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Hilbert spaces are defined by abstracting the structure needed for the properties above to
hold.

21 Norms, seminorms and inner products

Definitions

Given a vector space V over a subfield K of the complex numbers, a norm on V is a
nonnegative-valued scalar function p : V — [0, +00) with the following properties: for all 2 € K
andallu,v eV,

1.

p(u+0) < p(u)+p(o)

(p is subadditive, or: p satisfies the triangle inequality).

2. p(av) = |a|p(v) (p is absolutely homogeneous, or absolutely scalable).

3. If p(v) = 0 then v = 0 is the zero vector (p is positive definite).

A seminorm on V is a function p : V — R with the properties 1 and 2 above.

Every vector space V with seminorm p induces a normed space V /W, called the quotient
space, where W is the subspace of V consisting of all vectors v in V with p(v) = 0 (check that W
is a subspace). The induced norm on V /W is defined by:

p(W+0) = p(v)

Two norms (or seminorms) p and q on a vector space V are equivalent if there exist two positive
constants ¢ and ¢, such that c1g(v) < p(v) <2 q(v) for every vector v in V.

A topological vector space is called normable (seminormable) if the topology of the space
can be induced by a norm (seminorm).

An inner product (x,y) over a vector space is a complex-valued function that satisfies the
following properties:

1. The inner product of a pair of elements is equal to the complex conjugate of the inner
product of the swapped elements:

(v, x) =(x,y). (1)

2. The inner product is linear in its first argument. For all complex numbers a2 and b,
(a1 + bxa,y) = a(x1,y) + blxay). @
3. The inner product of an element with itself is positive definite:
{(x,x) >0 3)

where the case of equality holds precisely when x = 0. It follows from properties (1) and (2) that
a complex inner product is antilinear in its second argument, meaning that

(x,ay1 + bya) = a(x,y1) + b(x,y2) . (1+2)

It is easily checked that the quantity ||x| := 1/(x, x) is a norm on H.
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22 Hilbert spaces

A Hilbert space H is a real or complex inner product space that is also a complete metric space
with respect to the distance function induced by the inner product (that is, the distance between
Xy € His [x—yl).

Theorem 255 (Cauchy-Schwarz). For any x,y € H we have |{x,y)| < ||x]|||l¥l|-
We have equality iff x,y are linearly dependent.

Proof. There is nothing to prove if x = 0 or y = 0, so we assume this is not the case. Note now
that for any z, ||z|| > 0. In particular, for any a € C we have

0 < |lx —ayl|* = {x,x) + la*(y, y) — 2R(a(y, x)) = f(a) (68)

We write (y, x) = |{x,y)|e" (if (x,y) = 0 any & works). For t € R,

flte™™) = (x,2) + (y,y) — 2t|(x,y)| > 0

is a nonnegative quadratic polynomial in ¢ and thus it has nonpositive discriminant: 4|(x, y)|> —
4(x,x)(y,y) <0, which is what we intended to prove. O

Proposition 256. The function x — || x|| = \/{x, x) is a norm.

Proof. First of all, by the definition of the inner product and norm, ||x| = 0 iff x = 0 and
|[Ax|| = |A||x]|- To prove the triangle inequality, we note that

lx + yl1* = 1l + [yl + 2%, y) < [lx 1+ 2lx(Hyl + 1yl = () + yl)?

22.1 Example: ¢?

Definition 257. Let
02 = {x:N — C]HxHZ = Z ]x(i)]Z =: Z ]inZ < oo}
ieN ieN

and define
(x,y) =) xiyi

ieN
which, by Cauchy-Schwarz is well-defined on 2.

Proposition 258. (2 is complete thus it is a Hilbert space.

Proof. If {x,}nen is a Cauchy sequence in ¢2, then for every i € IN the number sequence of the
ith component {(x,);}nen is Cauchy (indeed |(x,); — (xm)i]* < ||xn — xm||?). Let y; = limy, (x,);.
We need to show that y € €2, and y is the limit of x,,. Let ng be s.t. (Vn,m > no), (||xn — x| <
1). The triangle inequality implies that Vr > no, ||x,|| < C where C = 1+ ||x,,]|. It follows that,
n n

for all n,

lyi|* = lim ) |(x1)i]* < C and since |y;| are positive and the sums are bounded, the
i=1 =1
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sum converges to |[y|> < C, that is y € ¢2. Similarly, since limy_,, Y1 | (x¢): — vi|*

1, by the above we can use dominated convergence to show that ||x; — y|| — 0.

