < ∞, in particular cn → 0 as |n| → ∞. Since L2 is dense in L1, the result follows by an
ε/3 argument.
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29.1 Pointwise convergence

Recall that the Dirichlet kernel is defined as

Dn(x) =
n

∑
k=−n

e2πikx =
sin(2n + 1)πx

sin πx
(x ∈ C \Z)

Proposition 29.1.1. For all n > 1, ‖Dn‖1 > 4
π2 log n.

By modifying slightly the proof below, you can show that

lim
n→∞

‖Dn‖1

log n
=

4
π2

Proof. Let m = 2n + 1, and make the change of variable x = (2π)−1s. Since | sin s| 6 |s| we get

1
2π

∫ π

−π

∣∣∣∣ sin(ms)
sin(s/2)

∣∣∣∣ ds =
1
π

∫ π

0

| sin(ms)|
sin( s

2 )
>

2
π

∫ π

0

| sin(ms)|
s

=
2
π

∫ mπ

0

| sin s|
s

ds

>
2
π

m−1

∑
k=0

(−1)k

k + 1

∫ (k+1)π

kπ
sin sds =

4
π2 ∑

j=1

1
j
>

4
π2 (log m + γ) (147)

where γ is the Euler constant.

What this shows is that, for any fixed a, the family Λa;n = f 7→ Sn( f ; a), n ∈ N is not norm-
bounded over the Banach space C(T). From this and the uniform boundedness principle we see
that, for any a, there is at least one continuous function for which the Fourier series diverges at
a, and, in fact, the family of continuous functions whose Fourier series converges at a is of first
Baire category in C(T).

Note 29.1.2. It is a deep theorem (Carleson, 1966) that, for a fixed function in Lp, p ∈ (1, ∞)

(in particular, continuous), the set of points where the symmetric Fourier series converges
pointwise is of full measure. In the opposite direction, for any set of zero measure there is
a continuous function whose Fourier series diverges on that set.

Proposition 29.1.3. If f ∈ AC(T) and f ′ ∈ L2(T) (e.g. f ∈ C1(T)), then

lim
n→∞
‖Sn( f , x)− f (x)‖u = 0

Proof. Note first that, under these assumptions for f ,∫
T

f ′(s)e−iksds = ik
∫

T
f (s)e−iksds⇒ Sn( f ′) = Sn( f )′
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Since f ′ ∈ L2, we have ∑k∈Z |kck|2 < ∞. This implies that

∑
k 6=0
|ck| = ∑

k 6=0
|ck|k(k−1) 6

(
∑
k 6=0
|kck|2

)1/2(
∑
k 6=0

k−2

)1/2

< ∞

Thus the Fourier series converges absolutely, and then uniformly by the Weierstrass M test. Since
the Sn converge in L2 to f , the pointwise limit is f as well.

Exercise 77. Assume {gn}n∈N is a sequence of functions in AC([−π, π]) with L2 derivatives. Assume
further that limn→∞ ‖gn‖2 + ‖g′n‖2 = 0. Show that limn→∞ ‖gn‖∞ = 0.

30 The heat equation

The heat equation is a parabolic partial differential equation that describes the time variation of
the temperature distribution u(x, t) in a given region Ω:

∂u
∂t

= ∆u, u(0, x) = u0(x), x ∈ Ω; u(t, ·)|∂Ω
= f (148)

where ∆ is the Laplacian and the spacial variables run over some domain Ω ⊂ Rn. Here u0 is
the initial condition, the temperature distribution at t = 0, and f is the boundary condition, the
temperature distribution on ∂Ω. The function u is assumed C2 with continuous partial derivatives
up to ∂Ω.

Equilibrium distributions are time-independent solutions of (148), in the sense

∆u = 0, x ∈ Ω; u|∂Ω
= f (149)

Proposition 30.0.1 (Uniqueness). If u1, u2 solve (148) or (149), then u1 = u2.

Proof. If u1, u2 are solutions, then u1 − u2 = v is a solution of the PDE with v(0, x) = v|∂Ω
= 0.

We show that the only such solution is zero. The proof is based on the energy method. Start with
(148), u0 = f = 0, multiply by v and integrate over Ω:∫

Ω
v

∂v
∂t

dV =
1
2

d
dt

∫
Ω

v2dV =
∫

Ω
v∆vdV =

∫
Ω
[∇ · (v∇v)− (∇v)2]dV (150)

where we used the identity ∇ · (v∇v) = (∇v)2 + v∆v. Now, since v = 0 on ∂Ω the divergence
theorem implies ∫

Ω
∇ · (v∇v)dS =

∫
∂Ω

v∇v · dS = 0

and thus
d
dt

∫
Ω

v2dV︸ ︷︷ ︸
>0

= −2
∫

Ω
(∇v)2dV 6 0 (151)

Since
∫

Ω v2dV > 0, is nonincreasing and vanishes at t = 0, it means
∫

Ω v2dV = 0 and thus v = 0
for all x, t. For (149), the left side of (151) is simply zero, giving ∇v = 0⇒ v = const = 0.
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With uniqueness settled, we now aim at finding solutions of the PDE. Begin with (148) in two
dimensions, Ω = D, the unit disk. The equation becomes

∂2u
∂x2 +

∂2u
∂y2 = 0, u|T = f (θ) ( f ∈ C2) (152)

This equation also describes the electric potential u(x, y) in a disk where charges are placed on
T only, with a density f .

In polar coordinates we get

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = 0, u|T = f (θ) (153)

A method of solving simple PDEs such as (153) is by separation of variables. Inserting u(r, θ) =

R(r)T(θ) in (153) and dividing by RT we get

r2 R′′

R
+ r

R′

R
= −T′′

T
(154)

Now we note that the left side of the equation above does not depend on θ and the right side
does dot depend on r, and thus they are independent of both variables, hence constant, say λ

r2 R′′

R
+ r

R′

R
= λ = −T′′

T
(155)

The ODE T′′ = −λT has the general solution C1ei
√

λt + C2e−i
√

λt. There are constraints on λ: T
must be periodic of period 2π, and this means λ = m2, m ∈ Z, and then

T(θ) = ameimθ + a−me−imθ (156)

The R equation
r2R′′ + rR′ = λR (157)

is of Euler type, with solutions R(r) = Arm + Br−m if m 6= 0 and R(r) = A + b ln r for m = 0. We
note that ln r and r−m for m > 0 as well as rm for m < 0 are not C2. Retaining only the solutions
that are C2, we get the general separated-variables solutions

um(r, θ) = amr|m|eimθ , m ∈ Z; am ∈ C (158)

Now, (148) is linear, and thus if U and V are solutions, then so is aU + bV. The most general
solution that we can obtain from (158) is the closure of the span of such solutions,

u(r, θ) = ∑
m∈Z

amr|m|eimθ (159)

and with (159) we have at r = 1 (we’ll check that the limit when r → 1 exists),

∑
m∈Z

ameimθ = f (θ) (160)

that is, the left side is the Fourier series of f . Since f ∈ C2, |am| 6 const/m2 for large m and, by
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the Weierstrass M test the series in (159) converges absolutely and uniformly for all r 6 1, to an
analytic function in the open unit disk. We have thus proved:

Theorem 30.0.2. The heat equation in a disk (152) has a unique solution, (159), (160).

Exercise 78. Separate variables in the time-dependent heat equation in a disk. The radial ODE has
solutions as Bessel functions, Jm(λr); stop here if you are not familiar with them.

30.1 Examples

(1) Take a disk where the temperature on the boundary is given by f (θ) = sin θ. Then, the
(unique) solution is simply r sin θ = y. (2) Similarly, for any trig polynomial, the series represent-

Figure 4: Solution of the heat equation in the disk with condition sin(4θ) on T.

ing u is finite. It is interesting to see what happens if the temperature has many changes on the
boundary, say u = sin(4θ). Write the solution in closed form, as a function of x, y.

Exercise 79. Show that the heat equation on T,

∂u
∂t

=
∂2u
∂θ2 ; u(0, x) = u0(x) ∈ C2(T) (161)

has the unique solution

u(t, θ) = ∑
m∈Z

ame−m2t+imx where u0(x) = ∑
k∈Z

ameimx (162)

In a few steps from here Fourier analysis intersects another major topic in analysis, complex
function theory.
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Lemma 30.1.1. The Fourier coefficients of a real-valued function come in complex-conjugate pairs: a−m =

am.

Proof. Check this.

Thus we can write

u(r, θ) = 2< ∑
m>0

amrmeimθ = 2< ∑
m>0

am(reiθ)m = 2< ∑
m>0

amzm; z = reiθ (163)

By the Weierstrass M test, the series

U(z) = ∑
m>0

amzm (164)

converges absolutely and uniformly and absolutely in the open unit disk, and thus U is analytic
there.

Let’s look again at the definition of the Fourier coefficients:

am =
1

2π

∫ π

−π
f (θ)e−imθdθ =

1
2π

∫ π

−π
(2<U(eiθ))e−imθdθ =(eiθ = ζ) =

1
2πi

∫
T

2(<U(ζ))ζ−m−1dζ

(165)
Substituting in (164) we get, for |z| < 1,

<U(z) = ∑
m>0

1
2πi

∫
T
(<U(ζ))ζ−m−1zmdζ =

1
2πi

∫
T
(<U(z)) ∑

m>0
zmζ−m−1dζ =

1
2πi

∫
T

<U(ζ)

ζ − z
dζ

(166)
A similar results holds with < replaced by =. Indeed, =U(reiθ) satisfies the heat equation with
boundary condition =U(eiθ). Adding up these two, we obtain the celebrated Cauchy formula

U(z) =
1

2πi

∫
T

U(ζ)

ζ − z
dζ, z ∈ D (167)

(for the unit disk, and under C2 assumptions–a result weaker than the one in complex analysis).
This is simply meant to illustrate deeper links between various branches of analysis. It is not
necessarily a particularly natural way to build complex analysis, nor is it the path that led Cauchy
to it in the early nineteenth century.

Note 30.1.2. (a) We did not not prove that the heat equation extended to C with a given complex boundary
condition has a solution. It generally doesn’t! See what the conditions are needed to have <∑m>0 amzm +

i=∑m>0 bmzm = ∑m>0 cmzm.
(b) Functions u that satisfy ∆u = 0 in a domain in Rn are called harmonic. We see that, in 2d, they

are the real or imaginary part of analytic functions.

30.2 The vibrating string

The equation for a vibrating string is the one-dimensional wave equation

∂2u
∂t2 −

∂2u
∂x2 = 0 (168)
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We change variables to place the fixed endpoints of the string at −π, π. Let the initial shape of
the string be given by u0. The problem becomes

∂2u
∂t2 −

∂2u
∂x2 = 0; u(0, x) = u0(x); u(t,±π) = 0 (169)

Exercise 80. Assume that u0(x) is C2. Solve (169) by separation of variables and show that

u(x, t) =
∞

∑
m=1

(am cos(mt) + bm sin(mt)) sin(mx);

u(0, x) =
∞

∑
m=1

am sin(mx), ut(0, x) =
∞

∑
m=1

mbm sin(mx) (170)

Notice that the time dependence is a superposition of cosines of integer multiples of a funda-
mental frequency, generated by the fundamental mode sin x. If we normalize again the units so that
the fundamental mode is 440Hz (A 440) the next frequency is A 880, one octave up, and the third
one is E 1320 “a perfect fifth”. The theory of harmony originates in the understanding of string
vibrations, which goes back to ancient Greece (harmonikos = “skilled in music”). “Harmonic
Analysis” takes its name from this.

30.3 The Poincaré-Wirtinger inequality

We now only prove a special case of the Poincaré-Wirtinger inequality, whose general form is
better stated after we introduce Sobolev spaces.

Proposition 30.3.1. If f ∈ C1(T) and
∫

T
f = 0, then

‖ f ‖2 6
1

2π
‖ f ′‖2 (171)

The constant (2π)−1 is optimal, and equality holds iff f (x) = ae2πix + be−2πix, a, b ∈ C.

Proof. Let the Fourier coefficients of f be {cn}n∈Z, and note that under the assumptions in the
Proposition, c0 = 0. We have

‖ f ‖2 = ∑
n∈Z

|cn|2 6 ∑
n∈Z

|ncn|2 =
1

4π2 ∑
n∈Z

|2πncn|2 =
1

4π2 ‖ f ′‖2
2

The last statement is an easy exercise.

Corollary 30.3.2. If f ∈ C1([a, b]) and
∫ b

a f = 0, then

‖ f ‖2 6
b− a

π
‖ f ′‖2
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(where ‖ · ‖2 denotes the L2 norm on [a, b]). The constant (b− a)/π is optimal. Equality

occurs iff f (x) = ae
πi(x−a)

b−a + be−
πi(x−a)

b−a ; a, b ∈ C.

Exercise 81. (a) Fourier series can be defined of course for functions of more general period T. If we are
interested in functions f periodic on a, a + T, then f (ωx + β) is periodic on [−π, π], if ω = 2π/T
and β = −π − aω. Carry out the changes of variables and write the Fourier series of f in terms of the
exponentials {eikωx}k∈Z.

(b) If f is as in the statement, extend it to a function on [a− T, a + T] which is odd with respect to a,
and then apply (a) and the result in the proof above.

30.4 The Riemann-Lebesgue lemma (for L1(R))

Proposition 30.4.1. If f ∈ L1(R), then f̂ = x 7→
∫

R
f (s)eixsds ∈ C0(R)

Proof. First, |ei(x+ε)s− eixs|| f (s)| 6 2| f (s)| and continuity follows by dominated convergence. For
the second part note that if f = χ

[a,b] then, for x 6= 0, | f̂ | 6 2/|x|. By Theorem 11.1.2, simple
functions of the form ∑n

1 ak χJk where the Jk are bounded intervals, is dense in L1. The rest follows
from the triangle inequality.

Exercise 82. Extend this result to Rn: if f ∈ L1(Rn), then x 7→
∫

Rn f (s)eix·sdns ∈ C0(Rn).

Exercise 83. 1. Consider the function f given by f (x) = x−a χ
[1,∞)(x). Show that F(k) =∫

R
eikx f (x)dx ∈ C0(R) if a > 1, and F ∈ C0(R \ {0}) if a ∈ (0, 1]. Show furthermore that for

a ∈ (0, 1), k1−aF(k) is bounded for small k, and, when a = 1, F(k) + ln k is bounded near
k = 0. (Hint: integration by parts is one way; perhaps an even shorter way is to change
variable u = kx.)

