
Class notes

1 Tychonoff’s theorem

If {Xi}i∈I are topological spaces then the product space is defined as X = ∏
i∈I

Xi =

{
f : I →

⋃
i∈I

Xi

∣∣∣∣∣ (∀i)( f (i) ∈ Xi)

}
; the product topology is defined to be the coarsest topology (i.e. the

topology with the fewest open sets) for which all the projections πi (πi(x) = xi) are continuous.

That is, the sets
n⋂

j=1

π−1
ij

(Nij) where Ni are open sets in Xi form a base for the topology on X.

In this topology a net 〈 fα〉 converges iff ∀i ∈ I, fα(i) converges, that is, the topology is that of
pointwise convergence of functions. The fact that X is nonempty for general nonempty Xi is
equivalent to the axiom of choice, AC.

Theorem 1 (Tychonoff). 1 Assume {Xi}i∈I are compact for all i ∈ I. Then X = ∏
i∈I

Xi is compact in the

product topology.

Proof. Let F be a family of closed sets in X with the finite intersection property (f.i.p.). We want
to show

⋂
F∈F

F 6= ∅. Clearly this is the case if the same holds for any larger family F ′. A subtle

point in the proof is to take the largest such set. Note that any chain of families (not necessarily
of closed sets) with the f.i.p. Fα ⊂ Fα′ ⊂ · · · has an upper bound, with the f.i.p, namely their
union. By Zorn’s lemma, there is a maximal family with the f.i.p., M ⊃ F . In the following
“construct”, “choose” etc. are just ways of speaking, as we rely on the AC.

We now construct a point in X which should be in all F ∈ F (and, in fact, all M ∈ M). For any
i, {πi(M)|M ∈ M} is a family of closed sets in Xi with the f.i.p. Then, for each i there is an
mi ∈

⋂
M∈M

πi(M). Choose an mi for each i and let m = (mi)i∈I .

If we show that
n⋂

j=1

π−1
ij

(Oij) (Oi open nbd of mi) intersect nontrivially each F, this will imply

that m ∈ F for all our F. This is because each F is closed and for each F it follows that any open
nbd of m intersects nontrivially F, implying, by elementary topology, m ∈ F.

The property above is implied by the following: for any Oi as above, π−1
i (Oi) ∈ M.

1Adaptation of a Bourbaki proof, see also Loomis, see p.11
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Now, for any M ∈ M we have, by construction, πi(M) ∩Oi 6= ∅. Thus πi(M) ∩Oi 6= ∅
implying πi(M) ∩Oi 6= ∅ which in turn means M ∩ π−1

i (Oi) 6= ∅. Then, adjoining any single
set π−1

i (Oi) toM, the f.i.p. is preserved. But, then by the maximality ofM, π−1
i (Oi) ∈ M, and

this holds for any i ending the proof .

2 Further discussions

Assume {Xi}i∈N are second countable. Check that the product space X is also second countable.
(The proof, in general, relies on a weak version of the AC (to select a countable open base for
each Xi), but does not require it if the Xi are linearly ordered which is the case if Xi = R, or, after
simple modifications, Xi = Rn or C.)

Recall that a sequence is a function f : N → X and a subsequence f ◦ g is defined by a
g : N→N s.t. limn→∞ g(n) = ∞.

Without further use of the AC we can prove compactness of the product X of compact, second
countable spaces.

Proof. Let f : N → X be a sequence. Since X1 is compact, there is a subsequence defined by an
f1 s.t. ( f ◦ f1)1 : N → X1 is convergent. Inductively, there is a subsequence defined by an fn s.t.
all ( f ◦ fn)i, i = 1, 2, ...n are convergent. Define g by g(k) = fk(k). Then, as you can easily check,
( f ◦ g)i, i ∈N are all convergent, implying that ( f ◦ g) : N→ X is convergent.

2.1 Arzelá-Ascoli’s theorem

Let X be a separable metric space with metric d; let E be a countable dense subset of X. Let
{ fn}n∈N : X → C be a sequence of equicontinuous and pointwise equibounded functions. A
pointwise equibounded family F is one s.t. ∀x ∈ X supF∈F |F(x)| = M(x) < ∞ and equicon-
tinuous means that ∀ε∃δ s.t. ∀x, y ∈ X and F ∈ F , d(x, y) < δ ⇒ |F(x)− F(y)| < ε. For the
purpose of Arzelá-Ascoli’s theorem below, equicontinuity can be replaced with the weaker con-
dition ∀e ∈ E there is an r s.t. for all y with d(y, e) < r and all F we have |F(e)− F(y)| < ε, which
can be seen using the compact cover formulation of compactness.

Theorem 2. Every sequence {Fn}n∈N : X → C of equicontinuous and pointwise equibounded function
has a subsequence which converges uniformly on compact sets.

Proof. Let K be a compact set in X. Let M(x) be as above. Then the space Y = ∏
e∈E
{z ∈ C : |z| 6

M(e)} is compact. (By the remarks at the beginning of this section, the AC is not needed in this
setting.) This means there is a subsequence defined by a g : N → N s.t. {Fg(n)}n∈N : X → C

restricted to E converges. This subsequence converges on X. Indeed, for any ε > 0 there is
an e ∈ E close enough to x, d(x, e) < δ, s.t. (∀n) (|Fn(x)− Fn(e)| < ε/3). Now by the triangle
inequality, |Fn(x)− Fm(x)| < ε for all n, m large enough.

If K is compact, there is a finite set En = {e1, ...en} s.t. for all x ∈ K, d(x, En) < δ, δ as above.
Check that this implies uniform convergence in K.

Uniform convergence implies that the limit F of the subsequence is also continuous, and
in fact adjoining F to the sequence, the new sequence is also equicontinuous and pointwise
equibounded.
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An important example of an equibounded, equicontinuous family is the following. Consider
the ball B1 of radius one in L1((a, b)) and the linear map K : B1 → B|b−a| given by KF =

∫ x
a F.

Check that K(B1) is an equibounded, equicontinuous family.
Such a linear map is called compact operator.

2.2 Linear operators, bounded operators, compact operators

Let X, Y be Banach spaces and L ∈ L(X, Y). L is called a bounded operator if ‖L‖ := sup‖x‖61 ‖Lx‖ <
∞. Check ‖‖ so defined on L ∈ L(X, Y) is a norm and the space B(X, Y) of bounded operators
is a Banach space. Check that ‖Lx‖ 6 ‖L‖‖x‖. In B(X) := B(X, X), multiplication is continuous:
‖L1L2‖ 6 ‖L1‖‖L2‖. Bounded operators thus form an algebra. A Banach space which is also an
algebra, and in which multiplication is continuous, as above, is called a Banach algebra.

An operator K : X → Y is called compact if it maps every bounded set in X into a precompact
set in Y (that is, a set whose closure is compact). Compact operators form a linear subspace of
B(X, Y)

Show that the compact operators from X to X, K(X) form a two sided ideal in B(X). That is,
the left or right product of a bounded operator by a compact one is compact.

3 Hilbert spaces

The Euclidian norm in Rn, ‖x‖2 =
n

∑
i=1

x2
i arises from a scalar (or inner) product 〈x, y〉 =

n

∑
i=1

xiyi,

which in turn has an important geometric significance: for two nonzero vectors x, y the angle

between them satisfies cos φ =
〈x, y〉
‖x‖‖y‖ . Since cos φ ∈ [−1, 1] the Cauchy-Schwarz inequality

|〈x, y〉| 6 ‖x‖‖y‖ holds.

The inner product extends to Cn, where it also defines the norm, by 〈x, y〉 =
n

∑
i=1

xiyi. Cauchy-

Schwarz holds in Cn as well, as you can easily check. Furthermore, as metric spaces, Rn, Cn are
complete: any Cauchy sequence converges (understood: to a point in Rn or Cn).

Rn and Cn can be seen as the space of functions defined on {1, ..., n} with values in R and C

resp. In this interpretation, we can easily dispense with the condition that vectors have finitely
many components: after all, the domain {1, ..., n} can be replaced by any set. But can we extend
the notions of norm and inner product too?

The first candidate is to take N instead of {1, ..., n}, and naturally define 〈x, y〉 by
∞

∑
i=1

xiyi and

‖x‖ =
√
〈x, x〉. Importantly, the Cauchy-Schwarz inequality survives this extension. This space

is denoted by `2.

Theorem 3 (Cauchy-Schwarz). For any x, y ∈ `2 we have |〈x, y〉| 6 ‖x‖‖y‖.