= 0 for any

L

Proposition 259. The inner product is a continuous function from H x H to C. In particular, if
{(xn,yn) }nen converges to (x,y) then (x,, yu) — (X, v).

Proof. By Cauchy-Schwarz, as ||h1]|, ||h2]| — O we have,

[(x + B,y + ha) = ()] = [(x, h2) + (B, y) + ()| <l ]+ [yl 2l + ([ [T 22l) — O

O

Proposition 260 (The parallelogram law).
e+ w1+ llx = w1 = 2(][x[1* + ly1*) (PL.)
Proof. A straightforward calculation, see (68) above. ]

We see that a Hilbert space is a complete normed space where the norm comes from an inner
product. A natural and important question arises: given a norm, can we always define an inner
product that induces the norm? The answer is no and, remarkably, (P.L.) is the necessary and
sufficient condition for the norm to come from an inner product.

Proposition 261. Let S be a complete normed space, with norm || - ||. Then the norm comes from an inner
product iff it satisfies the parallelogram law.

Proof. We have already shown that an inner-product-induced norm satisfies the parallelogram
law. In the opposite direction, a calculation assuming the existence of an inner product leads the
following explicit formula for the inner product, called the polarization identity:

1 ) ) . .
()= (Ix+ylP = llx =yl* +illx +iyl* —illx —iy|*) Vx,y € H

(for Hilbert spaces over R it has the form (x, y) = 1 ([lx +y|? — [|x —y|?)).

It remains to check that assuming the parallelogram law the formula above defines an inner
product (meaning: with properties (1)...(3) above). This is elementary, but by no means trivial!
See . A geometric argument based
on Euclid’s three line theorem is O

Corollary 262. The inner product is continuous.

22.2 Orthogonality

The notion of orthogonality, x L y if by definition (x,y) = 0 obviously extends to general Hilbert
spaces. So does the following

Proposition 263 (Pythagorean equality). If x1, ..., x,, are pairwise orthogonal, then

n

Y x

i=1

2
& 2
=) |l
i=1
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Proof.

n

>

n
i=1 j

ixi> = Z {xi, %)) = é@%x& = Z; [E<tls

i=1 i,j<n i i=

2
n
i=1

Definition 264. The linear span (linear hull, or simply span) of a set of vectors S = {v, : & € A} over
the scalar field K is

O

k
span(S) = {Z)\ivi

i=1

keN,v; € S, A; € ]K}

22.3 The Gram-Schmidt process

Given a family {x;};en of linearly independent vectors, we can construct, from them, an or-
thonormal family {¢;},cn, inductively: start with v;1 = x3; let c be st. v = co1+x2 L ©m
(which gives ¢ = —(x,01)/||v1]|?). Having constructed v, ..., v, pairwise orthogonal, choose
Crly s Cnn SX. Upiq = €p1X1 + .o + CunXy + X4 is orthogonal on vy, ..., v, (this is a linear sys-
tem with nonzero determinant). Then {v;};cn is an orthogonal family with the property that
span({x1, ..., X, f=span({vy, ..., v, } for all n. All these v; are nonzero vectors, and an orthonormal
family is simply given by ¢; = v;/||v;||.

Proposition 265. Let {x;}cn be a set of vectors in H and let V be the closure of span({x;}icn). We
assume that V is infinite dimensional (the finite dimensional case is similar, and simpler). Then there exists
an orthonormal set {e; }icN such that V is the closure of span({e; }icN)-

Proof. We can assume w.l.o.g. that {x;};cn are linearly independent, since we can inductively
{0, x)
{v,0)

eliminate the dependent vectors without affecting the span. With m,x = v, the Gram-

Schmidt procedure is:

U1
U1 = X1, €1 = —Hle
[%]
Uy = Xp — Ty, X2, € = m
k—1
U
Ok = X — Ty Xk, € = .
L ot %= [y

Note that, for all k € IN, we have span{xy, ..., x;} =span{v1, ..., v¢}, implying that span{x; : i €
IN} = span{v; : i € N} =span{e; : i € N}, hence the closures of these spans also coincide. [

224 A very short proof of Cauchy-Schwarz

Proof. In case x,y are linearly dependent the inequality is an equality. Otherwise wlog, we may
assume ||x|| = |ly|| = 1. Define ¢; = x and let e, be obtained from ¢; and y by Gram-Schmidkt.
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Then Yy =1ner +y2en and
() P = n P < |vil+ 3l =1

22.5 Orthogonal projections
In the following, H is a Hilbert space.

Definition 266 (The orthogonal complement of a space). If S is a subspace of H, then its orthogonal
complement, S* is the closed linear subspace (check these properties!) of H defined by

§'={xeH: (VyeS)(xy) =0}
The sum of two subspaces V1, V; is defined by
Vi+ W = {01 +02:01 €V, 00 € Vz}

If Vi NV, = {0}, then the sum is direct, written V, © V, and for any x € Vi @V, there is a unique pair
V1,02, 0; € V; 8.t. x = v1 + vy (check!).