2. If f : R → C is s.t. f ∈ L1(−1, 1), and for some a1, a2 > 0 and C1, C2 ∈ C we
have f − C1x−a1 ∈ L1(1, ∞) and f − C2x−a2 ∈ L1(−∞,−1), then x 7→

∫
R

f (s)eixsds → 0
as x → ∞. (What this says is that the L1 condition can be replaced by L1 up to explicit
additive negative powers of x which themselves may not be in L1.)

Homework: Problems 25,27,28 in Folland, p. 262 and turn in Ex. 83 above, due Mon April
1.

We have the following extension to Proposition 30.4.1:
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30.5 Hurwitz’s proof of the isoperimetric inequality

A curve is rectifiable iff the supremum of the perimeters of polygons built by joining finitely
many points on the curve is finite. As we discussed, a parametrized curve γ = t 7→ (x(t), y(t))
is rectifiable if the function γ is of bounded variation.

Theorem 30.5.1. Assume Γ is a rectifiable simple closed curve in R of length 2π. Then the
area of the interior of the curve is 6 π and it equals π iff the curve is a circle.

Hurwitz gave the first rigorous proof of this theorem in 1902. He used Fourier series along the
lines of the proof below, where, for simplicity, we assume that γ is a smooth curve.

Proof. We can assume without loss of generality that the length of γ is one. If D =intγ and A is
the area of D, then

A =
∫∫
D

dxdy =
1
2

∫
Γ

xdy− ydx =

∣∣∣∣12
∫ π

−π

[
x(s)y′(s)− y(s)x′(s)

]
ds
∣∣∣∣ (172)

where we used Green’s theorem∫
Γ

Ldx + Mdy =
∫∫

int(Γ)

(
∂M
∂x
− ∂L

∂y

)
dxdy

for the vector field L = −y, M = x. The arclength measure is given by d` =
√
(x′)2 + (y′)2ds.

Parameterizing by arclength ` := t instead of s, γ = ` → (x(`), y(`)), ` ∈ [0, 1], we have
(x′)2 + (y′)2dt = 1 ∫

Γ
[(x′)2 + (y′)2]d` = 1 = ‖x′‖2 + ‖y′‖2 (173)

By changing the origin, we can arrange
∫

γ xd` =
∫

γ yd` = 0. From (195) we have

|A| 6 1
2
|〈x, y′〉|+ 1

2
|〈x′, y〉| 6 1

2π
‖x′‖‖y′‖ 6 1

4π

(
‖x′‖2 + ‖y′‖2) = 1

4π

where we used Proposition 30.3.1. Equality is achieved iff the curve is parametrically given by
γ(t) = (sin(2πt), cos(2πt)).

31 Some conditions for pointwise convergence

Λα(T) is the class of functions on T which are Hölder continuous of exponent α: f ∈ Λα(T) if

λα( f ) = sup
x 6=y∈T

| f (x)− f (y)|
|x− y|α < ∞
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Theorem 31.0.1. If f ∈ Λα(T), α ∈ (0, 1], then there is a constant C > 0 such that ‖Sn −
f ‖u 6 C ln(n)n−α, where C depends on α only.

Proof. This proof shows that convergence is linked to the rapid oscillation of Dn, through sin(nx+
x/2), which triggers, in this class of functions, substantial cancellations.

Again we change variable to the interval [−π, π]. We can assume

‖ f ‖u 6 1

Let m = n + 1/2 and write Sn(x) = (2π)−1
∫ π
−π Dn(s) f (x− s)ds, and thus

2π(Sn(x)− f (x)) =
∫ π

−π
Dn(s)( f (x− s)− f (x))ds =

∫
|s|6ε

Dn(s)( f (x− s)− f (x))ds

+
∫
|s|>ε

Dn(s)( f (x− s)− f (x))ds (174)

Note 31.0.2. In this note C will denote some positive constant whose value can depend
on λα( f ) but not on ε, n and whose exact value would not alter the conclusion. This is a
notational device, to avoid writing C1, C2, ... and so on.

where ε will be chosen suitably small. We start with an estimate of the |s| 6 ε integral. For small
ε, sin(s/2) > Cs and∫
|s|6ε
|Dn(s)( f (x− s)− f (x))|ds 6 C

∫
|s|6ε

∣∣∣∣ f (x− s)− f (x)
s

∣∣∣∣ ds 6 Cλα( f )
∫
|s|6ε
|s|α−1ds 6

Cεα

α

Cancellations are responsible for decay in the remaining region; we identify the cancellations
and rewrite the integral so that these are singled out: we have sin(ms) = − sin(m(s + π

m )). Let
Ik = {x : |x| ∈ [ε + k π

m , ε + (k + 1) π
m ]}, k1 ∈N be the largest j so that ε + (2j− 1) π

m < π and

h(s, x) =
f (x− s)− f (x)

sin(s/2)

We get

∫
|s|>ε

Dn(s)( f (x− s)− f (x))ds =
∫
|s|>ε

h(s, x) sin(ms)ds =
k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds + εm (175)

where εm is the contribution of the endpoint intervals:

|εm| 6
∣∣∣∣∣
∫
|s|∈[ε+(2k1−1) π

m ,π]
h(s, x) sin(ms)ds

∣∣∣∣∣ 6 Cπ

m

We combine successive integrals by shifting the variable by ∓π/m (− for s > 0 and + for s < 0)
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in all odd-index intervals:

k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds =
k1−1

∑
j=0

∫
I2j∪I2j+1

h(s, x) sin(ms)ds =
k1−1

∑
j=0

∫
I2j

(h(s, x)− h(s∓ π
m )) sin(ms)ds

Now, in each interval I2j, sin ms is positive and the oscillations have been removed. At this stage,
we can take absolute values without significant loss in the estimates.∣∣∣∣∣ k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds

∣∣∣∣∣ 6 k1−1

∑
j=0

∫
I2j

|h(s, x)− h(s∓ π
m )|ds (176)

we note that, if |s| > ε, then |h(s + δ, x)− h(s)| 6 |s|−2+α|δ|+ 2λα( f )|s|−1|δ|α and the right side
of (176) is bounded by

C
(

m−1
∫ π

ε
s−2+αds + m−α

∫ π

ε
s−1ds

)
6 C

(
1

mε1−α
+

1
mα
| log ε|

)
We now choose ε to obtain a best estimate (up to constants). Choosing εα = m−1ε−1+α we get

‖Sn − f ‖u 6 Cm−α log m (177)

Exercise 84. Use a similar approach to show that the Fourier coefficients of a function f ∈ Λα(T)

decay at least as fast as const.|n|−α as n→ ∞.

Exercise 85 (Abel means and Abel summability). If {an}n∈Z is a sequence, then the Abel
mean of the sequence is the function

A(r, θ) =
∞

∑
n=−∞

r|n|aneinθ

Note that, if an are the Fourier coefficients of a C2 function f , then the Abel mean is the
solution of the heat equation in the disk with f on the boundary! The sequence is Abel
summable if

lim
r→1

A(r, 0) = A

exists. What is the Abel sum of 1− 2 + 3− 4 · · · ?
Show that (convergent to A) implies (Cesàro summable to A) implies (Abel summable

to A).

We can think of these summation methods as extensions of convergent summation: extensions
of the functional that associates to a convergent sequence its limit. These functionals have a
number of expected properties, see. Both fail to commute with multiplication of sequences.
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More powerful summation methods exist: Borel summation of series is an important summation
method (it relies on a form of Fourier analysis!).

Timestamp: 04/22/2019, 6:10AM

31.1 Approximation to the identity

The convolution of two functions on T is defined as the commutative and distributive product

( f ∗ g)(x) =
∫ π

−π
f (s)g(x− s)ds

Theorem 31.1.1 (Young’s convolution inequality). If f ∈ L1, g ∈ Lp, and 1 6 p 6 ∞, then
‖ f ∗ g‖p ≤ ‖ f ‖1‖g‖p.

Proof. Use Minkowski’s inequality for integrals.

The difficulties in establishing pointwise convergence of Fourier series ultimately boils down to
the divergence of the L1 norm of the Dirichlet kernel. A good kernel, or approximation to the identity,
or approximate identity is one which has most of the features of the Dirichlet kernel, but with finite
L1 norm.

Definition 31.1.2. A family {Kn}n∈N ⊂ L1(T) is said to be an approximation to the identity
(approximate identity) if

(a) For all n > 1, with K̂n := f 7→ Kn ∗ f , we have∫ π

−π
Kn(s)ds = 1 (i.e. K̂n1 = 1) (178)

(b)

sup
n>1

∫ π

−π
|Kn(s)|ds = M < ∞ ((i.e. ∀n, ‖K̂n‖L∞→L∞ = ‖Kn‖1 6 M) (179)

(c) For any ε > 0 we have

lim
n→∞

∫
|x|∈[ε,π]

|Kn(s)|ds = 0 (Approximate identity) (180)

Note 31.1.3. For positive kernels (179) follows from (178).
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Theorem 31.1.4. (a) Let {Kn}n∈N be an approximation to the identity family. Then, for any
f ∈ L∞(T) and any point x of continuity of f we have

lim
n→∞

(Kn ∗ f )(x) = f (x) (181)

If f ∈ C(T) then limn→∞ ‖Kn ∗ f − f ‖u = 0.
(b) If f ∈ Lp(T), 1 6 p < ∞, then limn→∞ ‖K̂n f − f ‖p = 0,
(c) For 1 6 p < ∞ we have supn ‖K̂n‖p→p 6 M. If 1 6 p < ∞, the sequence of operators

{K̂n}n∈N converges weakly to the identity.

Proof. The proof is similar –but simpler– to that of Theorem 31.0.1. Let x be a point of continuity
of f . Given ε, let δ be s.t. | f (x− s)− f (x)| 6 ε if |s| 6 δ. We decompose the integral (Kn ∗ f )(x)−
f (x) as in (174),∫ π

−π
Kn(s)( f (x− s)− f (x))ds =

∫
|s|6δ

Kn(s)( f (x− s)− f (x))ds +
∫
|s|>δ

Kn(s)( f (x− s)− f (x))ds

(182)
We bound the first integral by using the sup norm for f (x− s)− f (x) and the L1 norm for Kn:∣∣∣∣∫|s|6δ

Kn(s)( f (x− s)− f (x))ds
∣∣∣∣ 6 ε

∫
|s|6δ
|Kn(s)| ds 6 εM (183)

and we use the assumptions on Kn in the second one∣∣∣∣∫|s|>δ
Kn(s)( f (x− s)− f (x))ds

∣∣∣∣ 6 2‖ f ‖u

∫
|s|>δ
|Kn(s)|ds→ 0 as n→ ∞ (184)

(b) Let f ∈ Lp and let g ∈ C(T) be s.t. ‖ f − g‖p < ε. Using Young’s inequality for convolution,
we see that supn ‖K̂n‖p→p = sup{‖K̂nu‖p : n ∈N and u ∈ Lp with ‖u‖p = 1} 6 M and, for large
enough n and some constant C > 0,

‖K̂n f − f ‖p 6 ‖K̂ng− g‖p + ‖ f − g‖p + ‖K̂n(g− f )‖p 6 2π‖K̂ng− g‖u + 2‖ f − g‖p 6 Cε

(c) follows immediately from (b).

Note 31.1.5. The “dictionary” between 1-periodic and 2π-periodic functions is as follows.
If f is one-periodic, then g = x 7→ f ((2π)−1x) is 2π periodic, and we have

f ((2π)−1x) = ∑
k∈Z

eikx 1
2π

∫ 2π

0
f ((2π)−1s)e−iksds
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which implies

f (x) = ∑
k∈Z

e2πikx
∫ 1

0
f (s)e−2πiksds (185)

Exercise 86. Let f ∈ L1(T). Show f = 0 a.e. iff for all the Fourier coefficients

an =
1

2π

∫ π

−π
f (s)e−insds = 0 (186)

n ∈ Z, vanish.

32 The Poisson kernel

Let f ∈ L1(T). Then, its Fourier coefficients {an}n∈N are bounded, and thus the Abel means

Ar( f )(t) = ∑
n∈Z

anr|n|eint (187)

converge absolutely and uniformly for r < 1, and we can interchange summation and integration
in (186) to write

Ar( f )(t) =
1

2π

∫ π

−π
f (s) ∑

n∈Z

r|n|ein(t−s)ds = (Pr ∗ f )(t) (188)

where Pr(t) is the Poisson kernel,

Pr(t) = ∑
n∈Z

r|n|eint =
1− r2

1− 2r cos t + r2 (189)

as you can easily check.

Proposition 32.0.1. Pr are an approximation to the identity. (Here the family is indexed by
the continuous variable r ∈ [0, 1), with definitions similar to those in the discrete case.)

Proof. The fact that 1
2π

∫ π
−π Pr = 1 (property (a)) follows from integrating the series in (187) term

by term and noting that all contributions for n 6= 0 vanish. For (b) we note that the kernels are
positive. Property (c) follows from the fact that Pr are bounded and go to zero uniformly in any
interval of the form in (ε, π], ε > 0.

As a consequence, we have
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Theorem 32.0.2. The Fourier series of an L∞(T) function is Abel summable to f at any
point of continuity of f . If f ∈ C(T), then the series is uniformly Abel summable to f .

Returning to the heat equation, we find that

Theorem 32.0.3. The heat eq. (153) with f continuous, the uniform limit of u(r, θ) as
r → 1, has a unique solution (159) and (160).

Exercise 87. Check that the map U, U( f ) = {an}n∈Z, where {an}n∈Z are the Fourier coeffi-
cients of f , is a unitary operator between L2([−π, π]) and `2(Z). What is the image under
U of the functions in AC(T) with derivative in L2(T)? (This is the domain of definition of
the self-adjoint operator i d

dx on T.)

32.1 Several variables

Assume f ∈ C1((T)2). Then,

f (x, y) = ∑
k∈Z

ck(x)eiky where ck(x) =
1

2π

∫ π

−π
f (x, t)e−iktdt (190)

Now, ck ∈ C1(T) (why?), and hence

f (x, y) = ∑
k∈Z

(
∑

m∈Z

ck,meimx

)
eiky where ckm =

1
2π

∫ π

−π
ck(s)e−imsds =

∫∫
[−π,π]2

f (s, t)e−i(ms+kt)dsdt

(191)
Uniform and absolute convergence (justify!) means that, we can write

f (x) = ∑
n∈Z2

cnein·x (192)

Exercise 88. (a) Under smoothness conditions as above, formulate and prove a theorem
about Fourier series in n dimensions.

