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1 Fourier Series

Two landmark discoveries are typically credited in the development of analysis: Calculus (circ.
1665) and Fourier series, introduced by Joseph Fourier (1822). The latter mark the passage from
finite-dimensional to infinite-dimensional mathematics.

-----

as strings of scalar components x = (xy)x—1,.., and the inner product (x,y) as Z Xryx in R" and

k=1
n

Y %Y in C" where a +ib = a — ib. The natural generalization of the inner product and of the
k=1
norm in the “continuum limit”, for two, say continuous, functions f, g : [a,b] — C are

b -
(f,8) = [ Fws®at I£13= (7.5

which are the Hilbert inner product and the Hilbert norm.

With this generalization we may wonder, for a given orthonormal basis (e ), Which func-
tions can be represented by their, now infinite, set of components (fi),.n Where fi = (f,ex),
k € IN (sometimes Z is a better choice than IN). A possible choice of a basis are the monomials
(xk_l)k < Which can be recombined to become an orthonormal set. If [a,b] = [~1,1], then the
exs are the Legendre polynomials (Py); o
Py(x) =1, Pi(x) = x, Po(x) = = (3x* = 1), P3(x) =

(537 —37), Py(x) = ¢ (35%* —30x2+3) - --

N —
N =
Q| =

and in general,

" n 2
Py(x) = 2% Y <k> (x —1)"F(x + 1)k

k=0
These polynomials satisfy the orthogonality condition

1 2
Py (x)Py(x)dx = ——=¢
[ Pu)Pax) A = =
In infinite dimensions the question of which functions can be written as )y ¢, Py is, in this
naive formulation, not well posed. By an infinite sum we must mean some form of a limit. This
could be a uniform limit, a pointwise limit, a limit in the sense of Césaro averages, or, with C" in
mind, a limit in the “distance” sense, i.e. in the sense of integral means of order two:

N
dm Hf—lgkakHZ =0

Each of these definitions leads to quite different answers, as we shall see in due course. The last
one can only be satisfactorily answered after replacing Riemann integrals with the much more
general and well-behaved Lebesgue integration, which in turn requires measure theory that we
will study in Chapter 2.

You probably noted that in C" a good choice of the basis often simplifies the analysis. This
is even more so in infinite dimensional (Hilbert) spaces. A very important orthonormal set (in
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the Hilbert space L?) on [0,1] is (e2™¥)
polynomials. Series of the form

ez (finite) linear combinations of 2k are called trig

Z fk eZm’kx

keZ

are called Fourier series.
Exercise: Check orthonormality of this set.

If f is represented convergently by such a series and if the series converges in a suitable sense,
then ' = Y icz fi(27ik)e?™ . In other words, in the “basis”

(e)iez = ()

if a function is represented by the sequence of coefficients (fx )k, then its derivative is represented
by the sequence (27ikfy);. Differentiation is transformed into multiplication, and hence a dif-
ferential equation P(d/dx)f = g (where P is some polynomial) becomes an algebraic equation,
P(2mik) fy = gx. This property makes Fourier series particularly useful, if not even crucial, in the
analysis of differential, partial differential or difference equations. Indeed, it was the discovery of
Fourier that they provide the general solution of the heat equation (a very imprecise statement at
that time), solution that was previously unknown, that triggered many important developments
in modern analysis. One needed to understand in what sense are these series convergent, to
which functions, and in what sense the solution is the most general one. Note that, because of
orthonormality, again assuming suitable convergence, we have

<Z fkezﬂikx’ 827ri]'x> — f]

kez

keZ

which leads to the definition of the Fourier coefficients

fk — <f’62m'kx> — /04 f(t)e—eriktdt

Note that if we aim at a good form of pointwise convergence the represented function should
have the property f(0) = f(1), and that, if convergence is uniform then f € C(T), the continuous
functions on the torus T, which in one dimension is S!.

To study convergence of Fourier series, note that

i:]fkezmkx = /Olf(s)DN(x —s)ds = /01 f(x —s)Dn(s)ds = Dy * f (1)
where Dy is the Dirichlet kernel,
Dy (x) = kin e?7ikx — w (xeC\2Z) 2)
—27tinx

Exercise: Prove the identity above. One way is to factor out e and note that the remaining sum

is a geometric progression.
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Remark 1.0.1. We have eg(x) = 1 and thus fol eo(s)ds = 1. For any k # 0 however, fol ex(s)ds = 0.
Thus, forall Z > n > 0,

1
/ Dy(s)ds =1
0
Remark 1.0.2. Note that for any f € C(T) and any a € R, we have

1+a

/Olf(s)ds =/ f(s)ds

\y’\/;\/\/\\j \/ N

2 —~—_J

Figure 1: The Dirichlet kernel for n = 10, Dy (left) D, on I for n =1, ...,,20. The peak grows like
n, with a width 1/7n and oscillations of frequency n away from it (right)

Lemma 1.0.3. Let (a,b) C [—31,1). Then

\ 0if 0 ¢ [a,b]
lim [ Dy(x)dx={1if0€ (a,b) ©)
n—oo Jg
1if0 € {a,b}

If 0 & [A,b], then the limit is uniform with respect to a € [A, b].

Proof. First, from the definition it follows that

A

Assume now 0 ¢ [a, b]; by integration by parts,

NI—
NI—

D,(s)ds =1, and, since D,, is even, / D, (s)ds = % 4)
0

N|—=

/b sin((2n +1)7s) s
a sin 7ts

_ | cos(mb(2n+1)) cos(rta(2n+1)) _/b cos(ns)cos((Zn-l—l)ns)ds‘
| sin(mb)r(2n+1)  sin(ma)m(2n+1) sin?(7ts)(2n + 1)
<y (W) ©)
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where we used the fact that | sin 7rx| > x/2 for x in [—3, 5] (justify this!) and

/zlds = —lCOt(TL’S) + C
sin”(7ts) T

Combining with (4), the result follows. O

The local behavior of the Dirichlet kernel, the Lemma above and (1) might suggest the con-
jecture that, for any continuous function f, Dy * f converges to f as N — oo, in turn entailing
that the Fourier series of a continuous function converges to the function itself. One may indeed
be tempted to think of taking a fine enough partition of [—3, 1], so that f is “basically constant”
on each subinterval, and apply Lemma 1.0.3 to derive that the only nonvanishing contribution
in (1) comes from the interval around s = 0 which “converges to f(x)”. Not only is this argu-
ment wrong, but the whole conjecture is wrong. However, this fact has only been discovered
towards the end of the 19" century, and it came as a surprise. To understand what the “cor-
rect results” really are necessitated an integration theory better than Riemann’s and many other
modern developments in analysis leading to a final answer, a deep result whose proof is very dif-
ficult of Lennart Carleson in 1966. In the subsequent sections we will clarify these issues (except
for proving Carleson’s theorem!) while developing appropriate mathematical tools, the tools of
mathematical analysis.

Exercise 1. (1) Show that |D,| is bounded by 2n + 1 for any nonnegative integer n, by using the expres-
(2j+1)
2(2n+1)
are positive constants c1,ca > 0 s.t. |Dy(x)| > cynj~! on each interval {x : |x — x;| < con™'} and all

integers j with 0 < |j| < n/2. Show that this implies that

sion of Dy, as a sum (or the fact that |sinx| < |x| for all x € R). Let x; = . Show that there

1
1 =
lim/ Dy (s)|ds = lim /21 Dy (s)|ds = oo
n—oo Jo n—eo )5

(b) Show that for any x there is a sequence of functions (fu)nen in C(T) such that sup,cp o | fn(8)] =
1 and

/El Dy(s)fu(x —s)ds =00 as n— oo

2

This and the uniform boundedness theorem that we’ll see later implies that there are continuous functions
for which the Fourier series diverge at least one point.

Theorem 1.0.4. Assume f and f' are in C(T). Then the symmetric Fourier sums of f (the first sum
in (1)) converges in the uniform norm to f. If f is only piecewise continuously differentiable, with
bounded derivative, then the sums converge in uniform norm in any compact set that does not contain
a discontinuity. At points of discontinuity, if the lateral limits of the function exist, then the symmetric
sums converge to the half sum of these lateral limits.

Note 1.0.5. Note that we do not claim absolute convergence which cannot hold if f is discontinuous
(why?)

Proof. Let fi as usual be the Fourier coefficients of f. As we will see, we can reduce the analysis
of that of a function with at most one exceptional point where the lateral limits exist. If the
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function is smooth everywhere, let ¢ be any point; otherwise choose ¢ to be the discontinuity
point. Call the left (right) limit of f at & f(&) (f(¢") resp.). We seek to see whether the Fourier
sums of f converge to a limit, call it L. We have, by integration by parts, and Lemma 1.0.3

NI—

1
(f&~9)~LIDa(s)ds = [, (f(& )~ L)Da(s)ds + [*(F(& )~ L)Da(s)ds

2

:%(f(g+)+f( —2L) +/ £( —s/ZD dtds—i—/f —s/D Hdtds (6)

i Fe?TkE = /
k=—n -

NI—=

Let’s take the second integral; the first one is dealt with similarly. Let m = ||f'||, = sup | |f(x)].

11
x€l-22
For a small ¢ > 0 we write

/0 : F(E—5) /% Dy (#)dtds /0 F(E—s) /% D, (£)dtds + / : F(E—s) 4 Du(t)dtds (7

Now

1
2d 16m
< — Ine!
(2n+1)/ t T (2n+1)m ne
s (8)
by Lemma 1.0.3 and (5). On the other hand, since fs D, (t)dt is bounded by a constant c
independent of n '

E—s / D,y (t)dtds Pdt|ds <

< cme

F(E—s) /l D, (t)dtds
2

Clearly, there is a limit L, namely L = 1(f(&7) + f(&*)). If f is C! throughout, L = f(¢). O

Exercise 2. Let f be as in the theorem, and assume it is discontinuous at {x1, ..., x,} C (—=1/2,1/2),
where lateral limits exist. Let F(x) = [1 f'(s)ds. Show that F is continuous and piecewise differen-
2

tiable on [—1/2,1/2). Show that its periodic extension to the whole of R has at most one discontinuity
per period, at the points x = %+ Jj,] € Z. Show that F has lateral limits everywhere. Thus the proof in
the theorem applies to F. Let 0(x) be the Heaviside function, equal zero for x < 0 and one for x > 0.
Then, a piecewise continuous function f with piecewise continuous derivative and points of discontinu-
ity {x1, ..., xm} equals F(x) + Y"1 0(x — x;)(f(x;") — f(x;)). Complete the proof of the theorem by
reducing the analysis to the 0 function, for which you can apply the approach in the proof of Lemma 1.0.3.

Exercise 3. We can of course choose a different € for each n. Show that with the choice e = n™!

for large enough n,

we get,

n
I — Z fkekax

k=—n

=O(n 'Inn) )

'Let m = 2n + 1. Again using sin 7tx > x/2, first note that 2 jo% sinmy — 2 [7 82X Now, for x € [(2j+1)/m, (2j +
2)/m),j >0, sinmx < 0 and we have S < sinmx/(2j +2); on [(2j +2)/m, (2j +3)/m),j > 0 sinmx > 0 and we
have MY < sinmx /(2] 4 2) implying 0 < fls/z Dy (t)dt < ¢+ O(1/n) where ¢ = 1.0598....
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Exercise 4. (a) Check the recurrence relation (n € IN, |k| € IN)

1 1
5 . 2—n=1(_1)k(1 = (=1)" ; 5 )
/_ZésneZHTks ds = ( >7T<k ( ) )Z _ szi;l-[ /_Z%Snlebnks ds

(b) Check that the symmetric Fourier series on the interval [—%, %] of the monomials x* k=0,1,2,3 are

(the exponentials were re-expressed as trig functions to simplify the formulas)

1=x" (10)

= (- il £ )
Y ~——2—sin(2mkx) = x' (if |x| # 3) (11)

= Ttk

11 & (D) _ 2
E—l—?lg 2 cos(2rmtkx) = x (12)

3 & (-1)F _ 1 3
ﬁk; 3 sm(anx)——Ex—i—x (13)

3 & (1) cos (2 mkx) 1, 4 7
gk; - =5y + 455 (14)

Convergence of these series follows from Theorem 1.0.4. Note that convergence in (11) is not absolute
(why?) (all others are).

(c) Assume that f is continuously differentiable on T except for one point xo where f is discontinuous.
Assume that f and f' have lateral limits at xo. Mapping T to [—1/2,1/2), place the discontinuity of the
mapped function (keep the notation f) at the right endpoint. Show that there is an « s.t. f + ax extends
to a continuous periodic function on R with piecewise continuous derivative.

2
(d) Use (12) to show that kg\{ % = % Rely on the previous parts of this exercise to calculate keZ]N k1—4.

The connections between the behavior of the Fourier coefficients and the regularity (differen-
tiability, Holder continuity etc.) of a function are also very interesting and important. Here is a
starting point:

Theorem 1.0.6. Let f € C"(T) (i.e., f is continuous together with its first n derivatives) and let (fi)kez
be its Fourier coefficients. Then f, = O(|k|™") as |k| — oco.

In the opposite direction, if | fi| = O(|k|™™) for some m > n + 1 for large |k|, then f € C"(T) (we'll
be able to find stronger statements for this “converse” in due course).

Proof. The proof is by simple integration by parts, n times:
z 1
/21 f(s)e_zmksds = (—2mik)™" /21 f(”)(s)e_zmksds and thus |fi| < (27‘(}()_””]((”)”“
-1 1

if |k| € IN, where | - ||, is the uniform norm. The opposite direction statement is left as an
exercise of differentiation of suitably convergent function series. O
Note 1.0.7. This shows that divergence of the Fourier series of general continuous functions is due to their

lack of sufficient smoothness.
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Exercise 5. In the class of continuous functions whose Fourier series converge, the rate of convergence is
arbitrarily slow. Consider the lacunary Fourier series

flx) = i k~* cos(2¥rx)
k=1

where o > 1. Show that this series converges absolutely and uniformly and (thus) f is continuous. Show
that the Fourier series of f is just the sum in right hand side. Since |f,| is zero if |m| # 25~ for some
k € N and equals 1 (log, |2m|)~* if |m| = 2¥, we see that the Fourier coefficients |f,| decay slower than
any power of m. Adapt this arqument to find functions for which the Fourier series converge, but the
coefficients have arbitrarily slow decay (and think of some rigorous definition of the concept of “arbitrarily
slow”). See Fourier sums of f with w = 3/2 and 1, ...,20 terms.

Note 1.0.8. The f above is an example of a continuous but nowhere differentiable function. Try your hand
in proving this.

Note 1.0.9. A refinement of the construction above gives Fejér’s example of a continuous function whose
Fourier sums blow up at x = 0. Fejér’s function is (in our notation and conventions)

The analysis of the convergence vs. divergence of the Fourier sums of f is quite elementary; if you are
curious, click on this link: Fejér’s counterexample link.
1.1 Fejér’s theorem

In various weaker senses, Fourier series of continuous functions do converge to their associated
functions. For f € C(T) and n € N let

n
sn(x) — Z kakax
k=—n
and take the Césaro means of s,;,
1 n—1

1
on(x) = Ekz(:)sk(x) = /_21 f(x —t)E,(t)dt
= 2

where
sin(n7x) > 2

n—1
E(x)=n'Y' D =pn!
n(x) =mn kg‘) k(x) =n (sinnx

(check the explicit expression of F,)

Theorem 1.1.1. If f is in C(T), then the sequence (0, )nen of Cesaro means of the sequence (Sy)neN Of
partial sums of the Fourier series of f converges uniformly to f on T.

Proof. We first claim that F, is an approximation of the identity, by which it is meant that
1. F,>20,Vn € N.
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2/ s)ds =1,Vn € N.

3. Forany ¢ € lim F.(s)ds = 0.
yoe @i Jim [
Indeed, 1. is obvious, 2. is clear from the definition because for any k € IN, / 21 Di(s)ds = 1,
2

while 3. follows from the fact that for |x| > J, since | sinx| > x/2, we have F,(x) < 4n~L.
The proof follows from these three basic properties of the Fejér kernel and from the uniform
continuity of f. Let m = || f||u. We have m > 0 unless f = 0 in which case the proof is immediate.

Note that f(x / f(x)F,(s)ds by 2. above. We now see that

(0uf)(x) = f(x) = /0 s PO =) = fNds+ [ FS)(fx9) — ()i

N2

Take some ¢ > 0. Using uniform continuity, choose § so that wenever |s —s'| < § we have
|f(s) — f(s')| < €/2, and choose ng s.t. for all n > ny we have [, Fu(s)ds < gem™'. With
this, we see that for all n > ny and all x

[(0uf)(x) = f(x)| <e

s =|y|>6 M

Corollary 1.1.2. If f and g are continuous and have the same Fourier coefficients, then f = g.
Proof. The Césaro sums of the Fourier series of f converge to f, and also to g. O
Corollary 1.1.3. Trigonometric polynomials are dense in C(T).

Proof. This follows immediately from Theorem 1.1.1: let f € C(T) and & > 0 be arbitrary; let ng
be s.t. || f — 0u, f||lu < €& note that 0y, f is a trig polynomial. O

Note 1.1.4. This density does not imply that the Fourier sums of continuous functions converge. Make
sure you understand the distinction.

An important consequence of these results is Weyl’s equidistribution theorem. A sequence of
real numbers (x;) en is equidistributed modulo one if, by definition, for any f € C(T) we have

)~ [ Fs 5)

Note that this also means that, in the sense of Césaro means, (f(x;));en converges to the integral
of f.

Exercise 6. Let (x;)icn be equidistributed mod 1 and let fracy denote the fractional part of y. Show that
the points {fracx; : j € IN} are dense in (0, 1).
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Theorem 1.1.5 (Weyl). Let xo and « be real numbers. Then, the sequence (xo + ka) is equidistributed
mod 1 iff a is irrational.

Note 1.1.6 (Rotation on the circle). We can visualize the points xj above as the points on the unit
circle obtained by starting at an angle xo mod 27t and successively rotating by an angle « mod 27t. See
[rrational rotation animation.

Exercise 7. Show that the sequence (xo + ka) is equidistributed mod one iff the empirical probability of
finding a point in any arc-interval on the circle (in the sense of the Note) approaches the arclength mod 27t
as the number of rotations increases without bound. We recall that the empirical probability is the ratio
between the number of favorable events divided by the total number of events. The term “equidistributed”
is suggested by this interpretation.

Proof of Theorem 1.1.5. We leave it as an easy exercise to show that irrationality of « is necessary.
Verify that irrationality is sufficient for Césaro-convergence to the integral of f for all trig mono-
mials f(x) = e2mkx J ¢ 7, and thus for all trig polynomials. Use the density of trig polynomials
to complete the proof.

O

Exercise 8. Check that (15) extends to piecewise continuous functions. Monotone bounded functions are
Riemann integrable. Does (15) extend to them?

1.2 Introduction to normed spaces and Hilbert spaces

In the following, F is the field of scalars, and it is either R or C. Complex conjugation is denoted
by overline, as usual.

Definition 1.2.1. An inner product space is a vector space V over the field F together with an inner
product, i.e., with a map
(,):VxV—=F

which satisfies the following axioms: for all vectors x,y,z € V we have

1. Conjugate symmetry: (x,y) = (y, x)

2. Linearity in the first arqument:

(ax,y) = a(x,y)
(x+y,2) = (x,2) +(y,2)

3. Positive-definiteness:
(x,x) >0

(x,x) =0 x=0.
Note 1.2.2. We write ||x||* = (x,x); || - || is then a norm.

The map (-, -) : V x V is a positive definite sesquilinear form, in this case a map which is linear
in the first variable and conjugate-linear in the second °. In some constructions it is convenient to

%In physics the convention is a bit different, the form is conjugate-linear in the first entry and linear in the second.
Each convention has its own merits but in the end of course it does not make any real difference which convention
we choose.
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allow, more generally, semi-definite sesquilinear forms, ones that have degenerate kernel, that is
||x|| = 0 for some nonzero vectors. Such forms are also called weak inner products.

Theorem 1.2.3 (Cauchy-Schwarz). Let V be an inner product space and x,y be any two elements of V.
We have [ (x, y)| < || x[|{|yl

Proof. Note for any a € C we have

0 < [lx —ayll* = (x,x) + [a*(y,y) — (x,ay) — (ay,x) = (x,x) + [a[*(y,y) — 2R(a(x, y))

Write the polar decomposition (x,y) = |(x,y)]e® (if (x,y) = 0 any a works). By replacing a by
lale~™® we see that f(|a]) = (x,x) + |a|*(y,y) — 2|a||{x,y)| = 0. The trick is now to note that f(|a|)
is a quadratic polynomial in |a| which is nonnegative, and thus it has nonpositive discriminant:
4)(x,y)|> — 4(x, x)(y,y) <0, which is what we intended to prove. O

R"™ and C" with the usual dot products are clearly inner product spaces. Define now

Dxi!2<oo}

i€Z

(N) = {x = (Xi)ieN

Yl < 00}; (z) = {x = (Xi)iez

ieIN

These are inner-product space, with the inner product

(x,y) = Y x7i and (x,y) = ) xii

ieN i€eZ

respectively. So is the space

L%((a,b)) = {f: (a,b) = C

b
f Riemann integrable, [ |f(s)[ds := Hf|\§<oo}

with the inner product
b
(,8) = [ F)3()ds

Note 1.2.4. (a) If the interval is finite, then L% ((a,b)) is the same as the space of all Riemann integrable
functions.

(b) If (a,b) is a finite interval, then the sup convergence is stronger than L% convergence. Indeed,
|- 13 < |l - 3(b — a). In fact, it is strictly stronger. For instance, the sequence of characteristic functions
of any family of intervals of total length 1/n converges to zero in L%, but not pointwise in general, let
alone uniformly.

The conditions for Riemann integrability will prove to be too strong for a number of important
purposes, and the remedy is a more general integral, the Lebesgue integral. We see that, if (a,b)
is a finite interval, then any Riemann integrable function is in L% ((a, b)); this is an easy exercise.

Using Cauchy-Schwarz we see that the inner product is well defined on ¢*(Z) and L% ((a,b)).

In fact (2(Z) and L% ((a, b)) have interesting connections. Let, for simplicity a = —1/2,b =
1/2. Note that, if f is Riemann integrable so is ¢?** f(x) and the Fourier coefficients of f

1/2 .
fr = f(s)e™¥ksds, ke Z
—-1/2
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are well-defined.
Furthermore,

0<If =~ ¥ A= (= B @ - Y S = () - B IAE 9

and we see that

5 AR < IFIB

k=—n

[o0]
and (because of positiveness of the terms) ) _ | fr|? converges and.

k=—o0
k; fiel2 < NIFI13 (17)

(17) is called Bessel’s inequality. We have also proved the following.

Proposition 1.2.5. If f is Riemann integrable on [—1/2,1/2], then the sequence of its Fourier coefficients
(fokez is in (2(Z), and || (fkezll 2 < |If 2

Corollary 1.2.6. If f € C(T), then

m .
I Z fkezmk" — flla = 0asn,m — oo
k=—n

and

IR = 1

k=—o0

Proof. This is straightforward, since trig polynomials are dense in C(T) in the uniform norm, and
by Note 1.2.4 a fortiori in L%, and the properties above trivially hold for trig polynomials. O

Exercise 9. Show that continuous functions are dense in the space of Riemann integrable functions in the
sense of L% ((a, b)).

It follows that

Corollary 1.2.7. If f is Riemann integrable on [—1/2,1/2] then

m .
'Y fe™™ — flla = 0asn,m — oo
k=—n

and
[ee]

Y. 1Al =113

k=—o0

Definition 1.2.8. A sequence (sy)reN in a normed space is Cauchy if for any ¢ > 0 there is an ny s.t. for
all n1 > ngy and ny > ng we have
||Sn1 o Sﬂz“ <é&

A normed space in which every Cauchy sequence is convergent is ' complete.
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Proposition 1.2.9. The spaces (*(IN) and (*(Z) are complete.

Proof. We show this for ¢2(IN); the proof for £2(Z) is similar (it even follows from it).

If {x,}sen is a Cauchy sequence in ¢?(IN), then for every i € IN the number sequence
{(xn)i}uen is Cauchy (indeed |(x,); — (xm)i|> < [|xn — xm||?)- Let y; = lim,(x,);. Let ny be
s.t. (Vn,m > ngp), (||xn — x| < 1). The triangle inequality implies that Vn > ny, ||x,| < C where

n n

C =1+ ||xy||. It follows that, for all n, }  |y;|* = klim Y |(xx)i]* < C and since |y;| are positive
i=1 =1
and the sums are bounded, the sum converges to ||y||*> < C, that is y € ¢*(IN). Similarly, since

limy 0o Y1 |(xx)i — yi|? = 0 for any 1, we can use the triangle inequality to complete the proof.
O

Exercise 10. (a) Show that there is no Riemann integrable function whose Fourier coefficients are S =

(1Kl Dkez\ f0y-

(b) Clec);fly} S € (2(Z), and S is the limit of Fourier coefficients of trig polynomials. Check that these
trig polynomials form a Cauchy sequence in L%, ((—1/2,1/2)), but it is not convergent in L% ((—1/2,1/2)).

(c) Check that the symmetric Fourier sums corresponding to S converge uniformly on any compact set
in (—1/2,0)U(0,1/2).

(Bonus, 3p) In fact the the symmetric Fourier sums in part (c) above converge uniformly, on such
compact sets not containing zero to —21og(2 |sin(mx)|).

2 Measure theory

Here is a way to extend Riemann integration enough so that the issues we encountered would
be resolved.

To start with, take a finite interval [a,b] C RR. Define a “norm” on functions that relates to the
value of the Riemann integral:

I = [ £l

The problem is that this is only semidefinite: any Riemann integrable function that is nonzero
only on a countable set has norm zero. To upgrade a semi-definite-form space to an actual
normed space, we mod-out the elements of zero norm, and we end up with a set of equivalence
classes {[f] : f Riemann integrable on [a,b]}, where

fl={g:lf —gl=0} (18)

Check that the space of equivalence classes above is a linear space V. || - ||; is now a norm on V.

Exercise 11. If (a,b) C R,0 < b—a < oo, then || f|l1 < ||f|l2 (where the norms are those of L'((a, b))
and L?((a,b)) resp.). Adapt the example in Exercise 10 to find a sequence of Riemann integrable functions
which is Cauchy in || - || but does not converge to a Riemann integrable function.

Note that for any a4, b the functionals given on the Riemann integrable functions by

porf = [ Fls)ds (19)
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are bounded w.r.t. || - ||;. Now define L!([a, b]) to be the completion of V under || - ||; the extension
by continuity of the functionals ¢, is an integral on L!. We are left with questions about what
exactly we achieved. Can the elements of L! be interpreted as classes of equivalence of functions?
This is not very straightforward since the characteristic function of an interval of size 1/n on T
carried by an irrational rotation will tend in L' to zero but pointwise it converges nowhere.
What is the equivalence relation? What are the properties of integration? We will return to this
approach later.

A more systematic and motivated approach is to start from the geometrical interpretation of
the Riemann integral of a nonnegative function: it represents the area under the graph of that
function. With this in mind, we ask more generally: which sets can have an area (volume in R3
etc.), and for those, how do we define an area?

It turns out that not every set can have a volume; call the good sets “measurable”. The
class of measurable sets however should be closed under intersection, union, and complement.
Furthermore, the union of a countable family of disjoint sets should also be measurable, with
measure equal to the sum of individual measures. Indeed this is well defined, as a sum of
positive terms. The sum could be infinity (thus, we should allow +oco as a possible volume).
Eliminating conditions that follow from each-other we define:

Definition 2.0.1. Let X be any nonempty set. An  algebra A of sets on X is a nonempty collection of
subsets of X, closed under finite unions and complements. A |e-algebra on X is an algebra which is closed
under countable unions.

Note 2.0.2. Algebras are closed under finite intersections and c-algebras are closed under countable in-
tersections, since N;A; = (UjA;)C. The empty set and X are in Aas @ = AN A and X = @°. Closure
under unions is implied by closure under disjoint unions. Indeed, we can inductively remove the pairwise
intersections if nonempty. Namely, in the sequence (A;)jcn we replace Aj by A; := Aj N (Ui<jA;); then
(check) UjA; = U;jA;. Check also that we have only used operations permitted in algebras/c-algebras.

Let X be a space and M a o-algebra on X.

Definition 2.0.3. The pair (X, M) is called a measurable space.

Some simple examples are, at one extreme, A = {@, X} and A = {A: A C X} = P(X) at
the other.
An important concept is that of a o-algebra generated by a family £ of sets:

Definition 2.0.4. M(E), the o-algebra generated by & is the intersection of all o-algebras containing €
(P(X) is one of those).

Check that the intersection of a family of c-algebras in a c-algebra.
In a topological set obviously open sets play a special role. A ¢-algebra compatible with the
topology should contain the open sets.

Definition 2.0.5. The Borel g-algebra on a topological space X, By, is the c-algebra generated by the
open sets in X.

Clearly closed sets, countable intersections of open sets (called Gs sets) countable unions of
closed sets (called F; sets), and many more that we will uncover, are in By.
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2.1 Measures

The definition below generalizes some of the properties we would expect from volumes in R".

Definition 2.1.1. Let M be a c-algebra on the set X. A function y : M — [0, o0 is a measure on M if
1. u(@) =0

2. (o-additivity) If (A;);en is a family of mutually disjoint sets, then
wl U4 =L mA) (20)
j=1 j=1

Definition 2.1.2. The triple (X, M, u) where M is a o-algebra on X and p is a measure on M is called
a measure space.

Exercise 12 (The counting measure). Let X be any nonempty set and take M to be any c-algebra on X
(including the maximal one, P(X)).

1. Forany A € M, let u(A) be the number of points in A (understood to be zero if A = @, n if there
is a bijection between A and {1,...,n} and +oo otherwise). Show that u is a measure on A € M.

2. (The Dirac mass at xo) Let xo be a point in X, and for any A € M let bx,(A) be one if xo € A and
zero otherwise. Show that d, is a measure on M.

For a measure y to agree with our intuition about volumes, we would require more properties
from it: invariance under Euclidean transformations (these are the isometries of IR"”) and normal-
ization, namely the measure of a (hyper)cube of side 2 in R” should equal 4" (in one dimension
#((a,b)) = b —a). In particular, the underlying o-algebra should be at least as large as the Borel
o-algebra on R".

M, however, cannot be too large; for instance, we cannot have M = P(R").

Proposition 2.1.3 (Existence of non-measurable sets). Let M be any c-algebra on R such that there
is a measure on M that is invariant under Euclidean transformations and normalized. Then there are sets
NinR, N ¢ M.

Proof. The construction is simpler if we work mod 1, and then translation becomes rotation on
S!, the circle of circumference 1. Assume the contrary. Consider the equivalence relation on [0, 1)
mod 1 x ~ y iff x —y € Q. Let C be the collection of equivalence classes modulo ~. Using the
axiom of choice (AC) 7, let E be a set which contains exactly one element from each class. (By
the AC there is a choice function F : C — S!' s.t. VC € C,F(C) € C; then E = F(C).) For each
r € Qlet E, = {x+r:x € E}. By definition, if r # r/,E, N E, = @, and E, is obtained from
E by translation by r, and thus Vr € Q, u(E,) = u(E). Clearly, U,coE, = S' (x). Therefore, if
#(E) = 0, then u(S') = 0 and if u(E) > 0, then u(S') = +oc0 which contradict the normalization
u(st) =1. O

3Formally, this states: VX [@ ¢X = 3f: X=|JX VAeX(f(A)e A)] .
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Note 2.1.4. The AC is crucial to the proof. The existence of a set E as above is independent of ZF,
the axioms of mathematics without the AC. Furthermore, one can show that there is no definition
even in ZFC (ZF+AC) that, provably and uniquely , defines such an E. That is, these cannot be of
the form {x € R : P(x)} where P is some predicate; in particular, no “specific example” can be
“constructed”. If you are “given” such an E you can’t check it really is one. Nor can one define a
o-algebra with the properties in the Proposition. *. (A more detailed and careful formulation of
these impossibility statements is needed to make them really rigorous and correct; that’s beyond
the scope of these notes though; see Non-measurable sets and the AC)

More strikingly, using the AC the Banach-Tarsky paradox produces a finite partition of the
unit cube in R”,n > 3 in subsets which can be rearranged by Euclidean transformations (by cut
and paste!) to become two unit cubes (or any other number of them of any size, for that matter)
obviously violating the normalization condition. This precludes even the existence of a finitely
additive such measure on R". (The use of the AC means however that you definitely cannot do
this at home with Play Doh.)

2.2 Measurable functions

Let X and Y be two sets and f : X — ) be a map between them. The inverse image through f:
F YY) :={x € X : f(x) € Y} is a map between P()) and P(X) which commutes with U, N and
complements; that is, we have f~1(Y; UY,) = f~1(Y1) U f~1(Y2) etc.

Exercise 13. Let X and ) be two sets, let N be a o-algebraon Y and f : X — Y be a map between these
sets. Show that M := {f~1(Y) : Y € N'} is a o-algebra on X.

Definition 2.2.1. Let (X, M) and (), N') be measurable spaces. A function f : X — Y is called mea-
surable (more precisely (M, N )-measurable) if the preimage through f of any set in N is in M, that is:
FYN) c M.

Proposition 2.2.2. Assume (), N') is a measurable space where N is generated by £ C P()). Let X be
aset,and f : X — Y. Then, the o-algebra f~1(N') is generated by f~1(&). In particular, if (X, M) and
(Y, N') are measurable spaces and N is generated by &, then f is (M, N)-measurable iff f~1(E) € M
forall E € £.

Proof. Necessity is obvious. For sufficiency note that the collection {Y C YV : f~}(Y) € M} isa
o-algebra which contains £, thus it contains the c-algebra generated by £. O

2.3 Product c-algebras

Let A be an index set, (X, My)aca, a collection of measurable spaces, and X their Cartesian
product, X = | [ Xa. On X there is a naturally induced c-algebra, namely the smallest o-algebra

o
that makes all canonical projections 77, measurable:

Definition 2.3.1. Let (X, M) and X be as above. The product c-algebra on X is the o-algebra generated
by the collection of sets {71, ' (Ey) : Ex € My, & € A}. The product o-algebra is denoted by Q) M.

nEA

4More generally, this applies to any set which is not Lebesgue measurable, a notion that we’ll discuss later.
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Proposition 2.3.2. If the index set A is countable, then (X) M, is generated by the collection of all T1, Ex
x€A

where E, € M,.
Proof. Simply note that [], E, = Ny~ '(Ey) are measurable, and that 7' (E,) = Ngear ' (Ep)

for a suitable choice of the (Eg)gea (Which?) O

Proposition 2.3.3. Assume M, is generated by &,. ® M, is generated by F; = {n1(E,) : E, €
acA

Exy € A}

Proof. By Proposition 2.2.2 the (74 )sca are measurable iff 71,1 (Eg ) are measurable for all Eg, €

&, and all a. H

Proposition 2.3.4. Let Xy,..., X, be metric spaces and let X = [T; X; be equipped with the product
metric. Then the product Borel o-algebra, @} BX], is contained in the Borel o-algebra on X, Bx, and the
two coincide if X; are separable.

Proof. By Proposition 2.3.3 @Y By, is generated by nj_l (O;) where O; are open in X;; by definition
of the product metric, these sets are open in X, thus elements of Bx. For the second part we will
find a countable base of the topology of X of the form ([Ty_; Ojx)jen Where for each k, (Oj)jen
form a basis in the topology of X;. Take a countable dense set D; in each X;, and the countable
collection of all balls £ = (B, )nen of rational radii centered at some point in D;. Clearly, for
j = l..n, By, is generated by &;. Now, the set of points x € X such that for any j, x; is in some
Bj, is dense in X. A ball of radius r in X is by definition the product of balls of radius 7 in each
X and the result follows. O
Corollary 2.3.5. Br: = @7 BRr.

To reduce some proofs in the sequel to simpler cases, we introduce elementary families. These
are collections £ C P(X) such that

1. © €.
2. If E|,E; € Ethen EyNEy € £.

3. If E € £, then E° is a finite disjoint union of elements of £

Proposition 2.3.6. If £ is an elementary family, then the collection A of finite disjoint unions of elements
of € is an algebra.

Proof. If A,B € A then A = U;E; and B = UiF; where the finitely many E;, as well as the F;, are
mutually disjoint in £. Then
ANB=JEF)
jk
where it is easy to check that the sets in the collection (E; N Fy);x are mutually disjoint elements
of £. Then, for disjoint sets E; and Ej,k]. we have

AC:(OEj)C: (H]Ef: ﬁ(UE]’,kj): U ﬁEf/kj

j=1 j=1 j=1 kj koo j=1

again a disjoint union of elements of £.
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2.4 More about measures

Theorem 2.4.1. Let (X, M, i) be a measure space and A, B, (E;)jen measurable sets.. Then y is
1. Monotonic: A C B = u(A) < u(B).

2. Subadditive: (| ) E;) < Y_ u(Ej)
jEN kelN

3. Continious fronibelow: If Ey C E; - - -, then u(| J Ej) = hm n j(E;).
jEN

4. Continuous fronabove: If Ey D E; - - -, and p(E;) < oo, then u( () E;) = lim u(E;).
_— jeN j—roo

Proof. 1. We have B = AJ(B\ A) and thus u(B) = u(A) + u(B\ A) > u(A).

2. We replace the union by an equivalent disjoint union:

kelN keN j<k kelN j<k keN

w(UJ Ej)—V<U (EkﬂEf)) =) u(E () E) < ) u(E)

by 1.

3. Similarly, setting Eg = @,

n(U Ek)y<U (EkﬂE;)) = Y u(B N Ef_s —nlgroloZﬂ Ex(Ei_y) = lim p(Ey)
keN kelN j<k kelN

4. Note that E; = (El \ E2) UE, = (El \ Ez) U (E2 \ E3) JUE3=---= ﬂ E; U U (E] \ Ej+1) where
i€eN jEN
all the unions are disjoint. Hence,

ZVE \Ejt1) + u(En+1) Z,”E \ Ej+1) + u( mE

j<n jEN ieN

easily (how?) completing the proof.

Exercise 14 (Suggested by one of you). Let X be an infinite set and let x be its cardinal. Let Y be an
infinite set of cardinality ¥’ < x. Let M an infinite o-algebra on Y, and let its cardinality be x”. Show
that there is a o-algebra of cardinality " in X. As a hint, Ex.1 p. 24 in Folland could help.

Notes about this exercise:

The order among cardinal numbers | - |, is defined as follows: |Y| < |X| if there exists an injective
function f : Y — X. The axiom of choice implies (and in fact is equivalent to) the statement that given
two sets X and Y we have |Y| < |X| or |Y| < |X].

Exercise 15. Let X = QN [0,1], let &€ be the family of all intervals of the form {q € Q : a < q < b}
where a,b € X, and A be the algebra generated by E.
(1) What is the c-algebra M generated by £?
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(2) Define a set-function on € by u((a,b]) = b — a. Show that it extends to a finitely-additive measure
on A.

(3) Does y extend to a o-additive measure to M? (In other words: is there a measure on M which
agrees with p on A?)

O]

Note 2.4.2. The condition p(E1) < oo can clearly be relaxed to u(E,) < oo for some n since any finite
subfamily of Ey can be removed from the intersection. However the condition u(E,) < oo for some n is
needed. Indeed, let y be the counting measure on P(IN) and let E, = {n,n +1,...}. Clearly N,E, = @
while y(Ey) = +oo for all k.

Property 2 in Definition 2.1.1 is called c-additivity of the measure. A function y which is only
additive for finite families of disjoint sets is called  finitely additive.

A measure on (X, M) is [semifinite if any E € M with y(E) # 0 has a subset of finite positive
measure. It is finite if #(X) < oo, which, by the previous theorem, implies y(E) < oo for all E €
M. An important notion is that of c-finite measures, meaning that there is a countable partition of
X in disjoint sets E;, U;E; = X s.t. u(E;) < oo for any j. More generally E is o-finite in (X, M, u)
if there is a countable partition of E in disjoint sets E;, U;E; = E s.t. u(E;) < oo for any j. Clearly,
the counting measure on P(IN) is o-finite. Check that the counting measure is o-finite on P (X)
iff X is finite or countable.

Measure zero sets. A set E € M is of measure zero w.r.t. (X, M, u) if u(E) = 0. Clearly
a countable union of measure zero sets has measure zero. A property holds | g-almost every-
where if it holds except on a set of measure zero. We simply say that the property holds almost
everywhere, abbreviated a.e., when the y used is clear from the context.

By monotonicity, if M, N € M with M C N, then u(N) = 0 entails (M) = 0. It is natural to
extend M and u so that all subsets of a set of measure zero are measurable, with measure zero.
The resulting measure is called 'complete. Such an extension is always possible.

Theorem 2.4.3. Let (X, M, u) be a measure space, N = {N € M : u(N) =0} and N = {M C N :
NeN}.

1. Lt M={AUM: A€ M,MeN}. Then M is a o-algebra.

2. Define i on i(AU M) = u(A). Then (X, M, 1) is a measure space and 7 extends p.

Proof. Note that AV is closed under countable unions and intersections. Closure under countable
unions of M is clear: U;(A; UM;) = (U;A;) U (U;M;). Now,

(AUM) =ANM " =AN(NUN\M)) =(ANN)U(A°N(N\M))
which proves 1 noting that A°N (N \ M) € N.
2. The only part that may not be straightforward is the consistency of the definition: If
AUM = A’ UM, then we should have yu(A) = u(A’). For some N’ € N we have
A\A C(AUM)\A' =(AAUM)\A' =MnNAYCNNAeN

and similarly A’ \ A € N implying y(AAA’) = 0 and the result follows. O

23/186



Math 6211+6212, Real Analysis I+11

3 Construction of measures

We start with an informal discussion on defining a measure of length A on Bg. As noted, the
measure should be translation-invariant, and such that y((a,b)) = b — a (= 4o for unbounded
intervals). Countable sets would have measure zero, since they can be covered by a union of
open intervals of arbitrarily small total length. Indeed, for any ¢ > 0 the sequence (x,)yen ~
is contained in the union of the intervals J, = (x, —€27",x, +€27"). In particular if | is an
interval with endpoints a,b A(]) = b — a regardless of whether the interval is open, closed, or
half-open. Any open set in R is a countable union of open intervals, and, by the usual trick of
making the union disjoint, it is a countable union of disjoint intervals. This allows us to define
A(O) for any open set O, and from it A(C) for any closed set C. What else can we define? If
A € BR has the property that for any ¢ there exist an open set O D A and a closed set C. C A
such that A(O; \ C¢) < e it is natural to try A(A) := lim, 0 A(O¢). (Think why it would be a
bad idea to try to approximate sets with open sets from inside, or with closed sets from the
outside). Proceeding this way, it’s a pretty steep climb, where we would have to check all sorts
of consistencies, whether any A C Br has a measure, etc. The concept of outer measure is a nice
way to minimize this work.

3.1 Outer measures
Definition 3.1.1. Let X be a set. A function u* : P(X) — [0, o0] is an outer measure on X if
1. u*(@) =0.
2. (Monotonicity) If A C B, then u*(A) < u*(B).
3. (Countable subadditivity) u* (U;en Ai) < Lien 1 (A).
Note that, unlike in the o-additive case, 3 # 2. For example, on R an outer measure is
A(A) = inf{ Y A(0)) : O; open interval, A C | Ol} (21)
neN ieN
More generally, we have the following result.

Proposition 3.1.2. Let £ C P(X) and p : £ — [0, co] be such that @ and X are in € and p(@) = 0. For
A e P(X) let

],t*(A):mf{Ep(EZ)EZEE,AC U EZ} (22)
neN i€eN

Then u* is an outer measure on X.

Proof. Note that (1) u* is well-defined since A € P(X) = A C U;X and (2) p* is nonnegative.

Furthermore, since @ C U;®, we have u(@) = 0. Monotonicity is also easy, since A C B and
B C U]'E]' = AC U]'E]'.

5Do we need the axiom of choice to present a countable set as a sequence?
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To show subadditivity, let A; € P(X),i € IN and € > 0. By definition, for each i there are sets
Ei]‘ C & such that A; C U]‘El’j and

Y o(Eyj) —e271 <p*(A) < ) o(Ey)
jEN jeEN

It follows that

Jac U E

JEN (i,j)eN?

and

pw (U Ai) < Y p(Ey) < Y pi(A) +e (23)

jEN (i,j)eN? ieN
(Justify the use of double indices.) Since (23) holds for any positive ¢, subadditivity follows. [

We could similarly define an inner measure on IR by taking sup over compact sets contained
in a given A € P(R). Then, measurable sets should be those for which the inner and outer
measure coincide. However, another clever trick allows us to save half of the effort, and rely
solely on outer measures. Returning to the length measure, we expect to have A(A) = A*(A) for
any A € Br. This implies that, for A € Br

A*(B) = A*(BN A) + A*(BN A°),VB € By (24)

The key observation is that the equality above is a property of A rather than of B (it reflects the
way A splits other sets.)

Exercise 16. Check that A* satisfies (24) for all B € P(RR), when A is an open set.
This suggests the following.

Definition 3.1.3. Let u* be an outer measure on X. A set A C X is called y*-measurable if
' (B) =pu*(BNA)+u*(BNA°),VB e P(X) (25)

Note that, by subadditivity of outer measures (24) holds whenever the left side is no less than
the right side.

Theorem 3.1.4 (Carathéodory’s theorem). If u* is an outer measure on X, then the collection M of all
y*-measurable sets is a c-algebra and y* (restricted to M) is a complete measure on M.

Proof. 1. M is closed under complements. This is obvious.

II. Closure under finite unions. Note that if A and B are measurable and E is any set, we first
split it by A and then by B to get
W (E)=u"(ENA)+u*(ENA°) =u"(ENANB)+u*(ENANB)+u*(ENA“NB)+ u*(EN A°NB°)
uw(EN(AUB))
> u"(EN(AUB)) +u*(EN(AUB))
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since
AUB=(ANB)U(ANB°)U(A°NB)

Thus M is an algebra.

III. Closure under countable unions follows now if we show closure under countable disjoint
unions.

Let (Aj)jen be disjoint, S, = Ul ,Ajand S = U2, A;. For E C X, since the A;j and S; are
measurable, we have

n

=) u(ENA))
j=1

mductlon

W (ENS,) =u"(ENS,NA,)+u (ENS,NAS) =u"(ENA,)+u (ENS,—1) =

Since S O S, and ENS = U,;EN Aj, we get, by subadditivity and monotonicity,

W(ENS) =Y p(ENA) 2 u (UENA) =p"(ENS) = u (ENS) =Y w(ENA;) (26)
jEN jEN

Since EN S, D ENS® and S, are measurable, we now get

p (E) =pu" (ENS,) +u* (ENS,) = ) u (ENA)) +p'(ENS) = p(ENS)+p"(ENS)
j=1

implying S € M. ¢-additivity follows by taking E = S in (26).