Lemma 267 (Orthogonality and an extremal property). If M is a closed subspace of H, then
1. there is a unique y € M s.t. VYm € M, m # u, ||[x —m| > ||x — u]|.
2. fuisasin 1., then x —u € M. Conversely, ify € Misstx—y € M*, theny = u.

Proof. 1. Let d = infyepq ||x —yl[. Since 0 € M, d < ||x||. Thus there is a sequence {y}men in
M st. d — ||x — ym| — 0. We show that this sequence is convergent to some u € M. Note that
this proves both existence and uniqueness of a i € M s.t. ||x — || is minimal.

Since M is a closed subspace of the complete Hilbert space H, it suffices to show that
{ym}men is Cauchy. Here we use the parallelogram law:

lym = yull® = 1(x = ) = (x = y) | = 202 =y + 201 % =yl * = 1226 =y =y |
= 2llx = yul* + 20l =y 1> = 4llx = 3y + ¥ I* < 2] =y * + 2l|x = yu]|* — 4> — Oas 1, m — o0
2. Next we show that x — i € M. Let y € M be arbitrary and define m = y — ay. Then
= [ =l — pel|? + e[|y ]* + 2R(@x — 1 y)
Assume (x — u,y) # 0, write (x — i, y) = |{x — 1, y)|e’? and choose & = —|x|e?. We get
[l = [ =[x — ell? + Py * — 2lae] |{x — p, )| <

if o] < 2|(x — u,y)||ly|| 2, a contradiction.
Finally, if y € M iss.t. x —y € M, then in particular x —y L y — y, hence

lx—pl>=lx—ylP+ly—pul*=E+|y—pl>=y=u
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Corollary 268. If M is a closed subspace of H, then any x € H can be uniquely written as x = m +m*
with m € M and m*™ € M~*. Hence H = M & M*.

Definition 269 (Orthogonal projections). Let M be a closed subspace of H and M- its orthogonal
complement. Let x = m + m* with m € M and m* in M~'and define

TIMX =M X = mt

The operator 7z, is called the orthogonal projection on M.

Proposition 270. 1. The operator 1ty is the identity on M, and is idempotent: (7tpq)? = 7 pm.
2. Furthermore, 7t 4. is the orthogonal projection on M and (7041 )* = 7Ty
3. We have (M)t = M.

Proof. 1. If t € M, then the unique decomposition of t in M & M= is t = t+ 0 and thus 7yt = t.
Since, by definition, o x € M for any x € H, we have (7 )? = 7.

2. The space M is also linear and closed, because of the continuity of the scalar product.
Now, by the uniqueness of the decomposition x = m + m" and the fact that m L M", Lemma

implies that m* = 77,,.x.

3. Clearly any vector in M is in (M*)+. Conversely, x € (M)t = my0x =0 = x =
Tpmx € M. O

Corollary 271. 1. The closure of a subspace M C H is M = (M+)".
If M is a closed subspace of H, then

T+ Tp =1

where I is the identity on H.

22.6 Bessel’s inequality, Parseval’s equality, orthonormal bases
Theorem 272 (Bessel’s inequality). Let {e;},cn be an orthonormal sequence in H. Then
Y e | < Jx|?
i=1
Proof. Let H, = span({e1,...,en}) := {c1e1 + - - - cnen|c; € C}. Clearly, H, is a closed subspace of

‘H. We can then write
n

X =y x+xt = Y (x,ei)ei + xt
i=1
and, by the Pythagorean equality,
1] = llrmgg, x>+ 1 > Iy, 2] = Z! X, i)

Since this holds for any #n, taking #n — co, the result follows. O

87/155



Math 6211+6212, Real Analysis I+11

Corollary 273. Let {ey }oca be an orthonormal family in H. Then, for any x € H
Y Hxed = sup Z! X, eq,) 2 < 2]
aCA X1 ety EANEN j=

and the set {a € A : (x,eq,) # 0} is countable.