(b) Write down a formula for the Fourier series of functions which are periodic, but
have different periods in the different directions in Rn.

The following exercise illustrated the duality between regularity (smoothness) and decay of the
Fourier coefficients for functions that have point singularities. By the latter we mean that for each
point at which the function is not smooth, there is an interval centered at that point in which
there is no other point of non-smoothness.
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Exercise 89. Let

f (x) = ∑
n∈N

sin nx
nα

=:
i
2

(
Liα(e−ix)− Liα(eix)

)
; (α > 0, x ∈ [−π, π]) (193)

(1) Show that (193) converges pointwise for all x.
(2) We now use a rudimentary form of Borel summation (see also more about this form

of Borel summation) to determine the regularity of f . Using the definition of the Gamma
function, show that

1
nα

=
1

Γ(α)

∫ ∞

0
pα−1e−npdp (194)

Show that this implies that for x 6= 0 we have

f (x) =
1

Γ(α)

∫ ∞

0
pα−1 ∑

n∈N

sin(nx)e−npdp =
1

Γ(α)

∫ ∞

0
pα−1 sin x

2(cosh p− cos x)
dp (195)

For α = 1 the last integral is elementary,

2 f (x) =


−x− π, x < 0

0, x = 0

−x + π, x > 0

Prove that f (x) is C∞ away from zero (actually, it is analytic).
(3) Take now x > 0 and small. Write (195) as

1
xΓ(α)

∫ ∞

0
pα−1 x2a(x)

p2b(p) + x2c(x)
dp (196)

and show that a, b and c are smooth in a neighborhood of zero, that a(0) = b(0) = c(0) = 1
and that b(p) > 1 for p > 0. With the change of variable p = xq we get, for x > 0 small,

f (x) =
1

xα−1Γ(α)

∫ ∞

0
qα−1 a(x)

q2b(qx) + c(x)
dq (197)

and that, as x → 0+ we have

lim
x→0

∫ ∞

0
qα−1 a(x)

q2b(qx) + c(x)
dq =

∫ ∞

0

qα−1

q2 + 1
dq =

π

2 sin(απ/2)
(198)

(The last expression is most easily proved by the residue theorem, but you don’t need to
justify it; this explicit value is not terribly important here.) Use (198) to conclude that

lim
x→0

f (x)(
|x|α

x

) =
π

2Γ(α) sin(απ/2)
; α ∈ (0, 1) (199)
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Thus f has precisely one point singularity, x = 0. Show that, for α ∈ (1, 2), f ∈ Cα−1(T).
(d) Show that for α ∈ (0, 1), f ∈ Lp for any p ∈ [1, 1/(1 − α)). Are the Fourier

coefficients of f those implied by the series?

Note 32.1.1. It is useful to sketch this function for some α ∈ (0, 1).
This particular relation, 1/nα 7→ (x− x0)α−1 between decay and regularity is generally

true for point singularities. In the general class Λα, the (sharp) correspondence is 1/nα ↔
f ∈ Λα with a proof similar to that of Theorem 31.0.1.

33 The Fourier transform

If f is not periodic, but compactly supported, we can extend it to a periodic function with period,
say, the size of its support, and then we can analyze it using Fourier series.

Now if f ∈ L1(Rn) is not periodic, we can still define, for any k ∈ R,

(F f )(k) = f̂ (k) =
∫

Rn
e−2πi〈x,k〉dx, k ∈ Rn (200)

The function f̂ is called the Fourier transform of f . The inverse Fourier transform (we’ll shortly
why “inverse”) is

(F−1 f )(k) = f̌ (k) =
∫

Rn
e2πi〈x,k〉dx, k ∈ Rn (201)

Lemma 33.0.1. The translation τa := f 7→ f (x + a) is continuous in Lp, 1 6 p < ∞.

Proof. Since Cc(Rn) is dense in Lp, 1 6 p < ∞ it suffices to prove this for Cc(Rn). Let f be
continuous and compactly supported in K. Translation is evidently linear, and thus it suffices to
prove continuity at zero. We have

lim
a→0
‖τa f − f ‖p 6 m(K)1/p lim

a→0
‖τa f − f ‖∞ = 0 (202)

by uniform continuity.

It is convenient to first analyze these transforms in a space of smooth, rapidly decreasing func-
tions.

33.1 The Schwartz space S
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Definition 33.1.1. A topological vector space X is called a Fréchet space if it satisfies the
following three properties:

1. X is a Hausdorff space,

2. Its topology may be induced by a countable family of seminorms (‖ · ‖k), k ∈N. That
is, the sets

{y : ‖y− x‖k < ε, ∀k 6 K}

let where ε ∈ R+ and K ∈N, form a base of neighborhoods.

3. X is complete with respect to the family of semi-norms.

Note 33.1.2. If X is a Fréchet space, then a sequence converges in X iff it converges in each
seminorm.

The topology induced by a family of seminorms is Hausdorff iff⋂
k∈N

{x ∈ X : ‖x‖k = 0} = {0}

It is easy to see that A Fréchet space is a special case of a metrizable space, one in
which the metric is translation invariant, ρ( f , g) = ρ( f − g, 0). If the family of semi-norms
is ‖ · ‖n, then a metric which induces the same topology is

ρ( f , 0) = ∑
n∈N

2−n ‖ f ‖n

1 + ‖ f ‖n

Conversely, a metric space is Fréchet if it is complete, locally convex, see below and the metric
is translation-invariant.

Let α, β be multiindices, that is tuples (m1, m2, ..., mn) ∈ Nn
0 , where N0 = N ∪ {0}. We use the

multidimensional conventions

|α| =
n

∑
i=1

αi, xα =
n

∏
i=1

xαi
i , ∂α =

∂|α|

(∂x)α
|x| =

√
n

∑
i=1

x2
i ; and

(
n
α

)
=

n!
∏n

i=1 αi!

The Schwartz space S of rapidly decreasing functions on Rn is defined as

S (Rn) =
{

f ∈ C∞(Rn) : ‖ f ‖N,β < ∞ ∀N ∈N0, β ∈Nn
0
}

(203)

where
‖ f ‖N,β = sup

x∈Rn

∣∣∣(1 + |x|)N∂β f (x)
∣∣∣ . (204)

150/186



Math 6211+6212, Real Analysis I+II

These are smooth functions that decrease, for large |x|, faster than any inverse power of |x|.

Note 33.1.3. Recall that , that if ( fn)n∈N is a sequence of differentiable functions on R s.t.
{ f ′n}n∈N converge uniformly to some function h and { fn(x0)}n∈N converges for some x0,
then { fn}n∈N converge uniformly on compact sets to some f and h = f ′.

Proposition 33.1.4. S is a Fréchet space.

Proof. Only completeness needs to be checked. Since C(Rn) is complete, a Cauchy sequence
{ fk}k∈N in all ‖ · ‖N,β implies that { fk}k∈N convergences in all ‖ · ‖N,β to some functions gN,β. To
identify this limit we can use the property in Note 33.1.3.

Lemma 33.1.5. The families of seminorms{
‖|x|α∂β f ‖∞

}
N,β∈Nn

0

and
{
‖(1 + |x|)N∂β f ‖∞

}
α∈Nn

0 ,N∈N0
; (205)

induce the same topology on S .

Proof. Indeed,

|x|α < (1 + |x|)|α|; (1 + |x|)N =
N

∑
k=0

(
N
k

)
|x|k 6

N

∑
k=0

(
N
k

)( n

∑
i=1
|xi|
)k

= ∑
β,|β|6N

aβ|x|β

for some nonnegative coefficients aβ and thus the distance induced by the first family of semi-
norms goes to zero iff the distance induced by the second one does.

Compactly supported smooth functions, C∞
c (Rn) are an important subset of S . A prototypi-

cal such function is the function η below, compactly supported in the unit ball and smooth.

Proposition 33.1.6. The function

η(1− |x|2) :=

e
− 1

1−|x|2 ; |x| < 1

0; |x| > 1
(206)

is in C∞
c (Rn).
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Proof. This follows from the chain rule and the fact that the function t 7→ e−1/t χ
R+(t) is in

C∞(R), see Exercise 3/p.239 in Folland.

This function can be used as a building block to define other interesting compactly supported
functions. For instance, the function

ϕ(x) =


1; |x| 6 1

exp
(

1
|x|2−1

+ 1
|x|2−4

)
1+exp

(
1

|x|2−1
+ 1
|x|2−4

) ; |x| ∈ (1, 2)

0; |x| > 2

(207)

is a smooth function, compactly supported in the ball of radius 2 and equals 1 in the closed ball
of radius 1: B1(0) ≺ ϕ ≺ B2(0)c.

Proposition 33.1.7. C∞
c (Rn) is dense in S(Rn)

Homework: Problems 8,9,13,15 from Folland, Chapter 8 and turn in Ex. 85 and 86 from
the notes. Due Mon. April 8.

Proof. Let ϕn = x 7→ ϕ(x/n) with ϕ as in (207). If f ∈ S(Rn),then { f ϕn}n∈N is a sequence of
compactly supported functions which, we claim, converges to f in the topology of S . Indeed, we
have

|x|γ∂α( f (x)ϕn(x)) = |x|γ ∑
β6α

nβ−α

(
α

β

)
∂β f (x)(∂α−β ϕ)(x/n)

= |x|γ ϕ(x/n) f (x) + |x|γ ∑
β6α,β 6=α

nβ−α

(
α

β

)
∂β f (x)(∂α−β ϕ)(x/n)

= |x|γ∂α f (x) + |x|γ ∑
β6α,β 6=α

nβ−α

(
α

β

)
∂β f (x)(∂α−β ϕ)(x/n)− (1− ϕ(x/n))∂α f (x) (208)

and note that, for any h, since supx∈Rn |h(x)| = supx∈Rn |h(x/n)|, we have

xγ ∑
β6α,β 6=α

nβ−α

(
α

β

)
∂β f (x)(∂α−β ϕ)(x/n)→ 0 as n→ ∞

Finally, 1− ϕ(x/n) = 0 if |x| 6 n. Since |∂α f (x)| 6 ‖ f ‖α,|γ|+1(1 + |x|)−|γ|−1, we have xγ(1−
ϕ(x/n))∂α f (x)→ 0 as well.

Other important examples of functions in S are the Gaussians, or polynomials multiplying Gaus-
sians,

xie−ax2
, (a > 0)
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Lemma 33.1.8. The maps F and F−1 are continuous linear transformations from S into
itself. Furthermore, F interchanges multiplication by the variable with differentiation, as
follows:

F (∂αxβ f ) = (−1)β(2πi)α−βξα∂βF ( f ) (209)

Proof. We have, by integration by parts,

F (∂αxβ f ) = (−2πiξ)α(−1)αF (xβ f ) =
(−2πiξ)α(−1)α

(−2πi)β
∂βF ( f ) (210)

Linearity is clear. Expanding out ∂αxβ f , we see that, up to constants independent of f ,

‖ f̂ ‖α,β = C‖F (∂αxβ f )‖∞ 6 C′ ∑
α′6α,β′6|β|+n

‖ f ‖α′,β′ (211)

Lemma 33.1.9 (Improper Riemann integrals and sums). Assume f ∈ C(Rn) and |x|n+3 f is
bounded. Then,

lim
ε→0

εn ∑
k∈Zn

f (εk) =
∫

Rn
f (x)dx (212)

We note that n + 3 is suboptimal, but that’s all we need, for now.

Proof. We denote by Ca(x0) the cube of side a centered at x0 and parallel to the axes. Note
first that |x|n+2 f is uniformly continuous on Rn. For a δ > 0, let ε′ be s.t. |s| < ε′ implies
supx∈K | f (x + s)− f (x)| 6 δ(|x|+ 1)−n−2. For any ε 6 ε′ we have

∫
Rn

f dm = ∑
k∈Zn

∫
Cε(kε)

f (kε + s)ds = ∑
k∈Zn

∫
Cε(kε)

f (kε)dm + ∑
k∈Zn

∫
Cε(kε)

[ f (kε + s)− f (kε)]dm

= ∑
k∈Zn

f (εk) + O(δ) (213)

since, for some C > 0 independent of f and δ, we have∫
Cε(kε)

| f (kε + s)− f (kε)|dm 6
δεn

(|kε|+ 1)n+2 6 δ ∑
k∈Z

1
(|k|+ 1)n+2 6 Cδ

Theorem 33.1.10 (Fourier inversion theorem in S). (i) The Fourier transform is one to one
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from S(Rn) onto itself and S(Rn) F−1F = FF−1 = I, the identity operator.
(ii) (Plancherel) If f ∈ S(Rn), then ‖ f ‖2 = ‖F f ‖2.

Proof. The fact that F is one-to-one onto will follow from the inversion formula. Since F−1F is
continuous, it suffices to show that F−1F = I on the dense set C∞

c (Rn). Take f ∈ C∞
c (Rn) and ε

small enough so that f is supported in K = [−ε−1/2, ε−1/2]n. Expanding f in Fourier series we
get

f (x) = εn ∑
k∈Zn

e2πikxε
∫

K
f (s)e−2πiksεds = εn ∑

k∈Zn

e2πikxε
∫

Rn
f (s)e−2πiksεds

= εn ∑
k∈Zn

e2πikxε(F f )(kε) (214)

which, by Lemma 33.1.9, converges to F−1F f as ε→ 0.
(ii) Similarly, it is enough to prove this in C∞

c (Rn). Let f ∈ C∞
c (Rn) and K, ε be as above. By

Note 29.0.1 we have∫
Rn
| f (s)|2ds =

∫
K
| f (s)|2ds = εn ∑

k∈Zn

|(F f )(kε)|2 →
ε→0

∫
Rn
|(F f )(k)|2dk (215)

Corollary 33.1.11. F extends to an isomorphism on L2(Rn) with F−1 as its inverse.

Lemma 33.1.12. L1(Rn) ∩ C0(Rn) ⊂ L2(Rn).

Proof. Let f ∈ L1(Rn) ∩ C0(Rn) and K be the compact set outside which | f | 6 1. Then,

‖ f ‖2 =
∫

K
| f |2dm +

∫
Kc
| f |2dm 6

∫
K
| f |2dm +

∫
Kc
| f |dm 6

∫
K
| f |2dm + ‖ f ‖1 < ∞

Lemma 33.1.13 (A formula for the extension of F to L2). If f ∈ L2 and f̂ = F f , then

lim
n→∞

∥∥∥∥ f̂ −
∫
|x|6n

e−2πiξs f (s)dm
∥∥∥∥

2
= 0

If f ∈ L1(Rn) ∩ L2(Rn), then the extension of F to L2 is the same as F .