IV. Completeness: Let N € M be s.t. u*(N) = 0. By monotonicity, u*(E N N) = 0 for any
E C X, and since N is measurable, y*(E) = u*(ENN°). Let M C N. Again using mono-
tonicity, u*(E N M) = 0. Thus, we only need to show u*(E N M) = p*(E) which follows from
monotonicity: u*(EN M) > u*(ENN°) = u*(E). O

HW for 09/17 : Problems 1-5 on p. 24 in Folland, and turn in: Ex 10,14 and 15 in these notes.

3.2 Measures from pre-measures
Definition 3.2.1. Let A be an algebra in X. A function g : A — [0, c0] is called premeasure if
1. }lo(@) =0.

2. If (Aj)jen is a sequence of disjoint sets in As.t. | ] Aj € A, then po(|J Aj) = Y po(4))
JEN jEN JEN

The outer measure induced by yy is

jeN jEN

w( 1nf{2;40 AGAECUA} (27)

Note that, by monotonicity and the fact that A is an algebra, the unions in (27) can be assumed
disjoint.
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Theorem 3.2.2. (a) Let A be an algebra on X and pg a premeasure on A. Then p := u* defined by (27)
is a measure on M, the o-algebra generated by A and coincides with g on A.

(b) If o is o-finite, then y is the unique measure with this property. Otherwise, any other measure v
as above has the property that u(A) > v(A) forall A € M, and y —v = 0 on all sets of finite y measure.

For the proof we need the following result.
Lemma 3.2.3. Under the conditions of the theorem,

1 p*|a = po

2. The sets in A are y*-measurable.

Proof. 1. Note first that for any E € A we have yo(E) > u*(E). To prove the opposite inequality,
let E € Aand A; as in (27), assumed w.l.o.g. to be disjoint. Then E = ENU;A; = U;(EN Aj) and,
since Ji( is a premeasure,

uo(E) = Y mo(ENAj) < Y o(A))

jeEN jeEN

implying po(E) < pu*(E).
2. Let Ac A E C X and & > 0. There is a disjoint sequence (A;);en in As.t. E C UjA; and
w(E) +e> Y po(A;)). Thus,

W(E)+e= Y uo(A) =) mo(ANA)+ Y uo(AjNAS) > u (ENA)+u*(ENAS)
JeN jEN jEN

implying, since ¢ is arbitrary, that A is measurable.
O

Proof of the Theorem. (a) follows from the Lemma and Carathéodory’s theorem.
(b) We first prove that any measure y as in the theorem has the property v(A) < u(A) on M.
If E € M and A; are disjoint sets whose union contains E, by monotonicity of v we must have

v(E) < ) v(Aj) = ) po(4;)

jeEN jEN

and thus v(E) < u(E).
We claim that, if A; € A are disjoint and A = U;A;, then p(A) = v(A). Indeed, we have

v(A) = ) v(A) = ) po(4)) = ) u(4)) = u(A)

JEN JEN JEN

If 4(E) < oo, then, for any & > 0 there is a disjoint family of A; € A whose union A contains E,
s.t. p(A) = L po(Aj) < u(E) +eand hence v(A\ E) < u(A\ E) < e. Now

H(A) = v(A) = v(E) + v(A\ E) S v(E) +¢

and thus yu(E) = v(E).
If y is o-finite, then X = U;A; where A; are disjoint and y(A;) < co. Then,

v(E) = Z v(EﬂAj) = Z u(E ﬂAj) = u(E)
jeN jeN
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O]

Exercise 17. [Done in class (*) Show that the function y in Exercise 15 is not a premeasure.]
1. Use the function u in Exercise 15 to define an outer measure on Q. What is the measure on Q
induced by this outer measure?
2. Describe all translation-invariant measures on P(Q).
3. Describe all finite measures on P(Q).
4. Let p be a finite measure on Q s.t. any singleton has positive measure and define the function f
on C\ R by
)y P
=g
Show that the series above converges absolutely and uniformly on compact sets in the open and lower upper
half-planes, and that for any r € Q the limit of | f| when z — r along a vertical line is +co.
Remark. For those who took Complex Analysis, this shows that f is analytic in the open and lower
upper half-planes, and that R is a natural boundary for f. Think why there must exist points ¢ € R where
the limit as z — ¢ from the upper half plane either does not exist or it is not infinite.

If 11 is a finite measure on By, then its distribution function is F = x +— u(—oo, x|. For instance,
for the Dirac mass at 0, F is the Heaviside function 6, extended by 6(0) = 1. ° Distribution
functions are increasing (meaning: nondecreasing) and right continuous since p((—oo,x]) =
limy, x40 pt((—00, x4]). (What is different if we take lim,,_,,_o instead?)

Exercise 18. (i) Let F be increasing and right-continuous on R. Show that F has at most countably many
discontinuities.

(ii) Let C = {x; : j € N} C R, (pj)jen be a sequence of positive numbers s.t. }° 1 p; < oo, and A
as in (29). For A € A define

Ho(A) = L pj
XjEA

Show that g is a premeasure on A. Show that there is a unique measure y on Br which extends pg, and
that y is a finite measure.

(iii) Show that the distribution function of y is discontinuous at any point in C.

Exercise 19. Define p : Q — Q by p(r) = 1ifr € Z and p(r) = 1/|q* if p = p/4q, p,q coprime.
Let A the algebra generated by the right-closed left-open intervals on R. Define ug on A by u(A) =
ZTGAOQ P (7’)

(a) Show that pg extends uniquely to a (c—finite) measure on y on R which is invariant under shift
by one. Are there other shifts under which it is invariant?

(b) Show that u({x}) #0iff x € Q.
(c) Let

u((0,x] if x >0
F(x) =40ifx=0 (28)
—p((x,0]) ifx <0

Find all the points of discontinuity of F.

6The Dirac mass will be seen to correspond to a distribution (in a different sense, that of distributions) while 6 is a
function, is the integral, in the sense of distributions [*_ 4(s)ds.
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4 Borel measures on the real line

In this section we will classify all Borel measures on R, defined as measures on Br and find
their properties. We will show that any Borel measure on R arises from some increasing, right-
continuous function F.

We take the elementary family € of half-open intervals of the form (a,b], —co < a < b < o0
and define, using Proposition 2.3.6 the algebra

A=¢JL:e&EneN (29)
j=1

Definition 4.0.1. Let F : R — R be increasing and right-continuous. Let | = (a,b] € £. We define
uo(J) = F(b) — F(a) (where we let F(—o0) = —oo if F is unbounded below) and extend it to A by
to(Up_1Ix) = ¢ 1 po(Ix) whenever Iy are disjoint intervals.

Proposition 4.0.2. The function g is a premeasure on A.

Proof. 1. p is well-defined. It is easy to see that for any finite disjoint partition of I = (a,b] in
subintervals J; = (a;, b;] we have uo(I) = Y; uo(J;).

Assume U}_ I, = Uj",];, where the sets {I;}, as well as the sets {];}; are disjoint in £. The
previous reasoning shows that

n

Yl = Y p(n ) = lﬁu(h)
=1

k=1 k1

(there is an equivalent common subpartition, in other words).

The hard part is to show c-additivity; let { I }xci be disjoint sets in A such that A = Ujen [ €
A. We leave it as an exercise that it is enough to show c-additivity when A C [—N, N| for some
N, in which case pp(A) < co. Note that

mo(UJ L) = i,”O(I]’) +mo(lJ Iy)
iz

jeEN j>n

where all sets above are in \A. Thus oc—additivity reduces to continuity of y from above (see
Theorem 2.4.1 for the definition).

Let Ay = U]"i 1(akj, byj] in A be a decreasing family such that MienAx = @, denote ¢ =
lim p9(Ag), and let ¢ > 0. Since nlgrolo F(axj +1/n) = F(a;), there are points a;; € (a;, byj) such

n—oo

that 1o(Ax \ Ax) < €27 for all k, where we denoted A; = U]-(a;{j, bij]. Note that

Ajfu | U@\ 4))
]:1 j:l

.

n
N4 C
j=1

’In words: if x is in all Aj, then either x is in all A]- or thereis a jo, x ¢ Ajo but since x is in all A]-, X € Ajo'
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Hence

=
DL

n
c<po((NA) <po((VA)+ Y mo(A\A) < po((VA) +e=po([A) 2c—¢
j=1 '

j=1 j=1 j=1

The sequence of nested compact sets K,, = ﬂ’f/Tk C NJ Ay have empty intersection. Since K;; D
(]7:1 A]-, for small enough ¢, all Kj;s are nonempty unless ¢ = 0. O

Note 4.0.3. The proof in Folland uses the Heine-Borel theorem, which was discovered exactly for this
purpose!

Theorem 4.0.4. 1. For any Borel measure p, the function F in (28) is increasing and right-continuous.

2. Conversely, for any increasing, right-continuous F : R — IR there is a unique measure ur on B s.t.
forall a,b up((a,b]) = F(b) — F(a). If G is a function as above s.t. or all a,b up((a,b]) = G(b) — G(a),
then G — F is constant. The measure p is complete on a o-algebra containing BR.

Proof. 1. See Exercise 18.

2. Proposition 4.0.2 shows that pr is a premeasure on A. Since A generates Br, Theorems
3.2.2 and 3.1.4 show that pr extends to a complete measure on a c-algebra M containing B.
Clearly, if G has the same properties, then (F — G)(b) = (F — g)(a) for any finite a,b implying
the result. O

The measure yr is called the Lebesgue-Stieltjes measure associated to F.
Note 4.0.5. Since yr = py on M, we have, for E € M,,
}IF(E) = Il’lf{ E [P(bz) — F(az-)] :EC U (Cli,bi]} = 1nf{ Z y((ai,bi]) :EC U (ﬂi,bi]} (30)
ieN iEN ieN i€N

Since for any e > 0 and any interval I; = (aj, bj] there is an open interval J; = (a},b7) O I st.
pue(Ji \ Ij) < 277e (check), it follows that for E € M,,

ur(E) = inf{ Y ul(ai, b)) EC | (airbi)} (31)
i€N i€EN
Definition 4.0.6. A Borel measure on a topological space X is regular if for any E € Bx we have
inf{u(O) : EC O,0 open} = u(E) = sup{u(F) : E D K, K compact} (32)
It is outer regular if the first equality holds, and inner reqular if the second one holds.
Lemma 4.0.7. For any ¢ > 0 and any E € B there is an O D E open s.t. u(O \ E) < .

Proof. We write E = Uyen(E N [—n,n]) and let ¢ > 0. Since u(E N [—n,n]) is finite, we can find
an Oy s.t. u(O0y) = u(E) = u(0,) — 27" The rest is straightforward. O

Theorem 4.0.8. All Borel measures on R are regqular.
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Proof. For outer regularity, we see that E C O implies y(O) > u(E) whereas Lemma 4.0.7 shows
that for any E there is an O with measure arbitrarily close to u(E).

Using o-finiteness and an €27" argument, it is enough to show inner-regularity on bounded
sets, E, for which clearly the measure is finite. For a given ¢ > 0, find O D E¢ s.t. u(O\ E°) =
u(ONE) < e. Now,

u(E) = u(ONE) +pu(O°NE) <e+p(09)

Now K C O° C E is compact, and
u(K) < u(E) < e+ u(K)
O

Recall that an F; set is a countable union of closed sets; in R (and in ¢ —compact spaces) this
is the same as a countable union of compact sets. A G; set is a countable intersection of open
sets. In R, F, sets are complements of G5 sets.

Theorem 4.0.9. Let y be a Borel measure on R and M, its associated o—algebra and E C R. The
following properties are equivalent:

1. Ee M,.
2. Thereis an F, set F s.t. F C E and u(E \ F) = 0.
3. Thereisa Gs set Gs.t. G D Eand u(G\ E) = 0.

Proof. 2 = 1 and 3 = 1 follow from the completeness of the measure.
1= 2 and 1 = 3 follow from regularity: take a sequence ¢, — 0 and for each n pick O, open
and K, compact s.t.
O, DEDK, and u(0,\Ky) < &,

Then the sets G = N,,0, and F = U, K}, have the required properties. O

Set-theoretically, BR is of course much richer than the collection of F, and G; sets. Measures,
as we see, cannot give justice to all these extra riches. The following is left as an easy exercise:

Proposition 4.0.10. If E, u and M, are as above, u(E) < oo and € > 0, then there is a finite union of
open intervals A s.t. u(EAA) < e.

Definition 4.0.11. The Lebesgue measure on By is the measure m induced by F(x) = x. The sets in the
o-algebra of m, L, are called Lebesgue measurable. The translation of a set E by xo, {x +xo : x € E}, is
denoted by E + xo. The dilation of E by r, {rx : x € E} is denoted by rE.

Since m is generated by the interval length, it is translation-invariant as the theorem below
shows.

Theorem 4.0.12. If E € L then E + xo and rE are in L and

m(E +x9) = m(E); m(rE) = |r|m(E) (33)
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Proof. Translations and dilations commute with countable unions and complements (check). The
algebra A of unions of half-open sets is invariant under translations and dilations, and (33) holds
for intervals. It follows that By is also invariant under translations and dilations, andm satisfies
(33) on Br. Since the translation and dilation of a null set is a null set (why?), the result follows
from Theorem 4.0.9. O

Clearly, countable sets have zero Lebesgue measure. There are many uncountable ones with
measure zero, however. let’s first look at the Lebesgue measure from a very different perspective.

4.1 Push-forward of a measure

Definition 4.1.1. Let (X3, My, p1) be a measure space, (X, M>) a measurable space and f : X1 — Xa
a measurable function. The pushforward measure f,(p) is definied as

(fe()(A) = u(f 1(A), Ae M,

Exercise 20. Check that (X2, My, (f«(u)) is a measure space.

4.2 Coin tosses and the Lebesgue measure

A measure space (X, M, P) is called a probability space if P(X) = 1. The space X is called
sample space, M is called the o-algebra of events and P is the probability measure. A U B is the
event “A or B” and AN B is the event “A and B”. Two events, A and B are called independent if
P(ANB) = P(A)P(B).

If (Y, M, Py) are probability spaces, the product space ®,Y, is endowed with the o-algebra
M = ®,M, generated by the canonical projections. Finite intersections of sets of the form
Cp(Ap) = ﬂlgl(Aﬁ),Aﬁ € Mg are called cylinder sets. Clearly, the family of cylinder sets gen-
erates M. The product measure is generated by P(Cgz(Ag) N C,(A,)) = Pg(Ag)Py(A,)- making
events in different spaces independent of each-other. We will go through the details of the gen-
eral construction later in the course. Here we focus on a particular case, relevant to the Lebesgue
measure.

Coin tosses. In a single coin toss there are two possible outcomes, H or T, where H is head
and T is tail. We let X = {H, T}. The c-algebra of events is simply M = P(X). The probability
measure describing a fair coin is given by P({H}) = P({T}) = 1.

(a) From now on we denote H = 1,T = 0. For n tosses of the coin, the underlying space
is X", the set of all length-n sequences (x;)j—1., where x; € {0,1}. The c-algebra on X" is
M, = @M = P(X"). The probability measure on P(X") describing independent coin tosses
is the uniform measure P({x}) = 27" for any x € X. Check that the probability that a sequence
starts with x; = 1, “P(x; = 1)” is 1/2, P(x; = x2) = 1/2 and that the events x; = a,x; = b are
independent for x # j.

(b) For n > m, M,, is embedded in M,, as the o-algebra generated by the cylinders Cy, ..., Cy,.
Check that the definition of P is consistent w.r.t. this embedding.

(c) The space of infinitely many coin tosses is Q = {0, 1}N = [T;cn X; where Vi, X; = X. The
o-algebra M on () is, as we know, generated by the canonical projections 77;. As before, M, is
embedded in () as the o-algebra M), generated by 1, ..., 77,. Check that A = U, M, is an algebra
generating M.
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(d) Define the measure i on A as follows. If A € A, then A € M), for some n (not unique),
identified with an A € M,,. Let pp(A) = 27"#(A) where #(A) is the counting measure. Check
that the definition is compatible with the embeddings.

(e) Let f : [0,1) — Q be defined as follows. If 0.a1a;--- is the binary representation of
x € [0,1), then

f(x) = (a3, ) € Q

Check that f is measurable. Furthermore, if C is the cylinder defined by xo = ay, ..., xx = ax, then
f~1(C) is an interval of Lebesgue measure 2. Show that f.(m) is the extension of P from A to
M. This f is injective but not surjective; the set 3\ f((0,1]) is the set of sequences that end in
an infinite string of zeros or of ones, a set of probability 0 (check).

(f) With this construction the Lebesgue measure on [0,1) is becomes probability measure on
binary digits, treated as being independent. The measure of Q N [0,1) is the probability of a
sequence which becomes eventually periodic, zero (check).

’ HW for 09/28 : Problems 18-22 on p. 32 in Folland, and turn in: Ex 17-19 in these notes. ‘

4.3 The Cantor set

The Cantor ternary set C is obtained by removing the open middle third from [0,1] and then
successively removing the open middle from the remaining set of intervals. The Cantor ternary
set consists of all remaining points in [0, 1], those that are not removed at any step. Check that
the Cantor set consists of all x € [0,1] whose base 3 expansion consists of 0 and 2 only. Clearly,
there is a surjection f from C to [0, 1], by associating x € C the number f(x) € [0,1] whose binary
expansion is obtained from the ternary expansion of x substituting a 1 for each 2. This shows that
card(C) = ¢. Check that m(C) = 0. Using the probabilistic interpretation of m and the arithmetic
interpretation of C, this is obvious: the probability that 1 is missing from the first n ternary digits
is (2/3)". The function f described above is known as Cantor’s function.

The Cantor set, therefore, has empty interior: it cannot contain any interval of non-zero
length. It may seem that only endpoints of intervals are left, but this is not the case. 0.020202 - - - =
1 is clearly in C yet it is not an endpoint of any middle segment, because it is not a multiple of
any power of 1/3. Of course, this follows from cardinality too, since the set of endpoints of
removed intervals is countable.

Exercise 21. In this exercise, C is the Cantor set and f is Cantor’s function.

1. In (a) and (b): True or false? Explain.

(a) If F is an increasing, continuously differentiable function and ur is the Borel measure induced
by F, then up(C) = 0.

(b) If F is an increasing function and there are C > 0 and « € (0,1) s.t. Vx,y : |F(x) — F(y)| <
Clx — y|* and ur is the Borel measure induced by F, then pp(C) = 0.

2. Show that the interior of C is empty. What is the boundary of C?
3. Let F = f and pr the Borel induced measure. Find pr(]0,1]\ C).
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4.4 Cantor’s function (a.k.a Devil’s staircase)

The Cantor function has a good number of surprising properties. It is clearly increasing, and
f(x1) = f(x2) iff x3 = .0..0,222---, xp = 0.0...0,_12. We extend f by a constant on [x1, x2],
and the extended f is defined on [0,1] with values in [0,1]. Note that f([0,1]) = [0,1] and f
is continuous. Cantor’s function was presented as a counterexample to an (incorrect) extension
of the fundamental theorem of calculus claimed by Harnack. Indeed, f is differentiable almost
everywhere with zero derivative (check). f is flat almost everywhere, yet somehow manages to
continuously increase from zero to one. If we take F = f in our construction of Borel measures, it
gives rise to a continuous measure that is singular with respect to m (definitions will come later).

Exercise 22. Is there any Borel measure on R (a measure on the Borel sets of R) which is finite on
compact sets) for which the Borel sets of measure zero are exactly the countable sets? (One possibility is
the following. For x = 0.a1a;... € (0,1) let Ay = {x = 0.b1a1baay, ... : 0.b1by... € (0,1)}. These sets are
uncountably many disjoint sets, their union is (0, 1), and each of them is uncountable.)

5 Integration

The starting point will be the functions for which we already have a good candidate for the
integral: characteristic functions (whose integral should equal the measure of the set) and from
here, of course, linear combinations of characteristic functions of bounded sets.

5.1 Measurable functions (cont.)

Proposition 5.1.1. If X;, M;,i = 1,...,n + 1 are measurable spaces and f; : X; — Xj11,i = 1,...,n are
measurable, then so is the composition f, o --- o fi.

Proof. Straightforward verification of Definition 2.2.1. O

Proposition 5.1.2. Let X,Y be topological spaces with the Borel o-algebras. Any continuous function
from X to'Y is measurable.

Proof. By definition, the inverse image of open sets is open, and open sets generate Bx and
By. O

Exercise 23. Show that A € R is Borel measurable iff x 4 is Borel measurable.

Definition 5.1.3. Let (X, M) be a measurable space and f : X — R. f is called measurable
if f~1(Br) C M. An important particular case is (X, M) = (R, L), in which case f is called
Lebesgue measurable.

Note 5.1.4. If A € £, then A = BU N where B is a Borel set and m(N) = 0. If f : R — R, is
Borel measurable, then f~1(A) € L for any A € L iff f~!(N) is measurable for every null set
(set of Lebesgue measure zero) N. This is not necessarily the case even if f is continuous, as the
next note shows. There we construct such a function which bijectively and bicontinuously maps
an uncountable null set to a set of measure zero. Then a nonmeasurable set is bijectively and
bicontinuously mapped into a set of measure zero.

This means that a composition of Lebesgue measurable functions need not be Lebesgue mea-
surable. Examine carefully all these definitions.
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Exercise 24. Let f be continuous and strictly increasing from R to R. Then f maps Borel sets to Borel
sets.

Note 5.1.5 (Relation to the axiom of choice). ZF is consistent with the statement “IR is a countable
union of countable sets”. Therefore, there are models of ZF where the Lebesgue measurable sets
are exactly the Borel sets. Consequently also, in such models the theory of Lebesgue measure
can fail totally. A weak form of the AC guarantees that a countable union of countable sets is
countable, and rules out the quoted statement. This is the axiom of countable choice, stating
that there is a choice function for any countable family of sets. It is weaker than the axiom of
dependent choice. ° The axiom of dependent choice is considered more benign than the full AC,
in that no spectacularly counterintuitive result (such as the Banach-Tarski paradox) exists based
on it.

Note 5.1.6. Here we construct a continuous bijection from [0,2] to [0,1] such that h~1(C) has
positive measure. We start from the Cantor function f. It is not a bijection, but g := x — f(x) + x
applies bijectively [0,1] to [0,2]. The forward image of C is C = C + [0, 1], a set of measure 1. The
function & = ¢g~! has the emphasized property above. Let E now be a nonmeasurable set in C
(how do we know it must exist?). Then h : C — C. Any subset of C has measure zero, and one of
these, say N;, must have the property h~1(N;) = E.

Definition 5.1.7 (Measurability on a set). Let E € Mand f : E — (Y, N). f is called measurable on
E if it is measurable from (E, Mg) to (Y, N'), where Mg = {ENA:A € M}.

The proofs of Propositions 5.1.6-5.1.13 are straightforward and left as an exercise.
Proposition 5.1.8. Let (X, M) be a measurable space and f : X — R. Then the following are equivalent:
1. f is measurable.

2. Foranya € R, f~'((a, c0)) is measurable.

3. Foranya € R, f~([a, 00)) is measurable.

4. Foranya € R, f~((—00,a)) is measurable.

i
!
H
!

5. Forany a € R, f~((—00,a]) is measurable.

Exercise 25. Choose a convenient characterization from the list above and show that any increasing
function from R to R is measurable.

Definition 5.1.9. If X is a set, (Y, My )qaca are measurable spaces and (fy)aeca are functions from
X to Yy, then the o-algebra generated by (fy)sca is the smallest o-algebra in X s.t. all f,, « € A
are measurable. An example is the product space Y = ®,Y, and the canonical projections 7,:
they generate the product c-algebra M.

Proposition 5.1.10. Let (X M) be a measurable space, and Y, M, Y,, M, be as in Definition 5.1.9. Then
f+ X — Y is measurable iff 7t, o f is measurable for any « (i.e., f is measurable iff it is componentwise
measurable).

8The axiom of dependent choice states the following: Let R be a binary relation on a non-empty set S. Suppose
that Va € S3b € S : aRb. Then there exists a sequence in S, (x,)eN 8.t Vit € N : x,Rx;, 1. This axiom is equivalent
to the Baire category theorem for complete metric spaces.
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For some purposes it is convenient to consider functions with values in [—oo,00]. This is
equivalent to letting ¢ = tanhof and allowing for the range of ¢ to be [—1,1]. The arithmetic
disallows for co — co but allows for 0 - co defined to be zero.

“ oy,

Proposition 5.1.11. The functions “+”: (x,y) — x+y and “-”: (x,y) — xy are measurable. If
f,¢: R — R are measurable so are (f,g) : R = R? f+¢="+"((f,2)) and fg=""-"((f, %))

Proposition 5.1.12. If f : X — R is measurable, then so is |f|. If f,g : X — R are measurable, then so

are fV g = max{f,g} = 3 — gl + 3(f — §), fAg = min{f,g}, f* = fVOand f~ = fAO. The
functions sgn= X[o,c0) = X(—c00] nd csgN= 2/ |2|X 2|0, are measurable.

Let (gi)ien from X to R be measurable. Let inf; g; =: g, liminf,en ¢ = h. Then

{x:g(x) =2 a} =Njen{x: gi(x) > a}and {x: h(x) > a} = &ﬁi%{x 1 gi(x) = a}
In:Vizn
Proposition 5.1.13. Let (g;)icn from X to R be measurable. Then so are inf; g;, sup; g;, liminf; g; and
limsup; g;. If G(x) = lim;_,« gi(x) exists for all x, then G is measurable.

(for the last statement note that the limit, when it exists, coincides with limsup).
Exercise 26. Extend, where possible, these results to functions defined on X with values in C.

Note 5.1.14. A measurable function f between a probability space (X, M,P) and a measure space
(Y, N, u) is called a yandom variable. If Y = R, then Ff(x) := P(f < x) is the cumulative distri-
bution function.

Here is a probabilistic interpretation of the Cantor function. In base 3, start with the initial
string “0.”. At each n € IN flip a coin. If the result is H, then append a 2 to the previous string,
otherwise append a zero. The probability that the resulting number is < x is f(x). This is made
precise in the following exercise.

Exercise 27. In §4.2 replace “1” by “2” in all sequences and sequence spaces.

(a) With this interpretation, show that there is a bijection between () and the Cantor set. (The image
through this bijection of the measure P that we constructed on C is a uniform measure on C.)

(b) The identity map restricted to C, |, is measurable relative to C, thus a random variable. Show that
the cumulative distribution function for | is the Cantor function.

There is an equivalent jump process (with discrete time n € IN). A particle sits in the center
of the middle third interval. Right before the interval is removed, it randomly jumps away with
equal probability to the middle of the right or middle of the left interval. And so on. The
probability of its eventual location point being < x is f(x).

5.2 Simple functions

Definition 5.2.1. Let (X, M) be a measurable set. A measurable function from X to C which has discrete
range, {z1,...,zn} C C is called a simple function. Let A, ..., Ay be measurable sets in X and z1, ..., z,
complex numbers. Then the linear combination

n
Y zixa, (34)
=1
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is clearly a simple function if UA; = X. We convene that, if one of the z; happens to be zero, we keep a
term 0 - x a, in (34).
We denote the space of simple functions by .

An analogy with counting the money in a jar with coins is often used to illustrate the fun-
damental difference between Riemann integration and Lebesgue integration. One method is to
take the coins out one by one and add the values as we go. The second one is to take out all the
coins, sort them by value, count the number of coins in each pile, multiply by the value and then
calculate the total. The first method corresponds to Riemann integration, while the second one
to Lebesgue. Mathematically the difference is partitioning the domain or the range of a function.

Theorem 5.2.2. 1. Let f : X — [0, c0] be measurable. There is an increasing sequence (f;)ien in 9
pointwise convergent to f, uniformly so on any set where f is bounded.

2. Let f : X — C be measurable. There is a sequence (f;)ieN in S, such that (|fi|)ien is an increasing
sequence, and f, — f pointwise everywhere, and uniformly on any set where f is bounded.

Proof. 1. For each n € N partition the interval [0,2"] in the range of f in 22" left-open-right-

.....

F71((2",00]) and define
fo=Y vwXa, +2"xs, €5

k<2n

Pointwise convergence is immediate. Let A be a set where f is bounded. Then, for some ny and
all n > ngp we have A C Bj. By construction, on By, , |f — fu| <27".

2. We write f = (Rf)T — R(f)” +i(Sf)*T — (Sf) . The result follows by applying 1. to each
term above. O

Proposition 5.2.3. Assume (X, M, u) is a measure space and y is complete. Assume g, (fn)neN are
measurable from X to R. Then

1. If f: X = Rand f = ga.e., then f is measurable.
2. If fn — f pointwise a.e., then f is measurable.
Proof. Straightforward. O

Proposition 5.2.4. Let (X, M, %) be the completion of (X, M, u) and assume f is M-measurable. Then
there exists an M-measurable g which coincides with f a.e.

Proof. For characteristic functions this property is clear from Theorem 2.4.3, and it extends by
linearity §. Let (¢, ),en in S be a sequence converging pointwise to f. Choose a sequence of M-
measurable functions (¢,),en Which coincide with (¢,),en except on some null sets (Ny,),eN-
Let N = U,enNy. Then the sequence ()(X\thn)ne]N converges pointwise everywhere, thus to a
measurable function, and the limit equals f on X \ N. ]

HW 08/08 : 32,33 on p. 40, 8,10 on pp. 48,49 in Folland; turn in: Ex 21,22 in the notes. ‘
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5.3 Integration of positive functions

Lemma 5.3.1. Let (X, M) be a measurable space and u,v measures on (X, M). Then y + v and cy are
measures on (X, M) for any ¢ > 0.

Proof. Straightforward verification. O

In this section the space (X, M, u) is fixed. Let L™ be the convex cone of nonnegative mea-
surable functions:

L"={feM:f=>0}
Let ¢ € LT NS. Then, for some n € N, ran(¢p) = {ay, ...,a,} C [0,00) and

o =Y mxa; Aji=f({a}) (35)
j=1
It is natural to define the integral of ¢ by
n
/?dﬂ =) _aju(4)) (36)
j=1

where, as usual 0 - co = 0. Other notations are [ ¢(x)du(x), [ ¢(x)u(dx) or simply [ ¢ when the
context is clear. Likewise, when A € M we define

A@W=/mww (37)

Proposition 5.3.2. Let ¢ = Y./ aixa, $ = Yiq bjxs, € LY NS. Then
1. (Compatibility with the cone structure) [ ¢dy > 0, V¢ > 0: [co = c [ and [(¢+¢) =
Jo+ ]y
2. A— [, ¢ isa measure on M.

Proof. 1. Nonnegativity and multiplicativity by constants are clear. Linearity follows easily if we
note that the range of ¢ + ¢ is {a; +b; : 1 <i < n,1 < j < m} (a;+ bj are not necessarily distinct),
and that these values are taken on the disjoint sets C;; = A;NB;, 1 <i<n,1<j<m.

2. When ¢ = xp for some measurable B, [ ¢ = u(A N B) which is a measure on M. The rest
follows from Lemma 5.3.1. O

Note that 1. implies
¢<¢:/ww</¢w

Definition 5.3.3. If f € L™, we define

/ﬁw= sup | gdy
pESNLT
o<f

Proposition 5.3.4. Def. 5.3.3 coincides with (37) for f € § N L. The integral is nonnegative, commutes
with the cone operations (cf. Proposition 5.3.2, 1.), addition and multiplication by nonnegative numbers.
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Proof. For additivity, see Theorem 5.3.6 below. The rest is straightforward. O
Exercise 28. Show multiplicativity with a constant when ¢ = +oo.
The first important theorem about the properties of the integral is

Theorem 5.3.5 (The monotone convergence theorem). If (fy)neN is an increasing sequence in LT,
then

fim | Sy = [ i o

Proof. The limit (possibly +o0) lim, e [ fu(x) = f(x) clearly exists for any x € X, and since
Vn: f > f,, we have

tim [ fudy < [ fan

For the opposite inequality choose &« € (0,1) anda ¢ < fin SNL" st. a [ fdu < [ ¢du. By
monotonicity, the sets A, = {x € X : fu,(x) > ap} are measurable and increasing, and since
fu — f, Ay /" X. Since & < 1 is arbitrary, using monotonicity of the integral and sequence, the
result follows from

lim/){f,ﬁy}lim/Anfndy>txlim/An(pdy:¢x/Xgody>tx2/fdy

n—oo n—00 n—oo

Theorem 5.3.6. 1. The integral is additive on L.

2. If (fu)nen is a sequence in L, then

[ L fodn=% [ fudn

nelN nelN

Proof. 1. We have already shown linearity on § N L". We can use approximation by simple
functions and the monotone convergence theorem to prove the rest. If (¢,)nen, (¥n)nenN increase
to f and g respectively as in Theorem 5.2.2, then ¢, + ¢, ,/* f + g, and by dominated convergence

/fdﬂ+/gd14 = lim (/fpndwr/lpndu) :,}ggg/(qoﬁl/fn)dﬂ = /(f+g)du

2. An application of the monotone convergence theorem.

Theorem 5.3.7. For f € L™, [ fdu =0iff f =0a..

If f=0ae. and 0 < ¢ < f then clearly ¢ = 0 a.e. implying (check) [ ¢du = 0. If [ fdu =0,
consider the disjoint sets Ag = f1({0}) and A, = f 1 ((n"!,(n—1)7]),n € N. We have
Y 1i1eN XA, = 1 and, by monotone convergence,

0= /fdﬂ = /fondy > Y 0 pu(Ay)

nelN nelN

implying that j(A,) = 0 for all n and thus f =0 a.e.
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Corollary 5.3.8. Assume (fy)nen are in Lt and increase a.e. to f. Then, by monotone convergence,

/ fdy = lim / Fudit

n—oo

Proof. Let A = {x € X : lim,, f,(x) = f(x)}. We have u(A) = 0 (in particular A is measurable).
Then

[ £ xa)dn = lim [ £o(1 = xa)dp =0
and the result follows from Theorem 5.3.7. O

The second important result is the following.

Theorem 5.3.9 (Fatou’s lemma). If (fy)nen is a sequence in L, then

hﬁ‘;ﬂ%‘f/f”dﬂ > /11£2H1\Inffndy

Proof. Let f = liminf, f, and g, = infy>, fx. We have g, " f and g, < f, and thus, for all n we
have, by monotone convergence,

/fdﬂ = lim/gndpt < /fndy = limﬂi?f/fndy > /fdy
n ne
O

Here is a useful illustration of what may go wrong to make the inequality strict (Rudin) Let
X =[0,2] and E = (1,2], and for n € IN let

, if n is even
fn _ X(1,2] ' . (38)
Xjo,1), if n is odd

Note that liminf, f,, = 0. However, for all n we have

n:1>/ liminf f, = 0
/[O,ZJf 0z LS

The following two results are left as simple exercises.
Proposition 5.3.10. If (f,)sen are functions in L and f, — f a.e., then [ fdy <liminf, [ fudp.
Proposition 5.3.11. If f € L™ and [ fdu < oo, then {x : f(x) = oo} is a null set and {x : f(x) > 0}

is sigma-finite.
6 Integration of complex-valued functions

As before, we fix (X, M, ). Consider now functions f : X — C (in this setting oo ¢ran(f)).
Definition 6.0.1. If f : X — C define

[ fan= ([ eyran— [orryan) +i( [ du= [ an)
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n=2k-1 n=2k

A

Figure 2: The sequence in (38).

The function f is said to be integrable if all four integrals above are finite. Equivalently, f is integrable
if [|fldu < oco. More generally, if A C X, then f is integrable on A if fxa is integrable, that is,

Jalfl <o

Proposition 6.0.2. The set of integrable functions is a vector space and the integral is a linear, complex-
valued functional on it.

Proof. Multiplicativity by scalars is straightforward. Assume f, g are integrable and leth = f + g.
Since |h| < |f| + |g|, I is integrable. To show linearity, it is enough to show linearity of the real
part and imaginary part separately, and clearly the same argument applies for both, reducing the
question to that of real-valued functions. Here we use a simple useful trick to obtain linearity
linearity from cone additivity. Let C be a convex cone over a vector space V with the property
that any v € V can be written uniquely as v* —v~, v,v~ € C. Let ¢ be compatible with the
structure of C. In the setting at hand, v™ = f* x>0 — f~ Xf<o (other decompositions amount to
the same since f*(x) = f~(x) = f(x) = 0). Extend ¢ to V by ¢(v) = ¢(v") — ¢(v™). Additivity
on C now translates into additivity on V . O

Proposition 6.0.3. If f is integrable, then

[ | < [ 151

Proof. Let a = csgn( [ f), p = @ and g = R(Bf). Then,

'/f‘Zﬁ/fﬂ?(ﬁ/f)=/3?(l3f)=/g=/g+—/g‘</g++/g‘=/lg!</!f|

Exercise 29. Check that f = 0 a.e. iff [ |f| = 0.

9Uniqueness of the decomposition is not needed. Instead, one can check consistency of the definition: If v* — v~ =
wt —w™, then v* +w~ = wt 407, hence p(vh) +p(w™) = et +w™) = pwt +07) = p(w") + ¢(v7)
immediately implying consistency
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We see that, insofar as the theory of integration goes, two functions that differ on a null set are
indistinguishable. It is then natural to work with the equivalence classes of integrable functions
modulo values on null sets, rather than with individual functions.

Definition 6.0.4. Denote f ~ g iff f — ¢ = 0 a.e. We define L' = L'(u) = L'(n, X) to be the vector
space of equivalence classes of integrable functions from X to C.

Clearly, an equivalence class of functions is not a function. However, it is standard practice
to still call the elements of L! functions, and make the distinction explicitly when (rarely) this is
needed. If we are dealing with the equivalence class of a continuous (or monotonic, or smooth
etc.) function, there is a natural representative of that class and working with the classes or
with the representatives is the same. If there is no way to naturally pick an element of the class,
it doesn’t matter much which one is referred to anyway. Note that, by Proposition 5.2.4 any
equivalence class contains a Borel measurable function (still nonunique). Another advantage of
working with equivalence classes is the following:

Proposition 6.0.5. L! is a normed vector space with

Ifh = [ 1f)

Proof. This is an easy exercise. O

Definition 6.0.6. If (f,),en is an L' sequence, we say that f, — f a.e., if for some representatives of f,
and f, the sequence of functions (f, ), converges to f a.e.

Exercise 30. Check that this definition implies that convergence a.e. holds regardless of the choices of
representatives.

Proposition 6.0.7. 1. If f € L!, then the set {x : F(x) # 0} is o-finite for any F € f.
2. If fe Ll thenVA: [, fdu =0iff f =0a.e.

Proof. 1. Follows immediately from Proposition 5.3.11.

2. f =0a.e. implies xof = 0 a.e. for all measurable A. Conversely, if [, f = 0 for all A, then
¢ = Rf and h = Jf have the same property. Define again the disjoint sets A, = {x : g7(x) €
(n7!,(n—1)"1}. Since g~ =0on A = UA,, f = f7 on A. Then,

[ f@ =02 ¥ nlu(an)

nelN
We thus have j(A) = 0and ¢* = 0 a.e.; similarly ¢~ =0 a.e. O

Theorem 6.0.8 (The dominated convergence theorem). Assume the L! sequence (fy)neN converges
a.e. to f and there is a ¢ € L' such that Vn : |f,| < g. Then f € L' and

/]fn—f]dy—>0andthus /(fn—f)—>0<:>/fn—>/f

Proof. Since f,,(x) — f(x), wehave |f(x)| < g(x) implying |f — fu| < 2g a.e. Since limsup,, | f(x) —
fn(x)] = 0 a.e., Fatou’s Lemma implies

/ngu = /lig;glf@g = If = fabdp < /ngu —limsup [ [f — fuldp

nelN
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implying the result. O

Proposition 6.0.9. Assume (fj)nen is an L' sequence s.t. Y5y [ | fuldy < co. Then, Y, f; converges
ae. toan L function f,and [ Y,enfi= [ f-

Proof. Take § =Y ,cn |fn|- The rest is an easy exercise. O

Theorem 6.0.10. 1. (Density of simple functions in L) For any f € L! and any e > 0 there is an
L'-simple function g s.t.

/If—q)lﬂlﬂ<8

2. If u is a Borel measure on R, then ¢ can be chosen of the form y_a,xj,, a finite sum, where the |,
are finite unions of open intervals.

3. (Density of Cc(R) in L*(IR)) If u is a Borel measure on R, then, for any f € L1, there is a continuous
function ¢ with compact support s.t.

/If—g\du<€

Proof. 1. Let (¢n)nen be a sequence of simple functions converging to f, as in Theorem 5.2.2.
Then |¢,| < f and dominated convergence implies lim, o [ |¢s — f|du = 0. Thus, for any € > 0
there is an n s.t., for ¢ = @, [|¢ — fldu <e

2. Let ¢ be as above, ¢ > 0, and write ¢ = } a;x A The statement follows from the fact that,
by Proposition 4.0.10 for any € > 0 and any j there is an open set O which is a finite union of
intervals s. t. [ [xa, — xoldp = u(OAA)) < e/j.

3. For each interval | and any ¢ > 0 there is a continuous function g s.t. [|g— xj| < ¢
(construct such a function). O

Exercise 31. Derive the monotone convergence theorem from the dominated convergence theorem.

7 The link with the Riemann integral

Riemann integration can be recast in terms of the Jordan content (or Jordan measure; however,
it is only finitely additive). Consider as “simple sets” finite unions of intervals. For the purpose
of Riemann integration, the intervals, J, = (Ix)nsk<n Will constitute a partition of some fixed
interval, [a,b]. Consider the family of simple functions

n
5R = {Zak)ak : Ik € Jn,n € N}
k=1
Definition 7.0.1. A bounded function f on an interval [a,b] is Riemann integrable if
b

b
su dx = inf dx 39
o<f; (5651{ a i o=f; YESR Ja 4 (39)

The common limit, when it exists, is the Riemann integral fab f(x)dx. Here fab edx = Y pep ar(Xp—1 — Xi)
where the xys are the endpoints of the intervals Ji.
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Note 7.0.2. Letting a = infy, f in the decomposition of the functions ¢ and by = sup,_f in the decom-
position of the functions 1, we recognize the usual definition of the Riemann integral.

Theorem 7.0.3. 1. If f is Riemann integrable on [a,b] then it is in L' and fabf(x)dx = f[a b fdm.
2. f is Riemann integrable iff it is continuous except on a null set.

Proof. 1. As usual, we can construct an increasing sequence (¢, ),en and a decreasing sequence
(n)nen for which the integrals converge to the same limit. By monotonicity and boundedness,
these two sequences are pointwise convergent on [a, b], say to ¢ and ¢ resp, and  — ¢ > 0. Since
for all n, |@u| < |f| + |@1| and |¢,] < |f| + |¢1]|, dominated convergence applies and

b
dm:/ dm:/ dx
[a,b] ¢ [a,b] 1’0 a f
Since f[a/b] | — @ldm = f[alb](zp — ¢@)dm = 0, we have ¢ = f = ¢ a.e.,, f is measurable, and

b
f[a,b] fdm = f[a,b] q)dm = fa fdx'
2. Take the @, i as in Note 7.0.2. Note that there must exist a sequence of partitions Py of
[a,b] such that, as n — co we have sup I |¢n — | — 0 a.e., which implies continuity a.e. (work
out the details of this and its converse; see also Exercise 23 in Folland). O

Exercise 32. (Dominated and monotone convergence failure for Riemann integration) Find a
monotone sequence of Riemann integrable functions converging to xq. Can such a sequence consist of
continuous functions?

Remark 7.0.4. 1. The Lebesgue integral is a proper extension of the Riemann integral. Hence the often
used notation fabf(x)dxfor Jiap fm.

2. Whenever f € L' is Riemann integrable, substitutions, integration by parts etc. can be applied to
the Lebesgue integral, as long as the functions remain Riemann integrable and in L' all along.

8 Some applications of the convergence theorems

Theorem 8.0.1. Let [a,b] C R, f : X x [a,b] — C be s.t. Vt € [a,b], f(-,t) € LY(X,u). Let
F=tw [ f(x t)du.

1. Assume thereisa g € L1 (X, ) s.t. SUPyefp f (X, 1) < (x) and Vx : f(x,t) is continuous in t at
t = to. Then F is continuous at t.

2. Assume f is continuous in t for t € [c,d] C [a, b], % exists for t € (a,b) and sup,¢ (. 4 ]%[ <ge€
LY (X, u). Then F is differentiable on (c,d) and F'(t) = [y af((;:’t) du(x).

Proof. Both continuity and differentiability can be stated in terms of limits of sequences.

For 1., dominated convergence implies that lim,_,. F(t,) = F(to) for any sequence (t,)seN
converging to t.

For 2., note first that, by the MVT, the function

b (1) s T8) = f(01)

Lo
s — t Xs;ﬁt at XS:t
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is bounded in absolute value by ¢ and differentiability of F at t; is equivalent to sequential
continuity of h(-,s, to) at s = fo. O

Exercise 33. Let f € L'(R). The Fourier transform of f is defined as
f=kw— / f(x)e 2k gy
R

1. Show that f is continuous.

2. (The Riemann-Lebesgue Lemma). Show that limy .« f(k) = 0. (Hint: Prove this when
f = Xiap) and use Theorem 6.0.10.)

Exercise 34. Let f € L}(R, m) and let F(x) = [*_ fdm. Note that F(x) = / f X(=cox)dm. Show that
R
F is continuous.

Definition 8.0.2 (Definition of the Gamma function). For z in the right half plane {z : Rz > 0} define
the Gamma function by

I(z)= | t e tdt
R+

Integration by parts shows that I'(x + 1) = xI'(x) (the recurrence formula). The recurrence
formula shows that T is analytic in C, except for simple poles at Z \ IN. Induction shows that

I'(n) = (n—1)!,Vn € N. Show that the Euler-Poisson integral / e ¥dx = /7 implies that
I(})=+vmn
Lemma 8.0.3 (Watson’s Lemma). Let F € L1(R"), and assume

lim s PF(s) =1

s—0t

where R(P) > —1. Then
lim xF*1 / F(s)e™™ds=T(B+1)

X—00 0
The same is true in the limit o — oo if x = pe'? and €'? is in the right half plane.
Proof. It suffices to prove the result for G = Fyx;<, for any choice of ¢ > 0 since, by dominated

convergence, lim / F(s)(e *xP™)ds = 0. Choose ¢ s.t. supy.., |G(s)| < 2. We have

: © ) ° G(t/x) _

B+1 xs tyB
xhn.}ox /0 e ¥G(s)ds = J}ll’l;lo 0 (/)P e 'thdt =T(B+1) (40)
where we used dominated convergence. Fill in the details and extend to the complex case.