Proof. There is nothing to prove if x = 0 or y = 0, so we assume this is not the case. Note now
that for any z, ‖z‖ > 0. In particular, for any a ∈ C we have

0 6 ‖x− ay‖2 = 〈x, x〉+ |a|2〈y, y〉 − 2<(a〈x, y〉) (CS 1)
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We write 〈x, y〉 = |〈x, y〉|eiα (if 〈x, y〉 = 0 any α works). By replacing a by |a|e−iα we see that
f (|a|) = 〈x, x〉+ |a|2〈y, y〉 − 2|a||〈x, y〉| > 0. The trick is now to note that f (|a|) is a quadratic
polynomial in |a| which is nonnegative, and thus it has nonpositive discriminant: 4|〈x, y〉|2 −
4〈x, x〉〈y, y〉 6 0, which is what we intended to prove.

Hilbert spaces are defined by abstracting the structure needed for the properties above to
hold.

The following definition is standard (I copy-pasted it from Wiki).

A Hilbert space H is a real or complex inner product space that is also a complete metric
space with respect to the distance function induced by the inner product. To say that H is a
complex inner product space means that H is a complex vector space on which there is an inner
product 〈x, y〉 associating a complex number to each pair of elements x, y of H that satisfies the
following properties:

The inner product of a pair of elements is equal to the complex conjugate of the inner product
of the swapped elements:

〈y, x〉 = 〈x, y〉 . (1)

The inner product is linear in its first argument. For all complex numbers a and b,

〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 . (2)

The inner product of an element with itself is positive definite:

〈x, x〉 ≥ 0 (3)

where the case of equality holds precisely when x = 0. It follows from properties (1) and (2) that
a complex inner product is antilinear in its second argument, meaning that

〈x, ay1 + by2〉 = ā〈x, y1〉+ b̄〈x, y2〉 . (1+2)

A real inner product space is defined in the same way, except that H is a real vector space
and the inner product takes real values. Such an inner product will be bilinear: that is, linear in
each argument.

The norm is the real-valued function

‖x‖ =
√
〈x, x〉 ,

and the distance d between two points x, y in H is defined in terms of the norm by

d(x, y) = ‖x− y‖ =
√
〈x− y, x− y〉 .

Theorem 4 (Cauchy-Schwarz). For any x, y ∈ `2 we have |〈x, y〉| 6 ‖x‖‖y‖.

Proof. Check that the proof we gave for `2 goes through.

Proposition 5. The function x → ‖x‖ is a norm on H.
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Proof. First of all, by definition, ‖x‖ = 0 iff x = 0 and ‖λx‖ = |λ|‖x‖. To prove the triangle
inequality, we note that

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2<〈x, y〉 6 ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2 = (‖x‖+ ‖y‖)2

Proposition 6. `2 is complete.

Proof. If {xn}n∈N is a Cauchy sequence in `2, then for every i ∈ N the number sequence
{(xn)i}n∈N is Cauchy (indeed |(xn)i − (xm)i|2 6 ‖xn − xm‖2). Let yi = limn(xn)i. Let n0 be
s.t. (∀n, m > n0), (‖xn − xm‖ < 1). The triangle inequality implies that ∀n > n0, ‖xn‖ 6 C where

C = 1 + ‖xn0‖. It follows that, for all n,
n

∑
i=1
|yi|2 = lim

k→∞

n

∑
i=1
|(xk)i|2 6 C and since |yi| are positive

and the sums are bounded, the sum converges to ‖y‖2 6 C, that is y ∈ `2. Similarly, since
limk→∞ ∑n

i=0 |(xk)i − yi|2 = 0 for any n, by the above we can use dominated convergence to show
that ‖xk − y‖ → 0.

Proposition 7. The inner product is a continuous function fromH×H to C. In particular, if {(xn, yn)}n∈N

converges to (x, y) then 〈xn, yn〉 → 〈x, y〉.

Proof. By Cauchy-Schwarz

|〈x− x′, y− y′〉| 6 ‖x− x′‖‖y− y′‖

and the result follows easily (write down the details!).

Proposition 8 (The parallelogram law).

‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (P.L.)

Proof. A straightforward calculation, see (CS 1) above.

We see that a Hilbert space is a complete normed space where the norm comes from an inner
product. A natural and important question arises: given a norm, can we always define an inner
product that induces the norm? The answer is no and, remarkably, (P.L.) is the necessary and
sufficient condition for the norm to come from an inner product.

Proposition 9. Let S be a complete normed space, with norm ‖ · ‖. Then the norm comes from an inner
product iff it satisfies the parallelogram law.

Proof. We have already shown that an inner-product-induced norm satisfies the parallelogram
law. In the opposite direction, a calculation assuming the existence of an inner product leads the
following explicit formula for the inner product, called the polarization identity:

〈x, y〉 = 1
4
(
‖x + y‖2 − ‖x− y‖2 + i‖x + iy‖2 − i‖x− iy‖2) ∀ x, y ∈ H

It remains to check that assuming the parallelogram law the formula above defines an inner product
(meaning: with properties (1)...(3) above). This is elementary, but by no means trivial! See

5/75



Math 6212, Real Analysis II

Internet-proof, 27., p. 157-160. Interestingly, the proof is an adaptation of Euclid’s proof of the
three line theorem; see N. Falkner, MAA 100,3, (1993).

Corollary 10. The inner product is continuous.

3.1 Orthogonality

The notion of orthogonality, x ⊥ y if by definition 〈x, y〉 = 0 obviously extends to general Hilbert
spaces. So does the following

Proposition 11. If x1, ..., xn are pairwise orthogonal, then∥∥∥∥∥ n

∑
i=1

xi

∥∥∥∥∥
2

=
n

∑
i=1
‖xi‖2

Proof. Since pairwise orthogonality implies x1 + · · ·+ xn−1 ⊥ xn, the proof follows by induction
from the case n = 2, which is immediate.

3.2 The Gram-Schmidt process

We recall that, given a family {xi}i∈N of linearly independent vectors (no finite linear combina-
tion with nonzero coefficients vanishes), we can construct, from them, an orthonormal family
{ei}i∈N, inductively: start with v1 = x1; let c be s.t. v2 = cv1 + x2 ⊥ v1 (calculate c!). Having con-
structed v1, ..., vn, choose cn1, ..., cnn s.t. vn+1 = cn1x1 + ... + cnnxn + xn+1 is orthogonal on v1, ..., vn

(check that there is such a choice!). Then {vi}i∈N is an orthogonal family with the property that
Span({x1, ..., xn}=Span({v1, ..., vn} for all n. All these vi are nonzero vectors, and an orthonormal
family is simply given by ei = vi/‖vi‖.

Proposition 12. Let {vi}i∈N be a set of vectors in H and let V = span({vi}i∈N). We assume (without
loss of generality, as we will see) thatV is infinite dimensional. Then there exists an orthonormal set
{ei}i∈N such that V = span({ei}i∈N).

Proof. We can assume w.l.o.g. that {vi}i∈N are linearly independent, otherwise it is easy to re-
place them with such a set (check!). Then the Gram-Schmidt procedure above precisely provides
such a set {ei}i∈N.

Concretely, with πvx =
〈v, x〉
〈v, v〉v the process is

v1 = x1, e1 =
v1

‖v1‖

v2 = x2 − πv1 x2, e2 =
v2

‖v2‖
...

...

vk = xk −
k−1

∑
j=1

πvj xk, ek =
vk

‖vk‖
.

· · ·
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3.3 Another simple proof of Cauchy-Schwarz

Proof. In case x, y are linearly dependent the result is immediate. Otherwise wlog, we may
assume ‖x‖ = ‖y‖ = 1. Define e1 = x and let e2 be obtained from e1 and y by Gram-Schmidt.
Then y = y1e1 + y2e2 and

|〈x, y〉|2 = y2
1 6 y2

1 + y2
2 = 1 (draw a picture too!)

3.4 Orthogonal projections

Definition 13 (The orthogonal complement of a space). If S is a subspace of H, then its orthogonal
complement, S⊥ is the closed linear subspace (check these properties!) of H defined by

S⊥ = {x ∈ H : (∀y ∈ S)(〈x, y〉 = 0}

The direct sum of two subspaces V1,V2 is defined, as usual, by

V1 ⊕ V2 = {v1 + v2 : v1 ∈ V1, v2 ∈ V2}

Proposition 14. If M ⊂ H is a closed subspace, then H = M⊕M⊥. Any x ∈ H can be uniquely
written as m + m⊥ with m ∈ M and m⊥ ∈ M⊥.

We have (M⊥)⊥ =M. Let πM be given by πM(x) = m with x, m as above. We have ∀m ∈ M 6=
πM(x), ‖x−m‖ > ‖x− πM(x)‖, that is πM(x) is the closest point to x inM, and x− πMx ∈ M⊥.
Conversely, if m ∈ M is s.t. x−m ∈ M⊥, then m = πMx.

If t ∈ M, then πMt =. In particular, π2
Mx = πMx. If y ∈ M⊥ then πMy = 0.