Any sequence of compact sets whose union is Rn would yield the same result.

Proof. This follows from the fact that, by dominated convergence, ‖ f − χ|x|6n f ‖2 → 0 as R→ ∞
and the continuity of the Fourier transform in L2(Rn). The second part is an easy corollary.

154/186



Math 6211+6212, Real Analysis I+II

Note 33.1.14. The result above is sometimes written

f̂ = l.i.m
R→∞

∫
|x|6R

e−2πiξs f (s)dm

Theorem 33.1.15. If f ∈ L1(Rn) and F f ∈ L1(Rn), then F−1F f = f .

Proof. This follows immediately from Lemmas 33.1.12 and 33.1.13.

Theorem 33.1.16 (Hausdorff-Young inequality). Assume 1 6 p 6 2 and p−1 + q−1 = 1.
Then, the Fourier transform is a bounded map from Lp to Lq with norm at most one.

Proof. We use interpolation. Note that the Fourier transform is continuous from L2(Rn) to
L2(Rn), and from L1(Rn) into L∞(Rn). The result now follows from the Riesz-Thorin inter-
polation theorem with p0 = q0 = 2, p1 = 1, q1 = ∞.

33.2 The Fourier inversion theorem, a direct approach

We show the inversion formula in R. Let f ∈ S(R). Then, F−1F f equals

lim
R→∞

∫ R

−R
eiξx

∫ ∞

−∞
e−iξy f (y)dydξ = lim

R→∞

∫ ∞

−∞
f (y)

∫ R

−R
eiξ(x−y)dξ dy = lim

R→∞

∫ ∞

−∞
f (x−u)

∫ R

−R
eiξudξ du

= 2 lim
R→∞

(∫ 0

−∞
+
∫ ∞

0

)
f (x− u)

sin Ru
u

du = 2 lim
R→∞

(∫ 0

−∞
+
∫ ∞

0

)
[ f (x− u) + f (x + u)]

sin Ru
u

du

= 2 lim
R→∞

∫ ∞

0

f (x + s) + f (x− s)− 2 f (x)
s

sin(Rs)ds + 4 f (x)
∫ ∞

0

sin s
s

ds = 2π f (x)

In the last integral above we changed Ru to s, and the integral before it goes to zero by the
Riemann-Lebesgue result in Exercise 83, 2. and the fact that the expression multiplying sin ξu is
smooth.

Note also the appearance in the process of the kernel u−1 sin(Ru), a continuous analog of the
Dirichlet kernel, in concentrating the main contribution of the integral to a vanishing neighbor-
hood of zero.

Proposition 33.2.1. If f (x) = e−πα|x|2 with <(α) > 0, then f̂ (ξ) = α−n/2e−π|ξ|2/α.

Proof. In one dimension this follows from the fact that

d f̂
dξ

= −2π

α
ξ f̂
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as it can be checked by integration by parts and that f̂ (0) = α−1/2. The extension to Rd is
immediate, since the multiple integral is a product of one-dimensional integrals of the type
above.

34 Supplementary material: Some applications of the Fourier trans-
form

34.1 The Schrödinger equation for a free particle in Rd

The wave function ψ(x, t) of a particle has the following interpretation:|ψ(x, t)|2dm is the proba-
bility density that, as a result of a measurement at time t, the particle will be found at position x.
Then clearly we must have

∫
Rd |ψ(x, t)|2dm(x) = 1 for any t, in particular ψ ∈ L2(Rd).

In the case of a single particle of mass m in an external potential V(x, t), ψ satisfies the PDE

ih̄
∂ψ

∂t
= − 1

2m ∆ψ + V(x, t)ψ

This is an evolution equation which requires an initial condition ψ(x, t0) = ψ0(x). Here E =

− 1
2m ∆ is the kinetic energy operator E = p2

2m =: 1
2m∇2. In atomic units, h̄ = 2m = 1. A particle is

free if the external potential is zero,

i
∂ψ

∂t
= −∆ψ

The Laplacian is a symmetric operator,

l.i.m.
R→∞

∫
|x|6R

(ψ ∆ϕ− ϕ ∆ψ) dV = l.i.m.
R→∞

∮
|x|=R

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
dS = 0

Lemma 34.1.1. If ‖ψ(x, 0)‖2 = 1, then ‖ψ(x, t)‖2 = 1 for all t.

Such an evolution is called unitary, for obvious reasons.

Proof. By taking the complex conjugate of the Schrödinger equation,

−ih̄
∂ψ

∂t
= − 1

2m ∆ψ + V(x, t)ψ

Multiplying the first equation by ψ, the second by ψ and subtracting, we get and subtracting the
two equations, and integrating over Rd we get

i
d
dt

∫
Rd
|ψ|2dm = l.i.m.

R→∞

∫
|x|6R

ψ ∆ψ− ψ ∆ψ = 0

We now take the Fourier transform in L2(Rd),

iψ̂′ = 4π2ξ2ψ⇒ ψ(x, t) = ψ̂0(ξ)e−4π2iξ2t
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The Fourier transform ψ̂ is the probability amplitude of the momentum, ξ. We see that the
probability distribuion in ξ is |ψ̂0|2, and it is independent of time. The momentum is conserved.

Now,
ψ(x, t) =

∫
Rd

e−4π2iξ2t+2πiξxψ̂0(ξ)dξ

What happens when t becomes large? It is not difficult to see that the Riemann-Lebesgue
lemma can be adapted to show that ψ(x, t)→ 0 as t→ ∞.

Concretely, let’s assume that ψ0(x) = e−παx2
. Then, by Proposition 33.2.1, we have ψ̂0(ξ) =

α−d/2e−πξ2/α and we get, using again Proposition 33.2.1,

ψ(x, t) = α−d/2
∫

Rd
e2πiξx−πξ2(4πit+α−1)dξ = (1+ 4iπαt)−d/2 exp

(
− παx2

16π2α2t2 + 1
+ 4i

π2α2tx2

16π2α2t2 + 1

)
If d = 3 we see that the probabilty of finding the particle in a ball of fixed radius decays roughly
like t−3, while the shape of the probability distribution is an ever widening Gaussian. The particle
disperses out of any finite region.

34.2 The Airy equation

The Airy functions Ai and Bi satisfy the ODE

y′′ = xy

The solutions are entire, since it is a linear ODE with entire coefficients. Taking the Fourier
transform (with the normalization

∫
R

e−iξxy(x)dx) we get

−ξ2ŷ = i
dŷ
dξ

with the solution
ŷ = Ceiξ3/3

meaning

y(x) =
∫ ∞

−∞
eiξ3/3+iξxdξ

is (up to a multiplicative constant) one of the two linearly independent solutions of the ODE.
With the normalization above, it is indeed, the Airy function Ai(x). Or is it even a solution of
the ODE? If we differentiate twice in x under the integral sign, we get an integral that does not
converge, even conditionally.

But this does not mean that y′′(x) does not exist! It simply means that the representation is
inadequate for this purpose. Instead, the contour of integration can be homotopically rotated:

y(x) =
∫ ∞eπi/6

−∞e−πi/6
eiξ3/3+iξxdξ

In this way, whe |ξ| is large, the integrand decreases roughly like e−|ξ|
3/3, and y(x) is now

manifestly analytic in C!
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35 Convolutions and the Fourier transform

Recall that the convolution of f and g is defined as

( f ∗ g)(y) =
∫

Rn
f (x)g(y− x)dx

Theorem 31.1.1 shows in particular that convolution is well defined on L1(Rn) × L1(Rn). The
following theorem shows, in particular, that multiplication and convolution are Fourier-dual to
each other.

Theorem 35.0.1. Suppose f , g ∈ L1. Then

f̂ ∗ g = f̂ ĝ; f̂ g = f̂ ∗ g

and, if a ∈ Rn, ten
τ̂a f (ξ) = eiξa f̂ (ξ)

Proof. This is a calculation, relying on Fubini:

( f̂ ∗ g)(ξ) =
∫∫

f (y− x)g(x)e−2πiξydxdy =
∫∫

f (y− x)g(x)e−2πiξxe−2πiξ(y−x)dxdy

=
∫

f (y− x)e−2πiξ(y−x)d(y− x)
∫

g(x)e−2πiξxdx = f̂ (ξ)ĝ(ξ) (216)

The equality immediately following it is now obvious by the inversion formula. The last equality
is clear from an immediate calculation.

As a result, we should investigate further the properties of convolution.

Note 35.0.2. Assuming that the integrals are well-defined (e.g., f , g ∈ L1),
a) f ∗ g = g ∗ f . This follows from the density of L2 and the fact that f̂ ĝ = ĝ f̂
b) ( f ∗ g) ∗ h = f ∗ (g ∗ h). (By the argument in (a).)
c) For a ∈ Rn, τa( f ∗ g) = (τa f ) ∗ g = f ∗ (τag). (By Theorem 35.0.1 and the argument

in (a).)
d) If f , g ∈ S , then f ∗ g ∈ S . (By the argument in (a).)
e) If A = {x + y : x ∈ supp( f ), y ∈ supp(g)}, then supp( f ∗ g) ⊂ A. This follows from

the fact that for all x, if z /∈ A then f (x)g(z− x) = 0.

Proposition 35.0.3. Let p, q be conjugate exponents, f ∈ Lp, g ∈ Lq. Then f ∗ g exists
pointwise everywhere, f ∗ g ∈ BC(Rn) and ‖ f ∗ g‖∞ 6 ‖ f ‖p‖g‖q. Furthermore, if p ∈
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(1, ∞), then f ∗ g ∈ C0.

Proof. Pointwise existence and the uniform bound follow right away from Hölder’s inequality.
Noting that ∫

f (x)g(y− x)dx =
∫

f (x)(Sg)(x)ds

where S = τy ◦ J, (Jg)(x) = g(−x), continuity follows from the fact that translation is continuous
in Lp, Lemma 33.0.1. Finally, we note that p ∈ (1, ∞) implies q ∈ (1, ∞) and thus Cc(Rn) is dense
in Lp(Rn) and in Lq(Rn). By Proposition 35.0.2 e) Cc(Rn) is preserved by convolution, and if
fn → f in Lp(Rn) and gn → g in Lq(Rn), then, by the first part of the Proposition, fn ∗ gn → f ∗ g
uniformly. Since the uniform closure of Cc(Rn) is C0(Rn), the result follows.

From the theorem of differentiation under the integral sign we obtain the following is a refine-
ment of Proposition 35.0.2, d).

Proposition 35.0.4. If f ∈ L1(Rn) and g ∈ Ck(Rn) with ∂αg ∈ BC(Rn) for |α| 6 k, then
f ∗ g ∈ Ck(Rn) and for all α, |α 6 k we have ∂α( f ∗ g) = f ∗ (∂αg).

36 The Poisson summation formula

Theorem 36.0.1. Assume f ∈ C(Rn), ‖|x|n+ε f (x)‖∞ < ∞, and ‖|ξ|n+ε f̂ (ξ)‖∞ < ∞ for some ε > 0.
Then,

∑
j∈Zn

f (j) = ∑
j∈Zn

f̂ (j)

and more generally,
∑

j∈Zn

f (x + j) = ∑
j∈Zn

f̂ (j)e2πij·x (217)

The sum (P f )(x) := ∑j∈Zn f (x + j) is called a periodization of f .

Proof. Note first that, under the given assumptions, the sums are uniformly and absolutely con-
vergent. The function ∑k∈Zn f (x + k) is in C(Tn) ⊂ L2(Tn).

f̂ (j) =
∫

Rn
e−2πij·x f (x)dx = ∑

m∈Zn

∫
T+m

e−2πij·x f (x)dx

= ∑
m∈Zn

∫
T

e−2πij·x f (x + m)dx =
∫

T
e−2πij·x ∑

m∈Zn
f (x + m)dx (218)

For integer j, f̂ (j) is the Fourier coefficient of P f , hence

∑
j∈Zn

f̂ (j)e2πijx = ∑
j∈Zn

f (x + j)
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This theorem has many applications, such as calculating sums in closed form, when the
Fourier transform of a function is more easily summed than the function itself.

For instance, if a ∈ R+, we have

1̂
x2 + a2 = a−1e−a|ξ|

which implies, using Poisson summation, that

∑
j∈Z

1
j2 + a2 = πa−1 coth(aπ) (219)

which, by a limiting procedure (check!) contains the special case

∑
j∈N

1
j2

=
π2

6

Eq. (219) is an instance of the Mittag-Leffler theorem, which expresses a meromorphic function
by a “partial-fraction-like” expansion. In the same way we get

∑
j∈N

1
j4 + a4 =

π
(

sinh
√

2πa + sin
√

2πa
)

√
2a3
(

cosh
√

2πa− cos
√

2πa
)

implying (how?)

∑
j∈N

1
j4

=
π4

90

Definition 36.0.2. The Jacobi theta function is defined as

ϑ(z; τ) =
∞

∑
n=−∞

exp
(
πin2τ + 2πinz

)
= 1 + 2

∞

∑
n=1

(
eπiτ

)n2

cos(2πnz) =
∞

∑
n=−∞

qn2
ηn, <τ > 0

(220)
Here z is any complex number, τ, confined to the upper half plane, is the half-period ratio,
and q is the nome. In terms of θ we have Ht(x, t) = ϑ(x; 4πit).

Exercise 90. Prove the Jacobi duality formula

∑
n∈Z

e−πn2x = x−1/2 ∑
n∈Z

e−π n2
x
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This identity is crucial to understanding the way the theta function transforms under the
modular group.

36.1 The Gibbs phenomenon
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Figure 5: Characteristic function of [−1/4, 1/4]: the partial Fourier sum with 20 terms (left), 100
(right) and the graphical superposition of the Fourier sum with 20− 100 terms (below).

The Gibbs phenomenon is the remarkable way in which the Fourier series behaves at a jump
discontinuity of a piecewise smooth function. The Gibbs phenomenon can be heard as “ringing”
near transients, such as sounds from percussion instruments. It roughly results from the fact that
we are trying to approximate a discontinuous function by smooth ones. Recalling the duality
between smoothness and decay of the Fourier coefficients, a discontinuity will result in their
slow decay. Therefore, the Fourier terms in the difference between a partial sum and the limit
will have significant amplitude, resulting in fast oscillating defects. This “defect” only occurs
in finite sums, since we know that in the limit the Fourier series converges everywhere to the
average of the left and right limits of a piecewise-smooth function. This also means that the
location of the maximum defect changes with the number of terms, to allow for the limit to exist.