Note 8.0.4. Often, Watson’s lemma is stated as follows: if F(s) ~ sP for small s, then, for large x,
Jo e F(s)ds ~ Me+).

xB+1

Exercise 35. 1. Let f(x) = / (1+5s)"te *ds. Use Watson’s lemma and induction to show that,
0

forany n,
xn+2 _1\n+1 n _1\j
T G <f(x) o (x]i%) 1

o0 (n+1)!
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2. Show that z — f(1/z) in 1. extended by f(0) = 0 is infinitely differentiable at zero from the right,
and it has the right-sided Taylor series

Z n!(_1>nzn+1
n=0

1 o
Exercise 36. Let g(s) = s — Ins. Check that x * T (x +1) = / e *80) s —|—/ e~ *8)ds. Note that
0 1
g is monotonic and differentiable on (0,1) and (1,00), and that

. &(s) -1 _
=1 =2

Change variable to u = g(s) and apply Watson's lemma to prove Stirling’s formula

n! = v2mn (Z)n (140(1)) asn — oo

Exercise 37. Define (*(N) = { f:IN — C|||f|l> := Y, If(n)]> < oo}. Let (fx)kenw be a Cauchy
nelN
sequence in (%(IN). Show that the limit lim, o fy (k) =: f (k) exists for all k. For each k, choose N (k) so

that || fxgee1) — fillz < 27F and use dominated convergence to show that

fyay + Z (fN(k+1) _fN(k))>

keN
converges in (2 to conclude that (? is a complete normed space.

Note 8.0.5. The following observation may help in dealing with the operations needed in measure
theory proofs. If A, are sets given by {x € X : P(ny,ny,..nx)(x))} where P is some property
(“predicate”) with k parameters, say integer-valued, then

U Ap = {x € X : (Inq)(P(ny,ny, .nx)(x))} 41)
n €N

N U An = (Vn2)(3m)P(n1, n, i) (x) } (42)
np €N n €N

and so on, a dictionary that you can refine yourselves. This dictionary also suggests why one
needs the AC for proving existence of Borel or Lebesgue non-measurable sets in IR.
In view of (41),(42), we will sometimes use the shorthand

p(P(x)) :=p({x: P(x)})
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We also see that

If P= Q then u(P) < u(Q)

p(3n: Py) <Y p(Pa)

u(Py) <oo= u(vn:P,) < irnlfy(Pn) (43)

9 Topologies on spaces of measurable functions

Among the important types of convergence are pointwise convergence, convergence in L, p €
[1,00] (defined so far for p = 1,2, 00, the latter being uniform convergence) and convergence in
measure introduced next.

Definition 9.0.1. A sequence of measurable functions ( f,)neN converges in measure to f if
sup Tim p({x 2 [fu(x) = f(x)[ > €} =0
A sequence (fu)neN is Cauchy in measure if
sup i p({x 2 | fu(x) = fu(x)] > €} =0
Exercise 38. 1. The topology of convergence in measure is metrizable. Check that
p(f,g) = inf[e+u(lf —gl > ¢)]

is one such metric.
2. Let X = IR. Is the topology of pointwise convergence metrizable?

Theorem 9.0.2 (Completeness). Assume (fu)nen is Cauchy in measure. Then (fy)neN converges in
measure to a measurable f, and a subsequence (fu;)jeN converges pointwise a.e. to f. The limit is unique
modulo values on null sets.

Proof. We first find a subsequence F; which converges pointwise a.e to f. For each n let j(1) be
s.t. for all j/ > j(n) we have

i (1f(x) = fim ()] = 27") <27
Let F, = fj(n). It follows that, for all n,

p(|Far1(x) = Fo(x)] >27") <27" and (44)
u ((3m = n)|Fy(x) — Fu(x)] 2 27") <2-27" (45)
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Let N be the set where (F,) does not converge. For x € N,
(3k)(Vn)(Fm = n) : |Fu(x) — Eu(x)| = k1 = (V0)(3m = n) : |Fy(x) — Fu(x)| = 27"

and thus, by (45) and (43), #(N) = 0. Thus (F;)jen converges pointwise a.e. to some f, implying
in particular that f is measurable. Since u(|F; — f| > 27/) < Y u(|F; — Fia| = 277 =227,
we have F; — f in measure as well. Returning to the definition of the F;, we have f, — f in
measure. O

Proposition 9.0.3. L! convergence implies convergence in measure (and in particular the existence of a
pointwise a.e. convergent subsequence).

Proof. Assume (fy)nen are in L and ||f, — f||1 — 0. Then for any y > 0 we have

p(f = ful 29) <y [ 1fa = fldu < lfu = fll (46)

this is called Markov’s inequality

O]

Theorem 9.0.4 (Egoroff). Assume u(X) < oo and that the sequence of measurable functions (fu)neN
converges pointwise a.e. to f. Then, for any ¢ > 0 there is an A s.t. u(X\ A¢) < e and (fn)neN converges
uniformly on As.

Proof. Let ¢ > 0. For any k € IN we have u((Vn)(3Im > n)|fm(x) — f(x)| = 1/k} = 0. For each
k € IN choose Ay with j(Ax) > p(X) — 5 and IN(k) s.t. sup,cy uon [fm(X) = f(x)] < kL.
The sought-for set is N Ay. O

Corollary 9.0.5 (Lusin’s theorem). Let f : [a,b] — C be Lebesque measurable. Then for any ¢ > 0
there is a set A; C [a,b] of measure > b —a — e s.t. f|a, is continuous.

Proof. This follows easily from Egoroff’s theorem and Theorem 6.0.10. See also the problem set
of Prof. Falkner, p. 48 for a direct proof. O

Exercise 39. Prove Lusin’s theorem by showing first that it holds for characteristic functions. If A C |a, b]
then there exist K C A C O s.t. u(O\ K) < e and x 4 is continuous on KU O°.

If 4(X) < oo, then uniform convergence of L! functions implies L! convergence, which implies
convergence in measure, which in turn implies pointwise convergence a.e. of a subsequence. In
general, these implications cannot be reversed. When y(X) = oo, aside from the results above,
there is basically a sea of counterexamples.

Exercise 40. Consider the sequence f, = xj, where ], is the interval where |x — (log,n mod 1)| < n™ 1.
Show that || f||1 — 0 but f,, is pointwise everywhere divergent.

HW 10/22 : 20,21,26,28,34,42 in Folland; turn in: Ex 33,35 in the notes. ‘We end this section with
a useful general result about constructing c-algebras.

Definition 9.0.6. Let X be a set. A monotone class S C P(X) is a collection of sets with the following
properties:
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1. If Ay C Xand A, C Ayyq Vn € N, then U A, €S.
nelN

2. If Ay C Xand Ay D Ay Vn € N, then () A, € S.
neN
Note 9.0.7. Clearly any c-algebra is a monotone class, and the intersection of a family of mono-
tone classes is a monotone class. Thus, given a collection of sets G, there is always a smallest
monotone class containing G, called the monotone class generated by G.

Theorem 9.0.8. Let X be a set and A an algebra in X. The monotone class generated by A coincides with
the o-algebra generated by A.

Proof. Let S be the monotone class generated by A. We first note that is suffices to show that S
is closed under finite unions and complements. Indeed, it then follows that S is closed under

countable unions (since U Aj is increasing).
j<n
1. (Closure under finite unions) We fix an A € A stay S: let C(A) = {Be€ S: BUA € S}.
Clearly, A C C(A). If (B;); is an increasing sequence in C(A), then AUU{ B; = AU B,,, and

AU|JB,=J AUB, €S
neN neN

since S is a monotone class, and thus C(A) is closed under countable monotone unions. A very
similar argument shows that C(A) is closed under countable monotone intersections.

Therefore C(A) is a monotone class containing .4, hence C(A) = S. Repeating this argument,
but now with A € S, closure under finite unions follows.

2. (Closure under complements). The proof is similar: let C = {A € S : A° € S. Clearly,
A C C. Now, the complement of a monotone union is a monotone intersection and vice-versa,
and thus C = S. O

10 Product measures and integration on product spaces

Let (X,S,u), (Y, T,A) be measure spaces. We will define the product measure and integral on
X x Y via iterated integrals

[ Sy A) = [ [ fear= [dn [ feopdp (ox ) @A) = [ xad(ux )

whose consistency needs some work.

Definition 10.0.1. Rectangles are sets of the form A x B, A € §,B € T. The family £ of elementary
sets is the set of all finite disjoint unions of rectangles.

Let M be the o-algebra generated by &.
Proposition 10.0.2. 1. M =8 xT.
2. & is an algebra.

3. M is the monotone class generated by &.
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Figure 3: A, X B; is the orange rectangle and the multicolored one is A; X Bj.

Proof. 1. is simply Proposition 2.3.2.
2. Clearly X x Y and @ are in £. Check that

(Al X Bl) N (A2 X Bz) = (A1 N Az) X (Bl N Bz)
(the magenta region in Fig. 3) and
(A1 x B1) \ (A2 X Bp) = [(A1 N Az) x (B1\ B2)] U [(A1\ A2) X By]

(the dark yellow rectangle union the green one). It is now straightforward to show that £ is
closed under intersections and set differences.
3. This now follows from Theorem 9.0.8. O

Definition 10.0.3 (Sections). We will denote Ex = {y : (x,y) € E} and EY = {x : (x,y) € E}. If f is
M measurable, then we write fy =y — f(x,y) and f¥Y = x — f(x,y).

Theorem 10.0.4 (Sections are measurable). 1. If E € M, then Ex € T for any x € X, and
EVeSforanyy Y.

2. If f is M measurable, then f, is T —measurable and fY is S —measurable.

Proof. 1. As usual, we let M’ be the family of sets in X X Y s.t. Rectangles are in M’ since
(A x B)x = Bif x € A and @ otherwise. Using the fact that 7'is a c-algebra we see that

1. XxYeM;
2. (E%y = (Ey)S, entailing that M’ is closed under complements;
3. (UEj)x = U(E;)y, hence M’ is closed under countable unions.

Thus M’ is a o-algebra containing £.
2. This is clearly the case for characteristic functions of sets in M. Since (f +ag)x = fx +agx,
all simple functions have this property, and the result follow from Theorem 5.2.2. O
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Theorem 10.0.5. Let (X, S, u), (Y, T,A) be 0— finite measure spaces. Let Q € S x T, and define

¢=x—>AMQx); p =y u(Q’) (47)

Then, ¢ is S-measurable,  is T -measurable, and

/Xquﬂ = /Y PpdA (48)

Proof. We see from Theorem 10.0.4 that the definitions (47) and (48) make sense. Note also that
MQx) = [y xo(x,y)dA(y), and thus we can write (48) as

d/ d/\:/d/\/ d 49
AVYXQ JY XXQ‘M ()

Let (Xy)neN, (Ym)nen be disjoint, of finite measure, and s.t. X = UyenXy and Y = Uyen Yo
Let M’ be the family of all sets in M for which the statement in the theorem holds. We list some
of the properties of M’ that we will subsequently verify:

1. M’ contains all measurable rectangles;
2. M’ is closed under countable monotone unions, UE;, E; C E;q;
3. M’ is closed under countable disjoint unions;

4. M'’is closed under countable monotone intersections. Since any E € S x T equals Uy, »[E N
(Xn X Yi)] it is enough to check this when (E;);cn is a decreasing family of sets in & x T
s.t. E; C A x B where u(A) + u(B) < oo.

For a. note that, if E = A x B, then A(Qy) = A(B)xa(x) and p(QY) = u(A)xs(y).

For b. let ¢; = A((Ej)x), ¢ = AMEx), ¥; = u((E;)Y), ¢ = u(EY). Continuity from below of A
and p implies that ¢; /¢, ¥; /1, and (48) follows from monotone convergence.

c.: For finite unions this is clear, since the characteristic function of a disjoint union is the sum
of the characteristic functions of the individual sets. For countable ones, this now follows from
b.

d. Same as b., using continuity from above and dominated convergence.

Let M” be the class of all Q € S x T s.t,, forall m and n, QN (X, X Yy;) € M. (b.&d.) show
that M" is a monotone class containing &, and thus M” = S x T". Therefore QN (X, x Yy,) € M/
for all m, n, and since these sets are disjoint, c. implies that their union is in M’ completing the
proof.

O

Definition 10.0.6. Let (X, S, u), (Y, T, A) be c— finite measure spaces. For Q € S x T define
= — v
(1 x M(Q) = [ MQdn(x) = [ n(@)drw)

Proposition 6.0.9 shows that u x A is c— additive on S x 7. Check that u x A is c—finite.

Theorem 10.0.7 (Fubini). Let (X,S,u), (Y,T,A) be o— finite measure spaces and f measurable on
X xY.
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1. Ifran(f) C [0, c0] and

() = [ fuddi HE) = [ Fdn

then vy f is S—measurable, vY f is T —measurable, and

faux A) = [ vifdy = [ vfar

XxY

ot, spelled out,

faux2) = [ aux) [ femare) = [daaw) [ e 60

XxY

2. Ifran(f) C C and if

[ vilflen = [ an [ 1flsdr < oo
then f € LY (u x A).

3. Iff € LY(u x M), then f¥ € L'(u) ae., and fy € LY (A) a.e. Furthermore, vyf and v¥f are in L}
and (50) holds.

Proof. (a)If Q € S x T and f = x(, then this follows from Theorem 10.0.4. Hence, the property
holds for all simple functions. Consequently, if 0 < 57 < s < -+ is a sequence of simple
functions s.t. s, * f pointwise in X x Y, then, for all n,

Jovssadu = [ sud(ux 2)

Now, as 11 — co, monotone convergence implies vys,  fy and [y, sad(p x A) 7 [ fd(p x
A).

(b) This is simply (a) applied to |f|.

(c) Clearly it is enough to show this when ran(f) = R, in which case we write f = f — f~
and we note that (a) separately applies to f™ and to f~. Since f* and f~ are bounded by |f|,
vef T € LY () and vy f~ € LY(A). Thus, except for a null set, both vy f* and v, f~ are finite and
on this set vy f = v, f 7 — v, f~ and the result follows. O

In Real and Complex Analysis, pp. 166-167, Rudin shows that the various hypotheses in
Theorems 10.0.5, 10.0.7 cannot be omitted.

Note 10.0.8. Even if y, A are complete, y x A need not be. Indeed, any straight line is a null set w.r.t.
the two-dimensional Lebesgue measure. The set {0} x V C R?, where V is a nonmeasurable Vitaly set, is
contained in a null Borel set, {0} x R, but it is not measurable (why?).

The following extension of Theorem 10.0.7 to the completion of the measures y, A, u x A is
left as an exercise:

Theorem 10.0.9. Let (X, S, ), (Y, T,A) be complete o— finite measure spaces. Let (u x A)* be the
completion of the product measure, and (S x T )* be the associated o-algebra on X x Y. Then Theorem
10.0.7 applies with one difference: the measurablility of f, f¥ is quaranteed only a.e., and thus vy f, V¥ f
are only defined a.e.
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o1 b ..
Exercise 41. 1. Use the relation i / te~**dt and Fubini to show that
0

2

/°° sin“ x dr — 7T
0 x? 2
2. Show that N
® sin x ) sin x T
/ dx ;= lim dx = —
0 X N—oo Jo X 2

(Note that x~'sinx in not in L'(R™), and thus the first integral above is improper, and it is defined as a
limit.)

Exercise 42. Use any of the theorems developed so far to solve the following problems.

1. Assume f(x Z ax® and g(x Z byx* converge for all x in the open unit disk. Then
k=0 k=0
o k
fx)g(x) =) xk Y ajby_; where the series converges in the open unit disk.
k=0  j=0

2. Assume Z lax| < co. Then Z ay is convergent, and all rearrangements of the series are convergent
k=0 k=0
to the same value. That is, if f : N — IN is any bijection, then ) _ ap =Y | Af (k)
k>0 k>0

3. Assume F,G € L'([0, o) and that, for Rx > 0, f(x) = [ F(p)e P*dpand g(x) = [. G(p)e P dp.
Then

fegtn = [ ( /M FOG(p —s)ds ) iy

4. Justify Archimedes’ method of approximating 7t by showing that the area of the unit disk ID is the
limit as n — oo of the areas of reqular polygons with n sides inscribed in ID. How many sides do
you need to guarantee that the value you get is within at most 10~'° away from 7t?

11 The n—dimensional Lebesgue integral

The Lebesgue measure m" on R” is the completion of the product measure on (R", ®}Bg, x}m)
where m is the Lebesgue measure on R. The completion of the o-algebra @/ BR is denoted by L"
(remember, this completion is not ®{L!) Common notations for the integral with respect to this

meastre are /]R” fdm; /]Rnf(x)m(dx); /Rnf(X)d”x; /f(x)dx

while the measure m" is often written simply m.

11.1 Extensions of results from 1d

Theorem 11.1.1. If Q € L", then

1. m(Q) = g)\fQu(O) = 21;;(;#(@-
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2. There exist an F, set F and a Gs set G s.t. F C Q C Gand u(G\ F) = 0.

3. If m(Q) < oo then, for any € > 0, m(QA U7, R;) < ¢ for some disjoint rectangles R; whose sides
are intervals.

Proof. By theorem 3.2.2 m" is the extension of m", as restricted to the algebra £ of elementary
sets. In particular, for any ¢ > 0 there is a disjoint family of rectangles R; containing Q s.t.
1(UPR, N Q°) < e. With this, the proof of Theorem 4.0.8 translates with little change to a proof
of 1; the proof of 2. is the same, up to notations to that of Theorem 4.0.9. Finally, for 3, by
the usual 27" argument, it is enough to prove the result for a rectangle, and thus for a side of
a rectangle. The latter follows in the usual way: If A C R has finite measure, then there is an
O D Ast pu(0) <p(A)+¢/2. Now O = U2, I; for some open intervals I;, and thus there is an

Nst u(O\UL L) <e/2. O

Theorem 11.1.2. Continuous functions are dense in L'(IR™); so are simple functions, Y-\ a,xr,, where
Ry, are products of intervals.

Proof. The second statement follows easily from the previous theorem. If R, = [T xJ; for some
intervals I; C R, then xg, = [T{ x1;, which can be approximated by a product of continuous

functions of one variable. Then the result holds for Z{\] ayXr,, Where R, are products of intervals,
and density takes care of the rest. O

Theorem 11.1.3. Let R € R" be a product of closed intervals and f bounded on R.

1. If f is Riemann integrable on R, then f is Lebesgue measurable and the Riemann integral of f on R
equals [, fdm.

2. f is Riemann integrable on R iff the set of discontinuities of f has measure zero.
Proof. Again, basically a copy of the 1-d proof. O
The theory of Jordan content in IR" is very similar to that in R.

Theorem 11.1.4 (Behavior of set-measure w.r.t. linear-affine transformations).

1. [ xa(x+a)dx = [ xa(x)dx.

2. Ifc #0, then [ xal(c tx1, ..., x0)]dx = |c| [ xa(x)dx

3. [ xal(x1, . Xk, Xes1, oo Xn)]Jdx = [ XA[(%1, ) Xk 1, Xy ovnr X)) ] X
4. [ xal(x1,x2, . x0)]dx = [ xal(x1+ x2, %2, ..., xp) | dx.

Proof. For 1-3, it suffices to show the result for products H}“:l X(Ij), where [; are intervals. But,
by Fubini, the integral is the product of one-dimensional integrals and the proof is immediate.
4. By the above, it suffices to show this in R2. We have, by Fubini,

/x(x1+x2,x2)dx = /dxz/xl(lerxz)dxl = /dxz/xl(xl)dxl
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Exercise 43. Assume R is a product of intervals, () is some open set in R™ and ¢ : Rx Q — C is
continuous. Then

1.
v [ ar(x+g(x,y))dm(x)
is continuous in Q).

2. Let T € GL(R") and assume g is continuous on TR x Q). Then

v [ xre(e+ gl y))dm(x)

is continuous in y € (.
Note: since xr is Borel measurable and x — x + g(x,y) is continuous, the composition is measurable.

Theorem 11.1.5. If M € GL(R") and f € L' or f > 0 is L"—measurable, then

/ F(x)dx = | detT]| / F(Tx)dx

Corollary 11.1.6. If A is measurable, then m(TA) = |det T|m(A).

Note 11.1.7. Note that the corollary implies that m(T~1(N)) = 0 for every null set in Brn. Then,
if B is a Borel set, then f~'(B) = By U Ny where Ny is a null set in L". We have T-1(B; UN;) =
T-Y(By) UT Y(Ny), and if N is a null Borel set containing Ny, then T-'(Ny) C T~*(N) is of measure
zero, and thus measurability of f o G follows.

Proof. Writing an open set as a countable union of boxes, we see that m(H(O)) < am(O) and
the result follows. By density, it is enough to show the equality above for linear combinations of
XR Where R are products of intervals, thus for just one such xr. Recalling that GL is generated
by the simple transformations 2-4 in Theorem 11.1.4, the rest is a corollary of that theorem. [J

Theorem 11.1.8 (Change of variables). Let Q) be an open set in R" and G : QO — G(Q) be an R"
diffeomorphism. If f is Lebesgue measurable on G(Q)) then f o G is measurable on Q. If f > 0 or
f e LYG(Q)) then

/G(Q)fdm = /Q(fOG) | det D;G| dm

Corollary 11.1.9. If Q € Q) is L" —measurable, then G(Q) is measurable and
m(G(Q)) = / | det DG |dm
Q

Proof. Measurability follows from the Corollary, as in Note 11.1.7. By density and theorem 11.1.1
it suffices to prove this when f is continuous and Q = R, a product of closed intervals. Let
M, = DyG and ], = | det M,|. We first prove the following.

Note 11.1.10. Let Q) be an open set in R" and G : Q3 — G(Q) be an R" diffeomorphism. Let K € () be
compact and 2d <dist(K,0Q)). From the Taylor series with remainder theorem we see that the function

e 1 (G(x) — G(x+ey) +eMyy); € £0

= (x,y,e) —
¢:= (%Y {0; c— o
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is uniformly continuous in the compact set K1 = {(x,y,¢) : 0 < e < d,x € K,x +¢ey € K}. Indeed,
continuity follows from the fact that G € C' and uniform continuity follows from the fact that K is
compact.

Lemma 11.1.11. For 0 < ¢ < d and xo € R let Ry = x¢ + eR. We have

e—0

lime ™" < [ F(G()) e~ /G(RO) fdm> —0

uniformly in xo.

Proof. Let x = xp + ey and zp = G(x¢). Then x € Ry < y € R and

time™ [ F(GE)dx = lim [ Flzo+ eMuy + eg(x0,9,e) ey = m(RF0)T, (51

e—0

uniformly in xo.
Next, define ¢ for G~! as in Note 11.1.10. Note that zg + eu € G(Rp) means xg + EM;Olu +
ep(zo,u,€) € Rg or u + My, §(z0,u,€) € My,R which means

lime’”/ fdm = lim/f(zo—i—eu—i—eMth/J(zo, 1,€)) XMy R (4 + My, (2o, u, €) )du = J;m(R)f(zo)
G(Ro) e=0

e—0
(52)
uniformly in the parameters, by Exercise 43, implying the result.
O

To end the proof of the theorem, take ¢ = 1/N and a partition of R in N" boxes, By =
x; + N7IR and check that

NII

.
Jo FGEN Rt = fim 32 F(GLx) (R = lim 3 [ = [ fladu

12 Polar coordinates

This is an important set of coordinates adapted to SO(n) symmetry. Let S"~! be the unit sphere
in n dimensions, and, for x € R" \ {0} let

o(x) = (Isl, 7 ) = ()

which is a diffeomorphism between R" \ {0} and R x $"~1. On R* x §"~1, the natural measure
is m,, the push-forward of ®.

Next, we are are looking at a simple example of the inverse problem of constructing a product
measure, the disintegration of a measure: we want to write m, as a product measure. It is easy to
see what the first component of the product should be. Taking as a measurable set a ball of
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radius R centered at zero, we see that the measure induced by ® on R™ is
m (CD’l({(r,s) :r<R,s€ S”fl)> = C,R"

where C, is a constant (unimportant at this stage, which will be determined shortly). This
implies that the measure on R* should be (up to an irrelevant constant) C,nr"~'dr. Absorbing
the constant in the measure of the sphere, we simply take dp = 1"~ ldr.

Theorem 12.0.1. There is a unique measure o on S"~! s.t. m, = p x o. Furthermore, if f € A'(R"),
then

/fdm = /1R+ S’Hf(rx’)d(r(x’)r”’ldr

Proof. We know that the last equation holds as soon as we find a ¢ s.t. m, = p x ¢. To see what
o should be we now concentrate on the x’ component. Let A € Bg.-1 and define

A, ={rx 7 <r,x' € A} = ®71((0,7] x E)
We need to have .
m(Aq) :/ /da(x’)r”’ldr =n"lo(E)
o JE

which implies that we should have ¢(E) = n m(A;) which we take as a definition. By the
behavior of the Lebesgue measure under dilations, we have m(A,) = r"m(A;). Take now a
rectangle R = | x B, | = (r1,72] an interval in R* and B measurable in S"~1. Then R = A,, \ A,,

implying
e (R) = m(Ay,) —m(Ay) = p(J)o(A)

From this point on, it is standard to construct from this a measure on the c-algebra on Bg:. It
agrees with m on rectangles, which completes the proof (try to complete it yourself, then look in
Folland). O

The following is a neat trick to o(S"~!), by calculating an integral in two ways.

Proposition 12.0.2. 1. For a>0
n n/2
/ exp (—a Z x%) dm = (E)
" k=1 a

27" /2

I'(n/2)

_ - 2 — —ax? "
/}Rnexp< ak_zlxl>dm (/]Re dx) (53)

and thus, using polar coordinates in R? we get

2 o 2 1/2 7T
/ e ™ dx = (27‘(/ e rdr> ==
R 0 a

57/186

(8" =

Proof. 1. By Fubini,



Math 6211+6212, Real Analysis I+11

which, using (53) implies the result.
2. Now we write the left side of (53) in polar coordinates in R". Let S = ¢(S"1).

% = o &P (— ) x?) dm = S/O e " ldr = %S/O e "u"?du = ir(1H)S  (54)
k=1

and the result follows. O

Exercise 44. Show that, for n € IN,

n—ﬁxz :1 _1\2n —n-1 1
/IRxe dx 2(( 1) +1)p 2F<n+2>

13 Signed measures

Definition 13.0.1. A signed measure on (X, M) is a function v : M — [—00, 0] s.t.
1. v(®) =0.

2. at least one of the values +oco, —oo is not in ran(v).

3. If (Aj)jen are disjoint and measurable, then v( | ] A;) =) v(A;) and v(A;) < oo for all j or else

jEN j=1
v(Aj) > —oo forall j.

Note 13.0.2. The second condition is needed since if we had two sets Ay s.t. v(Ai) = =oo, then
additivity would imply the nonsensical statement v(AL UA_) =v(A;) +v(Ay) —v(A-NA_).

Proposition 13.0.3. In the setting of Definition 14.1.1, if A; are measurable and |v(UjenA;)| < oo, then
the series 2) converges absolutely.

Proof. The definition implies that all rearrangements of the series converge, hence the series
converges absolutely. O

Definition 13.0.4. f is called extended integrable if f+ € L' or f~ € L.

Exercise 45. 1. Show that, if u is a measure and f is extended integrable, then v := A — [, fdu is
a signed measure.

2. Let v be a signed measure. Show that:

(a) if (Aj)jen are increasing sets, then v(U;A;j) = limj_,e v(A;);
(b) if (Aj)jen are decreasing sets and [v(Ay)| < oo, then v(N;A;) = limj_ v(A;).

Definition 13.0.5. If v is a signed measure and A is a measurable set s.t. all of its measurable subsets
have nonnegative measure, then A is called a positive set for v. A negative set for v is a positive set for —v
and a null set for v is a set which is both positive and negative.

Note 13.0.6. Any subset of a positive set is a positive set.
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Proposition 13.0.7. If (A;) e are positive sets, then so is their union.

Proof. Define as usual the disjoint sets B; = A; \ Uy<;Ax, whose union equals U;A;. Since B; C A;
for all j, the B;s are also positive sets. Now, if E C UA;, then

v(E)= Y v(ENBj) >0
jeN

13.1 Two decomposition theorems

Theorem 13.1.1 (The Hahn decomposition theorem). Let v be a signed measure on (X, M). Then
there exists a disjoint measurable decomposition X = X, U X_, unique up to null sets, and s.t. £v is
positive on X.

Proof (R. Doss, PAMS 80,2,(1980)). Assume w.l.o.g. that +co is the excluded value of v.

Lemma 13.1.2 (Quasi-positive sets). Let A be a set of finite measure. Then, for any € > 0 there is an
Ae C A. s.t. all its subsets have measure > —¢.

Proof. By contradiction. Let By C A,v(By) < —e. Since v(A) = v(B1) +v(A’), A’ = A\ B we
have v(A") > v(A) and it therefore A’ contains a set B (clearly disjoint from B;) s.t. v(Bz) < —¢.
Inductively, we construct a set of By contained in A \ Uj<xB;j with v(Bg) < —e. But then B = UB
has measure —oo and v(A) = v(B) + v(A \ B) = —o0o, contradiction. O

Lemma 13.1.3. If A is of finite measure, then A contains a positive set P,v(P) > v(A).

Take ¢ = 1/n and P = NA;,,, a decreasing intersection of sets of finite measure > v(A).
Check that if B C P, then v(B) > 0.

To complete the proof of the theorem, we find a set of maximal measure and its corresponding
P will be the positive set of X. Let

M= sup v(P)
PeM,(P)=0

If P, are s.t. v(P,) — M, then X, = UP, is clearly a positive set. Then X_ = X is a negative
set, forif A C X\ P and v(A) > 0, then v(AUP) = v(A) + v(P) > M. Uniqueness up to null
sets is a simple exercise. O

Definition 13.1.4. 1. The measure A is absolutely continuous w.r.t. v, written if every null
set of v is a null set for A.

2. v is concentrated on Xy € M if any measurable set E C X{ is a null set.

3. vy and vy are mutually singular, if v1 and v, are concentrated on disjoint sets, X1, Xp.
Exercise 46. Check that

1. The relation < is transitive.

2. L is symmetric.
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3. (W< Aandv L A) =v=0.
4 vy Lvandv, Lv) = v+ L.

Theorem 13.1.5 (The Jordan decomposition theorem). Any signed measure v can be uniquely writ-
ten as the difference of two mutually singular positive measures: v =v" —v~.

Proof. Take a Hahn decomposition X = Xy U X_, and define v (A) =v(ANX;) and v~ (A) =
—v(A N X_). The rest is a simple exercise. O

Definition 13.1.6 (Total variation). If v is a signed measure, its total variation |v| is the positive measure
+ —
vt v,

Exercise 47. Check the following. N is a null set for v iff it is null for |v|; thus v and |v| are mutually
absolutely continuous, and v < pu < |v| < p. We have v L A iff |v] L Aiff both vt, v~ are L A. Also,
vLue v <

Lemma 13.1.7. If (X, M, ) is a measure space and f € L}(X), then v := A — [ fdm is a measure
on Mandv < .

Proof. We have proved already that v is a measure on L. If X4 is the characteristic function of a
null set, then X, f =0 a.e. O

14 The Lebesgue-Radon-Nikodym theorem

This theorem is, in a sense, a converse of Lemma 13.1.7.

Theorem 14.0.1 (Lebesgue-Radon-Nikodym). 1. Let y and v be finite measures on X, M. Then
there exists a y—null set N and an f € L'(u) s.t. for every A € M,

v(A) :v(AﬁN)nL/Afdy (55)

With A = A — v(ANN) we write dv = dA + fdp.

2. (Generalization) Let now v be a signed o—finite measure and y a o—finite positive measure on
X, M. Then there exists a unique decomposition v = A + p into o —finite signed measures A, p s.t.
A L yand p < p. Furthermore, there is an f as above s.t. dp = fdu, uniquely defined a.e.

Proof: G. Koumoulis, AMM, V115,6 (2008). The proof is based on a general strategy to con-
struct such objects, by constructing f as the supremum of functions s.t. VA, f A fdu <v(A).
If F is a countable family in M we let UF = UrcrF. We first show the following.

Lemma 14.0.2. Let X, M, i) be a finite measure space. Then, for any family of measurable sets & there
is a countable disjoint subfamily F C £ s.t. if E € ENP(X \ UF), then u(E) = 0.

Proof 1, using the AC. (A proof without using the full AC is given below.) Let Z be the collection
of subfamilies G of £ consisting of disjoint, non-null sets. The partial order on Z is inclusion.
Since y is finite, any G as above is countable. Then F is any maximal element of Z. O
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Proof 2, without the full AC. Let G be the collection of non-null sets in £. We construct F as fol-
lows. Let Ey € £. If Eg € X\ Eg = Eo ¢ P, then we are done. If not, let

k1 = min {k €N :3JE; € ENP(X\ Ey) with u(E;) > kil} (56)

and choose an E; as above. Unless the construction ends in a finite number of steps, construct
E, similarly, replacing k; by k,, E; by E,, Eg by Ug’lEj. Note that the values k; can repeat only
finitely many times. Therefore, if E € £ NP (X \ UFE;), then u(E) = 0.

O

We now prove 1. Let H = {h : X — [0, c0] : h measurable and VA € M,/ hdu <v(A)}.
A

Clearly H is nonempty since 0 € H. Also, H is closed under taking the maximum of two
functions, h1 A hp. Indeed, if X7 = {x : hi(x) > ha(x)} and Xo = {x : hi(x) < ha(x)} then
X = X1 W X5, hence

/hl/\hzdy:/ hldy+/ hodp < V(AN X;) + (AN X2) = v(A)
A ANX, ANX,

Let & = supy, ||h]|1. Then a < v(X) and there is a sequence, which we can assume is increas-
ing, of h, s.t. [hyduy — a. By the monotone convergence theorem, h, — f € H, [ fdu = a.
Redefining f on a null set we may assume f : X — [0, o).

Let A = A — v(A) — [, fdu, a positive measure.

Lemma 14.0.3. For any non-null A € M and n € N, there isan E C A s.t. u(E) > nA(E).

Proof. For any n € N and any A € M, [(f +n ' Xa)dy > a, hence f+n"'X, ¢ H. Thus
thereisa B € M st. [5(f +n"'Xa)du > v(B). Hence, u(ANB) > n (v(B) — [; fdu) = A(B) >
nA(ANB). O

For each n, define £, = {E € M : u(E) > nA(E)}, and note that &, are closed under
countable unions. Clearly, there are no null sets in &,. For each &, let F, be as in Lemma 14.0.2.
Defining E, = UF,, we have E, € &,. Now we must have (X \ E;) = 0, or else, by the Lemma
above, we would find an E C X\ E, in &,. Let N = X U; Ej, a p—null set. Since X \ N C NE,, we
have A(X \ N) = 0. Thus A is concentrated on N and y on X \ N, and

V(A) — /Afdy = MA) = MANN) =v(ANN) = [ fdu=v(ANN)

2. If p,v are o—finite positive measures, by taking intersections we can write X = UA; where
Aj are disjoint and p— and v-finite. On each Aj we let y; = puNAj,v; = vNA;, A = ANA;
and fj = fX4 asin 1. Then p = Y uj, v = Y vj etc. is the desired decomposition. The signed
measure case is an easy exercise. If we have two such functions f, f> then [, (fi — f2)dpu = 0 for
all A implying uniqueness. ]

Corollary 14.0.4. Let v and p be measures. Then v < p iff lim,, u(E,) = 0 = lim, v(E,) = 0.

o , d
Definition 14.0.5. If v < y and f is as in Theorem 14.1.6, then we write f = d;
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Corollary 14.0.6. 1. Assume v,y are o—finite measures, p is positive, v < p and ¢ € L'(u). If
f=dv/du, then fo € L' (u) and

/ gdv = / efdu
2. If A is a positive measure, y < A and dy = gdA, then du/dA = fg.
Proof. By density of simple functions, since 1 and 2 hold for characteristic functions. O

Corollary 14.0.7. If y and v are mutually absolutely continuous, then (dv/du) # 0 a.e., and du/dv =
1/(dv/du) a.e.

The following result, whose proof is immediate, will be useful.

Proposition 14.0.8 (Existence of an upper bound). If (y})j=1,.,. are measures, then pyx < Y; p; for all
k < n.

‘ HW 11/13 (Recitation day) : 4,5,6,7 p. 88 in Folland; turn in: Ex 41,42 in the notes. ‘

Lemma 14.0.9. Let u be a measure and v < y a signed measure, both assumed o—finite, and let f be s.t.
v = fdu. Then d|v| = |f|dp.

Proof. Let X, and X_ be the Hahn decomposition for v. If Ay C X4, then v(A) = f AL fdu,
which implies £f are positive when restricted to X+. Then, fXy+ = f* and fXx- = f~, and
the rest is straightforward. O
14.1 Complex measures

Definition 14.1.1. A complex measure on (X, M) is a function v: M — C s.t.
1. v(®) =0.
2. If (Aj)jen are disjoint and measurable, then v(| ) A;) =) _v(A;).
jeN j=1

Note 14.1.2. 1. The range of a complex measure does not include the point at infinity: as we
know, in the special case of signed measures, allowing for £oo leads to contradictions.

2. Convergence of the infinite sum in Condition 2. implies absolute convergence.

3. Writing v = v, + iv;, we see that v, and v; are signed measures with values in IR, hence
lve|(X), |vi](X) are both finite, and the range of v is a bounded set in C.

Definition 14.1.3. The variation of a complex measure v is the set function

V|(E) = sup ) |v(A VE € M (57)

WA;=E icN
The total variation of v is defined as |v| = |v|(X).

Note 14.1.4. 1. Observe that A C B implies |v|(A) < ||
)

(B) and [v|(X) < [v[(X) + [ui|(X),
and thus the set function |v| is bounded. Clearly, [v(A)]

< |v|(A) for any measurable A.
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2. The definitions of <, L and their properties are the same as for signed measures.

Exercise 48. 1. Show that |v| is finitely additive and continuous from below, and is thus a positive
measure on M.

Lemma 14.1.5. Let p be a measure on (X, M), and f € L' () and define v = A — [, fdu where
A€ M. Then, [v|(A) = A [, |fldu forall A € M.

Proof. Since f € L!, lim,e |pt|(|f| > n) = 0. Since the measures and the c-algebra can be
restricted to any set, it is enough to prove this when A = X.

Choose ¢ > 0 and let n be s.t. |u|(|f| > 2n) < e. Partition the box B = {z : |R(z)| <
n,|3(z)| < n} into N? congruent sub-boxes By. If Ex = f~!(By) and E C Ey, we have v(E) =

el (E)|, ke € By and thus |v](E) = |ag| |l (E). Since [v|(X) = Yy [v](Er) = T35y ||l (Ex),
the result follows by taking N — co,e — 0 and noting that Y, ax Xg, + 1 X|f~, converge point-
wise to |[f]. O

The following generalization is immediate.

Theorem 14.1.6 (Lebesgue-Radon-Nikodym, L-R-N). Let v be a complex measure and y a c—finite
positive measure on X, M. Then there exists a unique decomposition v = A 4 p into complex measures
Apst. AL pand p < . Furthermore, there is an f s.t. dp = fdu, uniquely defined a.e.

Corollary 14.1.7. We have dv = fd|v| where f € L', and |f| =1 a.e.

Proof. Note 14.1.4 shows that v < |v|. By Exercise 48, we have d|v| = |f|d|v|, and using unique-
ness of the L-R-N derivative, |f| =1 a.e. O

15 Differentiation

One of the new major ideas of calculus was the discovery of duality between areas to tangents
expressed by the fundamental theorem of calculus. The extension to Lebesgue integrals in R"
requires significant technical machinery and in the process we will encounter two important
objects in analysis. We start with the following elementary theorem.

Theorem 15.0.1. Let u be a complex Borel measure on R and let F be its distribution function, F(x) =
#((—oo,x]). Then the following statements are equivalent:

1. F is differentiable at x and f'(x) = A.
2. For every e > 0 thereisa > 0 s.t.
pl)
w4 <
for any open interval of length < J containing x.

Proof. Straight from the definition of differentiation. O
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We want to extend this type of result to R¥, where k will be the same throughout this section.
We also denote By, = {x € R¥: |x' — x| < r}. Let u be a complex Borel measure on R¥. Consider
the quotients

(Qup)(x) = H(Ber) 58)

where m = mF is the Lebesgue measure.

Definition 15.0.2. The symmetric derivative Dy at x is defined as
(Dp)(x) = lim(Qrpe(x))
r—0

at those points where the limit exists.

Theorem 15.0.3 (The Vitali covering theorem, finite version). If O is the union of a finite collection
of balls By, r,, 1 <i < N, then there exists a set S C {1, ..., N} so that

1. The balls By, ,, with i € S are disjoint

2. OC Uies By, 3r;-

3. m(0) <3y m(By,z,).

i€S

Proof. A key (elementary) property here, that you should check, is:

Claim. If ¥ < r and By ,» N By, # @, then By v C By 3.

Re-index the set so that r{ > rp > - - - > rn. Let By be the first one and discard all other balls
that intersect B;. If there is any left, choose the first and call it By, and so on until the process

terminates with some B,,. The collection is clearly disjoint, and by the claim, O C U;B; proving
2., and by the scaling properties of the Lebesgue measure, 3. follows. O

Definition 15.0.4 (Weak L'). Weak L! is defined as

WL = {f measurable : ||f||y1 := sup Am(|f| > A) < oo}
A>0

Note 15.0.5. We have L' C WL!: Markov’s inequality shows the inclusion and x — 1/x in R shows
that it is strict.

The Hardy-Littlewood maximal operator takes a locally integrable function f : R* — C and
returns another function Mf that, at each point x € RF, gives the maximum average value that
|f| can have on balls centered at that point.

Definition 15.0.6. The Hardy-Littlewood maximal operator of Mf is given by

MF() = sup s [ IF)ldy

=0 M(Bxr)

The maximal function of a positive measure y is defined by

(Mp)(x) = sup(Qrp)(x)

>0

The maximal function of a complex measure y is M|u|.
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Lemma 15.0.7. Let u be a positive Borel measure. The function My : RF — [0, 0] is lower semicontinu-
ous, hence measurable.

Proof. Let E = {Mp > A} forsome A >0 and x € E. Thereisanrand a A’ > A s.t.
#(Bxs) = A'm(By,)

Let 6 > 0 be s.t.
A (r+6)F
_ > - 7
A rk
If |x" — x| < 4, then By ;15 D By, and therefore
Ak

#(By y1s) = A'm(By,) = r1oF m(Bys y15) > Am(By rys)

Hence B, ; C E, proving that E is open. ]

Theorem 15.0.8 (Weak Type Estimate). If i is a complex Borel measure on R* and A > 0, then
m(Mp > A) < 3A71y|
In particular, for k > 1 and f € L'(IR¥) there is a constant C > 0 s.t. for all A > 0, we have:
m(Mf > A) < 3k)‘71Hf”Ll(IR’<)

The second statement reads: M is a continuous operator from L! to weak L! with a bound 3.
The following strong-type estimate is an immediate consequence of the Weak Type Estimate
and the Marcinkiewicz interpolation theorem (that we’ll study in Chapter 5):

Theorem 15.0.9 (Strong Type Estimate). For k > 1 and f € LP(RF),1 < p < oo there is a constant
Cyr > 0s.t.
P

1Moy < CorllfllLerey
This statement reads: M is a continuous operator from L? to L? for any p > 1.

Proof of Theorem 15.0.8. Fix u and A > 0 Let K be a compact subset of {Mu > A}. If x € K,
then for some § > 0
|[1(Bxs) > Am(Bys)

Extract a finite collection from these By s which cover K. By the finite Vitali covering theorem it
contains a disjoint subcollection Bj, ..., B, that satisfies
n n
m(K) < 3°) m(Bi) <3AT Y |ul(Bi) < 3F|uja~!
1 1

where the last inequality uses the disjointness of the balls. The regularity of Borel measures
completes the proof. O
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15.1 Lebesgue points
Definition 15.1.1. Let f € L'(IR). The point x € R* is a Lebesgue point of f if

. 1
}I—I%m(er)/B |f = f(x)|dm =0 (59)

Note 15.1.2. Clearly, if f is continuous, then all points are Lebesgue points.
The following is a fundamental result in the theory of Lebesgue differentiation.
Theorem 15.1.3. If f € L (IR¥), then almost every x € R¥ is a Lebesgue point of f.

Proof. Let

(TF)() = s [, f = FGldm and (TF)(x) = limsup(T,f)(x)

m(By,r) r—0

We will show that (Tf)(x) = 0 a.e. Let n € N, choose g € C(R¥) s.t. ||f — g|l1 < 1/n and denote
h = f — g. Since g is continuous, we have Tg = 0. Simply writing |1(y) — h(x)| < |h(y)| + |h(x)],
we get, for any x,

(Th)(x) < ()| + sup s [ il = [h(e)| + (M) )
Now, T, f < T,g + T;h = T;h, implying
Tf < Mh+ |h]

Let A > 0. The set {x : (Tf)(x) > 2A} is contained in the measurable set {x : (Mh)(x) >
Aor |h(x)| > A} whose measure is

<m(Mh > A)+m(lh] >A) <A G 4+ 1)n !
Since this holds for any 7 it follows that {Tf > 2A} is contained in a null set. Now {x : (Tf)(x) >
0} C {x:3m>0(Tf)(x) >m '}, also a null set. O

15.1.1 Differentiation of absolutely continuous measures

Theorem 15.1.4. Assume y is a complex Borel measure on R¥ and that y < m. Then Dy (cf. Definition
15.0.2) exists a.e. and equals du /dm.

Proof. Let f = du/dm. Then,

r—0m r—0 m(Bx,r)

fm:M1éﬁL/M:mM%JMM

Thus, (Du)(x) exists and equals f(x) at every Lebesgue point of f. O

66/186



Math 6211+6212, Real Analysis I+11

15.1.2 Nicely shrinking sets

Definition 15.1.5. Let x € R¥. The sequence (E,)nen of Borel sets is said to shrink nicely to x if there is
an o > 0 and a sequence of balls (Bx, )neN s.t. T — 0 and for all j E; C By, and m(E;) > am(Bx,,)

Theorem 15.1.6. Assume for each x € R* the sequence (E,(x))nenN shrinks nicely to x. Let f € L.
Then, at every Lebesgue point of f we have

o -
A B ) Je T =)

(local averages of integrable functions converge to their local values.)
Proof. Write the result in the equivalent form

. 1
lim, /En(x) f — f(x)|dm =0 (60)

n—eo m(E, (x

If the (E,) are balls, then (60) holds at any Lebesgue point of f. The result now follows by easy
estimates since, for some sequence of balls we have m(By,,) = m(E,) > am(By,,). O

Proposition 15.1.7. Let y be a complex Borel measure s.t. y L m. Then
Du =0 ae. [m]

Proof. Clearly, it is enough to show this for positive measures. Define now (M) (x) = supy_,,,-1(Qrp)(x).
In the same way as for M, we can check that M, is upper semicontinuous, and thus
(D) (x) = lim (Myp) (x) (61)
is measurable. Note also that M,y < M.
Choose A > 0,& > 0 and a compact set K s.t., by the regularity of Borel measures, j(K) >

|| — . Let py be the restriction of i to K, and pp = p — 1. We see that 2| < ¢, and if x € K°
we have

(Dp)(x) = (Dp2)(x) < (Mp2)(x)

hence
m(Du > A) < m(K) +m(Mpy > A) < 3A7up| <347 1e (62)

Since (62) holds for arbitrary € > 0, A > 0, the result follows. O

Corollary 15.1.8. Assume that for each x € R* the sequence (Ey(x))y shrinks nicely and y is a complex
Borel measure s.t. y L m. Then
E
L u(E()

koo m(Ex(x))

As another corollary, we have the following strengthening of Theorem 15.1.4.