Proof. • We first show that there is a y = πM(x) ∈ M s.t. ∀m ∈ M 6= y, ‖x−m‖ > ‖x− y‖.
Let d = infy∈M ‖x− y‖. Obviously d 6 ‖x‖, since 0 ∈ M. Thus there is a sequence {ym}m∈N

inM s.t. d−‖x− ym‖ → 0. We show that this sequence is convergent inM. SinceM is a closed
subspace of the complete Hilbert space H, it suffices to show that {ym}m∈N is Cauchy. Here we
use the parallelogram law:

‖ym − yn‖2 = ‖(x− yn)− (x− ym)‖2 = 2‖x− yn‖2 + 2‖x− ym‖2 − ‖2x− yn − ym‖2

2‖x− yn‖2 + 2‖x− ym‖2− 4‖x− 1
2 (yn + ym)‖2 6 2‖x− yn‖2 + 2‖x− ym‖2− 4d2 → 0 as n, m→ ∞

Thus yn → y =: πMx, and clearly ‖x− πMx‖ = d.
• Next we show that 〈x− πMx, m〉 = 0 for any m ∈ M. Take m = πMx− αt, t ∈ M. Then

‖x−m‖2 = ‖x− πMx‖2 + |α|2‖t‖2 + 2<(α〈x− πMx, t〉

Assume there were a t s.t. 〈x− πMx, t〉 6= 0. Write 〈x− πMx, t〉 = |〈x− πMx, t〉|eiφ and choose
α s.t. α = −|α|eiφ. Let m = πMx + αt. We then get

‖x−m‖2 = ‖x− πMx‖2 + |α|2‖t‖2 − 2|α||〈x− πMx, t〉|

Since |α|‖t‖2 − 2|〈x − πMx, t〉| → −2|〈x − πMx, t〉| < 0 as α → 0, check that if |α| is small
enough then |α|2‖t‖2 − 2|α||〈x− πMx, t〉| < 0 contradicting the minimality of d.
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Since 〈x− πMx, m〉 = 0 for any m ∈ M, we have ‖x−m‖2 = ‖x− πMx + (πMx−m)‖2 =

d2 + ‖πMx−m‖2 > d2 unless m = πMx.
Also as a consequence of the fact that 〈x− πMx, m〉 = 0 for any m ∈ M, by definition

x− πMx ∈ M⊥

Now, if t ∈ M, then d = ‖t− t‖ = 0 and thus πMt = t. If πMt = t, then by definition t ∈ M.
• The space M⊥ is also linear and closed, because of the continuity of the scalar product.

Therefore there is a unique πM⊥x ∈ M⊥ s.t. infy∈M⊥ ‖x− y‖ = ‖x− πM⊥x‖ and x− πM⊥x is
orthogonal on all the vectors inM⊥. Now,

z = x− πM⊥x− πMx ⇒ πMz = πM⊥z = 0

Thus
z ∈ M⊥ ∩ (M⊥)⊥ = {0} ⇒ z = 0

Clearly any vector inM is in (M⊥)⊥. Conversely, x ∈ (M⊥)⊥ ⇒ πM⊥x = 0⇒ x = πMx ∈
M.

It also follows that
πM + πM⊥ = I

the identity function on H.

3.5 The Riesz-Fréchet theorem (Riesz representation theorem)

Proposition 15 (Riesz representation theorem; or the Riesz-Fréchet theorem). Let Λ ∈ H∗. Then
there is a unique y ∈ H s.t.

∀x ∈ H, Λx = 〈x, y〉 (1)

Furthermore, ‖Λ‖H∗ = ‖y‖H. In particular H = H∗.

Proof. Let M = {x ∈ H : Λx = 0}. Clearly M is a closed linear subspace of H (why?). Now if
M = H then y = 0 is unique s.t. (1) holds, and we are done. Otherwise, we claim that M⊥ is
one dimensional. Indeed, let 0 6= e ∈ M⊥; note that this implies Λe 6= 0. We rescale e so that
Λe = 1. Let 0 6= x ∈ M⊥ and let Λx = b (again, necessarily b 6= 0). Then

x− be ∈ M⊥ and x− be ∈ M (since Λ(x− be) = 0) ⇒ x− be = 0

This means x is linearly dependent on e, as stated. For x ∈ H we have, for some c,

x = πMx + πex = πMx +
〈x, e〉
‖e‖2 e⇒ Λx =

〈x, e〉
‖e‖2 =: 〈x, y〉 ⇒ |Λx| 6 ‖x‖‖e‖ ⇒ ‖Λ‖ 6

1
‖e‖

Uniqueness follows from this explicit calculation. For the norm, we note the inequality above
and the fact that by definition

|Λe|
‖e‖ =

1
‖e‖ ⇒ ‖Λ‖ =

1
‖e‖ = ‖y‖
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3.6 Bessel’s inequality, Parseval’s equality, Hilbert space bases

Theorem 16 (Bessel’s inequality). Let {ei}i∈N be an orthonormal sequence in H. Then

∞

∑
i=1
|〈x, ei〉|2 6 ‖x‖2

Proof. Let Hn = Span({e1, ..., en}) := {c1e1 + · · · cnen : ci ∈ C}. Clearly, Hn is a closed subspace
of H. We can then write

x = πHn x + x⊥ =
n

∑
i=1
〈x, ei〉ei + x⊥

and, by the Pythagorean equality,

‖x‖2 = ‖πHn x‖2 + ‖x⊥‖2 > ‖πHn x‖2 =
n

∑
i=1
|〈x, ei〉|2

Since this holds for any n, the result follows.

Direct proof.

0 6

∥∥∥∥∥x−
n

∑
k=1
〈x, ek〉ek

∥∥∥∥∥
2

= ‖x‖2 − 2
n

∑
k=1
|〈x, ek〉|2 +

n

∑
k=1
|〈x, ek〉|2 = ‖x‖2 −

n

∑
k=1
|〈x, ek〉|2

Corollary 17. Let {eα}α∈A be an orthonormal family in H. Then, for any x ∈ H

∑
α∈A
|〈x, eα〉|2 =: sup

F⊂A
F finite

∑
α∈F
|〈x, eα〉|2 6 ‖x‖2

and the set B = {α ∈ A : 〈x, eα〉 6= 0} is countable. (Indeed each of the sets {α ∈ A : |〈x, eα〉| > 1/n}
must be finite.)

Proof. Only countability needs to be shown. It is well known however that an uncountable sum,
defined as above, of strictly positive numbers is infinity.

Definition 18. An orthonormal set {eα}α∈A is called a Hilbert space basis in the separable Hilbert space
H if any x ∈ H can be written as a finite or countably infinite linear combination

x = ∑
α∈A

cαeα

Note that this is not the same as a vector space basis!

Note that, because of the continuity of the inner product, we can calculate the coefficients ck
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by taking inner products with the ek:

x =
∞

∑
k=1
〈x, eαk〉eαk (Fourier)

Proposition 19. Any separable Hilbert space H has a (Hilbert space) basis.

Proof. Let {vi}i∈N be a countable dense set in H. The closure of the span of {vi}i∈N is, of course,
H, and so is the span of {ei}i∈N, constructed by Gram-Schmidt. Note that, by Bessel’s inequality,

∞

∑
k=1
|〈x, ek〉|2 6 ‖x‖2 ⇒

∞

∑
k=1
〈x, ek〉ek ∈ H

But then x =
∞

∑
k=1
〈x, ek〉ek since their difference is orthogonal to all ek.

Corollary 20. H is separable iff it has a countable base.

Possibly nonseparable H have possibly uncountable bases; the proof, as you would expect,
uses AC (Zorn’s lemma is convenient). Try to phrase a statement and prove it.

Note 21. in applications Nonseparable Hilbert spaces are quite rare in applications. Furthermore,
Corollary 17 shows that even in non-separable Hilbert spaces we only need a countable family at
a time, so we will not worry about more general orthonormal families, as they would not add
anything nontrivial to the results below.

Theorem 22. If {ei}i∈N is an orthonormal set in a separable Hilbert space H, then the following are
equivalent:

a. (Completeness) If ∀j, 〈x, ej〉 = 0, then x = 0.

b. (Parseval’s identity) ∀x ∈ H, ‖x‖2 =
∞

∑
k=1
|〈x, ek〉|2.

c. {ei}i∈N is a basis for H.

Proof. (b.⇒ a.) is clear.

(a.⇒ c.) Bessel’s inequality implies that
∞

∑
k=1
|〈x, ek〉|2 converges. The series

∞

∑
k=1
〈x, ek〉ek con-

verges as well, since

∥∥∥∥∥ n

∑
k=m
〈x, ek〉ek

∥∥∥∥∥
2

= ∑n
k=m |〈x, ek〉|2. Clearly

〈
ej, x−

∞

∑
k=1
〈x, ek〉ek

〉
= 0∀j imply-

ing the result.
(c.⇒ b.) This is simply Pythagoras plus the continuity of the norm.