Proof. Only countability needs to be shown. It is well known however that an uncountable sum
of strictly positive numbers is infinity. O

Definition 274. An orthonormal set {e, }yca is called an orthonormal basis (Hilbert space basis)
in the Hilbert space H if any x € H can be written as a finite or countable infinite linear combination

[ee]
X =) ceq
k=1

Note 275. 1. An orthonormal basis is not a vector space basis (unless ‘H is finite-dimensional).

2. Using Bessel’s inequality, Cauchy-Schwarz and dominated convergence, we see that ¢ = (x,e),
hence

x =) (x,eq)en (69)
k=1
3. If {ex uca is an orthonormal basis and (x,e,) = 0 forall x € A, then x = 0.

Proposition 276. Any separable Hilbert space ‘H has a countable orthonormal basis.

Proof. Let {v;};en be a countable dense set in H. The closure of the span of {v; };cn is, of course,
H, and so is the span of {e¢; };cN, constructed by Gram-Schmidt. Note that, by Bessel’s inequality,

Y {x e | \xHZ:&erkeke’H,
k=1 k=1
The difference x — Z (x, ex)er is orthogonal to all the e, k € IN, thus, by Note 3,is zero. O
k=1

Theorem 277. If {e;}icn is an orthonormal set in a separable Hilbert space H, then the following are
equivalent:
a. (Completeness) If Vj, (x, ej> =0, then x = Q.

b. (Parseval’s identity) Vx € H, ||x||?> = Z |{x, er)]
c. {e;i}ien is an orthonormal basis for H.

Proof. (b.= a.) is clear.
(a.= c.) We see that x — Y, (¥, ex)ex is orthogonal to all ¢, j € IN, and thus it is zero.
(c.= b.) This is simply the Pythagorean theorem plus the continuity of the norm. O

Exercise 58. Let H be a Hilbert space, separable or not, and let {ey}sca be an orthonormal set in H.
Then, the following statements are equivalent.
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1. (Completeness condition) Va, (x,e,) = 0 holds iff x =0
2. (Density condition) The span of {e }yca is dense in H.

3. (Orthonormal basis condition) For any x € H, (x,e,) = 0 except for a countable set (ey, )reN
and

x =Y (x,eq)en
keN
4. (Maximality condition) If {eg}pep is an orthonormal set in H which contains {ex}fuca, then
{eptpcs = {eatuca

5. (Parseval’s identity condition) Vx € H, |x[? = }_ [(x,ex)|*.
aCA

Exercise 59. Show that the S = {1,x,x% ...} is a linearly independent set in H = L*([—1,1])
whose span is dense in ‘H. Thus Gram-Schmidt produces an orthonormal system of polynomials
P, out of S. (y/ ﬁpﬂ are the Legendre polynomials.) Thus, any f € H can be written as
f = Yren CkPx- Show that, although as mentioned, the span of S is dense in H, the set {f € H :
f = Ypen ckx*} is a strict subspace of H. Is it closed? Can you identify it?

Note 278. Nonseparable Hilbert spaces rarely occur in applications. A prototypical example is

2(A) = {f:A—>C

Y (@) < 00}

aEA

when A is not countable.
Also, Corollary shows that even in non-separable Hilbert spaces we only need a countable
family at a time.

Theorem 279. In a Hilbert space H, any orthonormal set S is contained in an orthonormal basis for H.

Proof. Let £ be the family of all orthonormal sets containing S ordered by inclusion. If C is
a chain in &, then it has a maximal element, namely the union of the sets in C as it is easily
verified. Now, Zorn’s Lemma implies that £ has a maximal element, which by Exercise 58 4, is a
basis for H. ]

An example of a Hilbert basis in (2 is the set ¢, = (0,..,1,0...), with 1 in the kth position.

Definition 280. Let H1, Ho be Hilbert spaces and U : H1 — Hy be linear and norm preserving, that is
|Ux||2 = ||x|1 for all x € Hq. Then U is called an isometry.

Let H1, Ho be Hilbert spaces and U : H1 — Hy be linear, inner product preserving, (Ux, Uy) =
(x,y), and onto. Then U is called unitary.

Proposition 281. U is unitary iff it is an isometry and onto.
Note 282. Unitary maps are isomorphisms, w.r.t the structure of a Hilbert space.

Proof. If U is unitary, then ||Ux||?> = (Ux,Ux) = (x,x) = ||x||>. Conversely, the polarization
identity shows that any isometry preserves the inner product. O
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Proposition 283 (Any two separable Hilbert spaces are isomorphic). Any separable Hilbert space
H is isomorphic to (2.