=0 a.e.[m] (63)

Theorem 15.1.9. Assume for each x € R¥ the sequence (Ex(x))y shrinks nicely and u is a complex Borel
measure on R¥. Let du = dA + fdm be the L-R-N decomposition of u. Then,

CRE)
i )y %) @ [
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(in particular, the limit exists a.e.)

15.2 Metric density

Definition 15.2.1. Let E be Lebesgue measurable in R¥. The metric density of E at x is

. m(ENBy,)
llmi
r—0 m(Bx’r)

when the limit exists.

Proposition 15.2.2. The metric density of a Lebesgue measurable set in R¥ exists a.e., and it is 1 for a.e.
for x in E and 0 a.e. in E°.

Proof. Write the metric density using the characteristic function of E. O

We see that for x € R, either most points in tiny neighborhoods of x are in E or most points
are in the complement! This property has a topological flavor to it. See Approximate continuity,
below.

’ Approximate continuity, from the Encyclopedia of Mathematics ‘

Consider a (Lebesgue)-measurable set E C R", a measurable function f : E — R and a point
xg € R" where E has Lebesgue density 1. The approximate upper and lower limits of f at x; are
defined, respectively, as

1. The infimum of @ € RU {co} such that the set { f < a} has density 1 at xo;
2. The supremum of a € {—co} UR such that the set { f > a} has density 1 at xg

They are usually denoted by

ap limsup f(x) and  ap liminf f(x)

X—Xg X=Xo

(some authors use also the notation ﬁap and limap). It follows from the definition that
ap liminf < ap limsup: if the two numbers coincide then the result is called approximate limit
of f at xg and it is denoted by

ap lim f(x).

X—r X0

The approximate limit of a function taking values in a finite-dimensional vector space can be
defined using its coordinate functions and the definition above.

Observe that the approximate limit of f and g are the same if f and g differ on a set of
measure zero. A useful characterization of the approximate limit is given by the following
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Proposition 15.2.3. Consider a (Lebesgue)-measurable set E C R", a measurable function f : E — R
and a point xo € R". f has approximate limit L at xq if and only if there is a measurable set F C E which
has density 1 at xo and such that
b, /9 =L

In general, the existence of an ordinary limit does not follow from the existence of an ap-
proximate limit. An approximate limit displays the elementary properties of limits —uniqueness,
and theorems on the limit of a sum, difference, product and quotient of two functions- these
properties follow indeed easily from Proposition 15.2.3.

If the domain E of f is a subset of R we can define one-sided (right and left) approximate
upper and lower limits: we just substitute all density 1 requirements with the right-hand or the
left-hand density 1 requirement, that are, respectively,

lim A(GNlxo, X0 +7[) _ 1 and lim A(GN]xo — 1, x0])
rl0 r rl0 r

=1

for a generic measurable set G C R (here A denotes the Lebesgue measure on R). For instance, to
define the approximate upper limit L at xg of a function f : E — R we require that the right-hand
density of E at xp is 1: L is then the infimum of the numbers a € R U {co} such that {f < a} has
right-hand density 1 at xo. The corresponding notation is

ap limsup f(x).

+
X—Xq

Approximate limits are used to define approximately continuous and approximate differen-
tiable functions.

Definition 15.2.4. Consider a (Lebesgue) measurable set E C R", a measurable function f : E — RF
and a point xo € E where the Lebesgue density of E is 1. f is approximately continuous at xg if and only
if the approximate limit of f at x exists and equals f(xo).

It follows from Lusin’s theorem that a measurable function is approximately continuous at
almost every point. Points of approximate continuity are related to Lebesgue points. A Lebesgue
point is always a point of approximate continuity. Conversely, if f is essentially bounded, the
points of approximate continuity of f are also Lebesgue points.

16 Total variation, absolute continuity

This section is devoted to Borel measures and measurable functions on R. Given that a complex
measure y can be uniquely decomposed into positive measures p;: y = pg — po + i(ps — pa), for
many of the results below we can assume w.l.o.g. that yu itself is positive. (The same applies to
complex measurable functions.)

Recall the definitions of the distribution function of a measure (p. 28) and of the variation of
a complex measure (p. 62).
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Exercise 49. Show that the following is an equivalent definition of the variation of a measure:

]v](E):sup{i\v(Ai)]:ne]N,L—rllei:E} VEe M (64)
i=1 1

Definition 16.0.1. Let u be a complex Borel measure and take its canonical decomposition into four
positive measures y;. Let F; be the distribution functions of y;. We define the distribution function of u as
F, = F, — K, +i(F; — Fy). Equivalently, F,(x) = p((—o0, x]).

Let F = F, be the distribution function of the complex Borel measure y. We define the total variation
function of F as Tr(x) = |p|((—o0, x]).

Exercise 50. Let y and F be as in the definition above.

1. Show that

Tr(x) = sup {i |F(xj) — F(xj—1)| :m €N, =00 < x¢ < ... < xp = x} (65)
j=1

2. Using the fact that |u| is a Borel measure, show that Tr is increasing and right-continuous.

Definition 16.0.2. If F : R — C, we define the total its variation function Tr by (65).
We say that F is of bounded variation, F € BV, if limy_,« Tr(x) < oo. The total variation of F on
[a,b] is defined by

]

Tr([a, b)) := sup{ : |F(xj)) = F(xj_1)|:ne€N,a=x0 < ... < xy = b} = Tr(b) — Tr(a)

Note 16.0.3 (Geometrical interpretation). Since all norms on R¥ are equivalent, a real-valued
function is in BV[a, b] iff

sup {Zn; \/(x]- —xj_1)>+ (F(xj)) = F(xj-1))>:neN,a=x < .. <x, = b} < 0
j=

that is, the lengths of the polygonal lines with vertices on the graph of F are bounded. Thus, F €
BV iff the graph {(x, F(x)) : x € [a,b]}, completed by vertical lines at the points of discontinuity,
is a rectifiable curve.

Note 16.0.4. Let F € BV. As sees in Exercise 50, Tr is increasing, and thus Tr(4o00) = limy_, 1+ Tr(x),
exist. Then, for any sequence x; \, —oo, }; [F(x;) — F(xj-1)| < co. This implies that for any ¢
there is an xg so that Y ;> |[F(x;) — F(xj-1)| < € for any decreasing unbounded sequence xo, x1, ...,
hence Tr(—o0) = 0.

Note 16.0.5. 1. If F is real-valued and monotonic and [a,b] C R, then the total variation of F
on [a, b] is finite. (Indeed, with x; > x;_; we have |F(x;) — F(xj_1)| = F(x;) — F(xj_1).)

2. If F is monotonic on R, then F(x") and F(x™) exist for all x € R, and they define a right
continuous and left continuous function, resp. Furthermore, for all x € R we have

F(x) € [F(x7), F(x™)] (66)
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In particular, the points of discontinuity F are exactly those of x — F(x™), and therefore
F only has jump discontinuities, and there are at most countably many of them. (Recall
Exercise 18.)

3. Linear combinations of BV functions are BV functions.

4. If F is real-valued, then the functions Tr £ F are increasing. Indeed, if b > a then Tr(b) —
Tr(a) > |F(b) — F(a)|, hence Tr(b) — F(b) > Tp(a) — F(a) and Tr(b) + F(b) > Tg(a) + F(a).

5. If F € BV is real-valued, then F is bounded and can be written as the difference of two
increasing bounded functions: F = 3(Tr + F) — (Tr — F). This is, in a sense, a converse of
1.43. The fact that F is bounded follows from |F(y) — F(x)| < Tr(4+00) — Tp(—00) = T(400).

6. By 5. and 2., if F € BV, then F has lateral limits at any point and has at most countably
many discontinuities.

7. If F € BV, then |F| € BV. This follows from the triangle inequality: ||a| — |b|| < |a — b|.

Exercise 51. 1. Let p be the Borel measure with distribution function G(x). Use Theorem
15.1.9 to show that f = G’ exists a.e., is in L' and f = du/dm.

Proposition 16.0.6. Let F € BV and denote G*(x) = F(x*). Then, F' exists and equals G*' a.e.

Proof. We can assume w.l.o.g. that F is increasing. Note that G* and and x — —G~(—x) are
right-continuous and increasing, thus G* are differentiable a.e. So it suffices to prove the result
for G = G*. Let H = G — F, a positive function and let S be the countable set of singularities of
F (which is also the set of singularities of G) and let p(s) = G*(s) — G~ (s) . Define a measure on
R by A(A) = Yses5p(s) (compare with Exercise 18). Clearly A L m. Check that for any x,y we
have

IH(y) — H(x)| < A(x,y)) (©7)

and note that (67) implies that H = 0 a.e. O
16.1 NBV, AC
The space of normalized functions of bounded variation is defined as

NBV = {F € BV : F right continuous and F(—o0) = 0}

Proposition 16.1.1. If F € BV is right continuous, then Tr € NBV.

Proof. We have already shown that Tr(—oo) = 0. Take a sequence x, \, xo and, for each #,

a sequence of finite partitions (x](m)) of [xo,xn] s.t. limy—co ;i ]F(x](m)) - F(x](iq)] = Tr(xn) —
Tr(xp). Noting once more that, for any a < b, we have Tr(b) — Tr(a) > |F(b) — F(a)|, the rest
follows by dominated convergence. O

Note 16.1.2. If F € BV is right-continuous, then G given by F — F(a) on [a, b], zero for x < a and
F(b) for x > b is right-continuous and in NBG. Define yr on [a, ] as pg restricted to [a, b].

Theorem 16.1.3. F € NBV iff F(x) defines a Borel measure, F(x) = u((—o0, x]).

71/186



Math 6211+6212, Real Analysis I+11

Proof. F € NBV iff both RF and SF are in NBV, and thus we may assume w.l.o.g. that F is
real-valued. Now Proposition 16.1.1 implies Tr € NBV and thus the two increasing functions in
the canonical decomposition of F are also NBV, by Note 16.0.5 3. The rest is immediate. O

Definition 16.1.4. If F € BV([a,b]) is right-continuous, we say that F is absolutely continuous if
ir < m where pr is defined on [a, b] as in Note 16.1.2.

Note 16.1.5. F € AC([a,b]) = F € BV ([a,b]) and F is continuous. Continuity is clear. To bound
the variation of F, take a pair ¢ ¢ as in the definition of AC and choose n > oL Partitioning
[a,b] into n congruent subintervals, we see that the total variation of F cannot exceed ne.

However, AC is a strictly stronger condition than continuity+BV. Take the Cantor function F:
it is continuous and increasing, thus BV. Since F is constant on any excluded interval, with b; the
left endpoint of the intervals excluded up to stage 1, and 4; the right endpoint of the preceding
interval, we have

Y. |F(bj) = F(aj)] =1

]‘<2n+1_1

while

Y, (bj—a)= <§)

j<2n+1 -1

Proposition 16.1.6. If F € BV ([a,b]) is right-continuous, then yp < m iﬁffor any e > 0 there is a
0 > 0s.t. for any finite disjoint collection of intervals (a;,b;) C [a,b], j =1,.

Y (b —a) < 5= Y |F(b) — Fa))] < ¢ 68)

j=1 j=1

Proof. If ur < p, then (68) is a direct consequence of the definition of absolute continuity. Con-
versely, fix ¢ > 0, let 6 (68) be s.t. the last inequality in (68) holds with &/2 instead of . Let E
be s.t. m(E) < 8. Choose an open set O D E s.t. m(O) < &, write O as a countable union of
intervals Ji, and let n be s.t. Y, ||(Jx) < €/2. Then Y1 |u|(Jk) < e. O

Proposition 16.1.7. If f € L!([a, b] ) then F:=x— fuxf(s)ds € AC. Conversely, F € AC(][a, b))
implies f = F' exists a.e., and F(x) )+ [ f(s)

Proof. This is an immediate consequence of Lemma 13.1.7 and Theorem 15.1.6. O
We have proved the following important result:

Theorem 16.1.8 (The Fundamental Theorem of Calculus). Lef [a,b] C Rand F : [a,b] — C. The
following are equivalent:

1. F € AC([a,b]);
2. F(x) = F(a) + /uxf(s)dsfor some f € L([a, b], m);
3. F'existsa.e., F' € L'([a,b],m) and F(x +/ F'(s

An interesting result (see Rudin) is
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Theorem 16.1.9. Let F : [a,b] — C be differentiable everywhere with derivative in L'. Then, for any
x € [a,b],

F(x) = F(a) +/ﬂx F/(s)ds

16.2 Lebesgue-Stieltjes integrals

Let F € NBV and yp the associated measure. Then [ gdyr is also denoted by [ ¢dF, and is called
a Lebesgue-Stieltjes integral.

Proposition 16.2.1. If F and G are continuous and in NBG, then FG is continuous and in NBG and
d(FG) = FdG + GdF. We can write this as a generalization of integration by parts:
/ FdG +/ GdF = F(b)G(b) — F(a)G(a)
(a,b] (a,b]

Proof. This follows from continuity and the fact that

16.3 Types of measures on R"

Definition 16.3.1. Let y be a complex Borel measure on R". Then,

1. p is called discrete if p = Y jcn p({xj})dx; for a discrete set {x; : x € N} C R¥ (6, is the Dirac
mass at x);

2. wis called continuous if p({x}) =0 forall x € R.

3. Let u be continuous, and dy = dA + fdm be the L-R-N decomposition of y. Then ps. = A is the
singular continuous part of u, and y,. = fdm is the absolutely continuous part of u

Note 16.3.2. Clearly, if p is not continuous, then there exists an at most countable set of points {x; : x €
N} C R* with u({x;}) # 0. Let pg = Yjen p({xj})dy, is continuous. Then p — pg is continuous.
Therefore, any complex Borel measure on R¥ can be uniquely decomposed as

U :,ud“f‘,usc'f’ﬂuc
An example of a measure which is singularly continuous is dF where F is Cantor’s function.

Exercise 52. A function F is said to have the Lusin N property on [a, b] if for any null subset N,

m(f(N)) =0.

e Let f be continuous and increasing. Show that it has the Lusin property iff it is AC. Some
hints: for the if part monotonicity allows you to write the forward image of an interval.
For the only if part, (1) define G(x) = x + F(x) and show that G is continuous, increasing
and has the Lusin property. (2) Show that y(A) = m(G(A)) defines a positive bounded
measure, and use L-R-N to complete the proof.

73/186



Math 6211+6212, Real Analysis I+11

HW 11/28: 31,37,42 in Folland; turn in: Ex 52 above.

For a history of some important theorems in topology, see Folland’s article A Tale of Topology.

17 Semicontinuouos functions

Definition 17.0.1. Let f be a real-valued (or extended-real valued ') function on X, a topological space.
Then f is called lower semicontinuous if for any x € R the set

{x: f(x) >a}

is open, and upper semicontinuous if for any « € R the set

{x: f(x) <aj
is open.

Check that a function f : X — R is continuous iff it is both upper and lower semicontinuous.
Examples of functions that are only semi-continuous are:

a. Characteristic functions of open sets: these are lower semicontinuous.

b. Characteristic functions of closed sets: these are upper semicontinuous.

c. The sup of any collection of lower semicontinuous functions is lower semicontinuous. The
inf of any collection of upper semicontinuous functions is upper semicontinuous.
Though it’s straightforward, it’s useful to go through the arguments and check all this.

17.1 Urysohn’s lemma

In a normal space, closed sets are separated by open sets. It means, if C;, C; are closed, then
there are disjoint open sets O, O, containing C;, Cy, respectively. This property is, interestingly,
equivalent to an apparently stronger property, that there is a continuous function f which is zero
on C; and one on C,. That is, indicator functions can be smoothened in a way that does not alter
their functionality.

Note 17.1.1. In a normal space, for any closed set C and open set O DO C there is an open sets Oy s.t.
CcO;cO;CO

(check this: C N O° = @; thus, we can separate C from OF by open sets...)

Theorem 17.1.2 (Urysohn’s lemma). Let X be normal. For any two nonempty closed disjoint subsets
A,Bof X, thereis an f € C(X,[0,1]) such that f(A) = {0} and f(B) = {1}.

Equivalently,
“For any C C O, C closed and O open, there is an f € C(X,[0,1]) such that f(C) =
{1} and f(O\ O1) = {0} (O; as above).”

19Tn the sense of the one point compactification of R.
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Note that this does not say that f can only be zero on A, or 1 on B, a property which is stronger.
This theorem is quite deep. The idea is to squeeze a countably infinite family of (distinct) open
sets between A and B, order them using the rationals in [0,1], {O,},cq in such a way that the
order of the rationals is preserved

s>r= 0, C O, (@)

(meaning also that the sets are densely ordered.) Define f(x) = r if x € O, and extend f by
continuity. Basically.

It's not obvious that such a construction is possible and that it yields the right answer; we
need more work.

Proof (following Rudin). Let ro = 0, r1 = 1, and let Q = (r2,73,74,...) be an enumeration of the
rationals in (0,1). Let Op, O; be open sets such that

CCOLCcO,CcCOyCcOycCcO

Inductively, suppose that for all n > 1 we have constructed O,,, ..., O,, so that for all i,j < n we
have

Order the r;,i < n:0 < r] < .. <7, <1. Take the next rational in 7,47 in Q, and find the i so
that
0<r <rh<..<rj<ryq =ty <rigq <..<r,<l1

Now choose a O, ,, so that

On,COn, €O, COy

Tn41

In this way, we get a family {O; },cqn (1) With the property (*) above.
Let now

rifxe O, 1ifx € O .
fr(x) = . ; f=supfy; 8S(X) = ) ; § =infg; ((**))
0 otherwise r s otherwise 8

O]

f is lower semicontinuous, ¢ is upper semicontinuous, f(X) C [0,1], f(C) = {1}, f(Oo) = {0}.
We show that f = g, which implies continuity. Note that f,(x) > gs;(x) only if r > s, x € O,
and x ¢ O;. But then O, C O; which is impossible. This proves f < g.
Assume f(x) < g(x) for some x € [0,1]. Then f(x) < r < s < g(x) for some rationals 7,s.
Since f(x) < r we have that f,(x) = 0 implying x ¢ O,. Similarly, since g(x) > s we must have
x € Os. This contradicts (*).

17.2 Locally compact Hausdorff spaces

Definition 17.2.1. A Hausdorff space X is locally compact (LCH) if every point has a compact neighbor-
hood.

Here X is always an LCH space, C, K, O are a closed, compact and open resp. sets in X.
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In the following, X will be a locally compact space (LCH). A set is said to be precompact if
its closure is compact.

Lemma 17.2.2. E C X is closed iff E N K is closed for any compact K.
Proof. Exercise. O

Proposition 17.2.3. For any x and any open set O containing x there is a precompact open set O’ > x
with 0" C O.

Proof. Let O" be any precompact neighborhood of x. We can replace O with O N O”; thus,
w.lo.g., we assume O is precompact. Then dO and x are closed and Note 17.1.1 completes the
proof. O

Proposition 17.2.4. Let K be compact and O O K open in X. Then there exists a precompact O’ s.t.
KcoO' cO co.

Proof. By Proposition 17.2.3 K can be covered with precompact open sets { O, } with closure in O
and thus by a finite subset of them {O;}<,. O

Theorem 17.2.5 (Urysohn’s Lemma, LCH version). Let K C O as in Proposition 17.2.4. Then there
is an f € C([0,1],X) and a precompact ©',0" € O s.t. f(K) = {1} and f(O°) = {0}.

Proof. Straightforward application of Urysohn and of the previous results. O
Also with a similar proof we have the following

Theorem 17.2.6 (Tietze Extension Theorem). Let K be compact and f € C(K). Then there exists
g€ CX) st glgk=f.

Definition 17.2.7. A space is c—compact if it is the countable union of compact sets.
Proposition 17.2.8. If X is second countable, then X is o —compact.

Proof. Let T = {O;}ien be a countable base. Each x € X has, by assumption, a precompact
neighborhood O;. Since T is a base, there is an i(x) and an O;,) C O s.t. x € Ojy). Then,
Oix) C O’ is compact and X =

U Oj(x), a countable union since it is a subfamily of 7. [
i(x),xeX

Proposition 17.2.9. If X is c— compact, then there is a countable family of precompact open sets
{On }nen such that O, C Oyyq for all n and X = UpenOy.

Proof. Let O, be as in Proposition 17.2.8 above; then O;, = U] O; is such a family. O

17.3 Support of a function

Definition 17.3.1. If f is a complex-valued function on X, then the support of f is defined as
supp(f) = {x: f(x) Z 0}.

We say f is supported in O if supp(f) C O, and we write f < O. If f € C(X,[0,1]), C is
closed and f(C) = {1}, then we write C < f.

‘Here X is always an LCH space, C, K, O are a closed, compact and open resp. sets in X.
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17.4 Partitions of unity

Definition 17.4.1.

1. A partition of unity on a set E in a topological space is a collection of continuous functions
{Pua }nea with values in [0, 1] with the property that

e for any x there is a neighborhood of x where only finitely many p, are nonzero.

®) . pa=1onE.

2. A partition is subordinate to an open cover O, if Va p, < O,.

Partitions of unity have many uses in mathematics. An interesting application is in defining
integrals on manifolds (with respect to some form). One relies on coordinates to define the
integral on a coordinate patch and then uses a partition of unity subordinate to the coordinate
patch covering to extend the integral to the whole manifold.

Theorem 17.4.2. Let K C X be compact. For any open cover {O;}i<, of K there exists a partition of
unity on K, {p;}i<n with pj < O;,j < n.

Proof. (adapted from Rudin) For each x € K, x is in some O;, and there is an O, C O; precompact
containing x. By compactness 3{x1, ..., x, } s.t K C UyOx,. For each ]Let O]f = U{Oy, : Oy C Oj}.
By Urysohn’s lemma, define for each j a continuous function g; s.t. O; < g < O;. Let

pr=81 P2=%1-g) i pn=g(1—gn1) - (1—g1)

Clearly p; < O;. By induction we check that

prt At =1=(1=g) - (1-8n)

Now, for x € K at least one g; is 1, and thus the sum above is 1 on K. O

17.5 Continuous functions

Let X be CH.

Definition 17.5.1. e The topology of uniform convergence on the functions from X to R or C is
given by f,, — fif ||fu — f|lu — 0 where || - || = || - ||« is the usual sup norm on X.

e BC(X) is the space of bounded continuous functions on X.

e The space C.(X) of functions with compact support is {f € C(X) : supp(f) is compact}.

e Cy(X) is the space of continuous functions vanishing at infinity:

CoX)={feC(X):VneN,|f| }([n!,00)) is compact}
® fu — f uniformly on compact sets if ||f, — f| x = sup, ¢ || fn — f|| = O for all K compact.

Note 17.5.2. C.(X) C Cp(X) and Cyp(X) C BC(X). The space C(X) is closed in the space of real
or complex functions on X.

Here X is always an LCH space, C, K, O are a closed, compact and open resp. sets in X.
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Definition 17.5.3. The one-point (or Alexandroff) compactification of X is defined as X* = X U
{o0} where oo ¢ X. The topology on X* is given as follows: O is open in X* if it is open in X or
if O ¢ X and O° is compact in X.

Proposition 17.5.4. X* is CH. The inclusion X — X* is an embedding. f is continuous on X* iff
deeC (f—c)|x € Co(X) and f(o0) = c.

Proof. Exercise. [

Note 17.5.5. We can identify the continuous functions on an LCH that vanish at infinity with the
continuous functions on a CH that vanish at a point.

Sup-norm convergence on X is stronger than uniform convergence on compact sets. The
closure of C;(X) w.r.t the sup norm on on X is Cy(X).

17.6 The Stone-Weierstrass theorem

This is the sweeping generalization of the theorem of approximation by continuous functions by
polynomials. Now X will be a compact space, and C(X) is the space of continuous functions
with the sup norm.

Algebras. Let K be a field, and let A be a vector space over K equipped with an additional
binary operation ” - 7, called multiplication from A x A to A. Then A is an algebra over K if the
following identities hold for all elements x,y, and z of A, and all elements (often called scalars) a
and b of K :

1. Right distributivity: (x+y)-z=x-z+y-z
2. Left distributivity: x- (y+z) =x-y+x-z
3. Compatibility with scalars: (ax) - (by) = (ab)(x - y)

In the following, we will work with algebras in C(X,R) or C(X,C), where - is usual multiplica-
tion. These two algebras are clearly associative and commutative (abelian), and they are closed
in the sup norm, or in the norm of uniform convergence on compact sets.

Lemma 17.6.1. Let X = {0,1}. The only subalgebras of C({0,1},R) are C({0,1},R), {0} and the
one-dimensional ones {f : f(0) =0}, {f: f(1) =0}, {f : f = const.}.

Note 17.6.2. C({0,1}) is isomorphic to R* with componentwise multiplication.

Proof. 1t is easy to check that the subsets mentioned are algebras. Conversely, let A be a sub-
algebra of C({0,1}). Assume thereis an f € A st f(0)f(1) # 0 and f(0) # f(1). Then, as
you can check by taking the determinant, f2 is linearly independent from f, and, by Note 17.6.2,
A= C({0,1}). If f(0) = f(1) # 0 for all f € A, then A is the algebra of constants. If f(0) =0
or f(1) = 0 but not both, then Ais {f: f(0) =0} or {f: f(1) =0}. If Vf € A f(0) = f(1) =0,
then clearly A = {0}. O

Definition 17.6.3. A C C(X) is called a lattice if f,g € A implies f N\ g and f \V g are also in A.
Note 17.6.4. If A is a linear subspace of C(X), then it is a lattice if f € A= |f| € A.

Definition 17.6.5. A subset A of C(X,R) is said to separate points if x #y € X = 3f € A, f(x) #
fy).

’ Here X is always an compact Hausdorf space. ‘
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Theorem 17.6.6 (The Stone-Weierstrass theorem). Let X be a CH space and A C C(X,R) a closed

subalgebra that separates points. If 1 € A, then A = C(X,R); otherwise, there is an xg € X s.t.

A={f e CX,R): f(xg) = 0}.

Lemma 17.6.7. 1. In C(X,R), x — |x| is in the closure of polynomials that vanish at zero, in the sup
norm on compact sets.

If A'is a closed subalgebra of C(X,R), then A is a lattice.

Proof. 1. For |t| < 1/2, by the Taylor series with remainder theorem, the Maclaurin series of

g=t—v1-t,

1 1 1 1 1 .
S(t)zl—zcnt” cn:?(1_2)(2—2)"'(n—1—§):jrn_j
=i nt nT(1)

converges to ¢. Using Stirling’s formula we see that 2+/7tc, = n~3/2(1 4 0(1)) for large n. The
Weierstrass M test shows that S converges uniformly to a continuous function f on [—1,1] and
since f — ¢ = 0 on [—3, 1], we have f(t) = v/1—t on [-1,1]. Note that P, (x) =1 — Y} ; cx(1 —
x2)F — Y%, ¢ is a sequence of polynomials with P,(0) = 0, converging uniformly to |x| on
[—1,1]. If a # 0, then aP,(x/a) converge to |x| uniformly on [—a, a].

2.If fe Aand ||f|| =a # 0, then |||f| —aPy,(a"1f)||, — 0 as n — . O

Lemma 17.6.8. Let A be a lattice in C(X,R) and f € C(X,R). If for any couple of points {x,y} there
isage Ast. f=gon{x,y}, then f € A

Proof. Using the stated property and compactenss, for each ¢ > 0 we construct a § € A s.t.
|f —gllu < € as follows. For x,y € X we let g, € A be the function that coincides with f
on {x,y}, and define the open sets Uy, = {z € X : f(z) < gxy(2) +¢} and Ly, = {z € X :
f(z) > gxy(z) —€}. For fixed y, {Uyy,, x € X} cover X (since x € Uy,) and thus, by compactness,
X = UjenUy,y for some finite set {x,...,x,}. With T, = Vigxy, we have f < T, +¢&on X and
f>T,—¢eon ﬂ}":le],y which is an open set containing y. Now, {ﬂ;?:lejy,y € X} cover X,
and thus X = UL, M7, Ly, for some finite set {y1,...,ym}. Then ¢ = AT'T), has the property
| f — gllu < € completing the proof. O

Proof of Theorem 17.6.10. Clearly, for any x,y € X, the restriction A, = {g restricted to {x,y} :
¢ € A} is also an algebra, a subalgebra of C({x,y}, R). If for any {a,¢,x,y} € X x R there is a
g€ Ast. g(x) =a,8(y) =0, then , by Lemma 17.6.8, A = C(X,R). Otherwise, there is a pair
{x,y} st. Ay, is a proper subalgebra of C({x,y},IR). Since A separates points, there are only
two possibilities 4 = {f : f(x) =0} or A = {f : f(y) = 0}. Neither of these cases is possible if
1e A O

Corollary 17.6.9. Polynomials are dense in R".

The complex-valued version of Stone-Weierstrass needs stronger conditions. Clearly, £, =
{e?™k* : k € N} is a family in C([0,1],C) that separates points. Let £ = {e¥™"* : 0 < m € Z}.
Note that fol exemdx = 0 for any ey € £1,e, € £_, see §l. Since convergence in ||||, implies
convergence in ||||2 (why?), the algebra A generated by £ is orthogonal to £_, and in particular
cannot be dense in C([0,1],C). In fact, the elements of A can be identified with the boundary
values on S! of the functions analytic in ID, vanishing at zero, and continuous up to the boundary.

‘ Here X is always an compact Hausdorf space.
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However, we know already (cf. Theorem 1.1.1) that the algebra generated by £+ U £_ is C(T), so
what we have to do (at least in this example) is simply require that f € A = f € A. Indeed, this
is sufficient in general:

Theorem 17.6.10 (Complex Stone-Weierstrass theorem). Let X be a CH space and A C C(X,C)
a closed subalgebra that separates points and is closed under complex conjugation. If 1 € A, then A =
C(X, C); otherwise, there is an xg € X s.t. A= {f € C(X,C) : f(x9) = 0}.

Proof. Note that f € A implies Rf and Sf are in A. By Theorem 17.6.10 u(x) + iv(x) € A for
any u,v in C(X,R). O

Note 17.6.11. By Urysohn’s lemma, in any normal space, continuous functions separate points.
Exercise 53.

1. Use Stone-Weierstrass to show that {¢?™** : k € Z} form a complete orthonormal set in

L%([0,1]) (meaning that any f € L?([0,1]) is an L? limit of trig polynomials).
1
2. Assume f € C([0,1]) iss.t. VO< n € Z,/ s"f(s)ds = 0. Show that f = 0.
0

3. (The moment problem) The moments of a Borel measure y are defined as y,, = fol s"du,0 <
n € Z, provided the integrals exist. The measure y is determinate if the moments {1, n >
0} are unique to p. Show that compactly supported measures, say on [0, 1], are determinate.

4. Let X4, X, be compact metric spaces. Show that the algebra generated by continuous func-
tions of one variable is dense in C(X; x Xp,R): more precisely the family

{(x,y) — ij(x)gj(y) :neN, fi e C(Xy),8 € C(X2),1<j< n}
j=1
is dense in C(K; x K3).

5. If X is a compact metric space (thus separable) with metric p, then C(X) is separable. (Hint:
if {x,,,m € N} is a dense set in X, then F,,, = A{n_l,p(x, xm)}, (m,n € N?), is a family of
continuous functions that separates points.)

18 Sequences and nets

A sequence in a topological space X is a function whose domain is an interval of integers with
values in X.

Definition 18.0.1. Let X be a topological space.

1. O C X is sequentially open if each sequence (x,),en in X converging to a point of O is
eventually in O (i.e. there exists N s.t. Vi > N x, € O).

2. C C X is sequentially closed if the limit of any convergent sequence (x,),en in C is also in
C.
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3. A space X is sequential if every sequentially open subset of X is open, or equivalently,
every sequentially closed subset of X is closed.

Exercise 54.

1. Every first-countable space is sequential. In particular, second countable, metric, and dis-
crete spaces are sequential.

2. The cocountable topology on X consists of © and all cocountable subsets of X, that is all sets
whose complement is countable. Check that the only closed sets are X and its countable
subsets. Show that if X is uncountable, the cocountable topology on X is not sequential.

Definition 18.0.2. 1. A directed set is a nonempty set A together with a reflexive and transitive
binary relation < s.t. every pair of elements has an upper bound, i.e. Va,b € A 3c € A s.t.
a<cand b < c.

2. Let A be a directed set and X be a topological space with topology 7. A function f : A — X
is called a net. We write f = (X4)qca-

3. We say that (x,) is eventually in Y C X if Ja € Ast. VBE A, B=a = xz €Y.
4. (x,) is said to converge to x if for every neighborhood O of x, (x,) is eventually in O.

Exercise 55. Show that the neighborhood system of a point x in a topological space with C for
< is a directed system.

Definition 18.0.3. 1. Let E C X. The net (x,) is frequently in E if Vo € A 3B = a in A s.t.
Xpg € E.

2. A point x € X is an accumulation point or cluster point of a net if for every neighborhood
O of x, the net is frequently in O.
18.1 Subnets

Definition 18.1.1. A function / : B — A is monotone if f1 < B2 = h(B1) < h(B2). B is a cofinal
subset of A if for every « € A thereisa § € Bs.t. B = a. The function / is final if /(B) is a cofinal
subset of A.

If Aand B C A are directed sets and (xy)aea and (yp)pep are nets in A and B resp., then
(yp)pep is a subnet of (xq)yca if there is a monotone final function £ s.t. for all B € B, yg = xyp).

Note 18.1.2. A subnet of a sequence is not necessarily a subsequence! See Ex. 57 below.
Exercise 56. Show that

1. A function f between two topological spaces is continuous at x iff for any net (x,) converg-
ing to x we have limye (%) = f(x).

2. A net has a limit if and only if all of its subnets have limits. In a Hausdorff space, the limit
of a net is unique, and every subnet converges to this limit.

3. A space X is compact if and only if every net (x,) € X has a subnet with a limit in X.
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4. A net in the product space has a limit if and only if each projection has a limit.

5. A point x in X is a cluster point of a net if and only if there is a subnet which converges to
X.

6. limsup and liminf along a net are defined in complete analogy with their counterpart on
sequences. Show that lim sup(x, + y,) < limsup x, + lim sup y,.

19 Tychonoff’s theorem

If {X;}ies are topological spaces, then the product space is defined as X = HXi = { f:1—

iel

Uxi
i€l
the axiom of choice, AC.

The product topology is defined to be the coarsest topology (i.e. the topology with the

fewest open sets) for which all the projections 71; (77;(x) = x;) are continuous. That is, the sets

(Vi) (f(i) € X;) } The fact that X is nonempty for general nonempty X; is equivalent to

n
ﬂ ni]f ! (Ni].) where N; are open sets in X; form a base for the topology on X. In this topology a net
j=1

(fa)uca converges iff Vi € I, f, (i) converges, that is, the topology is that of pointwise convergence
of functions.

Definition 19.0.1. 1. A basic neighborhood N of f € X is determined by a finite subset F of I
together with all the neighborhoods O; of f(j) =: f; in Xj, j € F. N consists of all h € X s.t.
Vj € F,h(j) € O;. We say that N is supported by F, N = N({O; : j € F}). Note that basic
neighborhoods generate the topology on X.

2. A partially defined member of X is a function g defined on some | C [, i.e. g € [];¢j X;.

3. If (x4)aca is a net in X, partial cluster point z is a partially defined member of X with
domain | C I s.t. z is a cluster point of (x.|;).

Theorem 19.0.2 (Tychonoff). "' Assume {X;};c; are compact for all i € I. Then X = H X is compact
icl

in the product topology.

Proof 1, based on nets, adaptation of Chernoff, (1992) .

We may assume that the spaces X; are nonempty. Using Zorn’s lemma, given a net (x,) we
show that there is a cluster point z of (x,) with domain I.

Let P be the set of all partial cluster points of (x4)sca. Since by assumption (x4)|x, has a
cluster point, P is nonempty. Order P by function extension. A function being a set of pairs, this
is the same as inclusion. That is, g1 C g» if the domain of g; is contained in the domain of g and
g2 = &1 on the domain of g.

HAdaptation of a Bourbaki proof, see also Loomis, see p.11
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Let £L = {z) : A € A} be a chain in P, and let zp = Ujcpz). Since any two members of £
agree on their common domain, z is a partially defined member of X. Moreover, zj is a partial
cluster point of (x,) as well. Indeed, every basic neighborhood of zy has finite support F. By
construction, F C z, for some A, zp = z) on F, and (z,)|r is a partial cluster point of (x,). Then
zo is an upper bound for L.

Let z be a maximal element of P. If the dom(z)= I, the conclusion follows. Assuming it is
not, let k € I'\ J. Since z must be a cluster point of (x,|7)sca, there is a subnet (xg) s.t. (xg|;)
converges to z. Now, since Xy is nonempty and compact, the net (x4|x,) has a cluster point
x € X. Define the function i on JU {k} by h = g on ] and h|x, = x. Then I is a partial cluster
point of (x,), and thus h € P extends g strictly.

O

Proof 2, similar to Folland’s. Let F be a family of closed sets in X with the finite intersection prop-

erty (f.i.p.). We want to show ﬂ F # @. Clearly this is the case if the same holds for any larger

FeF
family F’. A subtle point in the proof is to take the largest such set. Note that any chain of

families (not necessarily of closed sets) with the f.i.p. F, C F, C --- has an upper bound, with
the f.i.p, namely their union. By Zorn’s lemma, there is a maximal family with the fi.p., M O F.

v aai

In the following “construct”, “choose” etc. are just ways of speaking, as we rely on the AC.

We now construct a point in X which should be in all F € F (and, in fact, all M € M). For any
i, {mi(M)|M € M} is a family of closed sets in X; with the f.i.p. Then, for each i there is an
m; € ﬂ 71;(M). Choose an m; for each i and let m = (m;);c;.

MeM

n
If we show that ﬂ 7ti]f ! (Oij) (O; open nbd of m;) intersect nontrivially each F, this will imply
=1
that m € F for all 01]11‘ F. This is because each F is closed and for each F it follows that any open
nbd of m intersects nontrivially F, implying, by elementary topology, m € F.

The property above is implied by the following: for any O; as above, 7; 1(0;) € M.

Now, for any M € M we have, by construction, 7r;(M) N O; # @. Thus m;(M)NO; # @
implying 77;(M) N O; # @ which in turn means M N 7t; *(O;) # @. Then, adjoining any single
set 77, 1(OZ-) to M, the fi.p. is preserved. But, then by the maximality of M, 7r;” 1(OZ-) € M, and
this holds for any i ending the proof . O

Exercise 57. Check that the space [0, 1]R is compact. Show that there is a directed set A and a net
x : A — IN, which is a subnet of 1,2, ... along which any sequence aj, ..., ay, ... in [0, 1] converges.

Theorem 19.0.3. If I is countable and { X; }ic are second countable and compact, then ZF+DC (the axiom
of dependent choice) imply X = H X; is compact.
iel

Proof. 1t is easy to check that X is also second countable.

Let f : N — X be a sequence. Since X; is compact, there is a subsequence defined by an f;
st. (fofi)1 : N — Xj is convergent. Inductively, there is a subsequence defined by an f; s.t.
all (f o fu)i,i = 1,2,..n are convergent. Define ¢ by g(k) = fx(k). Then, as you can easily check,
(f 0g)i,i € N are all convergent, implying that (f o g) : N — X is convergent. O
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20 Arzela-Ascoli’s theorem

Definition 20.0.1. 1. The family F of complex-valued functions on X is pointwise equibounded
if Vx € X supp.z |F(x)| = M(x) < oo.

2. The family F is equicontinuous if Ve3d s.t. Vx,y € X and F € F, d(x,y) < 6 = |F(x) —
Fly)| <e.

Theorem 20.0.2. 1. Let X be a separable metric space. If X is compact, then every sequence {F, }nen :
X — C of equicontinuous and pointwise equibounded function has a subsequence which converges
uniformly in X.

2. More generally, if X is a separable metric space, then every sequence {F, }nen : X — C of equicon-
tinuous and pointwise equibounded function has a subsequence which converges uniformly on com-
pact sets in X.

Proof. Let d be a metric on X and let E be a countable dense subset of X.

1. C(X) with the uniform norm is a metric space, thus sequential. The space ¥ = H{z €
eckE
C : |z| < M(e)} is compact. Let (F,r)sen be the restriction of (F,)sen to E. This is a sequence

in Y, and there is a subsequence defined by a ¢ : N — IN s.t. (Fy(,r))nen converges. Take
e > 0and let § > 0 bes.t. if d(x,y) < 4, then (Vn) (|F.(x) — F,(y)| < €/3). Since E is dense,
O, :={x:d(x,e) < J},e € E cover K, and by compactness, there is a finite set E, = {e1,...en} s.t.
forall x € K, d(x,E,) < J. For e, € Ey, let my be s.t. Vi, n' > my, |Fo(n g(ex) — Fouy,e(ex)| < /3,
and m = max{my}. By the triangle inequality, |Fy(,)(x) — Fy()(x)| < € for all n,n" > m and
x € X, and the result follows.

2. Since X is a separable metric space, it is c—compact. Let K; be an increasing sequence of
compact sets that cover X. Let (Fy,) be a subsequence of (F,) uniformly convergent on K, and
inductively for j > 2, (Fg;) be a subsequence of (F,, ,) uniformly convergent on K;. Then, the

diagonal sequence Fg, (1), ..., Fg (), ... converges uniformly on any Ki,. O

Note 20.0.3. Equicontinuity can be replaced with the weaker condition Ve € E there is an r s.t. for
all y with d(y,e) < r and all F we have |F(e) — F(y)| < &, which can be seen using the compact
cover formulation of compactness.

Uniform convergence implies that the limit F of the subsequence is also continuous, and
in fact adjoining F to the sequence, the new sequence is also equicontinuous and pointwise
equibounded.

An important example of an equibounded, equicontinuous family is the following. Consider
the ball B; of radius one in L'((a,b)) and the linear map K : By — By,_, given by KF = [F.
Check that K(By) is an equibounded, equicontinuous family.

Such a linear map is called compact operator.
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Hilbert spaces are defined by abstracting the structure needed for the properties above to
hold.

21 Norms, seminorms and inner products

Definitions

Given a vector space V over a subfield K of the complex numbers, a norm on V is a
nonnegative-valued scalar function p : V — [0, +00) with the following properties: for all 4 € K
andallu,v eV,

1.

p(u+0) <p(u)+p(o)

(p is subadditive, or: p satisfies the triangle inequality).

2. p(av) = |a|p(v) (p is absolutely homogeneous, or absolutely scalable).

3. If p(v) = 0 then v = 0 is the zero vector (p is positive definite).

A seminorm on V is a function p : V — R with the properties 1 and 2 above.

Every vector space V with seminorm p induces a normed space V /W, called the quotient
space, where W is the subspace of V consisting of all vectors v in V with p(v) = 0 (check that W
is a subspace). The induced norm on V /W is defined by:

p(W+0) = p(v)

Two norms (or seminorms) p and g on a vector space V are equivalent if there exist two positive
constants ¢ and ¢, such that ¢1g(v) < p(v) <2 q(v) for every vector v in V.

A topological vector space is called normable (seminormable) if the topology of the space
can be induced by a norm (seminorm).

An inner product (x,y) over a vector space is a complex-valued function that satisfies the
following properties:

1. The inner product of a pair of elements is equal to the complex conjugate of the inner
product of the swapped elements:

{y,x) = (xy). @

2. The inner product is linear in its first argument. For all complex numbers a and b,
(axy 4 bxz, y) = a(x1,y) + b(xz,y) . (2)
3. The inner product of an element with itself is positive definite:
{x,x) >0 3)

where the case of equality holds precisely when x = 0. It follows from properties (1) and (2) that
a complex inner product is antilinear in its second argument, meaning that

(x,ay1 +bys) = a{x,y1) + b{x,y2) . (1+2)

It is easily checked that the quantity ||x|| := y/(x, x) is a norm on H.
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22 Hilbert spaces

A Hilbert space H is a real or complex inner product space that is also a complete metric space
with respect to the distance function induced by the inner product (that is, the distance between
X,y € His |x—yl)).

Theorem 22.0.1 (Cauchy-Schwarz). For any x,y € H we have |{x,y)| < ||x||||y]|-
We have equality iff x, y are linearly dependent.

Proof. There is nothing to prove if x = 0 or y = 0, so we assume this is not the case. Note now
that for any z, ||z|| > 0. In particular, for any a € C we have

0 < [lx —ay[|* = (x,x) + la*(y,y) — 2R(a{y, x)) = f(a) (69)

We write (y, x) = |(x,y)|e* (if (x,y) = 0 any a works). For t € R,

flte™™) = (x,x) + (y,y) — 2t|(x,y)[ > 0

is a nonnegative quadratic polynomial in ¢t and thus it has nonpositive discriminant: 4|(x, y)|*> —

4(x,x)(y,y) <0, which is what we intended to prove. O
Proposition 22.0.2. The function x — ||x|| = \/(x, x) is a norm.
Proof. First of all, by the definition of the inner product and norm, |[x|| = 0 iff x = 0 and
|Ax|| = |A]||x]|. To prove the triangle inequality, we note that

I+ y1I* = lx]1? + [yl + 2R, y) < Nl + 20l xlHlyll + [y 1 = (il + llyl)?

22.1 Example: (2

Definition 22.1.1. Let
= {x:N=Clllx>= Y x> = ) |xi]* < e}
ieN ieN
and define
(xv,y) =Y xyi

ieN
which, by Cauchy-Schwarz is well-defined on .

Proposition 22.1.2. (2 is complete thus it is a Hilbert space.

Proof. If {x,}nen is a Cauchy sequence in ¢2, then for every i € IN the number sequence of the
ith component {(x,); },en is Cauchy (indeed |(x,); — (xm)i]> < ||xn — xm||?). Let y; = lim, (x,,);.
We need to show that y € ¢2, and y is the limit of x,. Let ng be s.t. (Vn,m > nyg), (||x, — x| <
1). The triangle inequality implies that Vn > ng, ||x,|| < C where C = 1 + ||x,,||. It follows that,
n n

foralln, Y |yi|* = lim ) |(x¢)i|* < C and since ;| are positive and the sums are bounded, the
i=1 ©i=1
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sum converges to |y||?> < C, that is y € ¢2. Similarly, since limy 0 Yo | (xx)i — yi|?

n, by the above we can use dominated convergence to show that ||x; — y| — 0.

= 0 for any

O]

Proposition 22.1.3. The inner product is a continuous function from H x H to C. In particular, if
{(xn, Yn) tnen converges to (x,y) then (xn, yn) — (X, ).

Proof. By Cauchy-Schwarz, as ||h1]], ||h2|| — 0 we have,

[(x 4R,y +ha) = (x,y)| = [ h2) + (h,y) + (B ho) | < ] + [Ty (B2l + [[Ba [ 2] — 0

Ul

Proposition 22.1.4 (The parallelogram law).
I+l + llx =yl = 2(l1x]1* + lly1?) (PL.)
Proof. A straightforward calculation, see (69) above. O

We see that a Hilbert space is a complete normed space where the norm comes from an inner
product. A natural and important question arises: given a norm, can we always define an inner
product that induces the norm? The answer is no and, remarkably, (P.L.) is the necessary and
sufficient condition for the norm to come from an inner product.