An example of a Hilbert basis is the set ek = (0, .., 1, 0...), with 1 in the kth position, in `2.

Definition 23. LetH1,H2 be Hilbert spaces and U : H1 → H2 be one-to-one linear and norm preserving.
Then U is called an isometry.

Let H1,H2 be Hilbert spaces and U : H1 → H2 be one-to-one onto, linear and inner product preserv-
ing, 〈Ux, Uy〉 = 〈x, y〉. Then U is called unitary.

Proposition 24. U is unitary iff it is an isometry.
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Proof. Preservation of the inner product immediately implies norm preservation. In the opposite
direction, use the polarization identity!

Unitary maps are isomorphisms of Hilbert spaces: they preserve all the relevant abstract
features of a Hilbert space.

Proposition 25 (Any two separable Hilbert spaces are isomorphic). Any separable Hilbert space H
is isomorphic to `2.

Proof. Let {en}n∈N be a Hilbert basis in H. Define U : H → `2 by U(x) = (〈x, e1〉, ..., 〈x, en〉, ...).
Check that this is an isometry!

For a nonseparable Hilbert space with a Hilbert basis {eα}α∈A, a similar statement holds,
except `2 = `2(N) is replaced by the more general `2(A). See Folland for the definitions. Then
prove the statement yourselves.

3.7 Adjoints

In analysis, elements of L(X, Y) are often called bounded operators.
Let A : H → H be a bounded operator. Its adjoint is defined as the operator A∗ with the

property
∀x, y ∈ H, 〈Ax, y〉 = 〈x, A∗y〉

Exercise 1. A. Use the Riesz representation theorem to show that A∗ defined above exists and is unique.
Check that A∗∗ = A.

B. For fixed y, 〈x, A∗y〉 is a linear functional, and by the Riesz representation theorem

‖A∗y‖ = sup
‖u‖=1

|〈u, A∗y〉| = sup
‖u‖=1

|〈Au, y〉| 6 ‖A‖‖y‖

This implies ‖A∗‖ 6 ‖A‖. Then ‖A‖ = ‖A∗∗‖ 6 ‖A∗‖, hence ‖A‖ = ‖A∗‖. Thus A∗ is a bounded
operator with the same norm as A. Check that ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.

4 Consequences of the Baire category theorem

In the following, we use the notations

Ba(x) = {y ∈ X : ‖y− x‖ < a}; Ba(0) ≡ Ba

A Baire space is a topological space with the following property: for any countable family of
open dense sets {Un}∞

n=1, their intersection
⋂∞

n=1 Un is dense.
As a reminder, the Baire category theorem states

Theorem 26 (Baire category theorem). Every complete metric space is a Baire space. Equivalently, a
non-empty complete metric space is not a countable union of nowhere-dense sets [equivalently, nowhere-
dense closed sets].

This theorem has a number of fundamental consequences in analysis.
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Theorem 27 (Uniform boundedness principle). a. Assume X is a Banach space, Y is a normed space,
and A ⊂ L(X, Y).

Then (
∀x ∈ X, sup

T∈A
‖Tx‖ < ∞

)
⇔ sup

T∈A
‖T‖ < ∞

b. (Generalization) If X and Y are normed spaces and there is a non-meager set X1 ⊂ X such that
(∀x ∈ X1, sup

T∈A
‖Tx‖ < ∞), then supT∈A ‖T‖ < ∞.

Proof. a. (⇐) is trivial. (⇒) For n ∈N let

En = {x ∈ X : sup
T∈A
‖Tx‖ 6 n} = ∩T∈A{x ∈ X : ∀T ∈ A, ‖Tx‖ 6 n}

Clearly, En are closed and X = ∪
n∈N

En. Then, there is an m s.t. Em has nonempty interior,

Ba(x0) ⊂ Em. Take any u with ‖u‖ = 1. Then both x0 and x0 + au are in Ba(x0) and

Tu = 1
a T(au) = 1

a T(x0 + au− x0)⇒ ‖Tu‖ 6 1
a‖T(x0 + au)‖+ 1

a‖Tx0‖ 6
2m
a
⇒ sup
‖u‖=1
T∈A

‖Tu‖ 6 2m
a

b. Copy the proof above, basically.

Theorem 28 (The open mapping theorem). Let X, Y be Banach spaces and T ∈ L(X, Y) be surjective.
Then if O is open in X, T(O) is open in Y.

Proof (an adaptation of Reed-Simon p. 82). We start with some straightforward preparatory steps
to reduce the complexity of the more difficult part of the proof. It is enough to prove that for any
x and Nx a neighborhood of it, T(Nx) is a neighborhood of T(x). By linearity,

T(x +O) = T(x) + T(O)

and it suffices to prove this for x = 0. Clearly the property holds if for all r there is an r′ s.t.

T(BX
r ) ⊃ BY

r′ ; (A)

By linearity
T(Br) = rT(B1)

and it is enough to prove (A) for some r. Again by linearity it is enough to show that for some r,
T(Br) contains some ball, not necessarily centered at zero, that is, T(Br) has nonempty interior.

Now, X =
∞
∪

n=1
Bn and T is onto, we must have

Y =
∞⋃

n=1

T(Bn) =
∞⋃

n=1

T(Bn)

By the Baire category theorem, at least one of the T(Bn) has nonempty interior. By linearity, this
happens for all n.
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What we really need however is stronger, namely that, for some n, T(Bn) has nonempty
interior (thus all T(Bj) do). To go from T(B1) to T(Bm) for some m is nontrivial. (Note that
T(B1) ⊂ T(B1), but the inclusion can be strict as Exercise 2 below shows.)

Now, since T(Bn) contains some ball, by dilations T(Bn+k) contains a ball around zero, there-
fore there is an ε s.t. Bε ⊂ T(B1). The following lemma implies the result of the theorem.

Lemma 29. If T(B1) contains a ball, Bε, then T(B1) ⊂ T(B2) (in fact T(B1) ⊂ T(B1+δ) for any δ > 0.)

Proof. Let y ∈ T(B1). Then, there are points x in B1 s.t. T(x) is as close as we want to y. Let x1

be s.t. y− T(x1) ∈ Bε/2 ⊂ T(B1/2) (by scaling). We continue in the same way, inductively: let
x2 ∈ T(B1/2) be s.t. (y− T(x1))− T(x2) ∈ Bε/4 ... let xn+1 ∈ T(B1/2n) be s.t. y− T(x1)− · · · −
T(xn+1) ∈ Bε/2n . But you see that x = ∑n xn converges to an element in B1/2+1/4+... ⊂ B2, and
by continuity y = Tx, thus y ∈ B2. (By modifying the selection of {xn}, you can prove the result
above with 1 + δ instead of 2.)

Theorem 30 (Inverse mapping theorem). If T ∈ L(X, Y) is one to one onto, then T−1 is also continu-
ous, T−1 ∈ L(Y, X).

Proof. T is one-to-one, thus onto, thus open, implying by definition continuity of T−1.

Definition 31. If T ∈ L(X, Y), its graph is

Γ(T) = {(x, y) ∈ X×Y : y = Tx} = {(x, Tx) : x ∈ X}

Theorem 32 (Closed graph theorem). Let X, Y be Banach spaces and T ∈ L(X, Y). Then T is bounded
iff Γ(T) is a closed subset of X×Y (note that we do not assume that T(X) = Y.)

Proof. Assume T is continuous. If {(xn, T(xn))}n∈N converges to (x, y) then in particular xn → x.
But then, by continuity T(xn)→ y, hence (x, y) ∈ Γ(T) (are sequences sufficient in this context?)

In the opposite direction, note that Γ(T) is a linear closed subspace of X × Y, thus itself a
Banach space. Now the projections π1 : Γ(T) → X, π2 : Γ(X) → Y given y π1(x, Tx) = x and
π2(x, Tx) = Tx are manifestly continuous. Note that π1(x, Tx) = x is a linear bijection between X
and Γ(T), thus, by the inverse mapping theorem, its inverse is continuous too. But T = π2(π

−1
1 )

is a composition of continuous functions.

Note 33. We see that a bounded operator between Banach spaces can fail to have a bounded inverse only
for the trivial reason that it does not have an inverse at all (that is, if it is not surjective or not injective).

Definition 34. An A operator is closed if Γ(A) is closed.