The Fourier sums of the function f (x) = −1 if x ∈ (−1/2, 0) and 1 if x ∈ (0, 1/2)18 is

SN(x) =
N

∑
k=0

4 sin(2π(2k + 1)x)
π(2k + 1)

(221)

Then,

S′N(x) = 4
sin(4π(N + 1)x)

sin(2πx)
(222)

18Note that the point values of the function at the discontinuity are irrelevant, as they wash out as a result of the
integration involved in calculating Fourier coeffcients.
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(we recognize the Dirichlet kernel in (222); is this a coincidence?) An elementary argument shows
that the first positive maximum of SN occurs at x0 = 1

4(N+1) . We have

SN(x0) =
N

∑
k=0

4 sin
(

2π(2k+1)
4N+4

)
π(2k + 1)

→ 1
π

∫ π

0

sin x
x

dx = π−1 Si(π) = 1.1789797444 · · · as N → ∞

by observing that SN(x0) is a Riemann sum for the integral. We see that the sums converge
nonuniformly to f , with an “overshot” of about 18% in uniform norm.

Exercise 91. Show that the overshot by a factor of π−1 Si(π) of the Fourier sums occurs is the same at
any jump discontinuiuty of a piecewise smooth function.

37 Applications to PDEs

In this chapter we use ξ for the Fourier variable: this is the most frequent convention in PDEs.

37.1 The heat equation on the circle

This is given by
∂u
∂t

=
∂2u
∂x2 , u(x, 0) = f (x); f ∈ C1(T) (223)

We have already shown uniqueness of solutions of (223). For existence we write

f (x) = ∑
j∈Z

aje2πijx

By separation of variables we get

u(x, t) = ∑
n∈Z

fne−4π2n2te2πinx (224)

With f̂ = ( fn)n∈Z Ĥt = (e−4π2n2t)n∈Z, the Fourier coefficients of the heat kernel for the circle

Ht(x) = ∑
n∈Z

e−4πn2te2πinx (225)

we have û = f̂ Ĥt and therefore
u = f ∗ Ht (226)

(where ( f ∗ g)(y) =
∫ 1

0 f (x)g(y− x)dx).

37.2 The heat equation on the line; smoothening by convolution

This is the same as (223), except with x ∈ R. With uniqueness settled in §30, we show existence,
and in fact construct the solution, by Fourier transform in x:

∂û
∂t

= −4π2ξ2û (227)
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which gives
û(t, ξ) = f̂ (ξ)e−4π2ξ2t (228)

As before, the convolution theorem implies

u = f ∗ Ht (229)

where
Ht(x) = F−1

(
e−4π2ξ2t

)
= (4πt)−1/2e−x2/4t (230)

Theorem 37.2.1. If f ∈ S , then the solution of (223) on R is (229), and u(t, ·) ∈ S ; ‖u(t, ·)−
f ‖u → 0 and ‖u(t, ·)− f ‖2 → 0 as t→ 0

Proof. First, note that û(t, ·) ∈ S for t > 0, implying that u(t, ·) ∈ S for t > 0. Next,

|u(x, t)− f (x)| =
∣∣∣∣∫

R
f̂ (ξ)

(
e−4π2ξ2t − 1

)
e2πiξxdξ

∣∣∣∣ 6 ∫
R
| f̂ (ξ)|

∣∣∣e−4π2ξ2t − 1
∣∣∣ dξ → 0 (231)

as t→ 0 by dominated convergence. For the L2 norm, by Plancherel,

‖u(t, ·)− f ‖2
2 = ‖û(t, ·)− f̂ ‖2 =

∫
R
| f̂ (ξ)|2

∣∣∣e−4π2ξ2t − 1
∣∣∣2 dξ → 0 (232)

as t→ 0 again by dominated convergence.

Corollary 37.2.2 (Smoothening by convolution). Let f ∈ Cc(R). Then gt = f ∗ Ht ∈ S (in
fact, gt is entire) and gt → f uniformly as t→ 0.

Proof. Indeed, if f ∈ Cc(R), then f̂ ∈ C∞(R) ∩ C0(R), hence f̂ (ξ)e−4π2ξ2t ∈ S (using the super-
exponential decay in ξ you can show that, in fact, gt is entire). The rest follows from Theorem
37.2.1.

Theorem 37.2.3. The heat kernel on the circle is the periodization of the heat kernel on the
line:

Ht(x) = ∑
n∈Z

Ht(x + n) (233)

Proof. This follows immediately from (230), (225) and the general form of Poisson’s summation
formula.
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Corollary 37.2.4. The heat kernel on the circle is positive, and the family {Ht}t>0 is an
approximation to the identity.

Proof. Positivity follows from (233). It is clear from (225) that
∫ 1/2
−1/2 Ht(x)dx = 1 (since only

the term with n = 0 contributes). We have to show that the integral of Ht over an interval not
containing 0, say J = (α, β) where 0 < α < β < 1/2 vanishes in the limit t → 0. Note that for
x ∈ J and 0 6= n ∈ Z we have |1 + x/n| > |1− x| > |1− β| := ε, implying |x + n| > |n|ε and thus

∑
|n|>1
Ht(x + n) 6 ∑

|n|>1
(4πt)−1/2e−ε2n2/4t → 0 as t→ 0 (234)

by monotone convergence, which implies, by dominated convergence,

∫
J

Ht(x)dx 6
e−α2/4t

(4πt)1/2 (β− α) +
∫

J
∑
|n|>1
Ht(x + n)dx

6
e−α2/4t

(4πt)1/2 (β− α) + ∑
|n|>1

(4πt)−1/2e−ε2n2/4t → 0 as t→ 0 (235)

Corollary 37.2.5. For any continuous initial condition f , the heat equation on the circle
has a unique smooth solution, u(x, t) = (Ht ∗ f )(x).

Proof. Indeed, Ht ∗ f is smooth and solves the heat equation for any t > 0 and, by Corollary
37.2.4, limt→0 Ht ∗ f = f .

37.3 General linear PDEs

A differential operator is an operator L of degree m has the general form

L = ∑
|α|6m

aα(x)Dα; giving L f = ∑
|α|6m

aα(x)∂α f

and it is with constant coefficients if aα(x) = bα are independent of x. Let f ∈ S . Then,

F (L f )(ξ) = ∑
|α|6m

(2πi)−|α|bαξα f̂ (ξ) (236)

and we see that the equation L f = g in Rn reduces to a polynomial equation, whenever we can
indeed apply the Fourier transform.

The polynomial
∑
|α|6m

bαηα
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is called total symbol of L, or simply symbol. The part of the symbol containing the terms of
highest degree only,

∑
|α|=m

bαηα

is called principal symbol. For a second order partial differential operator L with principal
symbol

∑
i+j=2

bijη
i
1η

j
2

the operator is called elliptic if the matrix B = {bij}i,j is positive or negative definite, hyperbolic
if B is not definite but det(B) 6= 0 and parabolic if exactly one eigenvalue of B is zero. Thus, the
Laplacian ∆ is elliptic, the wave operator � = ∂2

t − ∂2
y is hyperbolic, and the heat operator ∂t − ∂2

x
is parabolic. The names of the three types above derive from the form of the symbol: for the
Laplacian, the symbol is η2

1 + η2
2 whose level lines are ellipses; the level lines are hyperbolas for

η2
1 − η2

2 ; the heat equation has total symbol η1 + η2
2 whose level lines are parabolas; whether the

parabola is concave or convex is also important. Let’s examine these four types of equations on
the circle, with conditions (initial, boundary, etc) in S performing (discrete) Fourier transform in
one variable only.

For the wave equation, we get
[ûtt]j = −4π2 j2ûj

with solutions uj = aje−2πijt + bje2πijt, meaning

u(x, t) = ∑
j∈N

aje−2πij(x+t) + ∑
j∈N

bje2πij(x−t)

and the solution is completely determined if we provide u(x, 0), ut(x, 0). We also note that
u(x, t) = f (x + t) + g(x − t). Recall also the solutions of the Laplace equation, Theorem 30.0.2
and of the heat equation on the circle, Exercise 78.

The backward heat equation, ut = −uxx would formally give

∑
j∈Z

ake4π2 j2t+ijx

and, for generic initial conditions in S , this is nonsense for any t > 0 (the solution, assumed C2

in x, would have a convergent Fourier series if it existed at all).
The Laplace equation ∆u = 0 is elliptic, and in a given domain it needs one boundary

condition: either u∂Ω = f or the normal derivative ∂u
∂n |∂Ω = g.

Note the important role of the principal symbol: its nature dictates the growth of the Fourier
coefficients, which control the existence and smoothness of solutions.

Note also that if we have a linear PDE with constant coefficients, a Fourier transform converts
it to a polynomial equation which can be solved in closed form.

37.4 Operators and symmetries

If G is a group of transformations on a space of functions F and L is a map from F to F, then L is
invariant under G if L(γ f ) = γL f for all γ ∈ G and f ∈ f.

Another way to write this is to note that f 7→ γ f is itself a linear operator; call it Γ. Then,
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L is invariant G iff, for any γ ∈ G, L and Γ commute, LΓ− ΓL =: [L, Γ] = 0. Symmetries often
place such restrictions on L that the operator is virtually determined by them. In physics, this is
an important way to determine the fundamental laws of various theories.

Let’s look at the question of which second order operators commute with the isometries of
Rn, the group generated by T and O(n). Recalling our more general analysis of isometries of
Hilbert spaces, all elements of O(n) must be (real-valued) unitary transformations, R ∈ O(n) ⇒
RR∗ = I = RRt. In particular, |det R| = 1.

Lemma 37.4.1. The Fourier transform commutes with O(n) : R ∈ O(n) ⇒ R(F f (ξ)) =

(F f )(Rξ) = (F f (R·)(ξ).

Proof. Changing variable Rx = y,

f̂ (Rx) =
∫

Rn
e−2πi〈ξ,x〉 f (Rx)dx =

∫
Rn

e−2πi〈ξ,Rty〉 f (y)dy =
∫

Rn
e−2πi〈Rξ,y〉 f (y)dy = f̂ (Rξ)

Theorem 37.4.2. A differential operator L commutes with the isometries of Rn iff it is a
polynomial in ∆, L = Q(∆).

Proof. It is easy to see, as in the beginning of the paragraph, that L must have constant coefficients.
In Fourier space it is a polynomial in P(ξ) which, by Lemma 37.4.1, commutes with O(n). We
decompose the polynomial by homogeneous components,

P(ξ) =
M

∑
m=0

∑
|α|=n

aαξα =
M

∑
m=0

Pm(ξ)

Next, we note that

0 = λ−M[P(Rλξ)− P(λξ)]⇒ lim
λ→∞

λ−M[P(λRξ)− P(λξ)] = PM(Rξ)− PM(ξ) = 0

This means that the highest order homogeneous polynomial is itself O(n)-invariant. Subtracting
PM from P and repeating the argument implies that PM−1 commutes with O(n) and inductively,
all homogeneous components Pj(ξ) do. Take the unit sphere, S = {ξ : |ξ| = 1} and note that
O(n) acts transitively on S. This follows from the exercise below. Thus Pj(Rξ) = Pj(ξ) on S
implies Pj = aj = const on S, entailing Pj(ξ) = aj|ξ|j which is only possible if j is even, and thus
a2k+1 = 0 and P2k(ξ) = a2j(ξ

2
1 + ... + ξ2

n)
j.

Exercise 92. Show that SL(n) acts transitively on Rn \ {0} and (thus) O(n) acts transitively
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on the unit sphere in Rn.

37.5 Supplementary material: Adjoints of linear operators

Recall that for a bounded operator B in a Hilbert space H , we can define the adjoint B∗ by
〈Bx, y〉 = 〈x, B∗y〉, where uniqueness is immediate and existence is guaranteed by the Riesz
representation theorem. An operator L which is not necessarily bounded is defined on some
domain dom(L) = Ω (we may assume that Ω is dense in H, otherwise the natural Hilbert space
to work in would be H1 = Ω). Naturally, the adjoint of L would be an operator L∗, defined on
some domain Ω∗ with the property

∀(x, y) ∈ Ω×Ω∗, 〈Lx, y〉 = 〈x, L∗y〉

Obvious questions are of course existence of such an L∗, and uniqueness. Uniqueness is easy: if
we have two operators L∗1 and L∗2 with the property above, then for any y such that L∗1,2 are both
defined, we have, for any x in the dense set dom(L),

〈x, (L∗1 − L∗2)y〉 = 0⇒ (L∗1 − L∗2)y = 0

For existence, define

dom(L∗) = {y ∈ H : ∃z ∈ H, 〈Lx, y〉 = 〈x, z〉} (237)

and define L∗ on dom(L∗) by
L∗y := z (238)

Definition 37.5.1. An operator A on a dense domain Ω ⊂ H is self-adjoint if A∗ = A. Note that this
means that dom(A∗) is no more, and no less than dom(A).

Proposition 37.5.2. Let U be unitary fromH toH′ and A : Ω→ H a linear operator with dense domain.
Then UΩ is dense in H′, UA is well defined on UΩ and its adjoint in UA∗.

Proof. Since U is an isomorphism, this is a straightforward verification.

Example 37.5.3. Consider the operator D = i d
dx on T. First, we see that for smooth functions,

say in C∞(T), 〈D f , g〉 = 〈 f , Dg〉 and D∗ exists at least on C∞(T), and on it D∗ = D. From the
definition of the adjoint, it is clear that the domain of D∗ gets larger if the domain of D shrinks.
Suppose we want to determine first the “maximal” set of functions in L∞ ⊂ L2 on which we
can define differentiation. We keep then C∞(T) as an initial domain for D (or choose an even
smoother space if it helps), and determine the corresponding domain of D∗.