Proposition 22.1.5. Let S be a complete normed space, with norm || - ||. Then the norm comes from an
inner product iff it satisfies the parallelogram law.

Proof. We have already shown that an inner-product-induced norm satisfies the parallelogram
law. In the opposite direction, a calculation assuming the existence of an inner product leads the
following explicit formula for the inner product, called the polarization identity:

1 . ) ) )
(x y) =7 (I +ylP = e = yl* +illx +iy|* = illx —iy|*) ¥ 2,y € H

(for Hilbert spaces over R it has the form (x, y) = I (||x +y||* — ||x — y[|?)).

It remains to check that assuming the parallelogram law the formula above defines an inner
product (meaning: with properties (1)...(3) above). This is elementary, but by no means trivial!
See original proof by P. Jordan & J. von Neumann, Annals, 1935. A geometric argument based
on Euclid’s three line theorem is N. Falkner, MAA 100,3, (1993). O

Corollary 22.1.6. The inner product is continuous.

22.2 Orthogonality

The notion of orthogonality, x L y if by definition (x,y) = 0 obviously extends to general Hilbert
spaces. So does the following

Proposition 22.2.1 (Pythagorean equality). If x1, ..., X, are pairwise orthogonal, then

n 2 n 2
Yoxil| =) llxll
i=1

i=1
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Proof.

n

IS

i=1

2
n
i=1

Definition 22.2.2. The linear span (linear hull, or simply span) of a set of vectors S = {v, : « € A} over
the scalar field K is

z> - % ) = Sl = 5l

i,j<n i i=

O]

k
span(S) = {xAivi

i=1

ke N,v; € S,A; € IK}

22.3 The Gram-Schmidt process

Given a family {x;};cn of linearly independent vectors, we can construct, from them, an or-
thonormal family {e;}ien, inductively: start with v; = xq; let c be s.t. v = cv3 +x2 L g
(which gives ¢ = —(xp,v1)/||v1]|?). Having constructed vy, ..., v, pairwise orthogonal, choose
Culy oo Cun St Upg1 = Cp1X1 + ... + CunXy + Xp41 is orthogonal on vy, ..., v, (this is a linear sys-
tem with nonzero determinant). Then {v;};cn is an orthogonal family with the property that
span({x1, ..., X, }=span({vy, ..., v, } for all n. All these v; are nonzero vectors, and an orthonormal
family is simply given by ¢; = v;/||v;|.

Proposition 22.3.1. Let {x;}icN be a set of vectors in H and let V be the closure of span({x;}icn). We
assume that V is infinite dimensional (the finite dimensional case is similar, and simpler). Then there exists
an orthonormal set {e;}icN such that V is the closure of span({e;}ieN)-

Proof. We can assume w.l.o.g. that {x;};cn are linearly independent, since we can inductively
{0,x)
(0,0)

v, the Gram-

eliminate the dependent vectors without affecting the span. With m,x =

Schmidt procedure is:

01
01 = X1, €1 = ||01H
U2
Uy = X3 — Ty, X2, e = m
k—1
Ok
O = X} — Ty, Xk, € = 77—
L ot =y

Note that, for all k € IN, we have span{xy, ..., x;} =span{vy, ..., vx}, implying that span{x; : i €
IN} = span{v; : i € N} =span{e; : i € IN}, hence the closures of these spans also coincide. [

22.4 A very short proof of Cauchy-Schwarz

Proof. In case x, y are linearly dependent the inequality is an equality. Otherwise w.l.o.g., we may
assume ||x|| = |ly]| = 1. Define e; = x and let e, be obtained from e; and y by Gram-Schmidkt.
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Then y = y1e1 + y2e0 and
(x5, = > < Jyil + [val =1

22.5 Orthogonal projections
In the following, H is a Hilbert space.

Definition 22.5.1 (The orthogonal complement of a space). If S is a subspace of H, then its orthogonal
complement, S* is the closed linear subspace (check these properties!) of H defined by

St ={xeH: (WyeS)((xy) =0}
The sum of two subspaces V1,V is defined by
Vi+V, = {01 +v:01 €Vy,0p € Vz}

IfVi NV, = {0}, then the sum is direct, written Vi &V, and for any x € Vi @V, there is a unique pair
v1,02, 0; € V; 8.t. x = v1 + vy (check!).

Lemma 22.5.2 (Orthogonality and an extremal property). If M is a closed subspace of H, then
1. thereis a unique p € M s.t. Ym € M, m # u, ||x —m| > ||x — pu]|.
2. Ifuisasin 1., then x — u € M*. Conversely, ify € M isst x —y € M+, theny = p.

Proof. 1. Let d = inf e ||x — y||. Since 0 € M, d < ||x||. Thus there is a sequence {yu }men in
M st d— ||x — yu|| = 0. We show that this sequence is convergent to some y € M. Note that
this proves both existence and uniqueness of a y € M s.t. ||x — p|| is minimal.

Since M is a closed subspace of the complete Hilbert space H, it suffices to show that
{Ym }men is Cauchy. Here we use the parallelogram law:

lym = yull* = 11 Gx = ya) = (x = ym) > = 201x = yul® + 2l|x = yu|* = 122 = yn = Y|
= 2llx =yl +2/lx =y |* = 4llx = 3(yn + y) I < 2/lx = yu > +2]|x — yu[|* — 4d* — Oas n,m — oo

2. Next we show that x — u € ML, Let y € M be arbitrary and define m = y — ay. Then
lx = = Jlx = pul|? + [a*[ly[1* + 2R (@ (x — 1, y)
Assume (x — u,y) # 0, write (x — i, y) = |{x — p,y)|¢'? and choose & = —|a|e’?. We get
lx = m|* = [lx = pl|® + a*llyl* = 2la|[(x — )| < &

if |a| < 2[{x — u,y)||ly]| 72 a contradiction.
Finally, if y € M is s.t. x —y € M, then in particular x —y L y — u, hence

lx—ulP=lx=ylP+lly—pllP=E+ly—ul*=y=n
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Corollary 22.5.3. If M is a closed subspace of H, then any x € H can be uniquely written as x =
m+m* with m € M and m*+ € M+. Hence H = M & M.

Definition 22.5.4 (Orthogonal projections). Let M be a closed subspace of H and M- its orthogonal
complement. Let x = m + m* with m € M and m* in M= and define

TTMX = 1M T X = mt

The operator 1ty is called the orthogonal projection on M.

Proposition 22.5.5. 1. The operator 7t is the identity on M, and is idempotent: (7pq)? = 7T
2. Furthermore, 7t 1 is the orthogonal projection on M= and (70,1 )% = 7041
3. We have (M*)+ = M.

Proof. 1. 1f t € M, then the unique decomposition of t in M & M is t = t + 0 and thus 7yt = t.
Since, by definition, 7tyx € M for any x € H, we have (71()? = 7.

2. The space M is also linear and closed, because of the continuity of the scalar product.
Now, by the uniqueness of the decomposition x = m + m* and the fact that m | M*, Lemma
22.5.2 implies that m* = 7. x.

3. Clearly any vector in M is in (M*)1. Conversely, x € (MYt = 7 ux =0= x =
Tpmx € M. O

Corollary 22.5.6. 1. The closure of a subspace M C H is M = (M*)+.
If M is a closed subspace of H, then

7TM+7TML:I

where I is the identity on H.

22.6 Bessel’s inequality, Parseval’s equality, orthonormal bases

Theorem 22.6.1 (Bessel’s inequality). Let {e;}ic be an orthonormal sequence in H. Then

[ee]

Yol e)|? < lxf?

i=1
Proof. Let H, = span({e1,...,en}) := {c1e1 + - - - cnen|c; € C}. Clearly, H, is a closed subspace of

H. We can then write ;

x=myx+xt =Y (xe)e+xt
i=1
and, by the Pythagorean equality,

1[I = N7, x 1 + 1212 > Iz, x|1* = ZI X, ;)]

Since this holds for any n, taking n — oo, the result follows. O
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Corollary 22.6.2. Let {ey }oca be an orthonormal family in H. Then, for any x € H

n
Y lwePi= sup Y (v ew,)? <lx|?
aEA 1,0 €EANEN j=1
and the set {a € A : (x,e,,) # 0} is countable.

Proof. Only countability needs to be shown. It is well known however that an uncountable sum
of strictly positive numbers is infinity. O]

Definition 22.6.3. An orthonormal set {ey }yc 4 is called an orthonormal basis (Hilbert space basis)
in the Hilbert space H if any x € H can be written as a finite or countable infinite linear combination

o
X = Z CkCay
k=1

Note 22.6.4. 1. An orthonormal basis is not a vector space basis (unless H is finite-dimensional).

2. Using Bessel’s inequality, Cauchy-Schwarz and dominated convergence, we see that ¢y = (x,ex),
hence

agk:

x =y (X en)en (70)

k

1
3. If {ex }uca is an orthonormal basis and (x,e,) = 0 for all « € A, then x = 0.
Proposition 22.6.5. Any separable Hilbert space H has a countable orthonormal basis.

Proof. Let {v;}ien be a countable dense set in H. The closure of the span of {v; };cn is, of course,
H, and so is the span of {e; };c, constructed by Gram-Schmidt. Note that, by Bessel’s inequality,

Y Hxen P <x?= Y (v e)eeH
k=1 k=1
The difference x — Z (x, ex)ex is orthogonal to all the ¢k, k € IN, thus, by Note 22.6.4 3, is zero. [
k=1

Theorem 22.6.6. If {e;}icn is an orthonormal set in a separable Hilbert space H, then the following are
equivalent:
a. (Completeness) If Vj, (x,e;) = 0, then x = 0.

b. (Parseval’s identity) Vx € 7, [|x[|> = }_ |(x, ex)|*
k=1
c. {ei}ien is an orthonormal basis for H.

Proof. (b.= a.) is clear.
(a.= c.) We see that x — Y, -\ (x, ex)ex is orthogonal to all ¢, j € IN, and thus it is zero.
(c.= b.) This is simply the Pythagorean theorem plus the continuity of the norm. O

Exercise 58. Let H be a Hilbert space, separable or not, and let {e,}yca be an orthonormal set in H.
Then, the following statements are equivalent.
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1. (Completeness condition) Va, (x,e,) = 0 holds iff x = 0
2. (Density condition) The span of {ey }aeca is dense in H.

3. (Orthonormal basis condition) For any x € H, (x,e,) = 0 except for a countable set (eq, )xeN
and

X = 2 (X, eny )€
kelN
4. (Maximality condition) If {e;}}rgeg is an orthonormal set in H which contains {ey}4cn, then
{e/ls}ﬁeB = {ex}aca-

5. (Parseval’s identity condition) Vx € H, ||x[> = }_ |(x,eq)[*
x€A

Exercise 59. Show that the S = {1,x,x%,...} is a linearly independent set in H = L?([-1,1])
whose span is dense in ‘H. Thus Gram-Schmidt produces an orthonormal system of polynomials
P, out of S. (4/ zfﬁPn are the Legendre polynomials.) Thus, any f € H can be written as
f = Yken kP Show that, although as mentioned, the span of S is dense in H, the set {f € H :

f = Yren cxxk} is a strict subspace of H. Is it closed? Can you identify it?

Note 22.6.7. Nonseparable Hilbert spaces rarely occur in applications. A prototypical example is

P2(A) = {f:A—HE

Y f(@)f? < 00}

neA

when A is not countable.
Also, Corollary 22.6.2 shows that even in non-separable Hilbert spaces we only need a countable
family at a time.

Theorem 22.6.8. In a Hilbert space H, any orthonormal set S is contained in an orthonormal basis for

H.

Proof. Let £ be the family of all orthonormal sets containing S ordered by inclusion. If C is
a chain in &, then it has a maximal element, namely the union of the sets in C as it is easily
verified. Now, Zorn’s Lemma implies that £ has a maximal element, which by Exercise 58 4, is a
basis for H. O

An example of a Hilbert basis in 2 is the set ¢, = (0,..,1,0...), with 1 in the kth position.

Definition 22.6.9. Let H1, H> be Hilbert spaces and U : H1 — Hy be linear and norm preserving, that
is ||Ux||2 = ||x]|1 for all x € Hq. Then U is called an isometry.

Let ‘H1,Ho be Hilbert spaces and U : Hi — Hp be linear, inner product preserving, (Ux, Uy) =
(x,y), and onto. Then U is called unitary.

Proposition 22.6.10. U is unitary iff it is an isometry and onto.
Note 22.6.11. Unitary maps are isomorphisms, w.r.t the structure of a Hilbert space.
Proof. If U is unitary, then ||Ux||?> = (Ux,Ux) = (x,x) = |x||>. Conversely, the polarization

identity shows that any isometry preserves the inner product. O
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Proposition 22.6.12 (Any two separable Hilbert spaces are isomorphic). Any separable Hilbert space
H is isomorphic to (2.

Proof. Let {e, }nen be an orthonormal basis in H. Define U : H — 2 by U(x) = ({(x,e1), ..., (x,en), ...
and check that this is an isometry. O

For a nonseparable Hilbert space with a Hilbert basis {e,}sca, a similar statement holds,
except /2 = (*(IN) is replaced by the more general ¢?(A), for an adequate set A.

23 Normed vector spaces

Definition 23.0.1. 1. A vector space V endowed with a norm || - || is called a normed vector space.

2. Two norms ||||1, ||||2 on the vector space V are equivalent if there exist two positive constants ci ¢
s.t. Yo eV, c1|v]h < ||7]l2 < e2]|v])1-

3. A Banach space is a normed space which is complete w.r.t the norm topology, that is the distance
between x,y is ||x — y||.

4. A series ), e Un Of vectors in a normed space is absolutely convergent if Y, o ||vn || converges.

Proposition 23.0.2. An absolutely convergent series ), Un s Cauchy. In the opposite direction, if
Y e Un is Cauchy, then there exists a strictly increasing sequence (n;)jen in IN s.t. np = 1 and s.t.,

withw; = Y vj, the series ) _ w; is absolutely convergent.
<<y ieN

Proof. Assume Z vy, is absolutely convergent, and let e > 0. Then, the series of norms Z l|oa ]l
nelN nelN
is Cauchy and there is an ng s.t. for all m > n > ny we have

m
2
j=n

m
< Y llvill <e
j=n

Hence E v, is Cauchy.
nelN .
In the opposite direction, assume ), v, is Cauchy. Choose ¢; =27, € N, let n; = 1 and,

Y v
m<j<n
w; = Z v;, the result follows. O

1 <j<niqq

inductively for i > 1, define n; > n;_; so that Vn > m > n; we have < ¢;. Defining

Theorem 23.0.3. A normed vector space V is complete iff every absolutely convergent series in V con-
verges.

Proof. Note first that, in a linear space, every Cauchy sequence converges iff every Cauchy series
converges. Let ), . vn be Cauchy in V. With the construction of Proposition 23.0.2, the series

w; = ). v is absolutely convergent, thus convergent, to some v € V. Then, for any integer
1 <j<nit
m € [nj,niyq1), ||v— Z vj|| < Z vj|| + || — Zwi hence Z vy, also converges to v. O
j=m m<j<n; k>i nelN
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Proposition 23.0.4. 1. If V4, V, are normed vector spaces, then the product space Vi x V3 is a normed
vector space under the product norm defined, for v; € V;, by ||(v1,v2)|| := [|v1]|1 + [|v2]|2-

2. If V' is a closed linear subspace of V, then the quotient space V / V' is a normed vector space under
the quotient norm
lo+ V| := inf {|lo+7'||} (71)
eV’

Proof. This is easy to check. O
Note 23.0.5. Recall that all norms in C" are equivalent. Therefore, the product norm is equivalent to

many other choices, s.a. max{||||1, ||[|2}

23.1 Functionals and linear operators

Definition 23.1.1. 1. A linear operator (or map) between two vector spaces Vi, Vo over the same
scalar field is a function L : Vi — V, which satisfies L(ax + by) = aLx + bLy for all x,y € V; and
all scalars a, b.

2. A linear operator having the scalar field as the target space is called linear functional.

3. An operator L : V1 — V, between two normed vector spaces V1, V3 is called bounded if there exists
a constant C € [0,00) s.t., for all v € V; we have

ILv]l2 < Cllvfl (72)
4. If V1, V, are normed vector spaces, then L(Vy, Va) denotes the space of linear bounded operators from
Vi to Vs,

5. A Banach algebra is a Banach space which is an algebra for which the norm of the product is
bounded by the product of the norms, that is, ||xy| < ||x]| ||y]|-

6. If X is a normed vector space over K = R or C, then the space of its bounded linear functionals
X* := L(X,K) is the very important dual of X.

Note 23.1.2. 1. L € L(V;,V,) iff L is linear from Vy to V, and

IL]| == sup [[Lo[l2 <o (73)
loli=1

The quantity ||L|| is called the norm of the linear map L.
2. L(V1, Va) is a normed space with the operator norm.

Proposition 23.1.3. Let Y be a complete normed space and X a normed space. Then:
a) L(X,Y) is a complete normed space, and
b) L(Y,Y) with the operator norm is a Banach algebra.

Proof. a) If (T,), is a Cauchy sequence in £(X,Y), then for any x € X (T,x), is Cauchy in Y,
thus convergent. Now, Tx = lim, T,x defines a linear operator T € L(X,Y), since it is easy to
check that ||T — Ty,|| — 0 and || T,,|| — || T|| as n — oo.

95/186



Math 6211+6212, Real Analysis I+11

b) Let Ty, T> € L(Y,Y). We have
ITi Tyl = [ T(Toy) || < [ Tall T2yl < T2l T2[lllyll; thus |Ti T2 < [ Tal[[| T2|]

The result follows from a). O

HoMEWORK, DUE JAN 22, 2019 (TuE)
Folland: 7,9,10,16 (pp.155-156) and turn in:

Exercise 60 (Recitation exercise). Let X be Hausdorff. Prove that X* (the one-point compactifi-
cation of X) is Hausdorff iff X is locally compact (LCH).

Exercise 61. 1. Let H be a Hilbert space, M a closed subspace of H and P = 7t the orthogonal
projection on M. Show that P is bounded and that for all x,y in H we have

{(Px,y) = (x,Py) (*)
For a bounded operator, the symmetry property above is called self-adjointness.

2. Recalling that orthogonal projections are also idempotent (P> = P), prove the following
converse: Let P be a bounded operator from H to itself which is self-adjoint (that is satisfies
(*)) and idempotent. Show that there is a closed subspace M of H such that P = 7ty,.

23.2 The Hahn-Banach theorem

This is a fundamental theorem that guarantees the existence of extensions of bounded linear
functionals defined on subspaces of a given normed linear space.

Let X be a normed space over K = R or C. Then, since K is complete, X* is a Banach space.
Let ¢ € X*.

Assume first K = C. If we write ¢(x) = u(x) + iv(x) where u, v are real-valued, then u, v are
linear. Note that

ip(x) = @(ix) = u(ix) +iv(ix) = iu(x) — v(x)
hence
u(ix) = —ov(x); v(ix) =u(x); ¢(x) =u(x) —iu(ix) (74)

Proposition 23.2.1. Let X be a normed space and ¢ € L(X,C). If ¢ = u + iv, where u, v are real-valued,
then u,v € L(X,R) with ||u|| = [|v|| = || ¢]|-

Proof. For any x € X we have u(x) = R¢(x) and thus |u(x)| < |¢(x)| implying ||u|| < ||¢]|. In the
opposite direction, let ¢ > 0. Choose x s.t. [|[@(x)| = (1 —¢)||¢||||lx||, and write ¢(x) = |@(x)|e®.
Then, ¢(e~x) = |p(x)| = u(xe~™). Since ¢ is arbitrary, it follows that ||u| > | ¢||. O

Definition 23.2.2. A sublinear functional p on X is a map from X to R s.t. forall x,y € Xand A > 0,

p(x +y) < p(x) + p(y) and p(Ax) = Ap(x)

Norms and seminorms are examples of sublinear functionals.
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Theorem 23.2.3 (The Hahn-Banach theorem). Let X be a vector space over R and M C X a subspace.
Let ¢ be a linear functional on M s.t. p(m) < p(m) Vm € M, for some sublinear functional p defined on
X. Then, there exists a linear functional ® : X — R which extends ¢ s.t. ®(x) < p(x) Vx € X.

The extension is highly non-unique, in general.

Proof. We first show that, given an x € X \ M, there is an extension ® of ¢ to span(M U {x}).
For this we define a ®(x) and, for t € R and m € M, let ®(m + tx) = ¢(m) + t®(x) where we
need to arrange

O(m+tx) < p(m + tx)

for all real t. Definitely this holds when ¢ = 0. For ¢ # 0, writing o =sgn(t), we have
O (m+tx) = |t] (p(m) + o P(x))

(where m’ = m/|t|) and we need to arrange

sup g(m) — p(m — sx) <P(x) < inf
s>0,meM s £>0,m'eM

p(m’ + tx) — g(m')

t
Clearly, this is possible iff the inf on the right side is no less than the sup on the left side, which
in turn holds if, for all m € M, s,t > 0, we have

(m) —p(m —sx) _ p(m+tx) — ¢(m)

S t

which can be rewritten as
o((s+t)m) < p(sm + stx) + p(tm — stx)
which holds since
p((s+t)m) = p(sm + stx + tm — stx) < p(sm + stx) + p(tm — stx)

The rest of the proof is just a straightforward application of Zorn’s lemma: order the functions
® with the required properties (thought of as sets pairs of points) by set inclusion, and note that
the union of a chain of functions ® is again a function with the required properties. O

Theorem 23.2.4 (The Hahn-Banach theorem, complex version). Let X be a vector space over C and
M C X a subspace. Let ¢ be a linear functional on M s.t. |@(m)| < p(m) Vm € M, for some seminorm
on X. Then, there exists a linear functional ® : X — R which extends ¢ s.t. |®(x)| < p(x) Vx € X.

Proof. A simple exercise, using the third equality in (74). O

Some important consequences of the complex Hahn-Banach theorem are in characterizing the
duals of normed vector spaces.

Theorem 23.2.5. Let X be a normed vector space.
1. If M is a closed subspace of X and x ¢ M, then there exists a functional ¢ € X* s.t. ||¢|| = 1 and
¢(x) =dist(x, M) := inf,ep ||x — m]|.
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2. Forany x # 0in X thereisa ¢ € X* s.t. ||@|| = 1 and ¢(x) = ||x|.
3. The functionals in X* separate the points of X.

4. (The double dual, X**.) The points x € X induce linear functionals £ on X* by

The map x — % is a linear isometry from X into (possibly a subspace of) X**.

Proof. 1. Let M’ be the space generated by M and x and define, fory = m+tx € M/, ¢(y) =
tdist(x, M). Now we simply check that Hahn-Banach applies to extend ¢ from M’ to the whole
of X.

2. Follows from 1, taking M = {0}.

3. If x # y, then z = x — y # 0 and the result follows from 2.

4. It is clear that the functional % is linear. Now,

(@) = lo()| < [l

thus ||£|| < ||x||, while 2. above implies ||£|| > |/x]|.
O

Definition 23.2.6. 1. (the weak topology) Let X be a normed vector space. The weak topology on
X is the topology induced by X* on X, defined as the coarsest topology s.t. all elements of X* are
continuous. Equivalently, a net (xy)uca in X converges weakly to x iff Vo € X*, the net of complex
numbers (¢(xy))aca converges to ¢(x).

2. (the weak™* topology) This is a topology on X* which is weaker than the weak topology on X*.
This is the topology of pointwise convergence: (Qu)yca converges to @ iff (@u(x))aca converges to
¢(x) for for any x in X.

Three topologies play an important role on bounded linear operators between two normed
spaces. The finest is the operator norm topology, T, — T iff | T, — T|| — 0, and the following
two.

Definition 23.2.7. Let X,Y be Banach spaces and let (T,),ca be a generalized sequence of operators.

1. (Ty)nea converges to T in the strong operator topology iff, for all x € X, (Tyx)yea converges to
Tx in the norm of Y.

2. (Ty)qen converges to T in the the weak operator topology iff, for all x € X, (TyX)yea converges
to Tx in the weak topology on Y.

An important result about weak* topology is the weak™ compactness of the closed unit ball
in X*:

Theorem 23.2.8 (Banach-Alaoglu). If X is a normed vector space, the closed unit ball B* = {¢ €
X*||lell < 1is compact in the weak* topology.
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Proof. This is a quite straightforward consequence of Tychonoff’s theorem. The set of all complex-
valued functions on X s.t. for all x € X |f(x)] < ||x|| is the set

F=T]FsF:={zeC|z] < x|}

xeX

By Tychonoft’s theorem, F is compact in the topology of pointwise convergence, the same as
the weak™ topology on the subset B* of F consisting of linear functionals. Thus the statement
is equivalent to saying that B* is a closed subset of F, which in turn is the same as saying that
linearity is preserved when taking limits of convergent nets, which is immediate. O

Recall that dual spaces are always complete. Given the natural embedding X of X in X**
given by 4., the closure of X is identified with the completion of X.

Definition 23.2.9. X is reflexive if X** = X.

An important example of a reflexive space is a Hilbert space as follows from the following
theorem.
23.3 The Riesz representation theorem

Let 7/ be a Hilbert space, say over C, and y € H. The function x — (x,y) from # to C is a
continuous linear functional on H. The converse is an important result.

Proposition 23.3.1 (The Riesz representation theorem). If A is a continuous linear functional from
H to C, then there is a unique y € H s.t.

Vx e H, Ax = (x,y) (75)
In particular, H is isomorphic to its dual, H*

Proof. Uniqueness follows from the fact that (x,y) = (x,y') forall x € H iff y = y/'.

Existence of a y: Let M = {x € H : Ax = 0}. Clearly M is a closed linear subspace of H.
Now if M = H then 0 is the only y s.t. (75) holds, and we are done. Otherwise, we claim that
M is one dimensional. Indeed, let 0 # e € M; note that this implies Ae # 0. We rescale e so
that Ae = 1. Let 0 # x € M~ and let Ax = b (again, necessarily b # 0). Then

x —be € M* and x —be € M (since A(x —be) =0) = x —be =0
This means x is linearly dependent on e, and M is one-dimensional. Let y = W Forx ¢ H

(x,€)

lell?

we have

X = TTMX + TeX = TpX + ——-¢; hence Ax = (x,y)

and it follows that, for all x € H, |Ax| < || || hence
1

Al < =

el
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A 1
|Ael = ——, and thus
el llell

1Al = 727 = Iyl O

For the norm, we note the inequality above and the fact that by definition

23.4 Adjoints

Let A : H — H be a bounded operator. Its adjoint is defined as the operator A* with the property
Vx,y € H, (Ax,y) = (x, A*y)

Exercise 62. A. Use the Riesz representation theorem to show that A* defined above exists and is unique.
Check that A*™* = A.
B. For fixed y, (x, A*y) is a linear functional, and by the Riesz representation theorem

|A*y|| = HSIHJP |{u, A%y)| = ”st [(Aw, y)| < [|A]llly]l
ull=1 ull=1

This implies | A*|| < ||Al|. Then ||A| = ||A**|| < ||A*||, hence ||A|| = ||A*||. Thus A* is a bounded
operator with the same norm as A. Check that || A*A|| = ||AA*|| = || A||%

Note 23.4.1. 1. Let ‘H be a Hilbert space. Let (en)neN be a countably infinite orthonormal basis in
H. Check that the sequence (en)neN converges weakly to zero, but is has no norm-convergent
subsequence. Check that the weak topology on a Hilbert space H is the same as the norm topology
iff H is finite-dimensional.

2. It can be shown that if B is a Banach space (and more generally, in fact) and the weak topology on
X* coincides with the weak™ topology on X*, then B is reflexive.

24 Consequences of the Baire category theorem
Definition 24.0.1. A Baire space topological space such that every intersection of a countable collection of
open dense sets in the space is also dense.

As a reminder, the Baire category theorem states

Theorem 24.0.2 (Baire category theorem, BCT). 1. Every complete metric space is a Baire space.
Equivalently, a non-empty complete metric space is not a countable union of nowhere-
dense sets [equivalently, nowhere-dense closed sets].

2. Every locally compact Hausdorff space is a Baire space.

This theorem has a number of fundamental consequences in analysis. In the following, we
use the notations for open balls in a normed space:

Bi(x) ={y € X: [ly —x[| <a}; B.(0) =B,

Theorem 24.0.3 (Uniform boundedness principle). 1. Assume X is a Banach space, Y is a normed
space, and A C L(X,Y). Then

(Vx € X, sup || Tx|| < oo) & sup |T| < o
TeA TeA
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2. (Generalization) If X and Y are normed spaces and there is a non-meager set X1 C X such that
(Vx € Xy, sup ||Tx|| < o), then supy, , || T|| < oo.
TeA

Proof. 1. (<) is trivial. (=) For n € IN let

E,={xeX:sup||Tx|| < n} =Nrea{x € X : VT € A, ||Tx|| < n}
TeA

Clearly, E, are closed and X = U]N E,. Then, there is an m s.t. E, has nonempty interior: Ja, xo
ne

s.t. Bs(x9) C Ep. Take any u € X with ||u|| = 1. Then both x¢ and x( + au are in B,(x) and

Tu = 1T(au) = 1T (xo + au — xo)

2 2
hence || Tu|| < 1T (xo + au)|| + 1| Txo|| < 7’” and thus sup ||Tu|| < 7’”
Jull=1
TeA

2. Copy the proof above, basically. O
Theorem 24.0.4 (The open mapping theorem). Let X,Y be Banach spaces and T € L(X,Y) be
surjective. Then if O is open in X, T(O) is open in Y.

Proof (an adaptation of Reed-Simon p. 82). We start with some straightforward preparatory steps
to reduce the complexity of the more difficult part of the proof.

a) It is enough to prove that for any x and Ny a neighborhood of it, T(Ny) is a neighborhood
of T(x).

b) Since, by linearity, Vy, N, we have
T(y+Ny) =T(y) + T(Ny)

it suffices to prove that 3N a neighborhood of 0 € X s.t. T(N}) is a neighborhood of 0 € Y.
Note also the scaling property
T(B,) =rT(By)

c) Clearly b) holds if there exist 7,7’ > 0 s.t.
T(BX) > BY
From now on we will omit the superscripts X but keep the superscripts Y.

d) Again by linearity it is enough to show that for some r, T(B,) contains some ball, not neces-
sarily centered at zero, that is, T(B,) has nonempty interior.

Now, since (Yy € Y)(3x € X)(y = Tx) (and clearly x € T(B,) for some n) we must have

o]

Y=JT(By) C

n=1 n

s
H

(Bu)

1

—— O

Hence, by BCT (3n € IN)(T(B,) # @) '°. By linearity, this happens for all n: there exist

12 A° is as usual the interior of A.
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e>0,yeYst
T(B1/2) D B3(vo) (76)

Finally, for any y € B}, yo and yo +vy € BJ.(v0), soy € T(By,2) + T(B1/2) C T(B1). Hence

T(By) D BY (77)
What we really need however is nontrivially stronger 13 namely that,
In, T(B,)® # @

which follows from the lemma below.

Lemma 24.0.5. Let T € L(X,Y). If T(By) contains a ball BY, then T(B;) C T(B).
(In fact T(B1) C T(By4s) for any ¢ > 0.)

Proof. Let y € T(B;1) and ¢ as above. There are points x in By s.t. T(x) is arbitrarily close to
y. Let xy € By best. y—T(x1) € BSY/2 C T(By,2) (by scaling). Now let xo € By, be s.t.
(y — T(x1)) — T(x2) € BY,, and, inductively, let x,.1 € By be s.t. y — T(x1) — - -+ — T(xp41) €
Bgy/zn. But you see that x = ), x,, converges to an element in By /51,4 C By, and by continuity
y = Tx, thus y € BY. (By modifying the selection of {x,}, you can prove the result above with
1+ J instead of 2.) O

O

Theorem 24.0.6 (Inverse mapping theorem). If T € L(X,Y) is one to one onto, then T~! is also
continuous, T~' € L(Y, X) (continuous linear bijections are bicontinuous).

Proof. T is one-to-one, thus onto, thus open, implying by definition continuity of T~!. O

Definition 24.0.7. If T € L(X,Y), its graph is
I(T)={(x,y) € XxY:y="Tx}={(x,Tx):x € X}

Theorem 24.0.8 (Closed graph theorem). Let X,Y be Banach spaces and T : X — Y be linear. Then
T € L(X,Y) iff T(T) is a closed subset of X x Y w.r.t the product norm.

(Note that here we do not assume injectivity or surjectivity.)

Proof. Assume T is continuous. If {(x,, T(x,)) }nen converges to (x,y) then x, — x and Tx,, — y.
By continuity however, T(x,) — Tx, thus y = Tx and (x,y) € I'(T).

In the opposite direction, since I'(T) is a linear closed subspace of X x Y, it is itself a Banach
space. Recall that the canonical projections 711 : I'(T) — X, 7 @ I'(X) — Y are continuous.
Note that 711 (x, Tx) = x is a linear bijection between X and I'(T), thus, by the inverse mapping
theorem, its inverse is continuous too. To finish the proof we simply note that T = 7,(7; ) is a
composition of continuous functions. O

13Note that T(B;) C T(By), but the inclusion can be strict as Exercise 64 below shows. BCT also implies that not all
T(B;) are nowhere dense, but this means by definition that the closure of some T(B,;) has nonempty interior, which
is the same as above.
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Note 24.0.9. We see that a bounded operator between Banach spaces can fail to have a bounded inverse
only for the trivial reason that it does not have an inverse at all (that is, if it is not surjective or not
injective).

Definition 24.0.10. 1. More generally, if X, Y are Banach spaces and D(A) C X, then an oper-
ator A: D(A) — Y is called closed if I'(A) is closed.

2. If, in 1. above, X = Y = # is a Hilbert space, A : D(A) — H is called symmetric, or
formally self-adjoint, if for all x,y € D(A) we have (Ax,y) = (x, Ay).

3. If D(A) is dense in H, the domain of the adjoint is defined as
DA*)={yeH:3Fze HstVxe D(A),(Ax,y) = (x,z)}
and we write z = A*y (this z is unique) and A* : D(A*) — # is called the adjoint of A.

4. An operator as in 3. above is called self-adjoint if A = A* (meaning A is symmetric, and
D(A) = D(A%).)

Exercise 63. (A) Show that the definition of A* in 3. above is correct (i.e. z is indeed unique),
and that A* : D(A*) — H is linear.
(B) Show that differentiation, 0 := f +— f’ defined on

D(9) = {g € AC([0,)) N L*(R") : g(0) = 0}

is closed, but not bounded.
(C) Show that p := —id defined on D(9) above is symmetric but not self-adjoint.

Exercise 64. a) Let H = L2[0,1]. Then the operator A defined on H by

(AR ) = [ fs)ds
is bounded (check).

b) Show that M =ran(A) # H.

c) Show that (the linear space) ran(A) is not closed. (This implies A is not invertible from H
to H.) Note that I'(A) is closed nevertheless. (I'(A) is a closed subspace of H x H which
does not mean that the direct images of the projections 711, of T'(A) are closed!)

d) What is M+?

e) Show that A(H)° = @ while A(H) = H.

Corollary 24.0.11. Corollary 1: Let || - ||y and || - ||2 be two norms defined on X. Assume X is a Banach
space in both norms, and that furthermore, for some C; > 0 and all x € X we have ||x||1 < C1]|x||2. Then
the two norms are equivalent, that is, there isa Co > 0 s.t. forall x € X, ||x||2 < Ca||x||1.

Proof. Exercise. (Hint: take T = I, that is, Tx = x for all x.) O
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HomEewoRrk, DUE JaN 30, 2019 (WED)
Folland: 28,30,34,37 (pp.164-165) and turn in Exercises 63 and 64 in the notes.

25 L7 spaces

LP,p € [1,00] spaces play a central role in all branches of analysis.

Definition 25.0.1. Let (X, M, u) be a measure space. For f measurable on X and p € R™ define

it = ([, o)

We will show shortly that ||||, is a norm iff p > 1. We first check that the triangle inequality
fails for p € (0,1)

Proposition 25.0.2. [Some elementary identities]

1. Ifa,b > 0and p € (0,00), then

(aP +bP)YP <a+b if p=1 and (a? +b°)YP >a+bif p<1 (78)

2. Ifa,b>0,a#band A € (0,1), then
a'bt M < Aa+ (1-A)b (79)
and we have equality above if a,b > 0 and a = b or ab = 0.

Proof. 1. With x = b/a the inequality is equivalent to 1+ x” < (14 x)? for x > 0; let f(x) =
1+ x?P — (1+ x)?P. We have f(0) =0and f'(x) = p[x?"! — (1 +x)’71] <0if p > 1 and f'(x) >0
otherwise and (78) follows.
2. With x as in 1., the proof is very similar: the function is now f(x) = x* — Ax — (1 — A)
which has a unique maximum at x = 1.
O

Corollary 25.0.3. For p € (0,1), the triangle inequality fails in any (X, M, i) which has disjoint sets of
positive measure.

Proof. If p € (0,1), u(E1) > 0, u(E2) > 0 and Eq N E; = @ it follows that
[ Xe, + Xesllp > 1 X Iy + [ ARl
O

Note 25.0.4. 1. Failure of the triangle inequality and other oddities when p € (0,1) make L” for
p € (0,1) spaces quite pathological and not very useful.
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2. For p > 1, induction shows that for any n € IN and positive numbers ay, ..., 2, we have

n n P
al < (Z 111-) (80)
=

i=1

1

and, relying as usual on approximation by simple functions, we could easily show that |||, is a
norm for p > 1. However, we get this inequality as a byproduct of another important inequality,
Holder’s inequality.

Theorem 25.0.5 (Holder’s inequality). Let (X, M, u) be a measure space. Let p € (1,00) and let q be
the conjugate exponent, or conjugate index satisfying q—' + p~! = 1. Then, for any two measurable
functions f, g we have

178l < 1 fllpliglly

Iff € LPand g € LY, then f,¢ € L' and in this case we have equality iff for some a,b > 0,a +b > 0
we have u|f|P = B|g]7.

Proof. W.lo.g. we may assume | f||,, [|g]/; are not zero or infinity, and furthermore, that || ||, =
gll4 = 1, and, by replacing f, g by their absolute values, we assume f > 0,¢ > 0. By Proposition
25.0.2 2., and since p~! + 47! = 1, we have (pointwise)

fe<pff +47¢" (81)
which by integration gives
gl <P Al +a7 M Iglg =1 =1£1pl8lly

Clearly, equality holds if we have equality a.e. in (81), and the result follows, again by Proposition
25.0.2 2.
O

Theorem 25.0.6 (Minkowski’s inequality). Let p € [1,00) and f,g € LP. Then,

1f +gllp < A1+ gl (82)

Proof. For p =1 orif ||f + g||, = 0 this is clear. If p > 1 and ||f + g||, # 0 we have

If+glh = [1f+glPdu=[1f+gl-If +al" " du < [(If+Ig)If +g" dn

==

P

1—
= 151+ g+ [Iglls+gr = aw (1l + gl ([ 1 +5% 6 an)
= (Il + lglp) 1If +glp ™ 83)

by Holder’s inequality if p # 1 (since g = p/(p — 1)). The conclusion is now straightforward. [J

Exercise 65. Use measure-theoretic arguments to prove Minkowski’s inequality directly from
(80).

Theorem 25.0.7. For any p € [1,00), L? is a Banach space w.r.t. ||||,.
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Proof. By Minkowski’s inequality |||, satisfies the triangle inequality and the rest of the proper-
ties of a norm are immediate.

Next, recalling Theorem 23.0.3 we show that a series of LF functions which is absolutely
convergent converges in L”. Let (fi)xen be a sequence in L? s.t.

Y Ny =85 <oo (84)

keIN

The trick is now to let A(x) = Y52, | fi] and An(x) = L&, | fc|- The sum of the infinite series A,
exists pointwise as a function with values in [0, co]. Next we check that A € L?, which follows by
monotone convergence from the fact that Ay A, and

N
YN EN, |Anllp < ) IIfill, < S (85)
k=1

which implies that A? thus A are finite a.e. This, in turn, implies that F = )} ; f is convergent
a.e. Now, |F| < A pointwise shows that F € LP. It remains to show that F — Y}' ; f; con-
verges to zero in LF which follows from pointwise convergence to zero, (54), (85) and dominated
convergence. O

The following result is shown in a similar way using Theorem 5.2.2 2, and the proof is left as
an exercise.

Proposition 25.0.8. The set of simple functions of the form Yy, cx Xg, with u(Ey) < co is dense in LP,
p € [1,00).
25.0.1 The space L®

This space is the limit, in a precise sense, of L¥ as p — 0. The norm in L® is similar to a sup
norm, now allowing for the functions to be defined a.e.

Definition 25.0.9 (essup norm). We let (X, M, u) be a measure space and f measurable on X. Define
the essential supremum of f by

essup(f) = [|fllec = inf{C = 0: [f(x)| < Ca.e.[p]}

Equivalently,
essup(f) = || fllee = inf{C > 0: u(|f(x)| > C) = 0}

L*®(X, M, ) is a set of equivalence classes f modulo null sets
L*®(X, M, u) ={f : X — C: f measurable , || f||e < 00}

Note that in each equivalence class in L* there are functions bounded everywhere by their norm, and that
the dependence of L*(M, ) on the measure is relatively weak: If y < v and v < y, then L®(M, u) =
L®(M,v)

Proposition 25.0.10. Assume (X, M, ) is a measure space and f € L*(M, u) N LPo (M, u) for some

106/186



Math 6211+6212, Real Analysis I+11

po = 1. Then f € LP(M, ) for all p > po and

I flleo = Tim || £[]

p—roo

Proof. We can assume w.l.o.g. that ||f||~ # 0 and by homogeneity, that ||f||lc = 1. Then, for
p = po, we have [f|P < [f[P a.e., and thus | f||, is decreasing in p, implying f € L,(M, u) for all
p = po and that the limit exists. We write

Jifiran = [1firmigmdp = [1frrdv; dvi= | firdu

and noting that (p — po)/p — 1 as p — oo it is enough to prove the property for finite measures.
We have
£l <v(X)VP - 1lasp — o

Let now ¢ > 0 and E be the set of positive measure where |f| > 1 — . We have

Hf”p > (1 _E)V(E)l/p —lasp— o0

The proof of the following theorem is an easy exercise.
Theorem 25.0.11. 1. If f and g are measurable on X then || fg|l1 < [|f|l1|£]]c-

2. (fn)nen is Cauchy in |||« iff there is a set X' C X of full measure s.t. f, converges pointwise
uniformly on X'

3. ||||e is @ Banach space.

4. Simple functions are dense in L™.

Proposition 25.0.12. If u(X) = M < 0,0 < p < g < oo and f is measurable, then |||, < || f||;M*,
where « = p~! — g7, and, in particular, LF (X, ) D Li(u).

Proof. The case ¢ = oo is immediate, so assume g is finite. Replacing f by |f|, we may assume
f = 0. We have

I = 1F7 2l < 1P llgrpliLllgsq—p) = I fllgM®
O

The notation ¢7(X) stands for L”(X) when the measurable space is (X, P(X)) and the mea-
sure is the counting measure.

Proposition 25.0.13. For any set Aand 0 < p < q < oo, {P(A) C L1(A), and ||[|, = ||[|4.

Proof. We assume A is an infinite set, since otherwise the proof is trivial. Note first that for a sum
Y wea |Xa|? to be finite we must have x, = 0 for all but countably many «, and for Y, ,en [Xa,|?
to be finite we must have |x,, |’ — 0 as n — oo, in particular |x,,| < 1 for all large n. But then
|Xa, |7 < |xq,|” for all large n implying the statement. O

Note 25.0.14. 1. If any open set in X has nonzero measure, then the uniform norm on contin-
uous functions is the same as the ||||c.
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2. If M = [0, ) with the Lebesgue measure, and p > 1, then x™* Xy, isin L ifa < 1/p and
X7 X100y is in LP if @ > 1/p. See also Proposition 25.0.15 2. below.

The last example shows there is no nontrivial inclusion between L spaces (except in special
cases as in the propositions above). However, the collection of LF spaces possesses important
interpolation properties, of which we first note some elementary ones.

Proposition 25.0.15. Let 0 < p < r < co.

1. For any q € (p,r) and f € L7 there exist fj € L and f, € L" st. f = f1 + fp, that is
LT CLP+ L.

2. For g € (p,r), write g~ as the a convex decomposition, ! = Ap~1+(1-A)r1, A € (0,1).
We have || - ||, < || - ||£ | - [I1=* and in particular LP N L C LA.

Proof. 1. Let f € L9 and write f = f X|-1 + f X|f<1- Clearly the first function is in L? and the
second one in L.

2. We may assume r < oo, since the case r = oo is straightforward, and as before we take a
nonnegative measurable function f. By Holder’s inequality, we have

_ - A 1-A
LA = £l = 1AL < L on 7 saamay = LI
The case r = oo is straightforward (and also follows as a limit from the above). O
We now prove a useful, measure-theoretic lemma.

Lemma 25.0.16. Let (X, M, ) be a finite measure space, ¢ € L' and C C C a closed set. If for all
E € M with u(E) > 0 the averages of g are in C, i.e.

V(E)_l/]:_gdﬂ €C

then u({x: g(x) ¢ C}) =0.

Proof. The complement C° is a countable union of closed disks of the form B, (x,). We show that
for any of them, say B,(x) we have u({x : g(x) € B,(x)}) # 0. Indeed, otherwise

x—ﬂ(E)legdﬂ‘ = ‘V(E)l/}5<g—x)dﬂ‘ SV(E)”[EIg—XIdﬂ <7

a contradiction, since C¢ is open and dist(B,(x),C) > 0.
]

Lemma 25.0.17. 1. Let (X, M, u) be a measure space and assume y is o-finite. Then, there
exists a w € L'(p) s.t. 0 < w(x) < 1 everywhere in X. In particular, dji = wdy is finite, and
u and i are mutually absolutely continuous.

2. With w as above, the map f + w!/?f is an isometric isomorphism between LF(ji) and
LP ().
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Proof. 1. Let (E,)qen be sets of finite measure s.t. X = U,E,. Such a w is given by

2—71
—— x€E
1+ u(Ey) !
w= Y wy where wy,(x) =
nelN
0 x ¢ E,
2. This follows easily from the fact that 0 < w < 1. O

Exercise 66. Assume f : R — C is periodic with period 27t and absolutely continuous on
any compact set in R. Check that the Fourier coefficients of f’ are well defined. Assume
the sequence of Fourier coefficients of f’ is in ¢¥(Z) for some p € [1,0).

(a) Show that the Fourier series of f converges uniformly and absolutely to some con-

tinuous function, f.
(b) Show that f = f.

26 The dual of ¥

The following summarizes the picture when the measure is o-finite (more generally, semifinite).
For 1 < p < oo, the dual of L? is isometrically isomorphic to L7 where g is the conjugate exponent
to p; because of the isomorphism the dual of L?, p € [1,0) is identified with L9. It follows that
L? is reflexive for all p € (1,00). If p = 1, then g = L® and if the measure is sigma-finite then the
dual of L! is L*. In general, the dual of L* is much larger than L' '*.