Exercise 2. a. Let H = L2[0, 1]. Then the operator A defined on H by

(A f )(x) =
∫ x

0
f (s)ds

is bounded (check).
a. Show that M =ran(A) 6= H.
b. What is M⊥?
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c. Show that (the linear space) ran(A) is not closed. (This implies A is not invertible from H to H.)
Note that Γ(A) is closed nevertheless. (Γ(A) is a closed subspace of H×H which does not mean that
the direct images of the projections π1,2 of Γ(A) are closed!)

d. show that A(H)◦(= A(H)◦) = ∅ while A(H) = H.

Corollary 35. Corollary 1: Let ‖ · ‖1 and ‖ · ‖2 be two norms defined on X. Assume X is a Banach space
in both norms, and that furthermore, for some C1 > 0 and all x ∈ X we have ‖x‖1 6 C1‖x‖2. Then the
two norms are equivalent, that is, there is a C2 > 0 s.t. for all x ∈ X, ‖x‖2 6 C2‖x‖1.

Proof. Exercise. (Hint: take T = I, that is, Tx = x for all x.)

5 Semicontinuouos functions

Definition 36. Let f be a real-valued (or extended-real valued 2) function on X, a topological space. Then
f is called lower semicontinuous if for any α ∈ R the set

{x : f (x) > α}

is open, and upper semicontinuous if for any α ∈ R the set

{x : f (x) < α}

is open.

Check that a function f : X → R is continuous iff it is both upper and lower semicontinuous.
Examples of functions that are only semi-continuous are:

a. Characteristic functions of open sets: these are lower semicontinuous.
b. Characteristic functions of closed sets: these are upper semicontinuous.
c. The sup of any collection of lower semicontinuous functions is lower semicontinuous. The

inf of any collection of upper semicontinuous functions is upper semicontinuous.
Though it’s straightforward, it’s useful to go through the arguments and check all this.

5.1 Support of a function

Definition 37. If f is a complex-valued function on X, then the support of f is defined as supp( f ) =

{x : f (x) 6= 0}.
We say f is supported in O if supp f ⊂ O, and we write f ≺ O. If f ∈ C(X, [0, 1]), C is closed and

f (C) = {1}, then we write K ≺ f .

5.2 Urysohn’s lemma

In a normal space, closed sets are separated by open sets. It means, if C1, C2 are closed, then
there are disjoint open sets O1,O2 containing C1, C2, respectively. This property is, interestingly,
equivalent to an apparently stronger property, that there is a continuous function f which is zero
on C1 and one on C2. That is, indicator functions can be smoothened in a way that does not alter
their functionality.

2In the sense of the one point compactification of R.
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Note 38. In a normal space, for any closed set C and open set O there is an open sets O1 s.t.

C ⊂ O1 ⊂ O1 ⊂ O

(check this: C ∩Oc = ∅; thus, we can separate C from Oc by open sets...)

Theorem 39 (Urysohn’s lemma). Let X be normal. For any two nonempty closed disjoint subsets A, B
of X, there is an f ∈ C(X, [0, 1]) such that f (A) = {0} and f (B) = {1}.

Equivalently,
“For any C ⊂ O, C closed and O open, there is an f ∈ C(X, [0, 1]) such that f (C) =

{1} and f (O) = {0}.”
Note that this does not say that f can only be zero on A, or 1 on B, a property which is stronger.

This theorem is quite deep. The idea is to squeeze a countably infinite family of (distinct) open
sets between A and B, order them using the rationals in [0, 1], {Or}r∈Q in such a way that the
order of the rationals is preserved

s > r ⇒ Os ⊂ Or ((*))

(meaning also that the sets are densely ordered.) Define f (x) = r if x ∈ Or and extend f by
continuity. Basically.

It’s not obvious that such a construction is possible and that it yields the right answer; we
need more work.

Proof (following Rudin). Let r0 = 0, r1 = 1, and let r3, r4, ... be an enumeration of the rationals in
(0, 1). Let O0,O1 be open sets such that

C ⊂ O1 ⊂ O1 ⊂ O0 ⊂ O0 ⊂ O

Inductively, suppose that for n > 2 we have constructed Or1 , ...,Orn so that for all i, j 6 n we have

rj > ri ⇒ Orj ⊂ Ori

Order the ri, i 6 n : 0 < r′1 < ... < r′n < 1. Take the next rational in the list, rn+1, and and place it
between r′i and r′i+1 so that

0 < r′1 < r′2 < ... < r′i < r′n+1 < r′i+1 < ... < r′n < 1

Now choose a Orn+1 so that
Or′i+1

⊂ Orn+1 ⊂ Orn+1 ⊂ Or′i

In this way, we get a family {Or}r∈Q∩(0,1) with the property (*) above.
Let now

fr(x) =

{
r if x ∈ Or

0 otherwise
; f = sup

r
fr; gs(x) =

{
1 if x ∈ Os

s otherwise
; g = inf

s
gs ((**))
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Clearly, f is lower semicontinuous, g is upper semicontinuous, f (X) ⊂ [0, 1], f (C) = {1},
f (O0) = {0}.

We show that f = g, which implies continuity. Note that, by the ordering of the sets, fr(x) =
r < 1 for some r and gs(x) = s, then x /∈ Os, thus Or 6⊂ Os ⇒ r 6> s, hence gs(x) > fr(x) for all
∀r, s, fr 6 gs, hence f 6 g.

Assume f (x) < g(x) for some x ∈ [0, 1]. Then f (x) < r < s < g(x) for some rationals r, s.
Since f (x) < r we have that fr(x) = 0 implying x /∈ Or. Similarly, since g(x) > s we must have
x ∈ Os. This contradicts (**).

5.3 A few more facts about LCH

In the following, X will be a locally compact space (LCH). A set is said to be precompact if its
closure is compact. A space is σ−compact if it is the countable union of compact sets.

Lemma 40. E ⊂ X is closed iff E ∩ K is closed for any compact K.

Proof. Exercise.

Proposition 41. For any x and any open set O containing x there is a precompact open set O′ 3 x with
O′ ⊂ O.

Proof. Let O′′ be any precompact neighborhood of x. We can replace O with O ∩O′′; thus, wlog,
we assume O is precompact. Then ∂O and x are closed and Note 38 completes the proof.

Proposition 42. Let K be compact and O ⊃ K open in X. Then there exists a precompact O′ s.t.
K ⊂ O′ ⊂ O′ ⊂ O.

Proof. By Proposition 41 K can be covered with precompact open sets {Oα} with closure in O
and thus by a finite subset of them {Oi}i6n.

Theorem 43 (Urysohn’s Lemma, LCH version). Let K ⊂ O as in Proposition 42. Then there is an
f ∈ C([0, 1], X) and a precompact O′,O′ ⊂ O s.t. f (K) = {1} and f (O′c) = {0}.

Proof. Straightforward application of Urysohn and of the previous results.

Also with a similar proof we have the following

Theorem 44 (Tietze Extension Theorem). Let K be compact and f ∈ C(K). Then there exists g ∈ C(X)

s.t. g|K = f .

Proposition 45. If X is second countable, then X is σ−compact.

Proof. Let T = {Oi}i∈N be a countable base. Each x ∈ X has, by assumption, a precompact
neighborhood O′x. Since T is a base, there is an i(x) and an Oi(x) ⊂ O′x s.t. x ∈ Oi(x) ⊂ O′x. Then,
Oi(x) ⊂ O′x is compact and X = ∪

i(x),x∈X
Oi(x), a countable union since it is a subfamily of T .

Proposition 46. If X is σ− compact, then there is a countable family of precompact open sets {On}n∈N

such that On ⊂ On+1 for all n and X = ∪n∈NOn.

Proof. This is an easy inductive construction. Let X = ∪n∈NKn. Let O1 be a precompact neigh-
borhood of K1, and for general n, let On be a precompact neighborhood of Kn ∪On−1.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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5.4 Partitions of unity

If E ⊂ X is any topological space, a partition of unity on E is a collection of continuous functions
{ρα}α∈A with values in [0, 1] with the property that
• for any x there is a neighborhood of x where only finitely many ρα are nonzero.
• ∑α ρα = 1.
A partition is subordinate to an open cover Oα if every ρα ≺ Oα for any α.
Partitions have many uses in mathematics. An interesting application is defining integrals

on manifolds (with respect to some form). One relies on coordinates to define the integral on a
coordinate patch and then uses a partition of unity subordinate to a coordinate patch covering to
extend the integral to the whole manifold.

Theorem 47. Let K be compact. For any open cover {Oj}j6n of K there exists a partition of unity on K,
{ρj}j6n with ρj ≺ Oj, j 6 n.

Proof. (adapted from Rudin) We first find O′j ⊂ Oj, j = 1, ..., n which are precompact and which
still cover K. For each x ∈ K x is in some Oj, and there is an Ox ⊂ Oj precompact containing
it. Now K must be contained in a finite union of these sets, ∪jiOij. For each j we simply define
O′j = ∪iOij.