Let U = F , the discrete Fourier transform, a unitary map between L2(T) and `2(Z). Then
UD is the operator of multiplication by −2πk and, to understand what the adjoint of D is, it is
enough to determine the adjoint of −2πk. We have

〈D f , g〉 = ∑
k∈Z

(−2πk fk)gk = ∑
k∈Z

fk(−2πkgk) =: ∑
k∈Z

fkzk

which implies zk = (−2πkgk), k ∈ Z. Thus, dom(D∗) = Ω∗ = {g ∈ H : (kgk)k∈Z ∈ `2(Z)}.
Let (hk)k∈Z ∈ `2(Z) be given by hk = −2πikgk, k ∈ Z and h = F−1((hk)k). For k 6= 0 we have
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gk = i/(2πk)hk which means that g =
∫ x

0 h + Λ( f ) where Λ(g) is an additive constant, which
is a bounded linear functional on L2 (why?). Now, h ∈ L2 implies g ∈ AC(T) (with derivative
in L2). This is the largest domain of D, with range in L2. In this simple example, if we extend
dom(D) to Ω∗, the same argument shows that this extended D is self-adjoint.

Example 37.5.3 indicates that if we want to extend D even further, then the extended domain,
or range, or both cannot consist of usual functions, even allowing for the generalizations used in
the Lp spaces.

Let us first relax the restriction on the range. The dual of Cc([−a, a]) is the space of Radon
measures on [−a, a]. The Heaviside function Θ(x) is not in AC (it’s not even continuous, of
course). As an element of the dual of Cc it acts as 〈Θ, ϕ〉 =

∫ a
0 ϕ(x)dx. Proceeding as in the

previous example, taking ϕ in the dense set C1([−a, a]), we would define Λ = d
dx Θ, as an element

of C∗c by

Λϕ = −〈Θ,
d

dx
ϕ〉 = −

∫ a

0
ϕ′(s)ds = ϕ(0)⇒ Λ = δ(x)

where δ(x) is the Dirac mass measure at zero. Thus Θ′(x) = δ(x) exists, as a measure, δ(x). In
the same manner, we would get

Θ′′(x) = (ϕ 7→ −ϕ′(0))

This is obviously not defined as a bounded functional on Cc([−a, a]), but it is in (C1([−a, a]))∗.
This logic prompts us to consider the baseline space of test functions D = C∞

c (Rn).

37.6 Supplementary material: the Fourier transform of functions analytic in the
lower half plane and the Laplace transform

Let f ∈ L1 ∩ C0(R) be s.t. f̂ ∈ L1. Recall that this implies that F−1 f̂ = f .

Proposition 37.6.1. (i) Assume that f ∈ L1 ∩ C0(R) is s.t. f̂ ∈ L1, and that f is analytic in the upper
half plane H, and that | f (z)| → 0 as |z| → ∞ in H. Then f̂ (ξ) = 0 if ξ < 0.

(ii) Assume f ∈ L1 ∩ C0(R) and f (ξ) = 0 for ξ < 0. Then f̌ is analytic in the upper half plane and
| f (z)| → 0 as |z| → ∞ in H.

Proof. (i) Let ξ > 0. Take Cr to be the three upper sides of a box in C: the segment from r to
r− ir, followed by the segment from r− ir to −r− ir and finally from −r− ir to −r. Check that∫

Cr
e−iξx f (x)dx → 0 as r → ∞. Fix an ε and choose r large enough so that |

∫
|x|>r e−iξx f (x)dx|+

|
∫

Cr
e−iξx f (x)dx| < ε. We then have∣∣∣∣∫

R
e−iξx f (x)dx−

∫
[−r,r]∪Cr

e−iξx f (x)dx
∣∣∣∣ < ε

where
∫
[−r,r]∪Cr

means the integral over [−r, r] followed by the integral on Cr discussed above.
On the other hand, since f is analytic, Cauchy’s theorem implies that

∫
[−r,r]∪Cr

e−iξx f (x)dx = 0,
and since ε is arbitrary, the result follows.

(ii) Simply use dominated convergence and the Riemann-Lebesgue lemma.
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Definition 37.6.2. Let F ∈ L1(R+). The Laplace transform of L is defined as

(LF)(x) =
∫ ∞

0
e−pxF(p)dp, <x > 0

More generally, if e−axF ∈ L1 for some a > 0, then LF is defined by the same formula, for <x > a.

Theorem 37.6.3. If F ∈ L1(R+), then f (x) = LF is analytic in the right half plane H and continuous
in H. If f (ix) ∈ L1(R), then, for p > 0, F is given by the inverse Laplace transform,

F(p) =
1

2π

∫ ∞

−∞
eipx f (ix)dx =

1
2πi

∫ i∞

−i∞
f (z)epzdz

If sup |za f (z)| < ∞ for some a > 1, then we equivalently have

F(p) =
1

2πi

∫ c+i∞

c−i∞
f (z)epzdz

for any c > 0.

Proof. Analyticity in H follows from the fact that F ∈ L1: dominated convergence allows then for
differentiation inside the integral. Continuity in H also follows from dominated convergence. In
the limit x → 2πit, we get

(LF)(2πit) =
∫ ∞

0
e−2πitpF(p)dp = F̂(t)

The rest follows from the Fourier inversion theorem.

38 Distribution theory

“Il y a plus de 50 ans que l’ingénieur Heaviside introduisit ses régles de calcul symbolique,
dans un mémoire audacieux où des calculs mathématiques fort peu justifiés sont utilisés pour
la solution de problèmes de physique. Ce calcul symbolique, où opérationnel, n’a cessé de
se développer depuis, et sert de base aux études théoriques des électriciens. Les ingénieurs
l’utilisent systématiquement, chacun avec sa conception personnelle, avec la conscience plus ou
moins tranquille ; c’est devenu une technique «qui n’est pas rigoureuse mais qui réussit bien».
Depuis l’introduction par Dirac de la fameuse fonction δ(x), qui serait nulle partout sauf pour
x = 0, de telle sorte que

∫ ∞
−∞ δ(x)dx = +1, les formules du calcul symbolique sont devenues

encore plus inacceptables pour la rigueur des mathématiciens. Écrire que la fonction d’Heaviside
Y(x) égale 0 pour x < 0 et a 1 pour x > 0 a pour dérivée la fonction de Dirac δ(x) dont la
définition même est contradictoire, et parler des dérivées δ′(x), δ′′(x),... de cette fonction denude
d’existence réelle, c’est dépasser les limites qui nous est permises. Comment expliquer le succès
de ces méthodes? Quand une telle situation contradictoire se présente, il est bien rare qu’il n’en
résulte pas une théorie mathématique nouvelle qui justifie, sous une forme modifiée, le langage
des physiciens ; il y a même là une source importante de progrès des mathématiques et de la
physique.”
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“More than 50 years ago the engineer Heaviside introduced his symbolic calculus rules, in an
audacious memoir in which mathematical calculations with scant justification were used to solve
physical problems. This symbolic calculus, or operational calculus, has not ceased to be devel-
oped since, and serves as a foundation for the theoretical studies of electricians. The engineers
use it systematically, everyone using his own conception, with a more or less peaceful conscience;
it has become a technique “which is not rigorous, but is successful”. Ever since Dirac’s intro-
duction of the famous function δ(x), which would be zero everywhere except at x = 0, in such
a way that

∫ ∞
−∞ δ(x)dx = +1, the formulas of symbolic calculus have become even more unac-

ceptable for the rigor of mathematicians. To write that the Heaviside function Y(x) which equals
0 fo x < 0 and 1 for x > 1 has as a derivative the Dirac function δ(x), whose very definition
is contradictory, and then talk about the derivatives δ′(x), δ′′(x),... of this function devoid of
real existence, is to exceed the limits that are permitted to us. How can one explain the success
of these methods? When such a contradictory situation presents itself, it is rarely not the case
that a new mathematical theory emerges, which justifies, in a modified form, the language of of
physicists; there is even, in this, an important source of progress of mathematics and physics.”

Laurent Schwartz, Théorie des Distributions

38.1 The space of test functions D = C∞
c (Rn), and its topology

The topology on D = C∞
c (Rn) is that of an inductive limit of Fréchet space (called “an LF space”.

Here we characterize the topolgy by its properties.

(i) A sequence { fn}n∈N converges to f ∈ D iff there is an n0 ∈N and a compact set K such
that all fn with n > n0 are supported in K, and

∀α ∈ (N∪ {0})n, lim
n→∞
‖∂α( fn − f )‖u = 0

(ii) A set S ⊂ D is bounded iff there is a compact set K s.t. S is a bounded subset of
C∞

c (K).
(iii) A sequence is Cauchy if there is a compact set K s.t. all functions are supported in

K and the sequence is Cauchy in C∞
c (K).

(iv) Let Y be a locally convex topological space. A mapping A : D → Y is continuous
if it is continuous on every C∞

c (K), K a compact set.
(v) A linear functional Λ : D → C is continuous iff there is an N and a K s.t.

|Λϕ| 6 cK sup{|∂α ϕ| : x ∈ K, |α| 6 N}

Definition 38.1.1. 1. D′, the dual of D, is the space of distributions. If F ∈ D′ its value
on the function ϕ ∈ D is denoted by 〈F, ϕ〉, or sometimes, when no confusion is
possible,

∫
F(x)ϕ(x)dx.
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2. The topology on D′ is chosen to be the weak-* topology: a net of (Fα)α∈A of distri-
butions converges iff (〈Fα, ϕ〉)α∈A converges for every ϕ ∈ D.

Note 38.1.2. 1. D is not a sequential space. Likewise, D′ is not a sequential space a

However, convergence along nets does not play any role in the basic construction of
distributions.

2. The topology on D is not metrizable. Indeed, take a sequence of compact sets s.t.
Kj ↑ Rn as j → ∞. Clearly, ∪jC∞

c (Kj) = D, C∞
c (Kj) are closed, with empty interior,

since they are proper subspaces of the topological vector space D, as shown in the
exercise below.

aSee R. M. Dudley, Convergence of Sequences of Distributions, Proc. AMS 27, 3 (1971).

Exercise 93. Let V be a topological vector space and S a subspace of V with nonempty
interior. Show that V = S.

One way is as follows: since the vector space operations, addition and scalar multi-
plication are continuous, if O is nonempty and open in S, then for any s ∈ S we have
O + s ⊂ S. Take s0 ∈ O, and note that O − s0 contains the origin. For any v ∈ V, the
map Fv : C → V given by Fv(λ) = λv is continuous, and thus F−1

v (O − s0) is open and
nonempty, since it contains 0, and hence there is a nonzero λ so that λv ∈ O − s0, thus
v ∈ S, hence S = V.

Note 38.1.3. D is an inductive limit of Fréchet spaces (see Appendix A): let (Ki)i∈N be
compact sets in Rn, whose union is Rn and such that for all i Ki is contained in the interior
of Ki+1 (e.g., the balls of radius i centered at the origin). Then D is the inductive limit of
the sequence of Fréchet spaces C∞

c (Ki).

Definition 38.1.4. It is often useful to restrict test functions to smaller sets: If O is open (K
is compact), D(O) (D(K), resp.) denote the compactly supported infinitely differentiable
functions whose support is contained in O) (K resp.).

38.2 Examples of distributions

Check that the following are examples of elements of D′:
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1. (Distributions generalize functions.) Any f ∈ L1(R) is a distribution, acting on test func-
tions by 〈 f , ϕ〉 =

∫
Rn f (x)ϕ(x)dx.

2. Consequently, D is embedded in D′ by

〈ψ, ϕ〉 :=
∫

Rn
ψ(s)ϕ(s)ds (239)

3. More generally, Radon measures are distributions acting by 〈µ, ϕ〉 =
∫

Rn ϕdµ.

4. An important example of a distributions of the form 2 is the Dirac distribution at zero, or
the “delta function”. This is the functional δ(x) defined by 〈δ, ϕ〉 = ϕ(0). More generally,
the delta function at x0, δx0(x) is the distribution 〈δx0 , ϕ〉 = ϕ(x0).

5. Derivatives of the delta function at a point, defined by 〈∂αδx0 , ϕ〉 = (−1)|α|(∂α ϕ)(x0) are
distributions. Check that these derivatives, for |α| 6= 0 are not of the form 3.

6. Let FN(x, y) = ∑N
k=−N e−2πik(x−y). Then, with ϕ ∈ C∞

c ([−1/2, 1/2]), and ϕk the Fourier
coefficients of ϕ, we have

〈FN(·, y), ϕ〉 =
N

∑
k=−N

ϕkeiky → ϕ(y) as N → ∞

and thus ∑N
k=−N e−2πik(x−y) → δy(x) as N → ∞, in D′(−1/2, 1/2).

Proposition 38.2.1 (Fundamental sequences). Assume f ∈ L1(Rn) and
∫

Rn f = 1; for ε > 0
define fε(x) = ε−n f (x/ε). Then fε → δ as ε→ 0.

Proof. Let ϕ ∈ D. Then,

〈 fε, ϕ〉 = ε−n
∫

Rn
f (x/ε)ϕ(x)dx =

∫
Rn

f (x)ϕ(xε)dx → ϕ(0)

by dominated convergence.

38.3 Support of a distribution

General distributions are not functions and we cannot generally speak of the value of a dis-
tribution at a point. However, the restriction of a distribution to an open set is a meaningful
notion.

Definition 38.3.1. F ∈ D′ is zero on the open setO if F restricted to D(O) is zero. Similarly,
if F, G ∈ D′ we say that F and G agree on O if F− G = 0 on O.

Check that this notion coincides with usual equality of functions (a.e.) if F and G are func-
tions.
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Proposition 38.3.2. Let Oα be open sets with ∪αOα = O. If F ∈ D′(O) and F = 0 on each
Oα, then F = 0 on O.

Proof. Let ϕ ∈ D(O). Since supp(ϕ) is a compact set, there exist m ∈ N and O1, ...,Om s.t.
ϕ ≺ ∪m

1 Oj. Let ψj, j = 1, ..., m be a smooth partition of unity on supp(ϕ) with ψj ≺ Oj. Then
〈F, ϕ〉 = ∑j〈F, ψj ϕ〉 = 0, by assumption.

Definition 38.3.3. For F ∈ D′, there is a maximal open set O in Rn (possibly empty) on
which F is zero. Then, the support of F is Rn \ O.

Example 38.3.4. The delta function at x0 has {x0} as a support.

Definition 38.3.5. Let T be a linear continuous operator on D. T has a transpose if there is
a linear continuous operator T× on D s.t.

〈T×ψ, ϕ〉 =: 〈ψ, Tϕ〉 (240)

As an example, the transpose of ∂α is (−1)|α|∂α. Note that the transpose is uniquely defined by
(T×)× = T and (240). Check that the transposes below exist and satisfy the rules in 1. and 2.

1. (aT + bS)× = aT× + bS×.

2. (TS)× = S×T×.