Theorem 26.0.1. In the following (X, M, u) is a measure space, L¥ = LP(X, M, u) and g is the
conjugate exponent to p. ((1,00) are dual exponents.)

1. Let1 < p < oo and g € L. Then, ®, defined by

D, (f) = /X fgdu
is a bounded linear functional on L? and

||<Dg|| < ngq (86)

2. Assume p is o-finite. Let 1 < p < oo and let ® be a bounded linear functional on L?. Then,
there exists a unique g € L7 such that

O(f) = /X fgdu (87)

14This statement uses a strong form of the axiom of choice, and there are models of ZF where the dual of L* is L
see M. Vith, Indag. Mathem., N.S. 9 (4), pp. 619-625 (1998).
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Moreover, if ® and g are as in (87), then
1Pl =gl (88)

Note 26.0.2. Theorem 26.0.1,1 above implies Theorem 6.14 in Folland.

Exercise 67. Assume (X, M, ) is a o—finite measure space. Based on Theorem 26.0.]
show that the dual of L? is indeed isometrically isomorphic to L7 for all 1 < p < oo (as
usual, we assume 1/p +1/g =1).

Proof. (adapted from Rudin). 1. This follows immediately from Holder’s inequality.

2. We first prove uniqueness. By linearity, it suffices to show that ® =0 = g¢=0. Let EC X
have finite measure. Then, 0 = ®(Xg) = [ g, and thus g = 0 a.e. (check!)

For existence, we show that ® induces a complex measure A, that A < p and g—;‘ € L.

(A) It is helpful to analyze first the case when y is finite. Note that in this case any measurable
characteristic function is in all L7, 1 < p < co. Let E be a measurable subset of X and define

A(E) = @(Xg) (89)

If Ey, ..., E, are mutually disjoint and their union is E, then Xz = Y X, implying finite additiv-
ity of A. Now, if (E;);en are mutually disjoint and their union is E, then X — Xu;’Ei =X E\U'E;s
hence

| Xe — Xung,|lp = w(E\UJE;) = 0 as n — oo (90)

The continuity of ® now implies
AE\UYE;)) -0 as n — o0 (91)

Thus A is a complex -additive measure, which furthermore is absolutely continuous w.r.t. y,
because u(E) = 0 = || Xg|[, = 0. Now, the Radon-Nikodym theorem implies that there is a

g € Ll(]/l) s.t.
(I) X = g = X \v} [ 9

By linearity, the density of simple functions in L” and continuity of ®, we have

O(f) = /X fedp (93)

for any f € LP.
(i) If p = 1 we are nearly done. Indeed, for any E

ME) = | [ stu] = 12010) < 1911 Xl = [@]u(E) o4

which implies that the total variation of A satisfies |A|(X) < ||®||u(X) and, by Lemma 25.0.16,

Iglleo < [l (95)

110/186



Math 6211+6212, Real Analysis I+11

Combining with (86), we get that the dual of L' is L* since
18lec = [Pl (96)

(ii) Let now p > 1. Since the measure is finite, we have L* C LV C L! for all p =1, and L*®
is dense in LP. We need to show that ¢ € L7. Let o« = csgn(g) (=5gn(g)), En = {x: |g(x)| < n}
and define G = X, a|g|7"!. Clearly, G € L™, |G| = |g|7 on E,, and (93) gives

1
[ lstin= [ Gatn =106 xe) < o [ Istan)
hence, by solving the inequality for the first integral above,
/. X lgtan < ||, vneN (©7)
and, by monotone convergence, ||g||; < ||®@|. Continuity of ® and of the right side of (93) now
implies that (93) holds on L*.

Let now p(X) = oo but assume yu is o-finite. Here we use the isomorphism provided by
Lemma 25.0.17. Let ® € (L”(u))* and define ¥ on (L”(ji))* be given by

¥(f) = @(w''7f) (98)
The isomorphism implies |['¥|(1r(7))- = [|D||(1r(4))+- Since fi is finite, there is a G € L7(fi) s.t.

¥(f) = /X FGdji forall fe LP(j) (99)

For p =1letg = G, and for p > 1let g = w'/1G. If p = 1 we have [|g]lcc = |Gl = [[¥ (11 =
HCDH(U(M))*/ while for p > 1,

[, gl = [ 1617 = I¥1 0 = 1900, (100

this implies (88) and, since Gdji = w'/Pgdu we get, for all f € L¥(u),

() =¥ Vrf) = [ wrfGap = [ fedy (101

Corollary 26.0.3. L7 is reflexive for p € (1, 00).

Exercise 68. C[0,1] is dense in LP[0,1] for all 1 < p < oo (note the inequalities, L* is not
included!) and ® = f — f(0) is a linear functional on C[0, 1]. However, ® does not extend
to a bounded functional on LP. Why not?
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26.1 The dual of L*® is not L!

An “example” of a continuous functional on L® is obtained using Hahn-Banach (which uses the
axiom of choice, hence the quotation marks). Let ® = f +— f(0) defined on C[—1,1]. By Hahn-
Banach this extends (nonuniquely, of course) to L*. But ® cannot be given by an L! element (for
f in C[—1,1] write ® as [ fdm where m is the Dirac measure at zero). Note also the effect of
using the axiom of choice: the extended functionals associate some generalized value at a point
to functions in L*.

Homework: 4,9,10,12,13 pp. 1867 in Folland, and turn in Exercises and in these
notes.

26.2 Inequalities in L? spaces

Proposition 26.2.1 (Chebyshev’s inequality). Let 0 < p < oo, a > 0 and f € L. Then,

p({x: |f()] > a}) <aPlIfllp

Proof. This follows immediately from Markov’s inequality, (46). O

Definition 26.2.2. An operator T of the form

(Tg)(t) = [ K(tx)p(tdu(®) (102)

(under suitable assumptions on K and ¢) is called an integral operator (more precisely, a
linear integral operator), and K is called the kernel of T.

Proposition 26.2.3. Assume (X, M, u), (Y, N,v) are c— finite measure spaces and K : X x
Y — C a kernel which is uniformly L! wrt. u and v, that is, there isa C > 0 s.t.

IKC(, Yy <C forae y[v]; and [[K(x, )|y < C forae. x[u] (103)

Then, for any 1 < p < co T is a bounded operator from L? to L? with norm ||T||pr—r» < C
and the integral in (102) converges absolutely.

Proof. If p = 1 this follows directly from Fubini-Tonelli, while for p = oo it follows from majoriz-
ing | f| by its norm.
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Assume now 1 < p < oo, write |[K| = |[K|'/7|K|'/P and apply Holder’s inequality:

[ 1K@l < ke (f 1K >\Pdv) < ([ kGl
(104)
By Fubini-Tonelli,

[ ([ ikGwlrwia) aesct [ [ikenlifolraa< i, ao

and the result follows by taking the p-th root. O

Writing Minkowski’s inequality for the nonnegative functions f; as

(/(ze)) <z (fn)”

suggests a generalization, in which the sum is replaced by an integral:

Theorem 26.2.4 (Minkowski’s inequality for integrals). Assume (X, M, u),(Y,N,v) are
o— finite measure spaces and f : X X Y a nonnegative M ® N -measurable function. Then,

(L (oo a) < [ ([ rwran) a

Proof. If p = 1 this is simply Fubini-Tonelli. If now 1 < p < oo we use the L? — L9 duality
to estimate the integrals via (85). Take a nonnegative ¢ € L9, and note that, by Holder and
Fubini-Tonelli,

/x</yf<"'y)d”> an= [ [ feey)g@pay < gl | (/X f(x,y)pdpt);dv (106)

O

Corollary 26.2.5. Let 1 < p < oo, f(-,y) € LP(u) a.e.[dv] and assume y — ||f(-,y)|/, €
L'(v). Then, f(x,-) € L1 ,x— [ f(x,y)dv € LP(u) and

H [ s < furcpar

Proof. This is a straightforward consequence of the previous theorem, except for the case p = o,
which is a result of the nonnegativity of integrals. O
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Let now K be a measurable kernel on (IR*)? which, for all A > 0, satisfies AK(Ax, Ay) = K(x,y)
and

/ IK(x,1)|x"VPdx = C < o0
0

for some 1 < p < 0. Let f € LP and g € L7 where g is the dual exponent to p, and define the
integral operators

Tiy) = [ Kz Sgx) = [ K )gdy

Proposition 26.2.6. Under the hypotheses above T is a bounded operator from L? to L?, S
is a bounded operator from L7 to L7 and we have ||T||, = ||S||; = C.

Proof. Assume as before that f, g are nonnegative. Let f(z-) = y — f(zy). We first note the
following scaling properties.

Il = [ fzry == [ fluyrau

[ee]

| Ky ol = /0 Kz fy)ldz = [ K (1) f () az

/Oo IK(1,y)|y~Y9dy = /oo|1< 11 qdy / (u,1)|u" rdu = C (107)
0 0

Using Proposition 26.2.5 we get

ITfl, < [ KG DI Ipdz = Ifl, [ 1K)z = C

The statement about S follows in the same way, now using (107). O

Corollary 26.2.7. Consider the following integral operators, with kernel K(x,y) =y~ X; (y)x<y}

1 v ©
=y /O f(x)dx; Sg(x) = / y~'gy)dy
Then, for1 < p < oo, T:LP — LP and S : L7 — L1 are bounded with norm pp1 =gq.

) 1
Proof. This follows from Proposition 26.2.6, noting that / |K(x,1)|x"YPdp = / xVrdp =
0 0
p

p—lzq' ]
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26.3 Weak LF

Let f be measurable on a measure space (X, M, u). The distribution function of f, A I (0,00) —
[0, 00 (compare to the definition following Exercise 17) is given by

Ap(a) = p({x: [f(x)] > a})

Proposition 26.3.1.

1. Ay is decreasing and right continuous.

2. 1f] < Igl = As < Ag

3. 1fal MUfl = Mg, S A

4. f=g+h=Ar(a) < Ag(a/2) + Ap(a/2).

Proof. Continuity follows from the continuity from below of y, since {x : [f(x)| > a} = Ui{x :
|f(x)| > a+1/j}. The rest is straightforward. O

Assume now that A¢(a) < oo for all « > 0. By the usual construction of measures from distribu-
tion functions, v given by v((a,b]) = Af(b) — Af(a) defines a measure on R,

Proposition 26.3.2. If A¢(a) < oo for all &« > 0 and ¢ : R is measurable and nonnegative, then

[ o(fDan == [~ pl@yirsa

Note 26.3.3. We can think of this formula as a representation of the integral as one in terms
of possible values of the function against the “probability density” of a value to occur.

Another way to view it is as a generalized change of variable. Indeed, let f be contin-
uous with sufficient decay and g a diffeomorphism. Then, check that

x))dx = u u); u=m(g !
Jfstnar= [ faoduto; u=m(g™)

Proof. We first prove the result when ¢ is a characteristic function of an interval.

[ Ko f = =n{xsa < [f ()] < b)) = =(Ap(0) = Agla) = = [~ Xigudr;  (108)

From here the result can be extended to characteristic functions of general measurable sets, then
to simple functions and finally to any nonnegative measurable function, as usual. O
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In particular, we have

915 = [ 1fran == [ ardrs(a) (109

Proposition 26.3.4. Let f be measurable on the measure space (X, M, u). We have
J\rdn=p [ a7 Ap(@)da (110)
X 0

Proof. If ||f||, = oo then the right side is +co as well. Otherwise, let first f be a simple function.
Then, both f and A vanish for large values of the argument. Noting that a? is continuous, we
have, by Proposition ,

p/ooo aP A ()de = — /Ooo aPdA (o)

For a general f, there is a sequence of simple functions that converge monotonically to |f|, and
the rest follows from monotone convergence.
O

Exercise 69. Check that, if || f||, < co, then
1/p
[flp := <51i}0mp)tf(zx)> < o0

but the converse is not true.
Show that

F+gle <2(h+[810)""; and  [cflp = lel[flp

Definition 26.3.5. Let (X, M, i) be a measure space. For p € (0,00), LP™ (X, u), or weak
L?, is defined as
LP(X, ) = {f measurable : [f], < oo}

Proposition 26.3.6. Weak L? is a topological space, ||f||, < [f]y, and thus L¥ C LP*. The
inclusion can be strict.

Proof. Chebyshev’s inequality implies ||f]|, < [f],- An example of a strict inclusion is L7 (IR™)
where x~1/7 € LP% but not in L. The rest follows from Exercise 69 above. ]

The following decomposition result is sometimes useful; its proof is a simple exercise.
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Proposition 26.3.7. Let f be measurable and real-valued. Take A > 0, define E4 = {x :
|f(x)] > A} and

hA :fXEf4 +Asgn(f)XEA; gA Zf—hA
Then,
Aig(a) = Ap(a) Xaca; Agu() = Ap(A+a)

26.4 LP interpolation theorems

An essential ingredient in the interpolation theorems in this section is the following consequence
of the maximum principle in complex analysis.

Theorem 26.4.1. [The Hadamard three-lines theorem] Let f be holomorphic and bounded
in the vertical strip {z = x +iy|a < x < b} and continuous up to its boundary. If

M(x) = sup | f(x +iy)|
y
then log M is a convex function on [a, b].
Equivalently, if x = ta+ (1 — t)b with 0 < t <1, then
M(x) < M(a)!M(b)'"
Proof. After an affine transformation of the variable z it can be assumed that 2 = 0 and b = 1.

The function
2
Fn(Z) _ f(Z)M(O)ZﬁlM(l)fzez /nefl/n

is entire. We see that, for any n, |F,(z)| < 1 on the boundary of the strip and, with z = x + iy,
|Fu(z)| — 0 uniformly in x,0 < x < 1 as |y| — co. Hence |F,| < 1 on the boundary of the
rectangle {z = x +iy|0 < x < 1, |y| = m} if m is large enough, and by the maximum principle
|Fu| < 1in the strip. The result follows by letting n — oo. O

Exercise 70. Prove Holder’s inequality as a corollary of the three-lines theorem as follows.
Let p, g be conjugate exponents in (1, 0), assume f € L?, g € L7 and define

n(z) = [ 1£171gl-

Check that h satisfies the hypotheses of Theorem with 2 = 0,b = 1 and that this
implies Holder’s inequality.
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Exercise 71. Let 6; € (—7, ) and let f, € R be s.t. 0 < 6, — 61 < 27t. Define the open
sector S = {reie :r>0and 6; <0 < 92}. Let f be holomorphic in S, continuous and
bounded on S. For 0 € [0y, 0,], set

M(0) = sup |f(re”)]

r>0

Prove that

Theorem 26.4.2 (Riesz-Thorin interpolation theorem). Let (X, M, 1) and (Y, N,v) be o-
finite measure spaces and let 1 < po, p1, 90,41 < co. Denote
11—t t 1 1-t

t
- 4+— —=—"4+— (te (0,1 111
pt Po P14t qo0 q1 ( ©.1) (i

Assume T is a linear map from LPo(u) 4+ LP1(p) to L7 (v) 4+ L7 (v) s.t.
IT||ro—100 < My and || Tl pn < My

Then
Tl Lrespee < My := My'MY, Vt € (0,1)

Furthermore, log M; is a convex function of t € (0,1).

Proof. Note that the case pg = p; follows from Proposition , replacing f by Tf and taking
A=t po=r,p1=0p.

We now assume pg < pi. We first prove the result for simple functions, by constructing
interpolating expressions to which the three-line theorem applies. The duality expressed in (88)
comes in handy at this stage. We then use the density of simple functions in L¥ to complete the
proof.

Using the form (73) of the norm of T, take f = }.i'; |a;|e’® Xg, and g = Y, |bi|e’® Xp, to be
simple functions with [|f|[,, = 1,[|gll;; = 1, where g; is the conjugate exponent to g;. Extending
(115) to the strip S = {z = x +iy|x € (0,1),y € R}, define

1 1—z z 1 1—z z
— =ua(z) = +— — = z) = + — z€S 112
=)= L =B = 4D (ze9) 112)
We also extend f, g to S, as follows
RN u 126G
fz = Z |aj| <O ¢’ JXE].,' 9, = Z b | PO e Xg,; t€(0,1); z€S
=1 k=1

if B(t) # 1 and g, = g otherwise.
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Now we define the functional whose norm will provide us with the result. Let

7) = /Ygz (Tf) dv (113)

Expanding out we get, if B(t) # 1,
Z|a\ |Iak|1 0 X ele+l€k/ Xr, (TXE]) dv

and, if B =1,
=Ll 0 | K [ X, (Tace) v

Since z + exp(bz) is entire and, for real b, bounded in any vertical strip of finite width, the
functional ® satisfies the analyticity and boundedness assumptions in S.

Note also that for any simple function h, with h(x) = }iy \cj]ei‘/’f XE;(x), and any x € X, at
most one of the terms in the sum is nonzero. Hence, h¥ = Z?:1 |c]-|PeiP<PJ‘ X E;- In particular,

|fel" = Zlajl XE, " Zlbkllﬁ X, (114)

Let’s check the bounds for f, g, on z = 0. Using (114) we have, for s € R,

!
» a
fisl = 11705 gis| = Ig]*

We now use Holder in the definition (113), the bound || T ||z < Mo, and the fact that f € LP!
iff | fis| € L, to get

| D(is)| < N TfisllaollGisll gy, < Mol fisllpo llSis [l gy, = Moll 1l I8 llg; = Mo

Similarly,
|D(1+1is)| < My

and the result in the theorem follows, for simple functions. Extending this to general L?* requires
another interesting step.

Let f € LP* and f, a sequence of simple functions s.t., for all n, | f,| < f and f,, — f pointwise.
Now we use the decomposition in Proposition 25.0.15: with E = {x||f(x)| > 1}, let g = fAE
and h = f — g = fXg. Then, f € LP implies ¢ € LP* and h € LP1. Define also ¢, = Xgfy,
hy = Xge fu. By dominated convergence,

gn — g inLP°, hy — h in LF
By the assumptions on T,
T¢, — Tg in L% and Th, — Th in LT

Therefore, there is a subsequence s.t. Tg,, — Tg and Th,, — Th pointwise a.e., hence Tf,, — Tf
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pointwise a.e. Now, the Fatou Lemma gives
ITf g, < iming | T |1y, < liming M3~ ME £l = MY M £

Convexity follows by applying this result for different pairs of indices p between py and p;. O

Another powerful interpolation theorem is due to Marcinkiewicz, which uses weak L7 assump-
tions instead.

Exercise 72. (A) On L'(T) 4 L2(T) define the Fourier transform operator f — f by

F = [ fe

Use L' and L? estimates to prove that f — f is bounded from L?(T) to £9(Z) for p € [1,2],
where p~!1 +471 =1.

(B) Let (¢n)nen be a sequence of functions in LP([0,1]). For which p € [1,00], if any,
is it true that weak convergence of the sequence (meaning as functionals on L7) implies
strong convergence? (Prove or provide corresponding counterexamples).

Exercise 73. For f,g € L'(R") define the convolution

(Fre)t) = [ fglt—)dr
Prove the following theorem, known as Young’s inequality for convolution.

Theorem 26.4.3. Let p,q,r € [1,00] satisfy p~! +4q~ ' = 1+7r"L. For f € LP(R") + L}(R")
and g € L1(R"), we have f *x ¢ € L"(R") and

£ * gllr < W f1lplIgllq

Homework: Problems 20,22,35,41 in Folland, Chap. 6 and turn in Ex. 72 above.

Definition 26.4.4. Let T be now a map from a vector subspace D of (X, M, u) to the
measurable functions on (Y, N,v). Let p,q € [1, ).

1. T is called sublinear if |T(f + )| < |Tf|+ |Tg| and |T(cf)| = c|Tf| for all ¢ > 0.

2. A sublinear map T is of strong type (p,q) if D D LP(u) and ||Tf||, < [|f]l, < C for
some C € R" and all f € L7. We will abbreviate this by || T||rr—1s < C.
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3. The sublinear map T is of weak type (p, o) if it is of strong type (p, o). If ¢ < co the
sublinear map T is of weak type (p,q) if D D LP(u), T maps LP(u) to L7%(v) and
[Tf]; < C||fllp for some C € R* and all f € L”.

Theorem 26.4.5 (The Marcinkiewicz interpolation theorem). Let (X, M, ) and (Y, N, v)
be o-finite measure spaces and let 1 < pp < p1 < 00,1 < gp < g1 < o0 and assume further
that po < 90, p1 < 91,90 # q1- Let D = LPo(u) + LP1(u) and T be sublinear from D to Y be
of weak types (po,q0) and (p1,41). Denote

1

11—t t 1 1 1-t

- +— —=-= —+— (te(0,1)) (115)
ppp po pil o4 g o N

(P

q). More precisely, if [Tf],, < Colf|p, and [T]g, < Ci|f|lp,, then

| T||r—19 < Bwhere B depends on p, po, p1, p1,91,40,91- As p — pj, B =0 (tf%(l — t)7%> =
0,1.

Then T is strong type

Proof. The case pp = p; is an easy version of the proof for pg < pi, that we assume. We also
take go,q1 < oo for the moment. With p,q as in (115) and f € LP(u), we estimate ||Tf||, by
decomposing first f as in Proposition 26.3.7: f = g4 + ha, and use distribution functions to link
LP* and L? estimates.

We write for the norm || T||Z,

HTHZ = q/o aq’lATf(oc)dzx = qu/o oﬂfl)\Tf(Zx)doc (116)

where we wrote 2« to use 4. in Proposition 26.3.1:

/\Tf(Zoc) < /\TgA (OC) + AThA (DC) (117)
We now link the pp norm of g4,k to As, with the aim at ultimately finding a bound in terms of
1 1lp-
We have

® api—1 A o1
IBallfi = po [ B A, (BB = p1 [~ 87 As(B)aB (118)

and similarly,

Igallfs = po [~ B A8+ a)dp = po [ (B~ AYIAL(B)B < po [T BMIALBYE (119)

We now estimate the contribution of Agy,, via (117), to || THZ and the weak norm estimate. For
any « > 0 we have

1/
Collhallp, > [Thaly, =AY

hence
q1/p1

A
() <ol hallh <aonclof ([ 5,60 ) 120
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hence

© 0 A qi/p1
21g /O a1 gy, ()da < 29CT T/ 11 /0 pd-n-1 ( /O /spl—l)\f(ﬁ)cw) de  (121)

This is true for any A > 0, and the optimal choice turns out to be A = a” where

_pogo—q) _plat-q) _ptat—a) _ pilai—q) 122
el n) g T op) g op) mle ) 122

Now we apply Minkowski’s inequality to switch the order of integration in the estimates:

a1

n P 21
) 00 p 0 o N (g_pg,— q
/0 wi=n—1 </0 Xﬁwﬁpl—uf(ﬁ)dﬁ) Nda < [/O (/0 Xa0>,;am(q n ”dlx> 1/3P1‘1Af(ﬁ)dl3]

(123)
Take first g1 > go. In this case g — g9 > 0,0 > 0and a’ > f & a > ﬁ%. Hence,

P r
/0 </0 X,Xa>50cf";(q_ql_l)dtx>ql mrl;\f(/s)dﬁ:/o </,51 aﬁlw—m‘”da) " BrIAL(B)dB

Rl

plg — q|P/m
(124)

_ (q_ql)*m/ql/o pr-1+na-a)/m0 ) (B)dp = ‘q_qlrm/q]/o BPA4(B)dp =

Note that this is now a norm estimate. Similar calculations show that the inequality above holds
when g1 < qo and that the counterpart integral for g4 is bounded by

p
£l / (125)
plg — go|Po/a0
Combining the estimates, we get
Y Cgf)(po/p)qg/po C?l(pl/r))m/m 1/q
ITfllg < Bl fllp; B=2q"1 + (126)
19— q0] 9 — |

The remaining range of p,q only requires small modifications, basically in the choice of A,
which is set to solve the equation Ay, (¢) = 0 in the cases p1 = q1 = c0o and qp < g1 = 0, py <
p1 < oo, and from the equation Arg, () = 0if g1 < go = ,pg < p1 < 0. See details in
Folland. O

26.5 Some applications

1. The Hilbert transform This is an important operator in a number of areas of mathemat-
ics.
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Definition 26.5.1. The Hilbert transform of a function f is defined to be

(Hf)(x) = %pv. R ACO RPN T Flx— t)ﬂ

(127)
—o0 X—T 7T e=0 J|t|>e t

whenever the limit exists.

It is easy to see that the limit does exist if f is a smooth function, but it is far from clear if H
makes sense on L spaces.

The Calderon-Zygmund decomposition, a fundamental technique in harmonic analysis, is
used to show that # is bounded from L! into L'**. The approach is somewhat similar to that used
for the weak estimates of the Hardy-Littlewood maximal operator. Using the Fourier transform
we will show that H is bounded from L? into L2. The Marcinkiewicz interpolation theorem
entails that H is bounded in all L?, p € (1,2]. Now,

/Xg%fdzt = - /Xf’Hgdﬂ

shows boundedness from L? into L? p € (2,0).
2. The Hardy-Littlewood maximal operator, M. (See Definition 15.0.6.) We have

Proposition 26.5.2. M is bounded from from L'(IR%) into L®(IR%) and from L”(IR) into
LP(RY), ford > 1and 1 < p < .

Proof. Theorem 15.0.8 exactly states that M is bounded from L! into L%, and it is obvious that M
is bounded between L® and L®. The rest is a straightforward application of the Marcinkiewicz
interpolation theorem. O

27 Radon measures

In order to better understand properties of various mathematical objects it is often very useful to
analyze the natural functions (ones compatible with the structure) defined on them. These would
be linear functionals on topological vector spaces, representations in the case abstract algebraic
structures and in the case of topological spaces, the space of continuous functions defined on
them (in fact specifying the continuous functions determines the topology). We can go one step
further, look at continuous functions as a topological space (in the topologies mentioned in the
previous section) and analyze its dual.

We will focus on C.(X) and Cy(X), see Definition 17.5.1, where X is LCH. Roughly, it turns
out that the continuous functionals on Cy are given by finite measures with nice regularity prop-
erties (finite Radon measures), and that any finite Borel measure on such spaces X is Radon, thus
regular.
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Notation. In this section X will denote a locally compact Hausdorff space, O will de-
note open sets and K will denote compact sets. Two important subspaces of continuous
functions on X are C.(X) and Cy(X); we start with C.(X), see Definition . Recall
Urysohn’s lemmma, partitions of unity and the symbol < indicating the support of a func-
tion. When we write K < ¢ or ¢ < O it will be understood that ¢ € C.(X, [0,1]), ¢ =1 on
K and zero outside O.

Definition 27.0.1. 1. A measure y is called locally finite if 1(K) < oo for any compact
K.

2. Recall that, if (X, M, ) is a measure space, with X LCH, then y is called inner
regular if for all E € M we have u(E) = supyu(K), outer regular if u(E) =
info~g 1(O) and regular if it is bouth inner and outer regular.

3. Recall also that, if #* is an outer measure on M, then E is called y* measurable if

VA C X, u*(A) = w*(ANE) + u* (AN E) (128)

4. A linear functional A on a space of functions D is a positive linear functional if
Af > 0for any f > 0in D. Of course, this is the same as requiring

f<8=Af<Ag VfgecD

The following continuity property is automatic from positivity.

Proposition 27.0.2. Let A be a positive linear functional on C.(X) and let K C X be
compact. There is a Cx > 0 s.t., for all f with support in K we have

IAfl < Cxliflix

where || f||x is the sup norm on K.

Proof. Since we can write f = ut —u~ +i(v" — v~ ) where the functions in the decomposition
are continuous and nonnegative, it is enough to prove the result when f itself is nonnegative. Fix
a g€ C(X,[0,1]) s.t. p(K) = {1}, i.e. K < ¢. Then, with n = || f||x, we have

f=¢f <np hence Af <nA¢p=Ckl/fllx; Ck=Ag
]

Candidates for positive functionals on C.(X) are integrals with respect to positive Borel mea-
sures,

Af = [ fau (129)
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where y must be locally finite:

Proposition 27.0.3. If (129) is a positive linear functional on C.(X), then y(K) < oo for any
K.

Proof. Using the density of C(K), thus of C.(X), in L'(y,K), we extend by continuity A to
L'(u,X); clearly positivity is preserved. Take a compact K and an f € C.(X,[0,1]) s.t. K < f.
Then Xg < f and

Ogy(K):/XXKdyg/dey<oo
O

Relying on the fact that X is an LCH, the functionals are given by (129) with u a Radon measure
defined below.

In fact, we prove in the sequel that a positive linear functional naturally generates an outer
Radon measure u*, defined as follows:

Definition 27.0.4. An outer measure y* is Radon if
1. For any compact K, p*(K) < oo'”(u* is locally finite).
2. any open set is u*—measurable. Thus Borel sets are y* —measurable.

3. VE C X, y*(E) = inf{p*(O) : O D E} (outer regularity; as usual O denotes open
sets)

4. YO, u*(O) = sup{p*(K) : K C O} (inner regularity on open sets).

By the Caratheodory theorem, p defined as the restriction of u* to the c-algebra 9 of u*-
measurable sets is a measure on 9, and with y* a Radon outer measure, u is called a Radon
measure. Caratheodory’s construction shows that Radon measures are complete.

Lemma 27.0.5. A Radon measure is inner regular on all measurable sets of finite measure,
and more generally on all measurable o-finite sets.

Proof. Indeed, 1) assume first m = p(E) < oo and let O D E,u(O\E) < ¢/2, 0" > O\E,

u(0') <e. LetKC O, u(K) > m—e Then K' = KN (O')¢ C E is compact and u(K') > m — 2e.
2. Take now an E with y(E) = co. By assumption E = UjenEj where p(Uj<,Ej) — co. By 1)

above, there is a family K; C UjenE; with p(K;) — oo. O

15In more general spaces one requires that every point has a neighborhood of finite measure; for LCH this is
equivalent to the given condition.
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Exercise 74. [When are sets outer-Radon measurable?] If u* is a Radon outer measure, show
that E C X is p*-measurable iff E N K is measurable for every K. (Hint: Reduce the problem
to measurability of all EN O, u(0) < c0.)

Homework: Problems 1,2,3,4 in Folland, Chap. 7 and turn in Ex. 73, above, due Fri
March 8.

Theorem 27.0.6 (Riesz representation theorem). Let A be a positive linear functional on
Cc(X). Then, there exists a unique Radon measure on a c-algebra M O B(X) s.t. (129)
holds.

Furthermore, for all O

u(O) = sup Ag (130)
¢=0
and for all K
u(K) = inf Ag (131)
K<f

Proof. 1. Uniqueness

Assume we have two measures ji1, with the properties above. Using outer regularity and inner
regularity on open sets, it is enough to show they coincide on compact sets. Let K be arbitrary
and O D Kbe s.t. u2(0) < up(K) +¢. Let ¢ € C.(X,[0,1]) be s.t. K < ¢ < O; reasoning as in
Proposition , we have

K) = [ Xedin < [ pdin = Ap= [ iz < | Xodpz = 12(0) <
mK)= | Ak < | odin =Ap= | gduz < | Xoduz = p2(0) < 2 + ¢
and interchanging 1 <+ 2 we have |y (K) — u2(K)| < e. O

Construction of y and 9

It is natural to define the following set function on open sets:
u(O) =sup{A¢: ¢ < O} (132)

Now we note that
‘M(O) < Z “l/l(O]) if O C UjEINOj (133)
jeEN
Indeed, for any ¢ < O, K = suppg C UJO; for some n. With p; < O; a partition of unity, we see
that ¢ = Y1 pp; and

n

Ag =Y Algpi) <

i=1

M:

1(O;) since ¢p; < O;

Il
—_
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Therefore, by Proposition 3.1.2, the set function

pH(E) =inf{pu(0): EC O} =inf{)_u(0;): EC L]_JOj} (by (133)); ECX (134)
i

is an outer measure on P(X).

Note 27.0.7. It is clear that p*(O) = u(O) for any open set O. Remember also that, to
check measurability, it is enough to show that the left side of (128) is > its right side when
p(A) < oo

» Now we show that open sets are ;*-measurable.
> We start by showing that for any open sets O, O’ we have

(O =p*(O'NO)+u*(O'\ O) orequivalently u(0') =u(O0'NO)+u*(O'\O) (135)

Take K < ¢ < O'NOst. Ap > u(O'NO)—eand p < O\ Ks.t. Ay > u(O'\ K) — e. Clearly,
¢+ < O'. Hence,

(O =2 Ap+Ap > u(0O'NO)+ u(O'\K) —2¢

Noting now that O'\ O = 0"\ (O'NO) C O\ K we see that u*(O'\ O) < pu* (O’ \ K) and (135)
follows.
> Assume now pu*(A) < oo and take O’ D A s.t. u*(A) = u(O’) —e. Then,

WA Zu(O)—e=p"(O'NO)+u* (O'NO)—eZu" (ANO)+u*(ANO°) —e  (136)

Note 27.0.8. At this stage, applying the Caratheodory theorem, we see that y is a measure
on a 0— algebra which contains the open sets, and hence it contains B(X).

» 1 satisfies (131) Take ¢ € (0,1), ¢ s.t. K < ¢, and define O, = {x : ¢(x) > 1 —¢}. For any
¥ < O we have ¢ < (1 —¢) Lo, implying

u(K) < u(O) = sup AYp < (1—¢) 'Ag
=0,

(in particular p(K) < o0). In the opposite direction, we want to find an ¢, K < ¢ s.t. u(K) >
Ap —e. Let O D Kbes.t. u(O) < u(K) +¢and take K < ¢ < O. Then Ap < u(O) < u(K) +¢
as desired. «

» 4 is inner regular on open sets. Let m < u(O); choose ¢ < O sit. A¢ > m, and let
K = supp(¢). For any O’ D K we have ¢ < O’, hence u(0O') > Ag entailing u(K) > Ap > m. <
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> ‘ (Vo € C(X))(Ag = [y @du) ‘We can assume ¢ € C.(X,[0,1]). Let K = supp(¢), € > 0 and

Y1 <0<yr<---<1<y,bestVimax{y; —y;_1} <eand u(p *({y;})) =0 '© (137)
Let O D K, u(O) < co. Then ¢ ((yi—1,yi)) N O := O; are open, mutually disjoint and (K \

U;0;) = 0,by (137). Fori =1, ...,n choose K; C O; so that u(O; \ K;) < £ and ¢; s.t. K; < ¢; < O;.
If £ := pu(O;) — Ay, then ¢ < e. By the mean value theorem, Vi Jv; € [y;_1,y:] s.t

<e  (138)

/ pdp = Z/ pdu =Y oiu(0;) =A <Zvi¢i> - = |/ pdp —NY_ piv;
X 7 /O i=1 i=1 X i=1

Write ¢ — Y 0itpi = @1+ 2 with 91 = ¥;(¢ —v))i and ¢2 = ¢ — @Y i By (138), [lgnllu <,
hence |A¢1| < &. Now ||@2]]x < 1and ¢, < U;(O; \ K;); hence, by (131), |A¢@z| < e. The triangle
inequality and (138) now give

’/Xq)dy—/\q)’<3£<

This completes the proof of Theorem 27.0.6. [

Proposition 27.0.9. Assume X is o-compact. Let y be a Radon measure and 9 be the
o-algebra of y-measurable sets. Then

(a) For any E € 9t and € > 0 there is a closed set C and an open O s.t. C C E C O and
u(O\C) < e

(b) u is a regular Borel measure.

(c) If E € 9, then there is a pair (F,G) of F,,Gs sets s.t. FC E C O and u(O \ F) =0.

Proof. Let X = U,K, where K, are compact. Let E € 9. Clearly, u(ENK,) < oo and thus, by
outer regularity, for any e > 0, there are O, D ENK, with u(O, \ [ENK,]) < e27""1. With
O = U, 0,, wehave O\ E C U, (O, \ [ENK,]) and thus

u(O\E) < e/2

The same is true for E¢, and thus there is an open set O’ D E°s.t. u(O'\ E°) < ¢/2. If C = (O')5,
then C is closed and E\ C = EN O’ = O’ \ E° implying the result.

Note that every closed set C is o-compact, since C = U(C N K,). By continuity from below,
u(C) = lim, p(U7_;[C N K;j]) proving inner regularity of closed sets, thus by (a), of all sets.

(c) Apply (a) with ¢ = j71,j € N: there exist C; C E C Oj st. u(0;\Cj) < &. Now
F =UF; C E C G =nN0;jand the result follows. O

27.1 The Baire c-algebra

Another natural c-algebra when studying C.(X) is the Baire c-algebra By(X), the smallest o-
algebra with respect to which all functions in C.(X) are measurable. The elements of By(X) are

16This is possible, since otherwise #(K) = oo in contradiction with (131).
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called Baire sets. Clearly By(X) C B(X); the two coincide if X is second countable (see Exercise
5/p. 216 in Folland).

27.2 Regularity of Borel measures
In this section we assume that X has the additional property that
every open set O C X is o-compact (139)

This is the case if X is second countable.

Theorem 27.2.1. Assume X satisfies (139). Then, every locally finite Borel measure A on X
is regular (and thus Radon).

Proof. The functional Af = [, fdA is well-defined on C.(X) (since continuous functions are
measurable, and f = 0 outside K implies |f| < | f|| X(K) = A|f| < [|f||A(K)). Then, there is a

regular Radon measure y s.t.
ar= [ fd
[ far= [ sau
We now show that A = p.
Take an open set O, and, recalling that X is an LCH, let O = U ienKj, as in Proposition 17.2.9,
where the compact sets K; can be arranged to be increasing, and then K; ,/* O. For each i, let

K; < ¢; < O. Now, since xx, < ¢; < xo we have ¢; — x(O); defining g, = max;<, ¢j, we have
Sk /" Xo as k — o0, and by the monotone convergence theorem,

A(O) = lim / QkdA = 11m/gkdy 1(0) (140)

k—oc0

Now, with E € B(X) arbitrary, by the regularity of the measure y, for any ¢ > 0, there is a
pair C C E C O withe > u(O\C) = A(O\C) (since O\ C is open). If u(O) = oo then
#(E) = A(E) = oo. Otherwise, A(O\ E) < A(O\ C) = u(O\C) < ¢ hence

[u(0) — u(E)| < eand [A(O) = A(E)| <& = [u(E) — A(E)| < 2¢

Corollary 27.2.2. Locally finite Borel measures on R" are regular.

Proposition 27.2.3. If u is a Radon measure on X, then C.(X) is dense in L?,1 < p < 0.

Proof. Given the density of simple functions, it suffices to show that x¢ can be approached arbi-
trarily in p norm, when p(E) < co. Take then K C E C O with y(O\K) <eandletK < ¢ < O.
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Then, ¢ and Xp are equal outside of O \ K, and their difference is at most one. This means that
lp — xellp <e'/r. 0

Note 27.2.4. Recall that, if X is LCH, then Cy(X) is a closed subspace of BC(X) w.r.t. || - ||,
thus it is a Banach space w.r.t. || - ||, space, and that C.(X) is dense in Cy(X).

28 The dual of Cy(X)

Let’s first determine what are the positive, continuous linear functionals on Cy(X). Let A be
such a functional; clearly its restriction to ¢ € C.(X) is a positive linear functional and thus

Ap = /X pdu; (Vo € Cc(X)) (141)

where y is a Radon measure. Since X is LCH, C.(X) is dense in Cy(X), so the question is which
A as (141) extend to continuously Co(X). Assume A does indeed extend continuously and let
¢ < X. Clearly, ||¢|l, <1 and, by (130)

wX) = Su§A€0 < [[Alllllle < IA]] < eo (142)
p=<

Conversely, if 11(X) < oo, then A in (141) has norm at most y(X).

Definition 28.0.1. A measure s.t. (142) holds is called a finite Radon measure.

We found:

Proposition 28.0.2. A is a continuous positive linear functional on Co(X) iff it is given by
(141) for a finite Radon measure .

We now turn to general, complex, continuous linear functionals on Cy(X), that is, we want to
find (Co(X))*. Since the real and imaginary part of a continuous linear functional are real-valued
continuous linear functionals, it suffices to determine these. We will see that, by an appropriate
decomposition of the functional, the real-valued continuous linear functionals are still of the form
(130), for a signed measure p s.t. |p|(X) < oo.

Definition 28.0.3. A subset C of a vector space V is a reproducing positive cone if
lx,y € Cand a,b > 0 imply ax + by € C
2CN(-C)=0
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3VzeVidx,yeCst.z=x—y

It is easy to check that C; = Cy(X,[0,00)) is a reproducing positive cone in Co(X). For, if
f,g € Cy, max{f, g} € Cf ,min{f, g} € Cj.

Lemma 28.0.4. Let C be a reproducing positive cone in V. Any additive function L : C —
[0,00), i.e. an L s.t., for all a,b > 0 and x,y € C, L(ax + by) = aLx + bLy, extends as a
linear functional on V.

Proof. Note that if x,x’,y,y are in C and x —y = x’ —y/ then Lx — Ly = Lx’ — Ly’ (apply L to
x+y =x"+y). If, for z € V, we set Lz = Lx — Ly where z = x — y, then L is well defined and
linear, and extends L from C to V as it is easy to check. O

The following constructions and proofs are motivated by the expectation, that, in analogy with
the Riesz representation theorem above, continuous functionals on Cy(X) should be in bijection
with complex measures on X.

Lemma 28.0.5. If A € C}(X) is real-valued, then there exist positive functionals A* €
Ci(X)st. A=AT —A".

Proof. Define first A* on the cone Cj by

Atf= sup Ag,  forfeCf (143)
g8eCy g<f

Check that f € C = AT f > 0. We show that
f,g€Cyandab>0= AT(af +bg) =aNt f+bA"g

The fact that A (Ja|f) = |a]ATf follows from (143). It remains to check that A*(f; + f2) =
ATfi+ AT f, on CJ. The key observation here is that ¢ < fi + f» in Cj iff 3g1,42 € Cj s.t.
g=g1+gand g < f; /.) Extend A" as Lemma 28.0.4. Now, A~ := AT — A is evidently linear
and positive, and thus A is the difference of two positive functionals.

Clearly, ||g|| < ||f|| whenever 0 < ¢ < f. Since since |AT f| < SUP(< o f IAg| < ||ANlIfIl, we
have || A%] < [|A]. O

Exercise 75. Let y be a finite signed Radon measure and Af = [, fdu. Let y = p* —pu~
be the Hahn-Jordan decomposition of y. Show that the linear functional A" obtained in
Lemma 28.0.5 is given by AT f = [, fdu™.

7In the less obvious direction, define g1 = min{g, f1}, g2 = ¢ — g1, and check the condition.
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Note 28.0.6 (Reminder: complex measures). 1. If y is a complex measure on a sigma-
algebra M on X, then its total variation measure |y is the positive finite measure
given by

o0

[u[(E) = sup Y |u(Ei)l; E EyEp.. € M (144)

®;E=E i=1

and we have

du = e*)d|u| for some measurable 6 : X — [—7, 77) (145)

Definition 28.0.7. u is a signed Radon measure if 4 = p1 — 2 and py, yo are Radon mea-
sures. y is a complex Radon measure if p is a complex measure (finite, in particular) and
u = p1 +ipp where pq, yo are signed Radon measures.

Corollary 28.0.8. A € Cj(X) iff Af = [, fdu where y is a complex Radon measure.

Proposition 28.0.9. ||y = |u|(X) is a norm on the linear space M(X) of complex Radon
measures.

Proof.

I +vl = lu+vi(X)= sup Y [u(E:) +v(E)| < sup Y [u(Ei)|+ sup [v(E)| = [lull+ vl
®;Ei=X @;Ei=X ®;Ei=X

and the rest is straightforward. O

Lemma 28.0.10. If ;1 is a complex Radon measure and A = f — [, fdu, A : Co(X) — C,
then

Il = NI

Proof. In one direction, with ||f|| = 1, [Af] < [y |fldlu| < |u|(X) = ||u||. In the opposite
direction, by (145) d|u| = vdpu with |v] = 1. Let K be s.t ||(X \ K) = ¢ and take a ¢ s.t. K < ¢.
Then,

:d:/d+:/d‘+</ d <A
[l /xlul K|V| € ‘K(PUV € XI(pvl ul +e <Al +¢
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O
Theorem 28.0.11 (The Riesz representation theorem). The map y — A, is an isometric
isomorphism of M(X) to C;(X).
Proof. The bijection was shown in Corollary , and Lemma 28.0.10 completes the proof. O

Locally finite Borel measure in IR" are Radon, as discussed. By Theorem 1.16 (Folland) y is a
locally finite Borel measure on R™ iff it is a Lebesgue-Stieltjes measure, that is it is given by
#((a,b]) = F(b) — F(a) for some right-continuous, increasing, bounded F. Thus A € C}(R) iff
Af = [ fdF for some F = F; — F, + i(F; — F3) with F; as above.

Note that Cy([0,1]) C L?([0,1]), and the continuous functionals on L?[0,1]) are given by the
Riesz representation theorem, f — A,f = || 0,1] fedm where m is the Lebesgue measure and
@ € L2 Now L%([0,1]) < L!([0,1]) (by Cauchy-Schwarz) and thus the subclass of continuous
functionals on C.([0,1]) that extend to L? are generated by a subclass of measures y s.t. dy =
@dm, ¢ € L?. We may view then dF as a generalization of the differential of F. We'll make more
sense of all this in distribution theory.

Definition 28.0.12. The weak* topology on M(X) is called the vague topology. It means p, — p if
J fdun — [ fdu forall f.

Exercise 76. (a) Is X = IN with the discrete topology a LCH space?
(b) What is Co(X)*, if X is as in a)?

29 Fourier series, cont.

Note 29.0.1. Recall that

F=f— Y ™, ¢ = /Tf(s)e_zmksds = (f,ex)

keZ

is an isomorphism between L?(T) and ¢?>(Z). Recall also that the Fourier series of a
characteristic function X of an interval on T converges to X at any point of continuity
of X and to 1/2 otherwise. Finally, we know that, if f € C"(T),n > 1, then the Fourier
series of f converges pointwise uniformly to f, together with n — 1 derivatives. We keep
the notation S, (f) for the nth symmetric partial Fourier sum of (f).

Theorem 29.0.2 (The Riemann-Lebesgue Lemma, first iteration...). Assume f € L([—, ]). Then,

1/2 ‘
lim f(s)e*™sds = 0 (146)
[n|—o0 J—1/2
Proof. Take first f € L?(T). The integral above equals ¢, = (f,e,). By Bessel’s inequality,
Y ez |cn]? < o0, in particular ¢, — 0 as |n| — oo. Since L? is dense in L!, the result follows by an
€/3 argument. O
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29.1 Pointwise convergence

Recall that the Dirichlet kernel is defined as

1 , in(2 1
Dn(x) — Z ekax — SIH( ‘71—1— )nx
P sin 7Tx

(xeC\2Z)

Proposition 29.1.1. For all n > 1, ||D,||1 > 2 log n.