Proof. Let {e, }nen be an orthonormal basis in H. Define U : H — 2 by U(x) = ({x,e1), ..., {x, ey), ...
and check that this is an isometry. O

For a nonseparable Hilbert space with a Hilbert basis {ex}sca, a similar statement holds,
except (2 = (2(IN) is replaced by the more general ¢?(A), for an adequate set A.

23 Normed vector spaces

Definition 284. 1. A vector space V endowed with a norm || - || is called a normed vector space.

2. Two norms ||||1, ||||2 on the vector space V are equivalent if there exist two positive constants cy ca
st Vo eV, alvl < vl < el

3. A Banach space is a normed space which is complete w.r.t the norm topology, that is the distance
between x,y is || x — y||.

4. A series Y, o Un Of vectors in a normed space is absolutely convergent if Y, - || 0x|| converges.

Proposition 285. An absolutely convergent series ), Un is Cauchy. In the opposite direction, if

Y N Un is Cauchy, then there exists a strictly increasing sequence (1;)jeNn in N s.t. np = 1 and
s.t., with w; = Z v, the series Z w; is absolutely convergent.
1<t i€eN

Proof. Assume ) _ v, is absolutely convergent, and let € > 0. Then, the series of norms ) ||v,||

neN neN
is Cauchy and there is an ng s.t. for all m > n > ny we have

m

< Z H’O]H < €
]

—

m
L)
j=n

Hence ) _ v, is Cauchy.
nelN ,
In the opposite direction, assume ), 05, is Cauchy. Choose €; =27/,i € N, let 11 = 1 and,

Y o

m<j<n
w; = Z v;, the result follows. [

;< <My

inductively for i > 1, define n; > n;_1 so that Vn > m > n; we have < €;. Defining

Theorem 286. A normed vector space V is complete iff every absolutely convergent series in V converges.

Proof. Note first that, in a linear space, every Cauchy sequence converges iff every Cauchy series
converges. Let ), . 0, be Cauchy in V. With the construction of Proposition 285, the series

w; = Z v; is absolutely convergent, thus convergent, to some v € V. Then, for any integer
;< <ipq
me [n,niq), o= Y o) <|| Y, o +|v—)_ wi| hence ) v, also converges to v. O
j=m m<j<n; k=i nelN
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Proposition 287. 1. If V3, V, are normed vector spaces, then the product space Vi X Vy is a normed
vector space under the product norm defined, for v; € V;, by ||(v1,02)|| := ||v1]l1 + [|v2][2-

2. If V' is a closed linear subspace of V, then the quotient space V /V' is a normed vector space under
the quotient norm

lo+ V'l == inf {llo+o'll} 70)

vev
Proof. This is easy to check. L]
Note 288. Recall that all norms in C" are equivalent. Therefore, the product norm is equivalent to many

other choices, s.a. max{||||1, ||||2}-

23.1 Functionals and linear operators

Definition 289. 1. A linear operator (or map) between two vector spaces Vq, V over the same scalar
field is a function L : Vi — V, which satisfies L(ax + by) = aLx + bLy for all x,y € Vy and all
scalars a, b.

2. A linear operator having the scalar field as the target space is called linear functional.

3. An operator L : V4 — V), between two normed vector spaces Vy, Vs is called bounded if there exists
a constant C € [0,00) s.t., for all v € Vi we have

[Lo[l2 < Cllo|lx (71)

4. If Vi, V, are normed vector spaces, then L(Vy, V,) denotes the space of linear bounded operators from
V1 to Vz.

5. A Banach algebra is a Banach space which is an algebra for which the norm of the product is
bounded by the product of the norms, that is, ||xy|| < ||x|| ||y]|-

6. If X is a normed vector space over K = R or C, then the space of its bounded linear functionals
X* := L(X,K) is the very important dual of X.

Note 290. 1. L € L(V4,V3) iff L is linear from V; to V, and

IL]l == sup [[Lofl2 < oo (72)
lol=1

The quantity || L|| is called the norm of the linear map L.
2. L{(V1, V,) is a normed space with the operator norm.

Proposition 291. Let Y be a complete normed space and X a normed space. Then:
a) L(X,Y) is a complete normed space, and
b) L(Y,Y) with the operator norm is a Banach algebra.

Proof. a) If (T,), is a Cauchy sequence in £(X,Y), then for any x € X (T,x), is Cauchy in Y,
thus convergent. Now, Tx = lim, T, x defines a linear operator T € L(X,Y), since it is easy to
check that || T — T,|| — 0 and || T,.|| — || T|| as n — oo.
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