Now, by Urysohn, construct for each j a O′j ≺ gj ≺ Oj. Let

ρ1 = g1; ρ2 = g2(1− g1); ...; ρn = gn(1− gn−1) · · · (1− g1)

Clearly ρj ≺ Oj. By induction we check that

ρ1 + · · ·+ ρn = 1− (1− g1) · · · (1− gn)

Now, for x ∈ K at least one gi is 1, and thus the sum above is 1 on K.

5.5 Continuous functions

We denote by CX the space of all functions from X to C.

Definition 48. • The space Cc(X) of functions with compact support is { f ∈ C(X) : supp( f ) is compact}.
• f vanishes at infinity if

{
x : f (x) > n−1

}
n∈N

are compact. The space of such functions is denoted

by C0(X). Clearly Cc(X) ⊂ C0(X). Show that C0(X) ⊂ BC(X).

The topology of uniform convergence is given by fn → f if ‖ fn − f ‖u → 0 where ‖ · ‖u is the
usual sup norm on X.

Note however that it is not assumed that ‖ f ‖u < ∞ or ‖ fn‖u < ∞!, so this is not saying that
we have a normed space!

In this section we will write ‖ · ‖ for the sup norm ‖ · ‖u.
The topology of uniform convergence on compact sets, fn → f if ‖ fn − f ‖K → 0 for all K

compact where {‖ · ‖K}K compact is the family of seminorms in which the supremum is taken over
K. Obviously, ‖ f ‖K < ∞ for a continuous function.

Proposition 49. C(X) is a closed subspace of CX in both topologies above.

Proof. Straightforward.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Note 50 (and exercises). Show that the one-point compactification of X∗ is Hausdorff compact.
The functions f in C0(X) extended by f (∞) = 0 are the continuous functions on X∗ which

vanish at infinity. Thus we can identify the continuous functions on an LCH that vanish at
infinity with the continuous functions on a CH that vanish at a point. This vanishing condition
has interesting consequences.

Sup-norm convergence on X is stronger than uniform convergence on compact sets. The
closure of Cc(X) w.r.t the sup norm on on X is C0(X).

6 Radon measures

In order to better understand properties of various mathematical objects it is often very useful to
analyze the natural functions (ones compatible with the structure) defined on them. These would
be linear functionals on topological vector spaces, representations in the case abstract algebraic
structures and in the case of topological spaces, the space of continuous functions defined on
them (in fact specifying the continuous functions determines the topology). We can go one step
further, look at continuous functions as a topological space (in the topologies mentioned in the
previous section) and analyze its dual.
Two important subspaces of continuous functions on X are Cc(X) and C0(X); we start with
Cc(X). As it turns out, positive linear functionals on Cc(X) carry substantial information. In
particular they generate measures on X, which are then, by construction, compatible with the
topology.

Definition 51. Λ is a positive linear functional on if Λ f > 0 for any f > 0.

Of course, this is the same as requiring

f 6 g⇒ Λ f 6 Λg

The following continuity property is automatic from positivity.

Proposition 52. Let Λ be a positive linear functional on Cc(X). There is a CK > 0 such that

|Λ f | 6 CK‖ f ‖K

where ‖ f ‖K is the sup norm on K.

Proof. Since the positive and negative parts of a function are continuous, by linearity we can
assume that f is real and nonnegative. Fix a φ, K ≺ φ. Then

f = φ f 6 ‖ f ‖Kφ⇒ 0 6 (Λφ)Λ f

Obvious candidates for positive functionals on Cc(X) are integrals with respect to positive
Borel measures,

Λ f =
∫

X
f dµ (2)

A relatively straightforward analysis shows that the measure needs to have additional properties,
for instance

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Proposition 53. If (2) is a positive functional on Cc(X), then µ(K) < ∞ for any K.

Proof. Formula (2) extends Λ to a positive functional on L1(µ, X). Take any compact K and f s.t.
K ≺ f . Then χK 6 f and

0 6 µ(K) =
∫

X
χKdµ 6

∫
X

f dµ < ∞

We will see that, if X is second countable, the positive functionals are exactly these: (2) for
some positive measure with µ finite on compact sets. If X is any LCH, the functionals are still
given by (2) where the measure must be more regular, a Radon measure. (Regularity is automatic
in second countable spaces.)

In fact, what a positive linear functional naturally generates is an outer Radon measure µ∗.

Definition 54. An outer measure is Radon if

1. For any K, µ∗(K) < ∞3 (µ∗ is locally finite).

2. any O is µ∗−measurable. Thus Borel sets are µ∗−measurable.

3. ∀E ⊂ X, µ∗(E) = inf{µ∗(O) : O ⊃ E} (outer regularity)

4. ∀O, µ∗(O) = sup{µ∗(K) : K ⊂ O} (inner regularity on open sets).

By the Caratheodory theorem, µ∗ restricted to the σ-algebra M of µ∗-measurable sets

E ∈M⇔ ∀A ⊂ X, µ∗(A) = µ∗(A ∩ E) + µ∗(A ∩ Ec) (3)

is a measure on M, µ = µ∗ on M which we naturally call Radon measure.

A Radon measure is a measure which is outer regular, locally finite, and inner regular on open
sets.

Check that the measure obtained from a Radon outer measure does indeed have the proper-
ties above. It also follows that

• µ is complete, i.e. (E ⊂ E′ ∧ µ(E) = 0)⇒ µ(E′) = 0.

Lemma 55. A Radon measure is inner regular on all measurable sets of finite measure, and more generally
on all measurable σ-finite sets.

Proof. Indeed, 1) assume first m = µ(E) < ∞ and let O ⊃ E, µ(O \ E) < ε/2, O′ ⊃ O \ E,
µ(O′) < ε. Let K ⊂ O, µ(K) > m− ε. Then K′ = K ∩ (O′)c ⊂ E is compact and µ(K′) > m− 2ε.

2. Take now an E with µ(E) = ∞. By assumption E = ∪j∈NEj where µ(∪j6nEj) → ∞. By 1)
above, there is a family Kj ⊂ ∪j∈NEj with µ(Kj)→ ∞.

Exercise 3 (When are sets outer-Radon measurable?). If µ∗ is a Radon outer measure, show that
E ⊂ X is µ∗-measurable iff E ∩ K is measurable for every K.

3In more general spaces one requires that every point has a neighborhood of finite measure; for LCH this is
equivalent to the given condition.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Hint: Reduce the problem to measurability of all E ∩O, µ(O) < ∞

Definition 56. A measure µ is regular if it is inner and outer regular on all measurable sets.

Note 57. We see that a Radon measure can fail to be regular only when X is very large (e.g., not not
second countable) and there only on sets of infinite measure which are not σ-finite.

Theorem 58 (Riesz representation theorem). Let Λ be a positive linear functional on X. Then, there
exists a unique Radon measure on a σ-algebra M ⊃ B(X) s.t. (2) holds.

Furthermore, for all O
µ(O) = sup

f≺O
Λ f (4)

and for all K
µ(K) = inf

K≺ f
Λ f (5)

Proof. 1. Uniqueness

Assume we have two measures µ1,2 with the properties above. Using outer regularity and inner
regularity on open sets, it is enough to show they coincide on compact sets. Let K be arbitrary
and O ⊃ K be s.t. µ2(O) < µ2(K) + ε. Let K ≺ f ≺ O; reasoning as in Proposition 53, we have

µ1(K) =
∫

X
χKdµ1 6

∫
X

f dµ1 = Λ f =
∫

X
f dµ2 6

∫
X

χOdµ2 = µ2(O) 6 µ2 + ε

and interchanging 1↔ 2 we have |µ1(K)− µ2(K)| < ε.

Construction of µ and M

It is then natural to define
µ(O) = sup{Λ f : f ≺ O} (6)

Now we note that
µ(O) 6 ∑

j∈N

µ(Oj) if O ⊂ ∪j∈NOj (7)

Indeed, for any f ≺ O, K = supp f ⊂ ∪n
1Oi for some n. With ρi ≺ Oi a partition of unity, we see

that f = ∑n
1 f ρi and

Λ f =
n

∑
i=1

Λ( f ρi) 6
n

∑
i=1

µ(Oi) since f ρi ≺ Oi

The natural candidate for an outer measure is: for E ⊂ X,

µ∗(E) = inf{µ(O) : E ⊂ O} = inf{∑
j

µ(Oj) : E ⊂ ∪
j
Oj} (by (7)). (8)

I By Prop. 1.10 (Folland), µ∗ is an outer measure on X.