By modifying slightly the proof below, you can show that

o IPnllt _ 4

i logn 2

Proof. Let m = 2n + 1, and make the change of variable x = (271) ~!s. Since | sins| < |s| we get

1 /” sin(m /” |sm ms) 2/7T |sin(ms)| 2/"”T ]sins|dS
2 J n |sin(s/ sin( 7t Jo s o s
D m= 1 _ (k+1)7
2;% k—|—1 /kn sinsds = 2]2;] logm+'y) (147)
where 7 is the Euler constant. O

What this shows is that, for any fixed 4, the family A,,, = f — S,(f;a), n € N is not norm-
bounded over the Banach space C(T). From this and the uniform boundedness principle we see
that, for any a4, there is at least one continuous function for which the Fourier series diverges at
a, and, in fact, the family of continuous functions whose Fourier series converges at a is of first
Baire category in C(T).

Note 29.1.2. It is a deep theorem (Carleson, 1966) that, for a fixed function in L¥, p € (1,00)
(in particular, continuous), the set of points where the symmetric Fourier series converges
pointwise is of full measure. In the opposite direction, for any set of zero measure there is
a continuous function whose Fourier series diverges on that set.

Proposition 29.1.3. If f € AC(T) and f’ € L*(T) (e.g. f € C!(T)), then

lim (S, (f, x) — £(x)]]u =0
Proof. Note first that, under these assumptions for f,
[ 7@ s =ik [ fle)eods = 5,(7) = Su(7)
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Since f' € L?, we have ¥ |kcx|?> < co. This implies that

1/2 1/2
Z lcx| = Z k(K1) < <Z |kck|2> (Z k_2> < o0

k#0 k#0 k#0 k#0

Thus the Fourier series converges absolutely, and then uniformly by the Weierstrass M test. Since
the S, converge in L? to f, the pointwise limit is f as well. O

Exercise 77. Assume {g,}nen is a sequence of functions in AC([—m, 7t]) with L? derivatives. Assume
further that limy e ||gn |2 + ||£ /|2 = 0. Show that limy, e ||gn|c = 0.

30 The heat equation

The heat equation is a parabolic partial differential equation that describes the time variation of
the temperature distribution u(x,t) in a given region ():

ou

5 Au, u(0,x) =uo(x), x € u(t,),,=f (148)
where A is the Laplacian and the spacial variables run over some domain (2 C R". Here ug is
the initial condition, the temperature distribution at t = 0, and f is the boundary condition, the
temperature distribution on 9Q. The function u is assumed C? with continuous partial derivatives
up to 9Q).

Equilibrium distributions are time-independent solutions of (148), in the sense

Au=0, x€; u,, =f (149)
Proposition 30.0.1 (Uniqueness). If uj, up solve (148) or (149), then u; = us.

Proof. If uy,uy are solutions, then u; — up = v is a solution of the PDE with v(0,x) = Oy = 0
We show that the only such solution is zero. The proof is based on the energy method. Start with
(148), ugp = f = 0, multiply by v and integrate over (:

Jv 2 2
[ oSV = 2 o / qv = / oAvdV = / (0V0) — (Vo)2]dV (150)

where we used the identity V - (vVv) = (V)2 + vAv. Now, since v = 0 on 9Q) the divergence
theorem implies

/V-(vVv)dS:/ vVv-dS =0
0 90

and thus p
4 / 24V = 2 / (V0)2dV <0 (151)
dt Jo B Q

>0

Since fQ v2dV >0, is nonincreasing and vanishes at t = 0, it means fQ v2dV =0 and thus v = 0
for all x,t. For (149), the left side of (151) is simply zero, giving Vv = 0 = v = const = 0. O
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With uniqueness settled, we now aim at finding solutions of the PDE. Begin with (148) in two
dimensions, () = DD, the unit disk. The equation becomes

?u  d*u
32 + TyZ =0, Uy = f(@) (f S CZ) (152)

This equation also describes the electric potential u(x,y) in a disk where charges are placed on
T only, with a density f.
In polar coordinates we get

?u 1ou 19%u
ot =0 =/ (159)

A method of solving simple PDEs such as (153) is by separation of variables. Inserting u(r,6) =
R(r)T(0) in (153) and dividing by RT we get

PR KT (154)

Now we note that the left side of the equation above does not depend on 6 and the right side
does dot depend on r, and thus they are independent of both variables, hence constant, say A

12 / /!
SRR T (155)

The ODE T” = —AT has the general solution Cleiﬁt + Cze*iﬁt. There are constraints on A: T
must be periodic of period 277, and this means A = m?,m € Z, and then

T(0) = aue™ +a_,e ™0 (156)

The R equation
r?R" +rR' = AR (157)

is of Euler type, with solutions R(r) = Ar™ + Br ™ if m # 0 and R(r) = A+ blnr for m = 0. We
note that Inr and r~™ for m > 0 as well as ™ for m < 0 are not C>. Retaining only the solutions
that are C2, we get the general separated-variables solutions

Uy (r,0) = Ayt e Z; ay € C (158)

Now, (148) is linear, and thus if U and V are solutions, then so is all 4+ bV. The most general
solution that we can obtain from (158) is the closure of the span of such solutions,

u(r,0) =y ™ (159)

meZ

and with (159) we have at ¥ = 1 (we'll check that the limit when r — 1 exists),

Y. ane™ = £(6) (160)

meZ

that is, the left side is the Fourier series of f. Since f € C?, |am| < const/ m? for large m and, by
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the Weierstrass M test the series in (159) converges absolutely and uniformly for all » < 1, to an
analytic function in the open unit disk. We have thus proved:

Theorem 30.0.2. The heat equation in a disk (152) has a unique solution, (159), (160).

Exercise 78. Separate variables in the time-dependent heat equation in a disk. The radial ODE has
solutions as Bessel functions, J,,(Ar); stop here if you are not familiar with them.

30.1 Examples

(1) Take a disk where the temperature on the boundary is given by f(6) = sinf. Then, the
(unique) solution is simply rsin 6 = y. (2) Similarly, for any trig polynomial, the series represent-

T L L N

051

0.0

-0.5

-1.0 S S T S S S RS S S S
-1.0 -0.5 0.0 0.5 1.0

Figure 4: Solution of the heat equation in the disk with condition sin(46) on T.

ing u is finite. It is interesting to see what happens if the temperature has many changes on the
boundary, say u = sin(46). Write the solution in closed form, as a function of x, y.

Exercise 79. Show that the heat equation on T,

ou d%u
3% 902 u(0,x) = up(x) € C*(T) (161)
has the unique solution
u(t,0) =Y e MY where ug(x) = Y ape™ (162)
meZ kez

In a few steps from here Fourier analysis intersects another major topic in analysis, complex
function theory.
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Lemma 30.1.1. The Fourier coefficients of a real-valued function come in complex-conjugate pairs: a_,, =
.

Proof. Check this. O

Thus we can write

u(r,0) =2R Z ayr"e™ = 2% Z am(reig)m =2R Z apz™; z = re' (163)

m=0 m=0 m=0

By the Weierstrass M test, the series

U(z) = ) apuz" (164)

m=0

converges absolutely and uniformly and absolutely in the open unit disk, and thus U is analytic
there.
Let’s look again at the definition of the Fourier coefficients:

in=ne [ F@e a0 = [" @ru(E)eas <=0 = [ aru()); g
(165)
Substituting in (164) we get, for |z| < 1,
RU(2) _ngozm/jr(a%uq))g 1y — MA(%U(Z))EOZ ;g = E/T .
(166)

A similar results holds with R replaced by 3. Indeed, SU(re’?) satisfies the heat equation with
boundary condition SU(e?). Adding up these two, we obtain the celebrated Cauchy formula

_ 1 u)
U(z) = %/T it zeD (167)

(for the unit disk, and under C? assumptions—a result weaker than the one in complex analysis).
This is simply meant to illustrate deeper links between various branches of analysis. It is not
necessarily a particularly natural way to build complex analysis, nor is it the path that led Cauchy
to it in the early nineteenth century.

Note 30.1.2. (a) We did not not prove that the heat equation extended to C with a given complex boundary
condition has a solution. It generally doesn’t! See what the conditions are needed to have R Y_,~o anz" +

1S Y0 bmz™ = Y=o cmz™.
(b) Functions u that satisfy Au = 0 in a domain in R" are called harmonic. We see that, in 2d, they
are the real or imaginary part of analytic functions.

30.2 The vibrating string

The equation for a vibrating string is the one-dimensional wave equation

*u  d*u

92 a2V (168)
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We change variables to place the fixed endpoints of the string at —7, 7t. Let the initial shape of
the string be given by 1. The problem becomes

u  d*u

Exercise 80. Assume that ug(x) is C2. Solve (169) by separation of variables and show that

[ee]

u(x, t) = Z_:l(am cos(mt) + by, sin(mt)) sin(mx);
u(0,x) = i am sin(mx), u(0,x) = i mby, sin(mx) (170)
m=1 m=1

Notice that the time dependence is a superposition of cosines of integer multiples of a funda-
mental frequency, generated by the fundamental mode sin x. If we normalize again the units so that
the fundamental mode is 440Hz (A 440) the next frequency is A 880, one octave up, and the third
one is E 1320 “a perfect fifth”. The theory of harmony originates in the understanding of string
vibrations, which goes back to ancient Greece (harmonikos = “skilled in music”). “Harmonic
Analysis” takes its name from this.

30.3 The Poincaré-Wirtinger inequality

We now only prove a special case of the Poincaré-Wirtinger inequality, whose general form is
better stated after we introduce Sobolev spaces.

Proposition 30.3.1. If f € C}(T) and [; f =0, then

1712 < =112 a7y

The constant (277) ! is optimal, and equality holds iff f(x) = ae?™* + be~2™*, a,b € C.

Proof. Let the Fourier coefficients of f be {c,},cz, and note that under the assumptions in the
Proposition, ¢y = 0. We have

1 1
Ifle = X leal? < T Ineal? = 15 X l27nea® = 15117113
nez nez nez

The last statement is an easy exercise. O

Corollary 30.3.2. If f € C!([a,b]) and fub f =0, then

b—
s

a
If1l2 < 112
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(where | - ||> denotes the L?> norm on [a,b]). The constant (b — a)/ 7 is optimal. Equality
occurs iff f(x) = ae”" 5" + be” &= ;a,b € C.

Exercise 81. (a) Fourier series can be defined of course for functions of more general period T. If we are
interested in functions f periodic on a,a + T, then f(wx + B) is periodic on [—m, ], if w = 27t/ T
and B = —m — aw. Carry out the changes of variables and write the Fourier series of f in terms of the
exponentials {e**} 7.

(b) If f is as in the statement, extend it to a function on [a — T,a + T| which is odd with respect to a,
and then apply (a) and the result in the proof above.

304 The Riemann-Lebesgue lemma (for L' (IR))

Proposition 30.4.1. If f € L'(R), then f = x — [ f(s)e*ds € Co(R)

Proof. First, |e*T8)5 — ¢5|| f(s)| < 2|f(s)| and continuity follows by dominated convergence. For

the second part note that if f = X|,; then, for x # 0, | f| < 2/|x|. By Theorem , simple
functions of the form Y| a; X', where the J are bounded intervals, is dense in L'. The rest follows
from the triangle inequality. O

Exercise 82. Extend this result to R": if f € L'(IR"), then x — [i., f(s)e™%d"s € Co(R").

Exercise 83. 1. Consider the function f given by f(x) = x7" X} o) (x). Show that F(k) =
Jg € f(x)dx € Co(R) ifa > 1,and F € Co(R\ {0}) if a € (0,1]. Show furthermore that for
a € (0,1), k'=*F(k) is bounded for small k, and, when a = 1, F(k) + Ink is bounded near
k = 0. (Hint: integration by parts is one way; perhaps an even shorter way is to change
variable u = kx.)

2. If f: R - Cisst f € LY(-1,1), and for some aj,a, > 0 and C;,C; € C we
have f — Cix™™ € L}(1,00) and f — Cox ™™ € L'(—o0,—1), then x — [ f(s)e**ds — 0
as x — co. (What this says is that the L! condition can be replaced by L! up to explicit
additive negative powers of x which themselves may not be in L!.)

Homework: Problems 25,27,28 in Folland, p. 262 and turn in Ex. above, due Mon April
1.

We have the following extension to Proposition
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30.5 Hurwitz’s proof of the isoperimetric inequality

A curve is rectifiable iff the supremum of the perimeters of polygons built by joining finitely
many points on the curve is finite. As we discussed, a parametrized curve v = t — (x(t),y(t))
is rectifiable if the function -y is of bounded variation.

Theorem 30.5.1. Assume I’ is a rectifiable simple closed curve in R of length 27t. Then the
area of the interior of the curve is < 7t and it equals 7 iff the curve is a circle.

Hurwitz gave the first rigorous proof of this theorem in 1902. He used Fourier series along the
lines of the proof below, where, for simplicity, we assume that -y is a smooth curve.

Proof. We can assume without loss of generality that the length of - is one. If D =inty and A is
the area of D, then

A= //D dxdy = ;/rxdy —ydx = ‘; /7r [x(s)y'(s) —y(s)x'(s)] ds (172)

—TT

where we used Green’s theorem

oM oL
Ldx + Md :// <—>dd
/r X May int(r) \ 0x Y xy

for the vector field L = —y, M = x. The arclength measure is given by d¢ = /(x')? + (y')?ds.
Parameterizing by arclength ¢ := t instead of s, v = £ — (x(¢),y(¢)), £ € [0,1], we have
() + ()t = 1

JIE? + @2 =1 = 2P+ Y|P (173)

By changing the origin, we can arrange f y xdl = f . yd¢ = 0. From (195) we have

1 1 1 1 1
< = / /A < " < —— 12 M2y —
AL < SIS < XY IS - (1P 1Y 1P) = 4

where we used Proposition 30.3.1. Equality is achieved iff the curve is parametrically given by
v(t) = (sin(27tt), cos(27tt)). O

31 Some conditions for pointwise convergence
A%(T) is the class of functions on T which are Holder continuous of exponent a: f € A*(T) if

M) = sup S =F)

< 0
x#yeT |x_y|u¢
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Theorem 31.0.1. If f € A*(T), « € (0,1], then there is a constant C > 0 such that ||S, —
fllx < Cln(n)n=%, where C depends on « only.

Proof. This proof shows that convergence is linked to the rapid oscillation of D, through sin(nx +
x/2), which triggers, in this class of functions, substantial cancellations.
Again we change variable to the interval [—7, 71]. We can assume

Iflle <1

Let m = n+1/2 and write S,,(x) = (271) ! [7_D,(s)f(x — s)ds, and thus

27(,(x) = f(x)) = [ Du(s)(Fx—5) = fGx)ds = [ Duls)(fx —5) = fx))ds

-7 |s|<e

+ Du(s)(f(x —s) — f(x))ds (174)

s|>¢

Note 31.0.2. In this note C will denote some positive constant whose value can depend
on A.(f) but not on ¢,n and whose exact value would not alter the conclusion. This is a
notational device, to avoid writing C;, C,, ... and so on.

where ¢ will be chosen suitably small. We start with an estimate of the |s| < ¢ integral. For small
g, sin(s/2) > Cs and

0
ds < C/\a(f)/ |s|*1ds < %

s|<e

flx—s) = f(x)

S

AgJDM@UUFw)—f&»Msgc

[s|<e

Cancellations are responsible for decay in the remaining region; we identify the cancellations
and rewrite the integral so that these are singled out: we have sin(ms) = —sin(m(s + 7)). Let
I ={x:|x| € [e+kZ, e+ (k+1)Z]}, ki € N be the largest j so that e + (2j — 1) 2 < 7r and

_ flx=s) = f(x)
hs x) = sin(s/2)

We get

. ki .
/|s>s Du(s)(f(x —s) = f(x))ds = / h(s, x) sin(ms)ds = k;)/lk h(s,x)sin(ms)ds + e,  (175)

|s|>e
where ¢, is the contribution of the endpoint intervals:

Crt
gi

lem| <
m

h(s, x) sin(ms)ds

/|se[s+(zk1—1);f1,n}

We combine successive integrals by shifting the variable by F7r/m (— for s > 0 and + for s < 0)
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in all odd-index intervals:

k ki1 k-1
kzo/fk h(s, x) sin(ms)ds = Jg /Izjulzj+1 h(s, x) sin(ms)ds = Z /Izj(h(s,x) —h(s F Z)) sin(ms)ds

Now, in each interval Iy;, sinms is positive and the oscillations have been removed. At this stage,
we can take absolute values without significant loss in the estimates.

ki ki—1
Z/ h(s,x)sin(ms)ds| < Y_ [ |h(s,x) —h(sF Z)|ds (176)
k=0 I j=0 7D

we note that, if |s| > ¢, then |h(s + 8,x) — h(s)| < |s|727%|8| + 244 (f)|s| !|6]* and the right side
of (176) is bounded by

C(m™t /ns’”"‘ds +m /7r slds) <C L + L\ log ¢|
p p mel—u me

18—1+¢x

We now choose ¢ to obtain a best estimate (up to constants). Choosing e* = m~ we get
IS — fllu < Cm™"logm (177)

O]

| |

Exercise 84. Use a similar approach to show that the Fourier coefficients of a function f € A*(T)
decay at least as fast as const.|n| ™" as n — oo.

Exercise 85 (Abel means and Abel summability). If {a,},cz is a sequence, then the Abel
mean of the sequence is the function

A(r,0) =) rl"l g, 60

n=—oo

Note that, if a, are the Fourier coefficients of a C2 function f, then the Abel mean is the
solution of the heat equation in the disk with f on the boundary! The sequence is Abel
summable if

lim A(r,0) = A

r—1

exists. What is the Abel sumof 1 —2+3—4...7
Show that (convergent to A) implies (Cesaro summable to A) implies (Abel summable
to A).

We can think of these summation methods as extensions of convergent summation: extensions
of the functional that associates to a convergent sequence its limit. These functionals have a
number of expected properties, see. Both fail to commute with multiplication of sequences.
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More powerful summation methods exist: Borel summation of series is an important summation
method (it relies on a form of Fourier analysis!).

Timestamp: 04/22/2019, 6:10AM

31.1 Approximation to the identity

The convolution of two functions on T is defined as the commutative and distributive product

(Fr9)) = [ Fls)g(x—s)ds

Theorem 31.1.1 (Young’s convolution inequality). If f € L!, ¢ € L?, and 1 < p < oo, then
1f *&llp < [Ifligll-

Proof. Use Minkowski’s inequality for integrals. O

The difficulties in establishing pointwise convergence of Fourier series ultimately boils down to
the divergence of the L! norm of the Dirichlet kernel. A good kernel, or approximation to the identity,
or approximate identity is one which has most of the features of the Dirichlet kernel, but with finite
L! norm.

Definition 31.1.2. A family {K,},en C L!(T) is said to be an approximation to the identity
(approximate identity) if
(a) For all n > 1, with K, = f — K, * f, we have

/n Ky(s)ds=1 (ie. K,1=1) (178)

—TT

(b)
7T A
sup [ [Ku(s)|ds =M < oo ((ie. Vn, ||[Kyllr=sre = [[Kul1 < M) (179)
n=1+J—-7

(c) For any € > 0 we have

lim |Kn(s)|ds =0 (Approximate identity) (180)

n=e Jix|elen]

Note 31.1.3. For positive kernels (179) follows from (178).
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Theorem 31.1.4. (a) Let {K, } ,en be an approximation to the identity family. Then, for any
f € L*(T) and any point x of continuity of f we have

lim (K, * £)(x) = £(x) (181)

n—oo

If f € C(T) then limy, ||Ky * f — f|lu = 0.

(b) If f € LF(T),1 < p < o9, then lim, e [|[Kuf — f|, =0,

(c) For 1 < p < oo we have sup,, || Ky ||p—p < M. If 1 < p < oo, the sequence of operators
{Ky }nen converges weakly to the identity.

Proof. The proof is similar —but simpler— to that of Theorem 31.0.1. Let x be a point of continuity
of f. Giveng, letdbes.t. [f(x —s) — f(x)| < eif |s| < 5. We decompose the integral (K, * f)(x) —
f(x) asin (174),

[ K =9) = fNds = [ Kals) (Pl =) = fDds+ [ Kal) (F(x =) = Flx))ds
(182)
We bound the first integral by using the sup norm for f(x —s) — f(x) and the L! norm for K,:

‘/|S<25 Ki(s)(f(x —s) — f(x))ds

< s/ IK(5)|ds < eM (183)
|s|<é

and we use the assumptions on K;, in the second one

<2lfll [

sl

Ki(s)(f(x =) — f(x))ds

‘ |Ky(s)|ds — 0 as n — oo (184)
|s|>6 >6

(b)Let f € L? and let g € C(T) bes.t. ||f —g||, < &. Using Young’s inequality for convolution,
we see that sup,, ||Ky||p—p = sup{||Kuul|, : n € N and u € L? with [Ju, = 1} < M and, for large
enough 7 and some constant C > 0,

IKnf = fllp < 1Rug = 8llp + [1f = 8llp + [1Kn(g = Fllp < 27| Kug — gllu +2]1f — gl < Ce

(c) follows immediately from (b). O

Note 31.1.5. The “dictionary” between 1-periodic and 27-periodic functions is as follows.
If f is one-periodic, then ¢ = x ~— f((27r) ~'x) is 27 periodic, and we have

f(@m) 0 = Ko [ f((am) sy s

keZ
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which implies

. 1 .
f(x) — Z ekax/O f(s)e—kast (185)

keZ

Exercise 86. Let f € L}(T). Show f = 0 a.e. iff for all the Fourier coefficients

1 & —ins 3o __
By = E/ﬁﬂf(s)e ds =0 (186)

n € Z., vanish.

32 The Poisson kernel

Let f LY(T). Then, its Fourier coefficients {a, },cn are bounded, and thus the Abel means

A(f)(t) = Y ayrlle (187)

nez

converge absolutely and uniformly for » < 1, and we can interchange summation and integration
in (186) to write

AR = 5 [ Fls) T e s = (s ) (1) (188)

nez

where P;(t) is the Poisson kernel,

1— 12
1 —2rcost + r?

P(t) = Z plrleint —

nez

(189)

as you can easily check.

Proposition 32.0.1. P, are an approximation to the identity. (Here the family is indexed by
the continuous variable r € [0,1), with definitions similar to those in the discrete case.)

Proof. The fact that % ffn P, = 1 (property (a)) follows from integrating the series in (187) term
by term and noting that all contributions for n # 0 vanish. For (b) we note that the kernels are
positive. Property (c) follows from the fact that P, are bounded and go to zero uniformly in any
interval of the form in (g, 7t], ¢ > 0. d

As a consequence, we have
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Theorem 32.0.2. The Fourier series of an L®(T) function is Abel summable to f at any

point of continuity of f. If f € C(T), then the series is uniformly Abel summable to f.

Returning to the heat equation, we find that

Theorem 32.0.3. The heat eq. (153) with f continuous, the uniform limit of u(r,0) as

r — 1, has a unique solution (159) and (160).

Exercise 87. Check that the map U, U(f) = {a, }nez, where {a, },cz are the Fourier coeffi-
cients of f, is a unitary operator between L?([—, 7]) and ¢?>(Z). What is the image under
U of the functions in AC(T) with derivative in L?(T)? (This is the domain of definition of

the self-adjoint operator i % onT.)

32.1 Several variables
Assume f € C1((T)?). Then,
j 1 [ .
flx,y) = ké Ck(x)elky where ¢ (x) = P lnf(X,t)e_lktdt

Now, ¢ € C}(T) (why?), and hence

(190)

, , 1w , ,
_ imx | ,iky _ —ims 3. —i(ms+kt)
flxy) =) < ) Cime ) e where ¢y, 5 ank(s)e ds //[n,n]zf(s,t)e dsdt

keZ \meZ

Uniform and absolute convergence (justify!) means that, we can write

F0 = ¥ cne™

ncz?

(191)

(192)

Exercise 88. (a) Under smoothness conditions as above, formulate and prove a theorem

about Fourier series in 7 dimensions.

(b) Write down a formula for the Fourier series of functions which are periodic, but

have different periods in the different directions in IR".

The following exercise illustrated the duality between regularity (smoothness) and decay of the
Fourier coefficients for functions that have point singularities. By the latter we mean that for each
point at which the function is not smooth, there is an interval centered at that point in which

there is no other point of non-smoothness.

147/186



Math 6211+6212, Real Analysis I+11

Exercise 89. Let

fx)=Y

nelN

sin nx

= % (Lia(e_i’“) . Lia(eix)> ; (a>0,x € [—m, ) (193)

(1) Show that (193) converges pointwise for all x.
(2) We now use a rudimentary form of Borel summation (see also
) to determine the regularity of f. Using the definition of the Gamma
function, show that

/ p* e "Pdp (194)

Show that this implies that for x 7é 0 we have

/ prt ) sin(nx) ””dr’—la) / P MY 4y (195)
0

o=l 2(cosh p — cos x)

For & =1 the last integral is elementary,

—x—1, x <0
2f(x) =40, x=0
—x—+m, x>0
Prove that f(x) is C* away from zero (actually, it is analytic).
(3) Take now x > 0 and small. Write (195) as
2

1 © x“a(x)
xI’(oc)/o P p?b(p) + xzc(x)dp (196)

and show that a,b and ¢ are smooth in a neighborhood of zero, that a(0) = b(0) = ¢(0) =1
and that b(p) > 1 for p > 0. With the change of variable p = xgq we get, for x > 0 small,

fx) = = 1r T ’id i (197)

and that, as x — 0" we have

qle T

: ) [ _
31336/ T ) e /o P D) (198)

(The last expression is most easily proved by the residue theorem, but you don’t need to
justify it; this explicit value is not terribly important here.) Use (198) to conclude that

o flx) T .
l 7Y~ aT(@)sin(arya) © € OV (199)
()
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Thus f has precisely one point singularity, x = 0. Show that, for « € (1,2), f € C*"}(T).
(d) Show that for « € (0,1), f € L? for any p € [1,1/(1 —a)). Are the Fourier
coefficients of f those implied by the series?

Note 32.1.1. It is useful to sketch this function for some « € (0,1).

This particular relation, 1/n% — (x — x9)*~! between decay and regularity is generally
true for point singularities. In the general class A%, the (sharp) correspondence is 1/n* <
f € A* with a proof similar to that of Theorem 31.0.1.

33 The Fourier transform

If f is not periodic, but compactly supported, we can extend it to a periodic function with period,
say, the size of its support, and then we can analyze it using Fourier series.
Now if f € L}(IR") is not periodic, we can still define, for any k € R,

(FNK) = F) = [ e Hax, ke R (200)

n

The function f is called the Fourier transform of f. The inverse Fourier transform (we’ll shortly
why “inverse”) is

(FLH) (k) = f(k) = / 27K qy ke R” (201)

n

Lemma 33.0.1. The translation 7, := f — f(x +a) is continuous in L?, 1 < p < oo.

Proof. Since C.(R") is dense in LF,1 < p < oo it suffices to prove this for C.(R"). Let f be
continuous and compactly supported in K. Translation is evidently linear, and thus it suffices to
prove continuity at zero. We have

lim || 7o f — fllp < m(K)"Plim || taf — flleo = 0 (202)
a—0 a—0

by uniform continuity. O

It is convenient to first analyze these transforms in a space of smooth, rapidly decreasing func-
tions.

33.1 The Schwartz space S
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Definition 33.1.1. A topological vector space X is called a Fréchet space if it satisfies the
following three properties:

1. X is a Hausdorff space,

2. Its topology may be induced by a countable family of seminorms (|| - ||¢), k € IN. That
is, the sets
e lly —xlle <& Vk <K}

let where ¢ € R™ and K € N, form a base of neighborhoods.

3. X is complete with respect to the family of semi-norms.

Note 33.1.2. If X is a Fréchet space, then a sequence converges in X iff it converges in each
seminorm.
The topology induced by a family of seminorms is Hausdorff iff

() {x € X ||x[lx = 0} = {0}

kelN

It is easy to see that A Fréchet space is a special case of a metrizable space, one in
which the metric is translation invariant, p(f, g) = p(f — g,0). If the family of semi-norms
is || - ||, then a metric which induces the same topology is

o(f,0)= Y o-n_flln

s L f

Conversely, a metric space is Fréchet if it is complete, locally convex, see below and the metric
is translation-invariant.

Let «, B be multiindices, that is tuples (my, my,...,m,) € N}, where Ny = IN U {0}. We use the
multidimensional conventions

o= Yo o =TTt o= 00 b= [ ana (1) =
o = &, X = x:" = x| = X7, an =
i=1 Y i1 (9x)« = o !

The Schwartz space S of rapidly decreasing functions on IR" is defined as

S(IR”):{fEC“’(]R”): 1fllng < o0 VNE]NO,,BEJNS} (203)
where
IFllp = sup |1+ 1x])"0Pf ()] (204
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These are smooth functions that decrease, for large |x|, faster than any inverse power of |x|.

Note 33.1.3. Recall that, that if (f,),en is a sequence of differentiable functions on R s.t.
{f }nen converge uniformly to some function h and {f,(xo) }nen converges for some xo,
then {f, }nen converge uniformly on compact sets to some f and i = f'.

Proposition 33.1.4. S is a Fréchet space.

Proof. Only completeness needs to be checked. Since C(R") is complete, a Cauchy sequence
{fitken inall || - | g implies that { fy }xew convergences in all || - ||y to some functions gy g. To
identify this limit we can use the property in Note . ]

Lemma 33.1.5. The families of seminorms

{9 o iy 20 {110+ 1)V o}

2
N,BeEN (205)

xeN!,NeN,

induce the same topology on S.

Proof. Indeed,
N N N N n k
ot < )l )Y = L ()< L () (L) = T aglal
k=0 k=0 i=1 B,IBI<N

for some nonnegative coefficients ag and thus the distance induced by the first family of semi-
norms goes to zero iff the distance induced by the second one does. O

Compactly supported smooth functions, C°(R") are an important subset of S. A prototypi-
cal such function is the function  below, compactly supported in the unit ball and smooth.

Proposition 33.1.6. The function

a1
e -k |x| <1

(206)
0; |x| =1

(1= [x?) =

is in CZ(RR").
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Proof. This follows from the chain rule and the fact that the function t + e~ '/f X+ (t) is in
C*(R), see Exercise 3/p.239 in Folland. O

This function can be used as a building block to define other interesting compactly supported
functions. For instance, the function

1 x|l <1

exp —Alj—+— 17
(P(x) - 1+ex1(g(2 11 Jl:‘z 14));

x[2—1 " |x]2—4

0;|x| >2

x| € (1,2) (207)

is a smooth function, compactly supported in the ball of radius 2 and equals 1 in the closed ball
of radius 1: B1(0) < ¢ < By(0)°.

Proposition 33.1.7. C®°(IR") is dense in S(RR")

Homework: Problems 8,9,13,15 from Folland, Chapter 8 and turn in Ex. 85 and 86 from
the notes. Due Mon. April 8.

Proof. Let ¢, = x — @(x/n) with ¢ as in (207). If f € S(R"),then {f¢,}nen is a sequence of
compactly supported functions which, we claim, converges to f in the topology of S. Indeed, we
have

10 () () = Il T 8 () )@ P e/

pa

— X[/ f(x) + xT YT b ("‘)aﬁf<x><a“—%><x/n>
B<ip p

— xTo () + X7 Y nﬁ—“("‘)aﬁf<x><a“-%><x/n>—<1—<o<x/n>>a“f<x> (208)
p<upra A

and note that, for any £, since sup, g [1(x)| = sup g« |#(x/n)|, we have
X7y nf (a)aﬁf(x)(a”‘_ﬁq))(x/n) —0asn— oo
p<a,pFua B

Finally, 1 — ¢(x/n) = 0 if |x| < n. Since [0*f(x)| < [|flla}y+1(1 + |x|) 1711, we have x7(1 —
¢(x/n))o*f(x) — 0 as well. O

Other important examples of functions in S are the Gaussians, or polynomials multiplying Gaus-
sians,
2
xie "™, (a>0)
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Lemma 33.1.8. The maps F and F~! are continuous linear transformations from S into
itself. Furthermore, F interchanges multiplication by the variable with differentiation, as
follows:

F(2'2Pf) = (1) (2mi)* PE P F (f) (209)
Proof. We have, by integration by parts,

F@at ) = (-2ig) (-1)*Fah) = L 0 10)

Linearity is clear. Expanding out 0*xf f, we see that, up to constants independent of f,

flep = CIF@*Ff)le < 3 Mfllwp (211)

W' <apI<|Bl+n

Lemma 33.1.9 (Improper Riemann integrals and sums). Assume f € C(R") and |x|"3f is
bounded. Then,

hme Y f(ek) /]Rn f(x)dx (212)

kezZn

We note that n 4 3 is suboptimal, but that’s all we need, for now.

Proof. We denote by C,(xg) the cube of side a centered at x¢ and parallel to the axes. Note
first that |x|"*2f is uniformly continuous on R". For a § > 0, let ¢ be s.t. |s| < ¢ implies
sup, . |f(x+s) — f(x)] <6(]x| +1)7"~2 For any ¢ < ¢ we have

[ pam = Z/ Flke +s)d Z/ F(ke)dm + Z/ Flke+s) — f(ke)|dm

kezn kezn kezn
= ) f(ek)+0(5) (213)
kezn

since, for some C > 0 independent of f and J, we have

o€ 1
k — flke)ldm < ——— <6 T < C6
oy 8 +5) = PVt < ey <0 B (e ayen

Theorem 33.1.10 (Fourier inversion theorem in S). (i) The Fourier transform is one to one
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from S(IR") onto itself and S(R") F~1F = FF ! = I, the identity operator.
(ii) (Plancherel) If f € S(R"), then ||f|2 = || F fl]2.

Proof. The fact that F is one-to-one onto will follow from the inversion formula. Since F~1F is
continuous, it suffices to show that 7~ F = I on the dense set C*(R"). Take f € C=°(R") and ¢
small enough so that f is supported in K = [—¢~1/2,e71/2]". Expanding f in Fourier series we
get

f(x) — Z eZnikxe/Kf(S)eme'ksedS —

kezn

eZm'kxe/ s eme'ksedS
keZZ:” IR"f( )
=" Y (T f)(ke) (214)

kez"

which, by Lemma 33.1.9, converges to F ' Ff ase — 0.
(ii) Similarly, it is enough to prove this in C°(R"). Let f € C*(R") and K, € be as above. By
Note 29.0.1 we have

[ f@Pds = [ Ife)Pas =& ¥ (FHkP = [ IFHEWPA  @15)

kezr R
O
Corollary 33.1.11. F extends to an isomorphism on L?(IR") with 7! as its inverse.
Lemma 33.1.12. L'(R") N Co(R") C L*(R").
Proof. Let f € L}(R") N Cy(R") and K be the compact set outside which |f| < 1. Then,
2 2 2 2
= dm+/ dmg/ dm+/ dmg/ dm + < o0
IFla= [ \fPdm+ [ \fPdm < [ (fRdme+ [ (fldm < [ |fRdm+ )£y
O

Lemma 33.1.13 (A formula for the extension of F to L?). If f € L2 and f = Ff, then

=0

n o0
- 2

lim Hf—/ e 2 £ (s)dm
|x|<n

If f € LY(R") N L?(IR"), then the extension of F to L? is the same as F.

Any sequence of compact sets whose union is R"” would yield the same result.

Proof. This follows from the fact that, by dominated convergence, || f — Xy<ufll2 = 0as R — oo
and the continuity of the Fourier transform in L?>(IR"). The second part is an easy corollary. [
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Note 33.1.14. The result above is sometimes written

f=1lim e 2 £ (s)dm

R—ro0 J|x|<R

Theorem 33.1.15. If f € L'(R") and Ff € L!(R"), then F~'Ff = f.

Proof. This follows immediately from Lemmas 33.1.12 and 33.1.13. O

Theorem 33.1.16 (Hausdorff-Young inequality). Assume 1 < p < 2and p~ ! +4 ! =
Then, the Fourier transform is a bounded map from L? to L7 with norm at most one.

Proof. We use interpolation. Note that the Fourier transform is continuous from L?(R") to
L*(R"), and from L'(IR") into L*(IR"). The result now follows from the Riesz-Thorin inter-
polation theorem with pg = g0 =2,p1 = 1,491 = o0. O

33.2 The Fourier inversion theorem, a direct approach
We show the inversion formula in R. Let f € S(R). Then, F~'Ff equals

lim/ / e Y f(y)dydE = 11m/ fly / =¥ dz dy = hm/ f( x—u)/R e dE du

R—o00

:21%1330(/ +/> x—usmuRud —211m </ +/> flx—u)+ f(x+ )]smuRudu

zzlim/ flx+s) +f(x—s)— 2f(x) sin(Rs)ds+4f(x)/0 ﬁd =27f(x)

R—o00 JO S

In the last integral above we changed Ru to s, and the integral before it goes to zero by the
Riemann-Lebesgue result in Exercise 83, 2. and the fact that the expression multiplying sin du is
smooth.

Note also the appearance in the process of the kernel u~! sin(Ru), a continuous analog of the
Dirichlet kernel, in concentrating the main contribution of the integral to a vanishing neighbor-
hood of zero.

Proposition 33.2.1. If f(x) = e~ ™ with R(a) > 0, then f(&) = a—"/2e7EI*/x,
Proof. In one dimension this follows from the fact that
df 27
=l
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as it can be checked by integration by parts and that f(0) = a~'/2. The extension to R? is

immediate, since the multiple integral is a product of one-dimensional integrals of the type
above. O

34 Supplementary material: Some applications of the Fourier trans-
form

34.1 The Schrodinger equation for a free particle in R?

The wave function (x, t) of a particle has the following interpretation:|y(x, t)|2dm is the proba-
bility density that, as a result of a measurement at time ¢, the particle will be found at position x.
Then clearly we must have [, [¢(x,t)|?dm(x) = 1 for any ¢, in particular ¢ € L?(IR?).

In the case of a single particle of mass m in an external potential V' (x, t), ¢ satisfies the PDE

ih‘?f = —sL AP+ V(x, t)P

This is an evolution equation which requires an initial condition ¢(x,ty) = o(x). Here E =

—ﬁA is the kinetic energy operator E = % =: ﬁv? In atomic units, i = 2m = 1. A particle is
free if the external potential is zero,
0y
T A
Yor =Y
The Laplacian is a symmetric operator,
. . ¢ oY
Lim. Ap— @A) dV =lim. — —¢=—]d5=0
Rli{}o JIx|<R (¥ Ap — ¢ Ay) Rlar?o |x|=R (lpan (Pan)

Lemma 34.1.1. If ||(x,0)||2 = 1, then || (x,t)||2 = 1 for all t.
Such an evolution is called unitary, for obvious reasons.

Proof. By taking the complex conjugate of the Schrodinger equation,
., 0P _ _
_in%¥ — AP+ V(x, )Y

Multiplying the first equation by ¥, the second by i and subtracting, we get and subtracting the
two equations, and integrating over IRY we get

.d ) _
z%/ﬂzdhb]zdm:l.l.m. YAY —PAP =0

R—oo Jix|<R

We now take the Fourier transform in L?(IRY),

i) = 4728y = p(x, 1) = Po(E)e
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The Fourier transform ¢ is the probability amplitude of the momentum, ¢. We see that the
probability distribuion in & is ||?, and it is independent of time. The momentum is conserved.
Now,

l/)(x, t) — /]Rd e—4nzi§2t+2ni§x%(€)d§

What happens when t becomes large? It is not difficult to see that the Riemann-Lebesgue
lemma can be adapted to show that ¢(x,t) — 0 as t — oo.

Concretely, let’s assume that i(x) = e~ ™. Then, by Proposition 33.2.1, we have §;(&) =
a~4/2e= /% and we get, using again Proposition 33.2.1,

plx ) =a 2 [

R4

2 2.2,.2
Aritx @ nitta ™) gz _ (1 4 dizrat) /% exp ( T o altx >

— 4
16720212 + 1 * 1167'[2042t2 +1

If d = 3 we see that the probabilty of finding the particle in a ball of fixed radius decays roughly
like =3, while the shape of the probability distribution is an ever widening Gaussian. The particle
disperses out of any finite region.

34.2 The Airy equation

The Airy functions Ai and Bi satisfy the ODE

/!

y =xy

The solutions are entire, since it is a linear ODE with entire coefficients. Taking the Fourier
transform (with the normalization [ e~"**y(x)dx) we get

Ep
_a2 Y
Gy =i iz

with the solution
= Cei’/3

meaning
y(x) :/ ei§3/3+i§xd(§

is (up to a multiplicative constant) one of the two linearly independent solutions of the ODE.
With the normalization above, it is indeed, the Airy function Ai(x). Or is it even a solution of
the ODE? If we differentiate twice in x under the integral sign, we get an integral that does not
converge, even conditionally.

But this does not mean that y”(x) does not exist! It simply means that the representation is
inadequate for this purpose. Instead, the contour of integration can be homotopically rotated:

i/ 6

y(x) _ /ooe ei§3/3+i§xd§

—ooe— /6

In this way, whe |Z| is large, the integrand decreases roughly like e~1¢’/3, and y(x) is now
manifestly analytic in C!
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35 Convolutions and the Fourier transform

Recall that the convolution of f and g is defined as

(f*8)y) = [ f(x)gy —x)dx

IRM

Theorem shows in particular that convolution is well defined on L!'(R") x L!(R"). The
following theorem shows, in particular, that multiplication and convolution are Fourier-dual to
each other.

Theorem 35.0.1. Suppose f,¢ € L. Then
frg=1& fs=Ffxg
and, if 2 € R", ten - '
wf(§) = e f(Z)

Proof. This is a calculation, relying on Fubini:

B
_ / Fly — x)e 2w / g(x)e ™ dx = f(0)8() (216)

The equality immediately following it is now obvious by the inversion formula. The last equality
is clear from an immediate calculation. O

As a result, we should investigate further the properties of convolution.

Note 35.0.2. Assuming that the integrals are well-defined (e.g., f, g € L!),

a) f x g = ¢ * f. This follows from the density of L? and the fact that f§ = ¢f

b) (fxg) *h = f*(g=*h). (By the argument in (a).)

c)Fora e R", ,(f*§) = (taf) *g = f * (1ag)- (By Theorem and the argument
in (a).)

d)If f,g €S, then f x g € S. (By the argument in (a).)

e)If A= {x+y:xesupp(f) y € supp(g)}, then supp(f *xg) C A. This follows from
the fact that for all x, if z ¢ A then f(x)g(z —x) = 0.

Proposition 35.0.3. Let p,q be conjugate exponents, f € LP,g € L. Then f * g exists
pointwise everywhere, f x ¢ € BC(R") and ||f * gl < || fllpl/gll4- Furthermore, if p €
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(1,00), then f x g € Co.

Proof. Pointwise existence and the uniform bound follow right away from Holder’s inequality.
Noting that

[ Fxgly = x)dx = [ £(x)(Sg)(x)ds

where S = 7, 0], (Jg)(x) = g(—x), continuity follows from the fact that translation is continuous
in L?, Lemma 33.0.1. Finally, we note that p € (1, c0) implies g € (1,00) and thus C.(IR") is dense
in LP(R") and in L7(IR"). By Proposition 35.0.2 e) C.(R") is preserved by convolution, and if
fn — fin LP(R") and g, — g in L7(IR"), then, by the first part of the Proposition, f, * g, — f* &
uniformly. Since the uniform closure of C.(R") is Co(R"), the result follows. O

From the theorem of differentiation under the integral sign we obtain the following is a refine-
ment of Proposition 35.0.2, d).

Proposition 35.0.4. If f € L'(R") and g € C¥(R") with 8*¢ € BC(R") for |«| < k, then
fxg € CK(R") and for all &, |« < k we have 9*(f x ) = f * (9°g).

36 The Poisson summation formula

Theorem 36.0.1. Assume f € C(R"), |||x|" "¢ f(x) |l < 00, and |||E]"T2f(&)||ec < oo for some & > 0.

Then,
Y =) f(i)
jezr jezr
and more generally, )
Y frt) =Y f(e @17)
jEZ" jezr

The sum (Pf)(x) := Yjezn f(x + ) is called a periodization of f.

Proof. Note first that, under the given assumptions, the sums are uniformly and absolutely con-
vergent. The function Y .z f(x + k) is in C(T") C L?(T").

)= [ e pdx = ¥ [ e (s

mezn Y T+m
=) /e’zmj'xf(x—i—m)dx:/6’2”’7"" Y. flx+m)dx (218)
mezn’ T T meZ"

For integer j, f(j) is the Fourier coefficient of Pf, hence

Y, f(De =} flx+))

jezr jezn
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This theorem has many applications, such as calculating sums in closed form, when the
Fourier transform of a function is more easily summed than the function itself.
For instance, if 2 € R, we have

x2 —11— 2 a e W
which implies, using Poisson summation, that
1 ~1
Z m = 7tad COth(ﬂTL') (219)

jez
which, by a limiting procedure (check!) contains the special case

1 7
2]72:?

jeN

Eq. (219) is an instance of the Mittag-Leffler theorem, which expresses a meromorphic function
by a “partial-fraction-like” expansion. In the same way we get

1 T (sinh V27a + sin ﬁmz)

Y _

JEN et /23 (cosh V/2ma — cos 27m>

implying (how?)
4

y 1_m
&t 9%

Definition 36.0.2. The Jacobi theta function is defined as

2

8(z;1) = Y exp(min®t+2minz) =1+2) (e””)n cos(2mnz) = Y 7 ", RT>0

n=—o0 n=1 n=—0o0
(220)
Here z is any complex number, T, confined to the upper half plane, is the half-period ratio,
and g is the nome. In terms of 6 we have H;(x, t) = 0(x;4it).

Exercise 90. Prove the Jacobi duality formula

Z e—nnzx _ x—1/2 Z e—n%

nez nez
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This identity is crucial to understanding the way the theta function transforms under the
modular group.

36.1 The Gibbs phenomenon

0.6

0.2

—0.21

~0.41]-

-061

Figure 5: Characteristic function of [—1/4,1/4]: the partial Fourier sum with 20 terms (left), 100
(right) and the graphical superposition of the Fourier sum with 20 — 100 terms (below).

The Gibbs phenomenon is the remarkable way in which the Fourier series behaves at a jump
discontinuity of a piecewise smooth function. The Gibbs phenomenon can be heard as “ringing”
near transients, such as sounds from percussion instruments. It roughly results from the fact that
we are trying to approximate a discontinuous function by smooth ones. Recalling the duality
between smoothness and decay of the Fourier coefficients, a discontinuity will result in their
slow decay. Therefore, the Fourier terms in the difference between a partial sum and the limit
will have significant amplitude, resulting in fast oscillating defects. This “defect” only occurs
in finite sums, since we know that in the limit the Fourier series converges everywhere to the
average of the left and right limits of a piecewise-smooth function. This also means that the
location of the maximum defect changes with the number of terms, to allow for the limit to exist.