38.4 Extension of operators from functions to distributions

Proposition 38.4.1. Assume T is linear and continuous from D to D. Define T× by

〈T×F, ϕ〉 = 〈F, Tϕ〉

Then T× is linear and continuous on D′.

Definition 38.4.2. We define T on D′ by T = T×, T× as above.
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Proof. For linearity:

〈T×(aF1 + bF2), ϕ〉 = 〈aF1 + bF2, Tϕ〉 = a〈F1, Tϕ〉+ b〈F2, Tϕ〉 = a〈T×F1, ϕ〉+ b〈T×F2, ϕ〉

Continuity: By the definition of the topology on D′ (and since for every ϕ ∈ D we have Tϕ ∈ D)
if {Fα}α∈A is s.t. Fα → F, then limα〈T×Fα, ϕ〉 = limα〈Fα, Tϕ〉 = 〈F, Tϕ〉 = 〈T×F, ϕ〉.

Examples. 1. (Differentiation) Let F be any L1
loc function. Then, F has derivatives of all orders

in the sense of distributions, since

〈∂αF, ϕ〉 = (−1)|α|
∫

Rn
F(x)∂α ϕ(x)

is a continuous functional on D. That is: if F is a distribution, then ∂αF is a distribution,
defined by (−1)|α|〈F, ∂α ϕ〉.

2. (Multiplication by smooth functions) If F ∈ D′ and ψ ∈ D, then Fψ ∈ D′, since T× := ϕ 7→
ψϕ satisfies the hypotheses of the Proposition above (it acts continuously on D), and Fψ is
then the distribution 〈Fψ, ϕ〉 := 〈F, ψϕ〉. Note that smoothness is needed in this definition;
if F = δ and, suppose, ψ is only in L∞, (ψϕ)(0) is undefined, in general. The product of
two distributions is not defined, in general.

3. (Translation) Since
∫

Rn f (x + a)g(x)dx =
∫

Rn f (x)g(x − a)dx if f , g ∈ D, the extension to
D′ of translation is 〈τaF, ϕ〉 = 〈F, τ−a ϕ〉, and the proposition applies since T = τ−a is
continuous.

4. (Composition with linear transformations of Rn.) Let M be linear and invertible on Rn.
Then ϕ→ ϕ ◦M−1 is a continuous linear map on D, and hence F ◦M is well defined:

〈F ◦M, ϕ〉 = |detM|−1〈F, ϕ ◦M−1〉

In particular, if R is the reflection Rϕ(x) = ϕ(−x), we have

〈RF, ϕ〉 = 〈F,Rϕ〉

Exercise 94. 1. Show that the Leibniz rule of differentiation applies to (Fϕ)(n), when
F ∈ D′ and ϕ ∈ D.

Let ϕ ∈ S . Consider the following calculations:

(ϕδ)′ = ϕ′δ + ϕδ′ = ϕ′(0)δ + ϕ(0)δ′

(ϕδ)′ = (ϕ(0)δ)′ = ϕ(0)δ′

Both cannot be right. Do a careful calculation and decide which formula is correct and
what went wrong in the other.
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Exercise 95. 1. Show that there is no sequence nonzero numbers {ck}k∈N such that
∞

∑
k=0

ckδ(k) converges in the sense of distributions.

2. Show that for any sequence of nonzero numbers {ck}k∈N, there is a smooth function
ϕ such that the sequence {ck ϕ(k)(0)}k∈N is unbounded.

Exercise 96. Homework: 94,95 from these notes and 2,6,7,13 form Folland, Chapter 9–Not
due, I will provide a solution sheet for 94,95

Definition 38.4.3. If K is a compact set,

D(K) = {ϕ ∈ D : supp(ϕ) ⊂ K}

Theorem 38.4.4 (Regularity). For any distribution F and compact set K ⊂ Rn, there is a
positive integer N(K) and a positive constant c(K) s.t. for all ϕ ∈ D(K),

|〈F, ϕ〉| 6 c(K)|ϕ|N , where |ϕ|N = max
|α|6N

‖∂α ϕ‖u (241)

In other words, any distribution, restricted to D(K) is in fact in the dual of CN(K) for some
N ∈N∪ {0}.

Note that | · |N is a norm in CN(K).

Proof. By contradiction: assume the inequality in (241) is false for all N. Then, for any n there is
a ϕn ∈ D(K) s.t. |〈F, ϕn〉| = 1 and |ϕn|n 6 1/n. However, the sequence {ϕn}n∈N converges to
zero in D(K) which contradicts |〈F, ϕn〉| = 1 for all n.

Definition 38.4.5. For K ∈ N consider the space of functions on Tn which are absolutely
continuous together with all derivatives of order up to K− 1 and derivatives of order K in
L2. Define the norms

‖g‖2
2,K = ∑

|α|6K
‖∂αg‖2

2 (242)
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The space HK = HK(T
n) is defined as {g : Tn → C| ‖g‖2,K < ∞}

Proposition 38.4.6. (i) HK is a Hilbert space.
(ii) HK is equivalently characterized by the Fourier coefficient norm

‖g‖2
2,K = ∑

k∈Zn

(1 + |k|2)K|ĝk|2 < ∞ (243)

(iii) Smooth functions in Tn are dense in HK.
(iv) If u ∈ HK and K > n/2, then u is continuous and ‖u‖u < const.‖u‖K where

the constant does not depend on u. More generally, if K > n/2 + M, then u ∈ CM(Tn)

and |u|M 6 const‖u‖K, where the constant does not depend on u. Consequently, iu K >

n/2+ M, then HK is continuously embedded in CM(Tn), and is a dense subset of CM(Tn).

Proof. (i) Straightforward.
(ii) Parseval.
(iii) Smooth functions in Tn are those for which all norms above indexed by K ∈N are finite.

Density is obvious, as if we simply truncate the series in (243) at k = kN , then the function
corresponding to it is smooth for any kN and in the limit kN → ∞ we recover the infinite sum.

(iv) Here the argument is similar to that in Exercise 77. We have, by Cauchy-Schwarz

(sup
Tn
|u|)2 6

(
∑

k∈Zn

|uk|
)2

6

(
∑

k∈Zn

(1 + |k|2)K|ûk|2
)

∑
k∈Zn

1
(|k|2 + 1)K 6 const.‖u‖K (244)

The case K > n/2 + M is similar and left as an exercise.

Note 38.4.7. HK is an instance of a Sobolev space, and (iv) above is an instance of a Sobolev
embedding theorem.

Theorem 38.4.8 (A structure theorem). Any distribution with compact support can be
written in the form

F = ∑
|α|6L

∂αgα (245)

where gα are continuous functions and L is some nonnegative integer.

Proof. Let Q be an open cube containing the support of F, and take a smooth ψ s.t. Q ≺ ψ.
Without loss of generality, we may assume that Q is centered at 0 and of side 1. By the definition
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of the support, we see that Fψ = F (ψϕ is zero outside Q for any ϕ ∈ D). By Theorem 38.4.4,
there exist c = c(Q) and M = M(Q) s.t for all ϕ ∈ D we have

|〈F, ϕ〉| = |〈F, ψϕ〉| 6 const.|ψϕ|M 6 const.|ϕ|M

Let N > M + n/2. If u ∈ HN then u ∈ CM(Tn) and F is a linear functional on HN , through
F(u) =:= F(uψ). F is also continuous in ‖ · ‖N since |F(u)| 6 const.|u|M 6 const‖u‖N . Therefore,
F is the inner product with an element g ∈ HN , and, if ϕ ∈ D ⊂ HN , we have

F(ϕ) = ∑
|α|6N

∫
Tn
(∂α ϕ)(∂αg) = (−1)|α| ∑

|α|6N

∫
Tn

g(∂2α ϕ) = ∑
|α|6N

〈(−1)|α|∂2αg, ϕ〉

Note 38.4.9. The functions gα can be chosen to be compactly supported. Indeed let χ ∈ D
be s.t χ = 1 on the support of F. Then F = F χ and for any ϕ ∈ D we have

〈F, ϕ〉 = 〈F, χϕ〉 = 〈∂αg, χϕ〉 = 〈g, ∂α( χ, ϕ)〉
= ∑

β1+β2=α

〈g, cβ1β2 ∂β1 χ∂β2 ϕ〉 = ∑
β1+β2=α

〈cβ1β2 g∂β1 χ, ∂β2 ϕ〉 (246)

and thus
F = ∑

β1+β2=α

cβ1β2 ∂β2(g∂β1 χ) = ∑
|γ|6|α|

∂γgγ

where supp gγ ⊂ supp χ.

Corollary 38.4.10. For any K, D is embedded densely in D′(K).

Proof. If F ∈ D′(K), then F = ∂βg for some continuous g, by the previous theorem. Let {ψn}n∈N

be a set of functions in D converging to g. In the topology of D′, ∂βψn → ∂βg.

Convolution with elements of D. This is defined, generalizing the convolution in D by

〈(F ∗ ψ), ϕ〉 = 〈F, ϕ ∗ Rψ〉

For example,

〈(δ ∗ ψ), ϕ〉 = 〈δ, ϕ ∗ Rψ〉 = (ϕ ∗ Rψ)(0) =
∫

Rn
ϕ(s)ψ(−(0− s))ds = 〈ψ, ϕ〉 ⇒ δ ∗ ψ = ψ

and hence the delta function is the unit for convolution. An alternative formula is obtained as
follows. If ϕ and F are in D then

(F ∗ ϕ)(x) =
∫

Rn
F(s)ϕ(x− s)ds = 〈F, τxRϕ〉 (247)
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and simple estimates show that the operation is continuous in D; thus the extension of convo-
lution to D′ is given by (247). The two definitions coincide, by continuity and density of D in
D′.

Proposition 38.4.11 (Smoothing of distributions by convolution). For any F ∈ D′, F ∗ ϕ :=
〈F, τxRϕ〉 is C∞ and ∂αF ∗ ϕ = 〈F, ∂ατxRϕ〉 = 〈F, τx∂αRϕ〉 = (∂αF) ∗ ϕ = F ∗ ∂α ϕ.

Proof. Note first that the continuity of ϕ implies that limε→0(τεRϕ− Rϕ) = 0 in the topology of
D. Thus

〈F, τx+εRϕ〉 → 〈F,Rτx ϕ〉 as ε→ 0

and thus the (usual) function g(x) = 〈F, τx ϕ〉 is continuous. Next (take first n = 1), we see that
ε−1(τεRϕ− Rϕ)→ Rϕ′ in the topology of D, and thus

ε−1(〈F, τx+εRϕ〉 − 〈F, τxRϕ〉)→ 〈F, τxRϕ′〉 = 〈F′, τxRϕ〉 > as ε→ 0

and g defined above is differentiable. Inductively, it is infinitely differentiable. Since proving
differentiability involves on variable at a time, the result follows.

38.5 The Hadamard finite part

Distributions can be used to regularize certain divergent integrals, as first anticipated by Hadamard
in the theory of hyperbolic PDEs. I adapt this example from [4]. The integral we want to regu-
larize is ∫ ∞

0
ϕ(x)x−3/2dx

Let f (x) = 0 for x < 0 and f (x) = −2x−1/2 for x > 0. Then

〈 f ′, ϕ〉 = −〈 f , ϕ′〉 = 2
∫ ∞

0

ϕ′(x)
x1/2

= 2 lim
ε→0

∫ ∞

ε

ϕ′(x)
x1/2 = lim

ε→0

(∫ ∞

ε

ϕ(x)
x3/2 − 2ε−1/2ϕ(0)

)
=
∫ ∞

0

ϕ(x)− ϕ(0)
x3/2 dx (248)

The last expression on the first line and the last two on the second line are convenient ways to
present this regularization, and clearly they are bounded functionals on the C1 functions with
compact support.

38.6 Green’s function

This is a very important method to solve inhomogenneous PDEs (or ODEs). Let Lx be a differen-
tial or partial differential operator in some domain with specified boundary conditions. Suppose
we solve the non-homogeneous problem LxG(x, y) = δ(x − y) (here, we take some licence in
the notation, and we agree that x ∈ Rn is the variable of the equation Lg = f and y ∈ Rn is a
parameter). Then,

Lx〈G(x, y), f (y)〉 = 〈LxG(x, y), f (y)〉 = 〈δ(x− y), f (y)〉 = f (x)
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and thus, the solution of the non-homogeneous equation is obtained from a universal kernel for
the given equation, the Green function G(x, y) by

h(x) =
∫

G(x, y) f (y)dy⇒ Lxh = f

39 The dual of C∞(O)

The topology on C∞(O) is based on uniform convergence on compact sets. Take an increasing
sequence of precompact open subsets of O, {Oj}j∈N with closures {Kj}j∈N whose union is O
and introduce the seminorms

‖ f ‖[j,α] = sup
x∈Kj

|∂α f (x)| (249)

These seminorms define a Fréchet space structure on C∞(O).

Proposition 39.0.1. D(O) is dense in C∞(O).

Proof. Indeed, take a sequence of smooth functions ψj s.t. Kj ≺ ψj ≺ Oj+1. It is clear that
lim
j→∞

ψj = 1 in the seminorms (249), hence, for any ϕ ∈ C∞(O), lim
j→∞

ψj ϕ = ϕ in these same

seminorms.

Definition 39.0.2. Let E ′(O) be the set of distributions compactly supported in O.

Proposition 39.0.3. Any F ∈ E ′(O) extends uniquely to a linear continuous functional on
C∞(O), and conversely, the restriction of a linear continuous functional on C∞(O) to D(O)
is in E ′(O).

Note 39.0.4. In the sense above, the dual of C∞(O) is E ′(O).

Proof. Let F ∈ E ′(O). Since supp F ⊂ ∪jOj, ∃m ∈ N s.t. supp F ⊂ Om−1. If ψ is s.t. Km−1 ≺ ψ ≺
Om then Fψ = F, and, by the regularity theorem there exist C > 0 and N ∈N s.t. ∀ϕ ∈ D

|〈F, ϕ〉| = |〈Fψ, ϕ〉| = |〈F, ψϕ〉| 6 C ∑
|α|6N

‖ϕ‖[m,α]

By continuity, F extends uniquely to ϕ ∈ C∞(O) by 〈F, g〉 = 〈F, ψg〉 with ψ as above.
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Conversely, by the same argument as in the regularity theorem, for any continuous functional
G on C∞(O) there exist N, m ∈N s.t. ∀ϕ ∈ C∞(O) we have

|〈G, ϕ〉| 6 const ∑
|α|6N

‖ϕ[m,α]‖ 6 const ∑
|α|6N

‖∂α ϕ‖

In particular, G is compactly supported in Om. Therefore G is a continuous linear functional on
D(O) ⊂ C∞(O), and thus G ∈ D′(O).