J

I Now we show that open sets are µ∗-measurable. For this we need to check (3) when µ∗(A) <

∞.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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. Furthermore, (3) holds if it holds when A = O′, an arbitrary open set. Indeed, given A and
O, ∀ε there is an O′ ⊃ A with µ∗(A) > µ(O′)− ε, hence,

µ∗(A) > µ(O′)− ε = µ∗(O′ ∩O) + µ∗(O′ ∩Oc)− ε > µ∗(A ∩O) + µ∗(A ∩Oc)− ε (9)

/

. When A = O′ is an arbitrary open set of finite measure, we take f ≺ O′ ∩ O s.t. Λ f >

µ(O′ ∩ O) − ε. Next, choose g ≺ O′ \ supp( f ) s.t. Λg > µ(O′ \ supp( f )) − ε. Noting that
f + g ≺ O′, it follows that

Λ f + Λg = Λ( f + g) 6 µ(O′)

Hence,
µ(O′) > µ(O′ ∩O) + µ∗(O′ \ O)− 2ε (10)

J

I µ satisfies (5) Let K ≺ f , 0 < α < 1 and Oα = f−1(α, ∞). If g ≺ Oα, then of course g 6 α−1 f ,
implying

∀α ∈ (0, 1), µ(K) 6 µ(Oα) = sup
g≺Oα

Λg 6 α−1Λ f ⇒ µ(K) 6 Λ f

(in particular µ(K) < ∞). In the opposite direction, we want to find an f , K ≺ f s.t. µ(K) >

Λ f − ε. Let O ⊃ K be s.t. µ(O) < µ(K) + ε and take K ≺ f ≺ O. Then Λ f 6 µ(O) < µ(K) + ε

as desired.

J

I µ is inner regular on open sets. Let m < µ(O); choose f ≺ O s.t. Λ f > m, and let
K = supp( f ). For any set O′ ⊃ K we have f ≺ O′, hence µ(O′) > Λ f , and thus µ(K) > Λ f > m,
implying regularity.

In the process, we obtained an estimate for the constant in Proposition 53:

supp( f ) = K ⇒ Λ f 6 µ(K) (11)

J

I For any f ≺ X, Λ f =
∫

X
f dµ We can assume f ∈ Cc(X, [0, 1]). Let K = supp( f ) and

y1 < 0 < y2 < · · · < 1 < yn be s.t ∀i max
i
{yi − yi−1} < ε and µ( f−1({yi})) = 0

Let O ⊃ K, µ(O) < ∞. Then f−1((yi−1 − yi)) ∩ O := Oi are open, mutually disjoint and
µ(O \ ∪iOi) = 0. For i = 1, ..., n choose Ki ⊂ Oi so that µ(Oi \ Ki) <

ε
n and gi s.t. Ki ≺ gi ≺ Oi.

If ε′

n := µ(Oi)−Λgi, then ε′ < ε. By the mean value theorem, ∀i ∃vi ∈ [yi−1, yi] s.t

∫
X

f dµ = ∑
i

∫
Oi

f dµ =
n

∑
i=1

viµ(Oi) = Λ

(
n

∑
i=1

vigi

)
− ε′ ⇒

∣∣∣∣∣
∫

X
f dµ−Λ

n

∑
i=1

givi

∣∣∣∣∣ < ε (12)

Write f −∑i vigi = f1 + f2 with f1 = ∑i( f − vi)gi and f2 = f − f ∑i gi. By (12), ‖ f1‖u < ε, hence
|Λ f1| < ε. Now ‖ f2‖u 6 1 and f2 ≺ ∪i(Oi \ Ki); hence, by (11), |Λ f2| < ε. The triangle inequality

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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and (12) now give ∣∣∣∣∫
X

f dµ−Λ f
∣∣∣∣ < 3ε (� of Thm. 58)

A measure is regular if, by definition, it is inner and outer regular on all measurable sets (we
only showed inner regularity on open sets).

Proposition 59. Assume X is σ-compact. Let µ be a Radon measure and M be the σ-algebra of µ-
measurable sets. Then (a) For any E ∈M and ε > 0 there is a pair C ⊂ E ⊂ O s.t. µ(O \ F) < ε.

(b) µ is a regular Borel measure.
(c) If E ∈M, then there is a pair (F, G) of Fσ, Gδ sets s.t. F ⊂ E ⊂ O and µ(O \ F) = 0.

Proof. Let X = ∪nKn where Kn are compact. CLet E ∈ M. Clearly, µ(E ∩ Kn) < ∞ and thus,
by outer regularity, for any ε > 0, there are On ⊃ E ∩ Kn with µ(On \ [E ∩ Kn]) < ε2−n−1. With
O = ∪nOn, we have O \ E ⊂ ∪n(On \ [E ∩ Kn]) and thus

µ(O \ E) < ε/2

The same is true for Ec, and thus there is an open set O′ ⊃ E s.t. µ(O′ \ E) < ε/2. If C = (O′)c,
then C is closed and E \ C = E ∩O′ = O′ \ Ec implying the result.

Note that every closed set C is σ-compact, since C ∩ Kn is compact for every n and C =

∪(C ∩ Kn). But then, by the fact that µ is a measure, µ(C) = limn µ(∪n
j=1[C ∩ Kj]) proving inner

regularity of closed sets, thus by (a), of all sets.
(c) Apply (a) with ε = j−1, j ∈ N: there exist Cj ⊂ E ⊂ Oj s.t. µ(Oj \ Cj) < ε. Now

F = ∪Fj ⊂ E ⊂ G = ∩Oj and the result follows.

6.1 The Baire σ-algebra

Another natural σ-algebra when studying Cc(X) is the smallest σ-algebra with respect to which
the functions in Cc are measurable, B0(X), whose elements are called Baire sets. Clearly B0(X) ⊂
B(X); the two coincide if X is second countable (see Exercise 5/p. 216 in Folland).

6.2 Regularity of Borel measures

In this section we assume that X has the additional property that

every O ⊂ X is σ-compact (13)

This is the case if X is second countable.

Theorem 60. Assume X satisfies (13). Then, every locally finite Borel measure λ on X is regular (and
thus Radon).

Proof. The functional Λ f =
∫

X
f dλ is well-defined on C(X) (since continuous functions are

measurable, and f = 0 outside K implies | f | 6 ‖ f ‖χ(K) ⇒ Λ| f | 6 ‖ f ‖λ(K)). Then, there is a
regular Radon measure µ s.t. ∫

X
f dλ =

∫
X

f dµ

We now show that λ = µ.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Take an O, and let O = ∪jKj, where Kj can be arranged to be increasing, as in Proposition
46. For each i, let Ki ≺ fi ≺ O. Clearly, Ki ↗ O. Now, since χKi 6 fi 6 χO we have fi → χ(O);
defining gi = maxj6i fi, gi are increasing to χO and by the monotone convergence theorem,

λ(O) = lim
i→∞

∫
X

gidλ = lim
i→∞

∫
X

gidµ = µ(O) (14)

Now, with E ∈ B(X) arbitrary, by the regularity of the measure µ, there is a pair C ⊂ E ⊂ O with
ε > µ(O \ C) = λ(O \ C) (the last equality by (14) and the fact that O \ C is open). If µ(O) = ∞
then µ(E) = λ(E) = ∞. Otherwise,

µ(O) = λ(O), |µ(O)− µ(E)| < ε and |λ(O)− λ(E)| ⇒ |µ(E)− λ(E)| < 2ε

Corollary 61. Locally finite Borel measures on Rn are regular.

Proposition 62. If µ is a Radon measure on X, then Cc(X) is dense in Lp, 1 6 p < ∞.

Proof. Given the density of simple functions, it suffices to show that χE can be approached arbi-
trarily in p norm, when µ(E) < ∞. Take then K ⊂ E ⊂ O with µ(O \ K) < ε and let K ≺ f ≺ O.
Then, f and χE can differ only on O \ K, and the difference is at most one. This means that
‖ f − χE‖p < ε1/p.

Exercise 4. In preparation for the next section, show that C0(X) is a closed subspace of BC(X) in the sup
norm ‖ · ‖, and thus it is a Banach space, and that Cc(X) is a dense subset in it.

7 The dual of C0(X)

Let’s first determine what are the positive, continuous linear functionals on C0(X). Let Λ be such
a functional; clearly its restriction to Cc(X) is a positive linear functional and thus

Λ f =
∫

X
f dµ (15)

where µ is a Radon measure, so the question is which of these extend to C0(X). Note first that if
f ≺ X, then ‖ f ‖ = 1 and also that, of course, X itself is open. Thus, by (4), we have

µ(X) = sup
f≺X

Λ f 6 ‖Λ‖‖ f ‖ = ‖Λ‖ < ∞ (16)

Such a measure is called a finite Radon measure. Conversely, µ(X) < ∞ implies that Λ in (15)
has norm at most µ(X). We find that

Proposition 63. Λ is a positive linear functional on C0(X) (automatically continuous by the arguments
above) iff it is given by (15) for a positive Radon measure µ, where µ(X) < ∞.