The Fourier sums of the function f(x) = —1if x € (—1/2,0) and 1if x € (0,1/2)"% is

N
Z:4sm 27;k24li—1|—)1) x) (221)
e (4re(N + 1))
sin(4t(N +1)x
Sn(x) =4 sin(27tx) (222)

18Note that the point values of the function at the discontinuity are irrelevant, as they wash out as a result of the
integration involved in calculating Fourier coeffcients.
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(we recognize the Dirichlet kernel in (222); is this a coincidence?) An elementary argument shows

that the first positive maximum of Sy occurs at xg = m. We have
N 4sin <27Z(1\2112r21)> 1 [7sinx
S = — Z Zdx = 1 LS = 1.1789797444 - -- as N
N (x0) k;) EE %ﬂ/o "X = 71 si() as N — oo

by observing that Sy(xp) is a Riemann sum for the integral. We see that the sums converge
nonuniformly to f, with an “overshot” of about 18% in uniform norm.

Exercise 91. Show that the overshot by a factor of ! Si(7) of the Fourier sums occurs is the same at
any jump discontinuiuty of a piecewise smooth function.

37 Applications to PDEs

In this chapter we use ¢ for the Fourier variable: this is the most frequent convention in PDEs.

37.1 The heat equation on the circle
This is given by
ou *u 1
o 92 u(x,0) = f(x); feC(T) (223)

We have already shown uniqueness of solutions of (223). For existence we write

f(x) — Z ajezmjx

jez
By separation of variables we get

u(x, ) = Y fue bt p2miny (224)

nez

With f = (fu)nez Hy = (6_4”2”2t)nez, the Fourier coefficients of the heat kernel for the circle

Ht(x) — Z 6747m2t62m‘nx (225)
nez
we have i1 = f H; and therefore
u=f=H (226)

(where (f xg)(y) = [y f(x)g(y — x)dx).

37.2 The heat equation on the line; smoothening by convolution

This is the same as (223), except with x € IR. With uniqueness settled in §30, we show existence,
and in fact construct the solution, by Fourier transform in x:

o _ — 47220 (227)
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which gives

i(t,§) = f(g)e ¢ (228)
As before, the convolution theorem implies
u=fxH (229)
where
Hy(x) = F! <e*4”2¢2f) = (47t) V22 /4 (230)

Theorem 37.2.1. If f € S, then the solution of (223) on R is (229), and u(t,-) € S; ||lu(t,-) —
fllu = 0and ||u(t,) — flla—0ast—0

Proof. First, note that #i(t,-) € S for t > 0, implying that u(t,-) € S for t > 0. Next,
u(x, 1) — f(x)| = \ | 7@ (e —1) ezm%c\ < [If@I]e e —1]de 0 @3
R R
as t — 0 by dominated convergence. For the L? norm, by Plancherel,

Jutt, ) = £I5 = late, ) = I = [ 1F@P[e 7 —1[ dg — 0 232)

as t — 0 again by dominated convergence. O

Corollary 37.2.2 (Smoothening by convolution). Let f € C.(R). Then g; = f* H; € S (in
fact, g; is entire) and g; — f uniformly as ¢t — 0.

Proof. Indeed, if f € Cc(R), then f € C®(R) N Cy(R), hence f(&)e #7&t € S (using the super-
exponential decay in ¢ you can show that, in fact, g; is entire). The rest follows from Theorem
37.2.1. d

Theorem 37.2.3. The heat kernel on the circle is the periodization of the heat kernel on the
line:

Hi(x) = ) Hi(x+n) (233)

nez

Proof. This follows immediately from (230), (225) and the general form of Poisson’s summation
formula. O
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Corollary 37.2.4. The heat kernel on the circle is positive, and the family {H;};>o is an
approximation to the identity.

Proof. Positivity follows from (233). It is clear from (225) that [_ 1{52 t(x)dx = 1 (since only

the term with n = 0 contributes). We have to show that the integral of H; over an interval not
containing 0, say | = (a, ) where 0 < & < B < 1/2 vanishes in the limit t — 0. Note that for
x€Jand 0 #n € Zwehave |1 +x/n| > |1 —x| > |1— B| :=¢ implying |x + n| > |n|e and thus

Y. Hi(x+n) < Y (4rt) V2 A S 0ast— 0 (234)
[n|>1 [n|>1

by monotone convergence, which implies, by dominated convergence,

Ht —I—/ Hi(x +n)
47‘(1‘)1/2 J 1
efa2/4t

< W(ﬁ —a)+ Y (4rt) V2 s 0ast 0 (235)

In|>1

O]

Corollary 37.2.5. For any continuous initial condition f, the heat equation on the circle
has a unique smooth solution, u(x,t) = (H; * f)(x).

Proof. Indeed, H; * f is smooth and solves the heat equation for any ¢ > 0 and, by Corollary
372—1, limtﬁo Ht * f = f ]
37.3 General linear PDEs

A differential operator is an operator L of degree m has the general form

L= ) a,(x)D% giving Lf = )  a,(x)3"f

Joe|<m lae|<m

and it is with constant coefficients if a,(x) = b, are independent of x. Let f € S. Then,

FLAE) = Y @mi) bz f(e) (236)

|a|<m

and we see that the equation Lf = g in R" reduces to a polynomial equation, whenever we can
indeed apply the Fourier transform.
The polynomial

Y. by

lae|<m
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is called total symbol of L, or simply symbol. The part of the symbol containing the terms of
highest degree only,
L ba®

la|=m

is called principal symbol. For a second order partial differential operator L with principal

symbol
2 b
i+j=2
the operator is called elliptic if the matrix B = {b;;};; is positive or negative definite, hyperbolic
if B is not definite but det(B) # 0 and parabolic if exactly one eigenvalue of B is zero. Thus, the
Laplacian A is elliptic, the wave operator [J = 97 — 85 is hyperbolic, and the heat operator 9; — 92
is parabolic. The names of the three types above derive from the form of the symbol: for the
Laplacian, the symbol is 77 + 73 whose level lines are ellipses; the level lines are hyperbolas for
n? — n3; the heat equation has total symbol 7; + 73 whose level lines are parabolas; whether the
parabola is concave or convex is also important. Let’s examine these four types of equations on
the circle, with conditions (initial, boundary, etc) in S performing (discrete) Fourier transform in
one variable only.
For the wave equation, we get
[y); = —4m%j*0;

with solutions uj = aje2™/" 4 b;e*™/!, meaning

u(x, t) = Z aje*ZHij(Ht) + Z b],eZTEij(xft)
jeEN jEN

and the solution is completely determined if we provide u(x,0),u:(x,0). We also note that
u(x,t) = f(x+1t)+ g(x —t). Recall also the solutions of the Laplace equation, Theorem 30.0.2
and of the heat equation on the circle, Exercise 78.

The backward heat equation, u; = —uy, would formally give

Z ake4712j2t+ijx
jez

and, for generic initial conditions in S, this is nonsense for any t > 0 (the solution, assumed C?
in x, would have a convergent Fourier series if it existed at all).

The Laplace equation Au = 0 is elliptic, and in a given domain it needs one boundary
condition: either uyn = f or the normal derivative g—fﬂa@ =g.

Note the important role of the principal symbol: its nature dictates the growth of the Fourier
coefficients, which control the existence and smoothness of solutions.

Note also that if we have a linear PDE with constant coefficients, a Fourier transform converts
it to a polynomial equation which can be solved in closed form.

37.4 Operators and symmetries

If G is a group of transformations on a space of functions § and L is a map from § to §, then L is
invariant under G if L(yf) = yLf forally € Gand f € §.
Another way to write this is to note that f — < f is itself a linear operator; call it I'. Then,
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L is invariant G iff, for any v € G, L and I commute, LT — 'L =: [L,T| = 0. Symmetries often
place such restrictions on L that the operator is virtually determined by them. In physics, this is
an important way to determine the fundamental laws of various theories.

Let’s look at the question of which second order operators commute with the isometries of
R", the group generated by 7 and O(#n). Recalling our more general analysis of isometries of
Hilbert spaces, all elements of O(n) must be (real-valued) unitary transformations, R € O(n) =
RR* = I = RR". In particular, |detR| = 1.

Lemma 37.4.1. The Fourier transform commutes with O(n) : R € O(n) = R(Ff(&)) =

(FARE) = (Ff(R)(E)-
Proof. Changing variable Rx =y,

e IR fly)dy = [ e RN fly)dy — F(RE)

n n

@ = /11.2»1 e_zm<5’x>f(Rx)dx = /

Theorem 37.4.2. A differential operator L commutes with the isometries of R" iff it is a
polynomial in A, L = Q(A).

Proof. Itis easy to see, as in the beginning of the paragraph, that L must have constant coefficients.
In Fourier space it is a polynomial in P({) which, by Lemma 37.4.1, commutes with O(n). We
decompose the polynomial by homogeneous components,

M M

P(¢) = ZO IE 0,3 = ZOPm(C)
m=0 |a|=n m=

Next, we note that

0 = A"M[P(RA) = P(A)] = lim A"M[P(ARE) — P(AZ)] = Pu(RE) — Pm(§) =0

This means that the highest order homogeneous polynomial is itself O(n)-invariant. Subtracting
Py from P and repeating the argument implies that Py;_; commutes with O(n) and inductively,
all homogeneous components P;(¢) do. Take the unit sphere, S = {¢ : [{| = 1} and note that
O(n) acts transitively on S. This follows from the exercise below. Thus P;(R¢) = P;(¢) on S
implies P; = a; = const on S, entailing P;(¢) = a;|¢|) which is only possible if j is even, and thus
ayr1 = 0 and Py (&) = az (87 + ... + &) o

Exercise 92. Show that SL(#n) acts transitively on R" \ {0} and (thus) O(n) acts transitively
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on the unit sphere in R".

37.5 Supplementary material: Adjoints of linear operators

Recall that for a bounded operator B in a Hilbert space H , we can define the adjoint B* by
(Bx,y) = (x,B*y), where uniqueness is immediate and existence is guaranteed by the Riesz
representation theorem. An operator L which is not necessarily bounded is defined on some
domain dom(L) = ) (we may assume that ) is dense in H, otherwise the natural Hilbert space
to work in would be H; = Q). Naturally, the adjoint of L would be an operator L*, defined on
some domain ()* with the property

V(x,y) € Qx Q" (Lx,y) = (x,L"y)

Obvious questions are of course existence of such an L*, and uniqueness. Uniqueness is easy: if
we have two operators L} and L; with the property above, then for any y such that L, are both
defined, we have, for any x in the dense set dom(L),

(x, (LT = Ly)y) =0= (L1 — L)y =0
For existence, define
dom(L*) ={yeH:3zeH,(Lx,y) = (x,2)} (237)

and define L* on dom(L*) by
L'y :=z (238)

Definition 37.5.1. An operator A on a dense domain ) C H is self-adjoint if A* = A. Note that this
means that dom(A*) is no more, and no less than dom(A).

Proposition 37.5.2. Let U be unitary from H to H' and A : QO — H a linear operator with dense domain.
Then UQ) is dense in H', UA is well defined on UQ) and its adjoint in UA*.

Proof. Since U is an isomorphism, this is a straightforward verification. ]

Example 37.5.3. Consider the operator D = i% on T. First, we see that for smooth functions,

say in C®(T), (Df,g) = (f,Dg) and D* exists at least on C*(T), and on it D* = D. From the
definition of the adjoint, it is clear that the domain of D* gets larger if the domain of D shrinks.
Suppose we want to determine first the “maximal” set of functions in L® C L? on which we
can define differentiation. We keep then C*®(T) as an initial domain for D (or choose an even
smoother space if it helps), and determine the corresponding domain of D*.

Let U = F, the discrete Fourier transform, a unitary map between L?(T) and ¢?(Z). Then
UD is the operator of multiplication by —27tk and, to understand what the adjoint of D is, it is
enough to determine the adjoint of —27tk. We have

(Df,g) = Y (—2mkfi)gk = Y fu(—2mkge) =t Y frz

kez kez kez
which implies z; = (—27kgy), k € Z. Thus, dom(D*) = = { € H : (kgi)kez € *(Z)}.
Let (hi)rez € (*(Z) be given by hy = —27ikgy, k € Z and h = FY((h)x). For k # 0 we have
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gk = i/(2mk)hy which means that g = [ h + A(f) where A(g) is an additive constant, which
is a bounded linear functional on L? (why?). Now, i € L? implies ¢ € AC(T) (with derivative
in L2). This is the largest domain of D, with range in L2. In this simple example, if we extend
dom(D) to OO, the same argument shows that this extended D is self-adjoint.

Example 37.5.3 indicates that if we want to extend D even further, then the extended domain,
or range, or both cannot consist of usual functions, even allowing for the generalizations used in
the L? spaces.

Let us first relax the restriction on the range. The dual of C.([—a,4]) is the space of Radon
measures on [—a,a]. The Heaviside function ®(x) is not in AC (it's not even continuous, of
course). As an element of the dual of C. it acts as (®,¢) = [ ¢(x)dx. Proceeding as in the
previous example, taking ¢ in the dense set C!([—a, a]), we would define A = %@, as an element
of C; by

Ap=—(0,79) =~ [ ¢/(5)s = 9(0) > A = (x)

where §(x) is the Dirac mass measure at zero. Thus ©’(x) = é(x) exists, as a measure, J(x). In
the same manner, we would get

0" (x) = (¢ =~ —¢'(0))

This is obviously not defined as a bounded functional on C.([—a,a]), but it is in (C!([—a,a]))*.
This logic prompts us to consider the baseline space of test functions D = C°(R").

37.6 Supplementary material: the Fourier transform of functions analytic in the
lower half plane and the Laplace transform

Let f € L' N Cy(R) be s.t. f € L!. Recall that this implies that F~'f = f.

Proposition 37.6.1. (i) Assume that f € L' N Co(R) is s.t. f € L, and that f is analytic in the upper
half plane H, and that | f(z)| — 0 as |z| — oo in H. Then f(&) = 0if & < 0.

(i) Assume f € L' N Co(R) and f(&) = 0 for & < 0. Then f is analytic in the upper half plane and
|f(z)| = 0as |z| = coin H.

Proof. (i) Let { > 0. Take C; to be the three upper sides of a box in C: the segment from r to
r — ir, followed by the segment from r — ir to —r — ir and finally from —r — ir to —r. Check that
Je e % f(x)dx — 0 as r — co. Fix an ¢ and choose  large enough so that | f‘ e~ e f(x)dx| +

| Je, e~i6* f(x)dx| < e. We then have

x|>r

/]Re_igxf(x)dx - / e S f(x)dx| < e

[—r,r]UC,

where f[f rsluc, Means the integral over [—r,r] followed by the integral on C, discussed above.

On the other hand, since f is analytic, Cauchy’s theorem implies that || =1 AUC, e~ ¥ f(x)dx = 0,
and since ¢ is arbitrary, the result follows.
(ii) Simply use dominated convergence and the Riemann-Lebesgue lemma.
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Definition 37.6.2. Let F € L'(R"). The Laplace transform of L is defined as
(LF)(x) = / e PE(p)dp, Rx >0
0

More generally, if e""*F € L! for some a > 0, then LF is defined by the same formula, for Rx > a.

Theorem 37.6.3. If F € L'(R™"), then f(x) = LF is analytic in the right half plane H and continuous
in H. If f(ix) € LY(R), then, for p > 0, F is given by the inverse Laplace transform,

Fp) = 5 [~ erflinar= 5o [ flaperz

—00 - 2711 —ioco

If sup |z°f(z)| < oo for some a > 1, then we equivalently have

Fp) = 5 [ fla)erdz

c—ico
forany ¢ = 0.

Proof. Analyticity in H follows from the fact that F € L!: dominated convergence allows then for
differentiation inside the integral. Continuity in H also follows from dominated convergence. In
the limit x — 277it, we get

(CF)(2rit) = /0 e 2t E (p)dp = B(1)

The rest follows from the Fourier inversion theorem. O

38 Distribution theory

“Il y a plus de 50 ans que l'ingénieur Heaviside introduisit ses régles de calcul symbolique,
dans un mémoire audacieux ot des calculs mathématiques fort peu justifiés sont utilisés pour
la solution de problémes de physique. Ce calcul symbolique, oli opérationnel, n'a cessé de
se développer depuis, et sert de base aux études théoriques des électriciens. Les ingénieurs
l"utilisent systématiquement, chacun avec sa conception personnelle, avec la conscience plus ou
moins tranquille ; c’est devenu une technique «qui n’est pas rigoureuse mais qui réussit bien».
Depuis l'introduction par Dirac de la fameuse fonction d(x), qui serait nulle partout sauf pour
x = 0, de telle sorte que [ &(x)dx = +1, les formules du calcul symbolique sont devenues
encore plus inacceptables pour la rigueur des mathématiciens. Ecrire que la fonction d’'Heaviside
Y(x) égale 0 pour x < 0 et a 1 pour x > 0 a pour dérivée la fonction de Dirac §(x) dont la
définition méme est contradictoire, et parler des dérivées ¢'(x), 6" (x),... de cette fonction denude
d’existence réelle, c’est dépasser les limites qui nous est permises. Comment expliquer le succes
de ces méthodes? Quand une telle situation contradictoire se présente, il est bien rare qu’il n’en
résulte pas une théorie mathématique nouvelle qui justifie, sous une forme modifiée, le langage
des physiciens ; il y a méme la une source importante de progres des mathématiques et de la
physique.”
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“More than 50 years ago the engineer Heaviside introduced his symbolic calculus rules, in an
audacious memoir in which mathematical calculations with scant justification were used to solve
physical problems. This symbolic calculus, or operational calculus, has not ceased to be devel-
oped since, and serves as a foundation for the theoretical studies of electricians. The engineers
use it systematically, everyone using his own conception, with a more or less peaceful conscience;
it has become a technique “which is not rigorous, but is successful”. Ever since Dirac’s intro-
duction of the famous function é(x), which would be zero everywhere except at x = 0, in such
a way that [*_&(x)dx = +1, the formulas of symbolic calculus have become even more unac-
ceptable for the rigor of mathematicians. To write that the Heaviside function Y (x) which equals
0 fox < 0and 1 for x > 1 has as a derivative the Dirac function (x), whose very definition
is contradictory, and then talk about the derivatives ¢'(x),6”(x),... of this function devoid of
real existence, is to exceed the limits that are permitted to us. How can one explain the success
of these methods? When such a contradictory situation presents itself, it is rarely not the case
that a new mathematical theory emerges, which justifies, in a modified form, the language of of
physicists; there is even, in this, an important source of progress of mathematics and physics.”

Laurent Schwartz, Théorie des Distributions

38.1 The space of test functions D = C°(IR"), and its topology

The topology on D = C®(R") is that of an inductive limit of Fréchet space (called “an LF space”.
Here we characterize the topolgy by its properties.

(i) A sequence { f, }nen converges to f € D iff there is an 1y € IN and a compact set K such
that all f, with n > ng are supported in K, and

Vi€ (NU{0})”, lim 2(fu = Pllu =0

(ii) A set S C D is bounded iff there is a compact set K s.t. S is a bounded subset of
CP(K).

(iii) A sequence is Cauchy if there is a compact set K s.t. all functions are supported in
K and the sequence is Cauchy in C(K).

(iv) Let Y be a locally convex topological space. A mapping A : D — Y is continuous
if it is continuous on every C°(K), K a compact set.

(v) A linear functional A : D — C is continuous iff there is an N and a K s.t.

[Ap| < cksup{[t| : x € K, [a| < N}

Definition 38.1.1. 1. D', the dual of D, is the space of distributions. If F € D’ its value
on the function ¢ € D is denoted by (F, ¢), or sometimes, when no confusion is
possible, [ F(x)g(x)dx.
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2. The topology on D’ is chosen to be the weak-* topology: a net of (Fy)yea of distri-
butions converges iff ((Fy, ¢))aca converges for every ¢ € D.

Note 38.1.2. 1. D is not a sequential space. Likewise, D’ is not a sequential space
However, convergence along nets does not play any role in the basic construction of
distributions.

2. The topology on D is not metrizable. Indeed, take a sequence of compact sets s.t.
K; T R" as j — oo. Clearly, U,CZ°(K;) = D, CZ(K;) are closed, with empty interior,
since they are proper subspaces of the topological vector space D, as shown in the
exercise below.

?See R. M. Dudley, Convergence of Sequences of Distributions, Proc. AMS 27, 3 (1971).

Exercise 93. Let V be a topological vector space and S a subspace of V with nonempty
interior. Show that V = S.

One way is as follows: since the vector space operations, addition and scalar multi-
plication are continuous, if O is nonempty and open in S, then for any s € S we have
O +s C S. Take sy € O, and note that O — sy contains the origin. For any v € V, the
map F, : C — V given by F,(1) = Av is continuous, and thus F, (O — s;) is open and
nonempty, since it contains 0, and hence there is a nonzero A so that Av € O — sy, thus
veE S, hence S =V.

Note 38.1.3. D is an inductive limit of Fréchet spaces (see Appendix A): let (K;)ien be
compact sets in R”, whose union is R” and such that for all i K; is contained in the interior
of Ki+1 (e.g., the balls of radius i centered at the origin). Then D is the inductive limit of
the sequence of Fréchet spaces C°(K;).

Definition 38.1.4. It is often useful to restrict test functions to smaller sets: If O is open (K
is compact), D(O) (D(K), resp.) denote the compactly supported infinitely differentiable
functions whose support is contained in O) (K resp.).

38.2 Examples of distributions

Check that the following are examples of elements of D"
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1. (Distributions generalize functions) Any f € LY(R) is a distribution, acting on test func-
tions by (f, ¢) = [a f( x)dx.

2. Consequently, D is embedded in D’ by
W9)i= [ 9(s)p(s)ds (2%9)

3. More generally, Radon measures are distributions acting by (u, ¢) = [, ¢dp.

4. An important example of a distributions of the form 2 is the Dirac distribution at zero, or
the “delta function”. This is the functional é(x) defined by (4, ¢) = ¢(0). More generally,
the delta function at x, dx,(x) is the distribution (dy,, ¢) = @(x0).

5. Derivatives of the delta function at a point, defined by (3%5,,, ¢) = (—1)I*(3%¢)(xp) are
distributions. Check that these derivatives, for |a| # 0 are not of the form 3.

6. Let Fy(x,y) = L e 27 (=¥ Then, with ¢ € C®([~1/2,1/2]), and ¢ the Fourier
coefficients of ¢, we have

(En(-y), Z pre™ — ¢(y) as N — oo
k=_N

and thus Y e 27k(=¥) — 5, (x) as N — o0, in D'(—-1/2,1/2).

Proposition 38.2.1 (Fundamental sequences). Assume f € L'(R") and [, f = 1; fore > 0
define f.(x) = e "f(x/¢e). Then f, — 6 as e — 0.

Proof. Let ¢ € D. Then,

(feo @) =¢" /H;ﬂf(x/s dx—/ f(x)p(xe)dx — ¢(0)

by dominated convergence. O

38.3 Support of a distribution

General distributions are not functions and we cannot generally speak of the value of a dis-
tribution at a point. However, the restriction of a distribution to an open set is a meaningful
notion.

Definition 38.3.1. F € D’ is zero on the open set O if F restricted to D(O) is zero. Similarly,
if F,G € D’ we say that F and G agreeon O if F— G =0on O.

Check that this notion coincides with usual equality of functions (a.e.) if F and G are func-
tions.
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Proposition 38.3.2. Let O, be open sets with U,O, = O. If F € D'(O) and F = 0 on each
Oy then F =0o0n O.

Proof. Let ¢ € D(O). Since supp(¢) is a compact set, there exist m € N and Oy, ..., Oy, s.t.

¢ < U'O;. Let ¢j,j = 1,...,m be a smooth partition of unity on supp(¢) with ¢; < O;. Then
(F,¢) = L;(F, ¢j9) = 0, by assumption. .

Definition 38.3.3. For F € D, there is a maximal open set O in R” (possibly empty) on
which F is zero. Then, the support of F is R" \ O.

Example 38.3.4. The delta function at xo has {xo} as a support.

Definition 38.3.5. Let T be a linear continuous operator on D. T has a transpose if there is
a linear continuous operator T* on D s.t.

(T*¢, ¢) =: (¢, To) (240)

As an example, the transpose of 9" is (—1)1*/9*. Note that the transpose is uniquely defined by
(T*)* =T and (240). Check that the transposes below exist and satisfy the rules in 1. and 2.

1. (aT +bS)* = aT* + bS*.
2. (TS)* = S*T*.

38.4 Extension of operators from functions to distributions

Proposition 38.4.1. Assume T is linear and continuous from D to D. Define T* by

(T*F,¢) = (F, To)

Then T is linear and continuous on D’.

Definition 38.4.2. We define T on D' by T = T*, T* as above.
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Proof. For linearity:
(T*(aF, + bE,), @) = (aFy + bF,, Tg) = a(F, Te) + b{(F, Te) = a(T*F, ¢) + b{T*F, ¢)

Continuity: By the definition of the topology on D’ (and since for every ¢ € D we have T¢ € D)
if {Fy}uca is s.t. Fy, — F, then lim, (T*F,, ¢) = lim,(F,, Tp) = (F,Te) = (T*F, ¢). O

Examples. 1. (Differentiation) Let F be any Lllo . function. Then, F has derivatives of all orders
in the sense of distributions, since

<WR¢%=FDWHVH@Wﬂ@

is a continuous functional on D. That is: if F is a distribution, then 0*F is a distribution,
defined by (—1)!*/(F,0%p).

2. (Multiplication by smooth functions) If F € D" and ¢ € D, then Fip € D/, since T* := ¢ —
Yo satisfies the hypotheses of the Proposition above (it acts continuously on D), and F is
then the distribution (Fi, ¢) := (F, ¢). Note that smoothness is needed in this definition;
if F = ¢ and, suppose, ¢ is only in L®, (¢)(0) is undefined, in general. The product of
two distributions is not defined, in general.

3. (Translation) Since [g, f(x +a)g(x)dx = [, f(x)g(x —a)dx if f,g € D, the extension to
D' of translation is (1,F, ) = (F,7_4¢), and the proposition applies since T = 7_, is
continuous.

4. (Composition with linear transformations of R”.) Let M be linear and invertible on R".
Then ¢ — @ o M~ ! is a continuous linear map on D, and hence F o M is well defined:

(FoM,¢) = |detM| "L (F, g o M 1)
In particular, if R is the reflection Rg(x) = ¢(—x), we have

(RF, @) = (F,Ro)

Exercise 94. 1. Show that the Leibniz rule of differentiation applies to (F¢)™, when
FeD and ¢ € D.
Let ¢ € S. Consider the following calculations:

(98) = ¢'6 + 6" =| ¢'(0)5 + ¢(0)d’

(93)" = (¢(0)9)" = | p(0)0'

Both cannot be right. Do a careful calculation and decide which formula is correct and
what went wrong in the other.
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Exercise 95. 1. Show that there is no sequence nonzero numbers {ck}ren such that

0]
Y b ) converges in the sense of distributions.
k=0

2. Show that for any sequence of nonzero numbers {c }ren, there is a smooth function
¢ such that the sequence {cx9")(0)}ren is unbounded.

Exercise 96. Homework: 94,95 from these notes and 2,6,7,13 form Folland, Chapter 9-Not
due, I will provide a solution sheet for 94,95

Definition 38.4.3. If K is a compact set,

D(K) ={¢ € D :supp(¢) C K}

Theorem 38.4.4 (Regularity). For any distribution F and compact set K C R", there is a
positive integer N(K) and a positive constant ¢(K) s.t. for all ¢ € D(K),

[(F, @) < e(K)|gp|n, where |pn = max [|0%¢]. (241)

|a|<N

In other words, any distribution, restricted to D(K) is in fact in the dual of CN(K) for some
N € N U {0}.

Note that | - |y is a norm in CN(K).

Proof. By contradiction: assume the inequality in (241) is false for all N. Then, for any n there is
a ¢, € D(K) s.t. [(F,¢n)| =1and |¢u|n < 1/n. However, the sequence {¢, },cN converges to
zero in D(K) which contradicts |(F, ¢,)| = 1 for all n.

O

Definition 38.4.5. For K € IN consider the space of functions on T" which are absolutely
continuous together with all derivatives of order up to K — 1 and derivatives of order K in
L?. Define the norms

lglze = Y llogli3 (242)

la|<K
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The space Hx = Hx(T") is defined as {g : T" — C| ||g|l2x < oo}

Proposition 38.4.6. (i) Hx is a Hilbert space.
(i) Hk is equivalently characterized by the Fourier coefficient norm

Iglsx = Y (1 + k)X |g]* < oo (243)
kez"

(iii) Smooth functions in T” are dense in Hg.

(iv) If u € Hg and K > n/2, then u is continuous and |lu|, < const.||u||x where
the constant does not depend on u. More generally, if K > n/2 + M, then u € CM(T")
and |u|p < const||u||g, where the constant does not depend on u. Consequently, iu K >
1n/2+ M, then Hy is continuously embedded in CM(T"), and is a dense subset of CM(T").

Proof. (i) Straightforward.

(ii) Parseval.

(iif) Smooth functions in T" are those for which all norms above indexed by K € IN are finite.
Density is obvious, as if we simply truncate the series in (243) at k = ky, then the function
corresponding to it is smooth for any kxy and in the limit ky — oo we recover the infinite sum.

(iv) Here the argument is similar to that in Exercise 77. We have, by Cauchy-Schwarz

2
R 1
(sup |u])? < ( 2 |uk|> < < Z (1+ |k|2)1<|uk|2> Z TELTR < const.||u||k (244)
T kEZ" kEZ" kEZ" (| | + )

The case K > n/2 + M is similar and left as an exercise. O

Note 38.4.7. H is an instance of a Sobolev space, and (iv) above is an instance of a Sobolev
embedding theorem.

Theorem 38.4.8 (A structure theorem). Any distribution with compact support can be
written in the form

F= Y o (245)

|a|<L

where g, are continuous functions and L is some nonnegative integer.

Proof. Let Q be an open cube containing the support of F, and take a smooth ¥ s.t. Q < .
Without loss of generality, we may assume that Q is centered at 0 and of side 1. By the definition
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of the support, we see that F{p = F (¢ is zero outside Q for any ¢ € D). By Theorem 35.4.4,
there exist ¢ = ¢(Q) and M = M(Q) s.t for all ¢ € D we have

[(E, @) = [(F, ¥@)| < const.[pg|m < const.|p|m

Let N > M+n/2. If u € Hy then u € CM(T") and F is a linear functional on Hy, through
F(u) =:= F(uy). F is also continuous in || - || 5 since |F(u)| < const.|u|p < const||u||n. Therefore,
F is the inner product with an element ¢ € Hy, and, if ¢ € D C Hy, we have

Flo)= ¥ [ @09)@9) = (DM ¥ [ s@™9)= ¥ (~1)"a%g,g)

o[ <N la|<N ] <N

Note 38.4.9. The functions g, can be chosen to be compactly supported. Indeed let X € D
be s.t X =1 on the support of F. Then F = F X and for any ¢ € D we have

(F,¢) = (F, Xo) = ("¢, Xg) = (g,0"(X, 9))

= Y (gcpp0P 1 X0P20) = Y (cp,,80°1 X, 0P20) (246)
P1+pa=a P1+pa=u

and thus
F= Y cppoP (g X)= Y 9g,

rtpa=« l7I<]al

where supp g, C supp X.

Corollary 38.4.10. For any K, D is embedded densely in D’ (K).

Proof. If F € D'(K), then F = 9P¢ for some continuous g, by the previous theorem. Let {1, } en
be a set of functions in D converging to g. In the topology of D', 9fyp,, — o9Pg. O

Convolution with elements of D. This is defined, generalizing the convolution in D by

(Fx9),¢) = (F, ¢ *Ry)

For example,

n

(Ox9),¢) = (6,9 xRy) = (¢ xRyp)(0) = / P(s)p(—=(0—s))ds = (p, ) = dxp =1

and hence the delta function is the unit for convolution. An alternative formula is obtained as
follows. If ¢ and F are in D then

(F* ¢)(x) = / F(s)g(x — s)ds = (F, txRg) (247)

n
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and simple estimates show that the operation is continuous in D; thus the extension of convo-
lution to D’ is given by (247). The two definitions coincide, by continuity and density of D in
D'.

Proposition 38.4.11 (Smoothing of distributions by convolution). For any F € D', F x ¢ :=
(F, %xRg) is C* and 0“F x ¢ = (F,0"1yR¢p) = (F, 7x0“R¢) = (0"F) * ¢ = F x 9“g.

Proof. Note first that the continuity of ¢ implies that lim,_,o(7:Rp — Rg) = 0 in the topology of
D. Thus
(F, Tx4+eR¢p) — (F,RTy¢) ase — 0

and thus the (usual) function g(x) = (F, Ty¢) is continuous. Next (take first n = 1), we see that
¢ 1(Rp — Rp) — R¢’ in the topology of D, and thus

e '((F, tx+¢Rp) — (F,7uR9)) — (F, xR¢’) = (F/,7xRg) > ase — 0

and g defined above is differentiable. Inductively, it is infinitely differentiable. Since proving
differentiability involves on variable at a time, the result follows. ]

38.5 The Hadamard finite part

Distributions can be used to regularize certain divergent integrals, as first anticipated by Hadamard
in the theory of hyperbolic PDEs. I adapt this example from [4]. The integral we want to regu-

larize is o
/ @ (x)x 3 2dx
0

Let f(x) = 0 for x < 0 and f(x) = —2x~'/2 for x > 0. Then

0

_ogim [T ) _ lim< wigjcz) —2s1/2<p(0)> = /Ooo (’de (248)

The last expression on the first line and the last two on the second line are convenient ways to
present this regularization, and clearly they are bounded functionals on the C! functions with
compact support.

38.6 Green’s function

This is a very important method to solve inhomogenneous PDEs (or ODEs). Let L, be a differen-
tial or partial differential operator in some domain with specified boundary conditions. Suppose
we solve the non-homogeneous problem L,G(x,y) = é(x —y) (here, we take some licence in
the notation, and we agree that x € IR” is the variable of the equation Lg = f and y € R" is a
parameter). Then,

Li(G(x,y), f(y)) = (L:G(x,y), f(y)) = (6(x —y), f(y)) = f(x)
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and thus, the solution of the non-homogeneous equation is obtained from a universal kernel for
the given equation, the Green function G(x,y) by

hx) = [ Glxy)fly)dy = Lih = f

39 The dual of C*(O)

The topology on C®(Q) is based on uniform convergence on compact sets. Take an increasing
sequence of precompact open subsets of O, {O;};en with closures {K;};cny whose union is O
and introduce the seminorms

£ 1ljja) = sup [0° f (x)] (249)

xeK;

These seminorms define a Fréchet space structure on C*(0O).

Proposition 39.0.1. D(O) is dense in C®(O).

Proof. Indeed, take a sequence of smooth functions ¥; s.t. K; < ¢; < Ojyq. It is clear that

lim ; = 1 in the seminorms (249), hence, for any ¢ € C*(0O), lim ¢);¢p = ¢ in these same
]—00 J—0

seminorms. O

Definition 39.0.2. Let £'(O) be the set of distributions compactly supported in O.

Proposition 39.0.3. Any F € £'(O) extends uniquely to a linear continuous functional on
C*®(0), and conversely, the restriction of a linear continuous functional on C®(O) to D(O)

isin £'(0).

Note 39.0.4. In the sense above, the dual of C*(0) is £'(O).

Proof. Let F € £'(0). Since supp F C U;O;, 3m € N s.t. suppF C Oy, 1. If P is sit. Kyog < ¢ <
Oy, then Fp = F, and, by the regularity theorem there exist C > 0and N € N s.t. Vo € D

[(F, @) = [(Fp, @)l = [(F,99)| <C ). N19llmal

la|<N

By continuity, F extends uniquely to ¢ € C*(O) by (F,g) = (F,yg) with ¢ as above.

179/186



Math 6211+6212, Real Analysis I+11

Conversely, by the same argument as in the regularity theorem, for any continuous functional
G on C*(0O) there exist N,m € N s.t. Vg € C*(0O) we have

(G, @) < const ) [|@uall < const ) [o%g]

|a|<N |a| <N
In particular, G is compactly supported in O,. Therefore G is a continuous linear functional on
D(O) C C*(0), and thus G € D'(0). O
39.0.1 Convolution of distributions
Let F € D' and G € &'. Then, the natural definition of convolution is
(FxG, @) = (F,RG x )
Note 39.0.5. For this to make sense, we need RG x 1 € D! Check that this is indeed the case.

It can be shown that F * G = G * F in a number of ways, e.g. Exercises 20,21 in Folland, or by
density!

40 The Fourier transform

We note that D is not preserved by the Fourier transform. Indeed, the Fourier transform of a
compactly supported function (say in R),

9@ = [ e p(x)dx

is entire, and if it vanishes on any open interval, it must be identically zero. Then we need to
enlarge D. A space containing D which is invariant under F is S.
Recall the topolgy of S, and that C°(R") = D is dense in S in the topology of S.

Definition 40.0.1. S’, the dual of S, is the space of tempered distributions.

Functions in S are required to decay faster than polynomial. The dual objects should have a
corresponding growth rate limit.

Examples 40.0.2. 1. Let f be in L} (R") and assume that, for some N, (1 + |x|)~N|f(x)] is

loc
bounded in R". Then [*_ f(x)g¢(x)dx is a continuous functional on S (check!).

2. ¢ € S(R) iff Ra = 0. Indeed, if Ra = 0, this follows from the previous example.
Otherwise, by symmetry, we can reduce to the case Rta > 0; let ¢ be compactly supported
with [¢ = 1 and let ; = ¢(x —j)e™™. We see that ) — 0 as j — oo in S, while
[ e ™ p; =1 forall j.
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Definition 40.0.3. A C* function ¢ is slowly increasing if, together with its derivatives it
does not grow faster than polynomially. More precisely, for any « IN(«) € IN s.t.

[
(

(o]

Proposition 40.0.4. (i) If F € S’ and ¢ is slowly increasing, then Fyp € §’.
(i) If F € S’ and ¢ € S, then F * 1 is slowly increasing, and, for ¢ € S, we have

(FoxRy) = [ o(x)(Fx)(x)dx @s1)

Proof. (i) (Fy, @) := (F,g) is an element of S since ¢ is in S, as it is easy to check.

(ii) We have already proved that F x ¢ € C*. As in the proof of the regularity theorem, for a
given F to be in S’, F must be bounded with respect to a finite number of seminorms that define
the Fréchet space S, thatis, 3m,N € Nand C > 0s.t. Vo € S

[(F, @) < Cmax{||¢[lma : [a] < N}

Note also that for any x,y € R”, 1+ |x| < 1+ |x—y|+|y| < (1+ |x—y|)(1+ |y|). Since
0PF x ¢ = Fx0Pp = (F, 7,R9P @) we have

9PF = 91(x) < max sup(1+ Js)" 0" Pp(x )] < (1+[xl)" max sup(1-+ x —s[)" " Pp(x—s)

a|<N la|<
< C(14+|xP)™ max Q|lm 252
( | |> |¢x|<N “3' H H SN ( )

Since D is dense in S, its embedding in D’ is dense in D’ D S’ we can check that D is dense in
S'. (251) is obvious if F € D, and the rest follows by continuity and dominated convergence. [

We note that for f,g € S we have

(F.8) = [[ fx)ge T vaxdy = (£,) (253)
the definition of the Fourier transform of a distribution should be: for F € S’ and g € S,

(F,8):=(F,g) (254)

It follows by duality that the basic properties of the Fourier transform that we established for
functions in S hold for functions in S’. Check also the following Fourier transforms:

Fo(x — xg) = e 2ok = Fp2mikox — 5(k — k) (255)

Note that the last equality can be interpreted as a generalized orthonormality relation of 21
and e27ikax
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Definition 40.0.5. The Cauchy principal value distribution is defined, for ¢ € D as well as
for ¢ € S by

[PV (1)] (1) = lim ”‘(")dx:/0+°°“<x>—“(—x>

e—0t ]R\[—g;g] X X

Exercise 97. Show that the Cauchy principal value functional is indeed continuous, both
on D and S.

Exercise 98. Show that:

F [PV (i)] — _rrisgn (1)

(One way is by approximation by functions in D: show first that F (sgn(k)e"g'k‘) =
)

4irTx
472x2 4 &2°

1 1 1

F (3x)") = (—27i)""

and that the Fourier transform of linear combinations of the delta function and its
derivatives are precisely the polynomials (and vice-versa).

4. Let {a, }ncz be an ¢! sequence. Then

= <Z anezmnx> — Z ayé(k —n)

nez nez

which can be seen as an extension to distributions of the Poisson summation formula.

Proposition 40.0.6. Let F € £'. Then F = (F,e 2™*¢). F is an entire function of slow
growth.
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Proof. We use the decomposition in Note 38.4.9. Clearly, it is enough to prove the result for one
distribution of the form 97¢ where ¢ is continuous and compactly supported. Let {¢;}ien C D
be a sequence compactly supported in some K converging to g in D’. We then have

a/’YE]- = /K a'Yq)].(x)e—ZﬂiC'xdx — <a'Y(P]., e—Zm’@’-x> _ <(Pj/ afye_zm'g.x>

— (g,00e FmMET) — (—2m§)7/Kg(x))e*2”i¢'de (256)

j—o0

and the rest is straightforward. O

41 Sobolev Spaces

The Fourier transform has the important feature of transforming smoothness properties into
decay ones (and vice-versa). Furthermore, the Fourier transform is a unitary operator between
L? spaces. In many applications (PDEs notably) it is convenient to bring together these features:
we can introduce L? spaces whose norms enforce a given degree of smoothness. We have already
noted that the norm

I£Il="Y_ llo*fII3 (257)

la| <k

comes from an inner product (-, -), and then the space of functions

{f 2 Ifll < oo} (258)

is a Hilbert space, the Sobolev space Hy. Taking the Fourier transform of Hj, we obtain the
following dual (Fourier) norm

N A

IF12 = 3 @ f.6"Pa= Y ((IEA)f, fla < const]| (1 +[])</2f |2

|o| <k o<k

where const only depends on k. Noting that (1 + |z|)™ < const.(1 4 |z|™), we see that the norm
above is equivalent to

=11+ 1832 f 112

In Fourier space we can immediately generalize the norms from k € IN to any s € R, which can
be interpreted as a norm weighted by (1 + A)*/2. In fact, we have the following map:

Asf = FHAH+ G2 Ff) (259)
We are now in position to define the Sobolev space H; = W*? by
Hy={Fec S :Af€l? (260)
The spaces W*" generalize H; by using L” norms,
WHP(R") == {f : Asf € LP(R")}

Note that the elements of Sobolev spaces are distributions. Nonetheless, we have the following:

183/186



Math 6211+6212, Real Analysis I+11

Proposition 41.0.1. If f € Hj, then f and f are tempered functions.

Proof. Since f = Rf, we only check the statements about f. The fact that Asf is a function (an
element of L2, more precisely), means (1 + |¢|?)*/2f, and therefore f, are functions.
Now, treating f as an element of S’, and using the fact that f is a function, we have

(£,9) = (. 0) = [ oRf

which means that f is a tempered distribution and thus a tempered function. O

The inner product that we get by polarization is clearly

F.8)0 = [ IO +IE)FEs
The following properties follow easily from the definition

Proposition 41.0.2. 1. Hy = L*> with || - || o) = || - I|2-

N

. The Fourier transform is an isomorphism between Hg and L?>(R", ) where du = (1 + |&|?)°d¢.

W

. Sis dense in H; for all s (this is most easily seen based on 1. above).

HN

cfs >t then || - ||y < || - |l(s) and Hs is dense in Hy in || - || .

5. Ay is a unitary isomorphism between Hs and Hg_; for all s,t € R.

(@)

. Since |*| < (1+ |g]*)1*1/2, 0% is a bounded map between Hs and H;_ .

In one dimension d(x) is in Hs if s < —3, and in n dimensions if s < —%. We see that
regularity is measured more finely in this way.

Which Sobolev spaces consist of functions? The following theorem answers this important
question.

Theorem 41.0.3 (The Sobolev embedding theorem). If s > k + n/2, then
(i) Hy C C§.
(i) f € H, implies F(0"f) € L' and || F(9* f)|l1 < C||f||(s) where C only depends on k — s.

Proof. We prove (ii) first as (i) follows from it and the Riemann-Lebesgue lemma. We apply
Cauchy-Schwarz:

L [Fes = [ T
g 17001 = [ 11 < [ 1R < I+ 1ER e eyt

O

Theorem 41.0.4. If f € H_, then the functional ¢ — (f, @) extends continuously to a functional on H,
with norm ||f|| ), and any element in the dual of H; is of this form.

(Does this mean that the Hilbert space H_; “is the dual of” H;?)
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Proof. By Proposition 41.0.1 f is a tempered function. Cauchy-Schwarz implies

[(f 9) = /ffi’ <NA+IER)2F1 1A+ 18229l = 1l sl 9lls) (261)

Conversely, we can start in Fourier space with f , an element of FH_; and let it act on an element
of H; by

0.0) = [ J©o@ae ("= [ fmetix) = [ F@ 0+ ip@)0 + )i @6

which, again by Cauchy-Schwarz shows that f is an element of S’ which is also in H;.
O

42 Appendix A: inductive limits of Fréchet spaces

Let V be a topological vector space over R or C.

Definition 42.0.1. Theset A C V is
1. Convex if ay,ap € A implies ta; + (1 — t)ay € A forany t € [0,1].
2. Balanced if a € A implies Aa € Aif |A| < 1;
3. Bounded if for any neighborhood V of 0 there isa v > 0s.t. ¥V D A.

4. Absorbent or absorbing if {UotA} = V. (The set A can be scaled out to absorb every point in the
space.)

Definition 42.0.2. 1. A family of seminorms on a vector space V is called separating if for any 0 #*
v € V there is a seminorm || - ||4 s.t. ||v]|« > 0.

2. Vis called locally convex if the origin has a local base of absolutely convex absorbent sets.

Proposition 42.0.3. The topological vector space V is a locally convex space iff the topology is given by
a family of seminorms.

Proof. For the “if” part, the proof is immediate; the converse requires Minkovky’s functionals
and the Hahn-Banach separation theorem, see [3]. O

Theorem 42.0.4. Let V be a topological vector space whose topology is given by a family of seminorms.
Then V is metrizable, and a translation-invariant metric is determined by

k \ka
22 T+l (263)

The balls B(0,r) := {x : p(x,0) < r} are balanced. If V is complete with respect to p, then it is a Fréchet
space.

Proof. Largely a straightforward verification, see [3] , p. 437 and on. O
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Definition 42.0.5. Let
ViCWV, T -CVjr--

be a sequence of Fréchet spaces. Thw inductive limit topology on V is the strongest locally convex topology,
in which the injections V; — V are continuous.

Theorem 42.0.6. Let V be an inductive limit of Fréchet spaces as in Definition 42.0.5.

1. The open, convex, balanced neighborhoods of zero are the sets W s.t. W N V; are open, convex,
balanced neighborhoods of zero for all j, and these sets uniquely determine the topology of V.

2. A C Vis bounded iff A is a bounded subset of some fixed Vy,.

3. A sequence is Cauchy in V iff there is some ng a.t. the sequence is contained V,, and is Cauchy
there.

4. Let X be a locally convex topological vector space. The linear map T : X — V is continuous iff the
restriction of T to V; is continuous for every j.
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