39.0.1 Convolution of distributions

Let F ∈ D′ and G ∈ E ′. Then, the natural definition of convolution is

〈F ∗ G, ϕ〉 = 〈F,RG ∗ ψ〉

Note 39.0.5. For this to make sense, we need RG ∗ ψ ∈ D! Check that this is indeed the case.

It can be shown that F ∗ G = G ∗ F in a number of ways, e.g. Exercises 20,21 in Folland, or by
density!

40 The Fourier transform

We note that D is not preserved by the Fourier transform. Indeed, the Fourier transform of a
compactly supported function (say in R),

ϕ̂(ξ) =
∫

R
e−2πiξx ϕ(x)dx

is entire, and if it vanishes on any open interval, it must be identically zero. Then we need to
enlarge D. A space containing D which is invariant under F is S .

Recall the topolgy of S , and that C∞
c (Rn) = D is dense in S in the topology of S .

Definition 40.0.1. S ′, the dual of S , is the space of tempered distributions.

Functions in S are required to decay faster than polynomial. The dual objects should have a
corresponding growth rate limit.

Examples 40.0.2. 1. Let f be in L1
loc(R

n) and assume that, for some N, (1 + |x|)−N | f (x)| is
bounded in Rn. Then

∫ ∞
−∞ f (x)ϕ(x)dx is a continuous functional on S (check!).

2. eax ∈ S(R)′ iff <a = 0. Indeed, if <a = 0, this follows from the previous example.
Otherwise, by symmetry, we can reduce to the case <a > 0; let ϕ be compactly supported
with

∫
ϕ = 1 and let ψj = ϕ(x − j)e−ax. We see that ψj → 0 as j → ∞ in S , while∫

e−axψj = 1 for all j.
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Definition 40.0.3. A C∞ function ψ is slowly increasing if, together with its derivatives it
does not grow faster than polynomially. More precisely, for any α ∃N(α) ∈N s.t.∥∥∥∥ ∂αψ

(1 + |x|)N(α)

∥∥∥∥
∞
< ∞ (250)

Proposition 40.0.4. (i) If F ∈ S ′ and ψ is slowly increasing, then Fψ ∈ S ′.
(ii) If F ∈ S ′ and ψ ∈ S , then F ∗ ψ is slowly increasing, and, for ϕ ∈ S , we have

〈F, ϕ ∗ Rψ〉 =
∫

Rn
ϕ(x)(F ∗ ψ)(x)dx (251)

Proof. (i) 〈Fψ, ϕ〉 := 〈F, ψϕ〉 is an element of S since ψϕ is in S , as it is easy to check.
(ii) We have already proved that F ∗ ϕ ∈ C∞. As in the proof of the regularity theorem, for a

given F to be in S ′, F must be bounded with respect to a finite number of seminorms that define
the Fréchet space S , that is, ∃m, N ∈N and C > 0 s.t. ∀ϕ ∈ S

|〈F, ϕ〉| 6 C max{‖ϕ‖m,α : |α| 6 N}

Note also that for any x, y ∈ Rn, 1 + |x| 6 1 + |x − y| + |y| 6 (1 + |x − y|)(1 + |y|). Since
∂βF ∗ ϕ = F ∗ ∂β ϕ = 〈F, τxR∂β ϕ〉 we have

|∂βF ∗ ϕ|(x) 6 max
|α|6N

sup
s
(1+ |s|)m|∂α+β ϕ(x− s)| 6 (1+ |x|)m max

|α|6N
sup

s
(1+ |x− s|)m|∂α+β ϕ(x− s)|

6 C(1 + |x|)m max
|α|6N+|β|

‖ϕ‖m,α (252)

Since D is dense in S , its embedding in D′ is dense in D′ ⊃ S ′ we can check that D is dense in
S ′. (251) is obvious if F ∈ D, and the rest follows by continuity and dominated convergence.

We note that for f , g ∈ S we have

〈 f̂ , g〉 =
∫∫

f (x)g(y)e−2πixydxdy = 〈 f , ĝ〉 (253)

the definition of the Fourier transform of a distribution should be: for F ∈ S ′ and g ∈ S ,

〈F̂, g〉 := 〈F, ĝ〉 (254)

It follows by duality that the basic properties of the Fourier transform that we established for
functions in S hold for functions in S ′. Check also the following Fourier transforms:

Fδ(x− x0) = e−2πix0k ⇒ F e2πik0x = δ(k− k0) (255)

Note that the last equality can be interpreted as a generalized orthonormality relation of e2πik1x

and e2πik2x.
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Definition 40.0.5. The Cauchy principal value distribution is defined, for ϕ ∈ D as well as
for ϕ ∈ S by [

PV
(

1
x

)]
(u) = lim

ε→0+

∫
R\[−ε;ε]

u(x)
x

dx =
∫ +∞

0

u(x)− u(−x)
x

Exercise 97. Show that the Cauchy principal value functional is indeed continuous, both
on D and S .

Exercise 98. Show that:

1.

F
[

PV
(

1
x

)]
= −πi sgn (k)

(One way is by approximation by functions in D: show first that F
(

sgn(k)e−ε|k|
)
=

4iπx
4π2x2 + ε2 .)

2.

F χ
[0,∞) =

1
2

δ(k) +
1

2πi
PV
(

1
k

)
3.

F
(

δ(x)(n)
)
= (−2πi)nkn

and that the Fourier transform of linear combinations of the delta function and its
derivatives are precisely the polynomials (and vice-versa).

4. Let {an}n∈Z be an `1 sequence. Then

F
(

∑
n∈Z

ane2πinx

)
= ∑

n∈Z

anδ(k− n)

which can be seen as an extension to distributions of the Poisson summation formula.

Proposition 40.0.6. Let F ∈ E ′. Then F̂ = 〈F, e−2πix·ξ〉. F̂ is an entire function of slow
growth.
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Proof. We use the decomposition in Note 38.4.9. Clearly, it is enough to prove the result for one
distribution of the form ∂γg where g is continuous and compactly supported. Let {ϕj}j∈N ⊂ D
be a sequence compactly supported in some K converging to g in D′. We then have

∂̂γ ϕj =
∫

K
∂γ ϕj(x)e−2πiξ·xdx = 〈∂γ ϕj, e−2πiξ·x〉 = 〈ϕj, ∂γe−2πiξ·x〉

→
j→∞
〈g, ∂γe−2πiξ·x〉 = (−2πiξ)γ

∫
K

g(x))e−2πiξ·xdx (256)

and the rest is straightforward.

41 Sobolev Spaces

The Fourier transform has the important feature of transforming smoothness properties into
decay ones (and vice-versa). Furthermore, the Fourier transform is a unitary operator between
L2 spaces. In many applications (PDEs notably) it is convenient to bring together these features:
we can introduce L2 spaces whose norms enforce a given degree of smoothness. We have already
noted that the norm

‖ f ‖ = ∑
|α|6k
‖∂α f ‖2

2 (257)

comes from an inner product (·, ·), and then the space of functions

{ f : ‖ f ‖ < ∞} (258)

is a Hilbert space, the Sobolev space Hk. Taking the Fourier transform of Hk, we obtain the
following dual (Fourier) norm

‖ f̂ ‖2 = ∑
|α|6k
〈ξα f̂ , ξα f̂ 〉2 = ∑

|α|6k
〈(|ξ|2)α f̂ , f̂ 〉2 6 const‖(1 + |ξ|2)k/2 f̂ ‖2

where const only depends on k. Noting that (1 + |z|)m 6 const.(1 + |z|m), we see that the norm
above is equivalent to

‖ f̂ ‖ = ‖(1 + |ξ|2)k/2 f̂ ‖2

In Fourier space we can immediately generalize the norms from k ∈ N to any s ∈ R, which can
be interpreted as a norm weighted by (1 + ∆)s/2. In fact, we have the following map:

Λs f = F−1((1 + |ξ|2)s/2F f ) (259)

We are now in position to define the Sobolev space Hs = Ws,2 by

Hs = {F ∈ S ′ : Λs f ∈ L2} (260)

The spaces Ws,p generalize Hs by using Lp norms,

Wk,p(Rn) := { f : Λs f ∈ Lp(Rn)}

Note that the elements of Sobolev spaces are distributions. Nonetheless, we have the following:
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Proposition 41.0.1. If f ∈ Hs, then f̂ and f̌ are tempered functions.

Proof. Since f̌ = R f̂ , we only check the statements about f̂ . The fact that Λs f is a function (an
element of L2, more precisely), means (1 + |ξ|2)s/2 f̂ , and therefore f̂ , are functions.

Now, treating f as an element of S ′, and using the fact that f̂ is a function, we have

〈 f , ϕ〉 = 〈 f̌ , ϕ̂〉 =
∫

ϕ̂R f̂

which means that f̂ is a tempered distribution and thus a tempered function.

The inner product that we get by polarization is clearly

〈 f , g〉(s) =
∫

Rn
f̂ (ξ)(1 + |ξ|)s ĝ(ξ)dnξ

The following properties follow easily from the definition

Proposition 41.0.2. 1. H0 = L2 with ‖ · ‖(0) = ‖ · ‖2.

2. The Fourier transform is an isomorphism between Hs and L2(Rn, µ) where dµ = (1 + |ξ|2)sdξ.

3. S is dense in Hs for all s (this is most easily seen based on 1. above).

4. If s > t, then ‖ · ‖(t) 6 ‖ · ‖(s) and Hs is dense in Ht in ‖ · ‖(t).

5. Λt is a unitary isomorphism between Hs and Hs−t for all s, t ∈ R.

6. Since |ξα| 6 (1 + |ξ|2)|α|/2, ∂α is a bounded map between Hs and Hs−|α|.

In one dimension δ(x) is in Hs if s < − 1
2 , and in n dimensions if s < − n

2 . We see that
regularity is measured more finely in this way.

Which Sobolev spaces consist of functions? The following theorem answers this important
question.

Theorem 41.0.3 (The Sobolev embedding theorem). If s > k + n/2, then
(i) Hs ⊂ Ck

0.
(ii) f ∈ Hs implies F (∂α f ) ∈ L1 and ‖F (∂α f )‖1 6 C‖ f ‖(s) where C only depends on k− s.

Proof. We prove (ii) first as (i) follows from it and the Riemann-Lebesgue lemma. We apply
Cauchy-Schwarz:

1
(2π)|α|

∫
|F∂α f | =

∫
|ξα f | 6

∫
(1 + |ξ|2) k

2 f̂ 6 ‖(1 + |ξ|2)s f̂ ‖2 ‖
1

(1 + |ξ|2)s−k ‖2

Theorem 41.0.4. If f ∈ H−s, then the functional ϕ 7→ 〈 f , ϕ〉 extends continuously to a functional on Hs

with norm ‖ f ‖(−s), and any element in the dual of Hs is of this form.

(Does this mean that the Hilbert space H−s “is the dual of” Hs?)
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Proof. By Proposition 41.0.1 f̌ is a tempered function. Cauchy-Schwarz implies

|〈 f , ϕ〉 =
∫

f̂ ϕ̂ 6 ‖(1 + |ξ|2)−s/2 f̂ ‖ ‖(1 + |ξ|2)s/2 ϕ̂‖ = ‖ f ‖(−s)‖ϕ‖(s) (261)

Conversely, we can start in Fourier space with f̂ , an element of FH−s and let it act on an element
of Hs by

〈 f , ϕ〉 =
∫

Rn
f̂ (ξ)ϕ̂(ξ)dξ

(
” =

∫
Rn

f (x)ϕ(x)dx”
)
=
∫

Rn
f̂ (ξ)(1 + |ξ|2)− s

2 ϕ̂(ξ)(1 + |ξ|2) s
2 dξ (262)

which, again by Cauchy-Schwarz shows that f is an element of S ′ which is also in Hs.

42 Appendix A: inductive limits of Fréchet spaces

Let V be a topological vector space over R or C.

Definition 42.0.1. The set A ⊂ V is

1. Convex if a1, a2 ∈ A implies ta1 + (1− t)a2 ∈ A for any t ∈ [0, 1].

2. Balanced if a ∈ A implies λa ∈ A if |λ| 6 1;

3. Bounded if for any neighborhood V of 0 there is a γ > 0 s.t. γV ⊃ A.

4. Absorbent or absorbing if {∪t>0tA} = V . (The set A can be scaled out to absorb every point in the
space.)

Definition 42.0.2. 1. A family of seminorms on a vector space V is called separating if for any 0 6=
v ∈ V there is a seminorm ‖ · ‖α s.t. ‖v‖α > 0.

2. V is called locally convex if the origin has a local base of absolutely convex absorbent sets.

Proposition 42.0.3. The topological vector space V is a locally convex space iff the topology is given by
a family of seminorms.

Proof. For the “if” part, the proof is immediate; the converse requires Minkovky’s functionals
and the Hahn-Banach separation theorem, see [3].

Theorem 42.0.4. Let V be a topological vector space whose topology is given by a family of seminorms.
Then V is metrizable, and a translation-invariant metric is determined by

ρ(x, 0) =
∞

∑
k=1

2−k ‖x‖k

1 + ‖x‖k
(263)

The balls B(0, r) := {x : ρ(x, 0) < r} are balanced. If V is complete with respect to ρ, then it is a Fréchet
space.

Proof. Largely a straightforward verification, see [3] , p. 437 and on.
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Definition 42.0.5. Let
V1 ⊂ V2 ⊂ · · · ⊂ Vj · · ·

be a sequence of Fréchet spaces. Thw inductive limit topology on V is the strongest locally convex topology,
in which the injections Vi → V are continuous.

Theorem 42.0.6. Let V be an inductive limit of Fréchet spaces as in Definition 42.0.5.

1. The open, convex, balanced neighborhoods of zero are the sets W s.t. W ∩ Vj are open, convex,
balanced neighborhoods of zero for all j, and these sets uniquely determine the topology of V .

2. A ⊂ V is bounded iff A is a bounded subset of some fixed Vn0 .

3. A sequence is Cauchy in V iff there is some n0 a.t. the sequence is contained Vn0 and is Cauchy
there.

4. Let X be a locally convex topological vector space. The linear map T : X → V is continuous iff the
restriction of T to Vj is continuous for every j.
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