We now turn to general, complex, continuous linear functionals on C0(X), that is, we want to
find C∗0 (X). Since the real and imaginary part of a continuous linear functional are real-valued
continuous linear functionals, it suffices to determine these. We will see that, by an appropriate

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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decomposition of the functional, the real-valued continuous linear functionals are still of the form
(4), for a signed measure µ s.t. |µ|(X) < ∞.

Definition 64. A subset C of a vector space V is a reproducing positive cone if
1.x, y ∈ C and a, b > 0 imply ax + by ∈ C
2.C ∩ (−C) = 0
3.∀z ∈ V∃x, y ∈ C s.t. z = x− y

Check that C+
0 = C0(X, [0, ∞)) is a reproducing positive cone in C0(X). For f , g ∈ C+

0 , max{ f , g} ∈
C+

0 , min{ f , g} ∈ C+
0 .

Lemma 65. Let C be a reproducing positive cone. Any L : C → [0, ∞) s.t. a, b > 0 and f , g ∈ C imply
L(ax + by) = aLx + bLy extends as a linear functional on V.

Proof. Note that if x, x′, y, y′ are in C and x − y = x′ − y′ then Lx − Ly = Lx′ − Ly′ (apply L to
x + y′ = x′ + y). If, for z ∈ V, we set Lz = Lx− Ly where z = x− y, then L is well defined and
linear, and extends L from C to V as it is easy to check.

Lemma 66. If Λ ∈ C∗0 (X) there exist positive functionals Λ± ∈ C∗0 (X) s.t. Λ = Λ+ −Λ−.

Proof. As mentioned, we expect that Λ is given by an expression of the type (15) for some mea-
sure. Recall that in the Jordan decomposition of a measure µ we have µ+(E) = supE′⊂E µ(E′).
This motivates the following construction.

Define
Λ+ f = sup

g∈C+
0 ,g6 f

Λg, for f ∈ C+
0 (17)

Check that f ∈ C+
0 ⇒ Λ+ f > 0. We show that

f , g ∈ C+
0 and a, b > 0⇒ Λ+(a f + bg) = aΛ+ f + bΛ+g

The fact that Λ+(|a| f ) = |a|Λ+ f follows from (17). It remains to check that Λ+( f1 + f2) =

Λ+ f1 +Λ+ f2 on C+
0 . This is straightforward noting that g 6 f1 + f2 in C+

0 ⇐⇒ ∃g1 and g2, in C+
0 ,

g = g1 + g2 and gi 6 fi. (In the⇒ direction, let g1 = min{g, f1} and g2 = g− g1.) Extend Λ+ as
Lemma 65. Now, Λ− := Λ+ −Λ is evidently linear and positive, and thus Λ is the difference of
two positive functionals.

Since 0 6 g 6 f ⇒ ‖g‖ 6 ‖ f ‖, it follows from the definition (17) that

|Λ+ f | 6 sup
06g6 f

|Λg| 6 ‖Λ‖‖ f ‖ ⇒ ‖Λ+‖ 6 ‖Λ‖

Exercise 5. Let µ be a finite signed Radon measure and Λ f =
∫

X
f dµ. Let µ = µ+ − µ− be the

Hahn-Jordan decomposition of µ. Show that the linear functional Λ+ obtained in Lemma 66 is given by
Λ+ f =

∫
X

f dµ+.

Definition 67. µ is a signed Radon measure if µ = µ1 − µ2 and µ1, µ2 are Radon measures. µ is a
complex Radon measure if µ is a complex measure (finite, in particular) and µ = µ1 + iµ2 where µ1, µ2

are signed Radon measures.

Corollary 68. Λ ∈ C∗0 (X) iff Λ f =
∫

X
f dµ where µ is a complex Radon measure.

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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7.1 More facts about complex measures

A complex measure on a σ-algebra M is a function on M s.t.

µ(E) =
∞

∑
i=1

µ(Ei) if E =
∞
⊕

i=1
Ei, Ei ∈M ∀i (18)

where ⊕ stands for disjoint union. Since we are not dealing with positive numbers, and ⊕ is
invariant under permutations, the series above must converge absolutely.

It is natural to seek an upper bound for such a µ, which would simply mean a positive
measure λ on M such that λ(E) > |µ(E)| for all measurable E. Since λ(⊕Ei) = ∑i λ(Ei), we see
that we must have

λ(E) >
∞

∑
i=1
|µ(Ei)| if E =

∞
⊕

i=1
Ei, Ei ∈M ∀i

If we define |µ| on M

|µ| = sup
⊕iEi=E

∞

∑
i=1
|µ(Ei)| (19)

it turns out that |µ|, the total variation of µ is a positive measure on M. See Rudin, Chapter 6, and
also the supplementary material. Clearly, µ� |µ|.
Theorem 69 (Rudin, Thm 6.4). If µ is a complex measure on X, then

|µ|(X) < ∞

Theorem 70 (Consequence of Rudin, Thm 6.4). Let µ be a complex measure on a σ-algebra M is X.
Then

dµ = eiθ(x)d|µ| for some measurable θ : X → [−π, π)

Proposition 71. ‖µ‖ = |µ|(X) is a norm on the linear space M(X) of complex Radon measures.

Proof.

‖µ + ν‖ = |µ + ν|(X) = sup
⊕iEi=X

∑
i
|µ(Ei) + ν(Ei)| 6 sup

⊕iEi=X
∑

i
|µ(Ei)|+ sup

⊕iEi=X
|ν(Ei)| = ‖µ‖+ ‖ν‖

and the rest is straightforward.

Lemma 72. If µ is a complex Radon measure and Λ = f 7→
∫

X
f dµ, Λ : C0(X)→ C, then

‖µ‖ = ‖Λ‖

Proof. In one direction, with ‖ f ‖ = 1, |Λ f | 6
∫

X
| f |d|µ| 6 |µ|(X) = ‖µ‖. In the opposite

direction, by Theorem 69 d|µ| = υdµ with |υ| = 1. Let K be s.t |µ|(X \ K) = ε and K ≺ f . Then,

‖µ‖ =
∫

X
d|µ| =

∫
K

d|µ|+ ε =

∣∣∣∣∫K
f υdµ

∣∣∣∣+ ε 6
∫

X
| f υ|d|µ|+ ε 6 ‖Λ‖+ ε

Theorem 73 (The Riesz representation theorem). The map µ → Λµ is an isometric isomorphism of
M(X) to C∗0 (X).

Here X is always an LCH space, C, K,O are a closed, compact and open resp. sets in X.
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Proof. The bijection was shown in Corollary , and Lemma 72 completes the proof.

Locally finite Borel measure in Rn are Radon, as discussed. By Theorem 1.16 (Folland) µ is
a locally finite Borel measure on R+ iff it is a Lebesgue-Stieltjes measure, that is it is given by
µ((a, b]) = F(b)− F(a) for some right-continuous, increasing, bounded F. Thus Λ ∈ C∗0 (R) iff
Λ f =

∫
R

f dF for some F = F1 − F2 + i(F3 − F4) with Fi as above.
Note that C0([0, 1]) ⊂ L2([0, 1]), and the continuous functionals on L2[0, 1]) are given by the

Riesz representation theorem, f 7→ Λφ f =
∫
[0,1] f φdm where m is the Lebesgue measure and

φ ∈ L2. Now L2([0, 1]) ⊂ L1([0, 1]) (by Cauchy-Schwarz) and thus the subclass of continuous
functionals on Cc([0, 1]) that extend to L2 are generated by a subclass of measures µ s.t. dµ =

φdm, φ ∈ L2. We may view then dF as some form of generalization of the Radon-Nykodim
derivative. We’ll make more sense of all this in distribution theory.

Definition 74. The weak* topology on M(X) is called the vague topology. It means µn → µ if∫
f dµn →

∫
f dµ for all f .

Exercise 6. (a) Is X = N with the discrete topology a LCH space?
(b) What is C0(X)∗, if X is as in a)?

8 Fourier series

Fourier 4 introduced “trigonometric series” (now known as Fourier series) for the purpose of
providing the general solution of the heat equation, for which only special solutions were known
before his “Mémoire sur la propagation de la chaleur dans les corps solides” (1807) and “Théorie
analytique de la chaleur” (Analytical theory of heat) (1822). This was of course a fundamental
result, but the theory of Fourier series could only be placed on a rigorous basis later, by Dirichlet
(1829) and Riemann, having to wait for a better theory of functions and of integration. In one
dimension, Fourier series are of the form

∑
k∈Z

ckeikx, ck ∈ C

under suitable conditions on the coefficients to ensure convergence in L2, or L∞, or in more
regular spaces, such as Cn([−π, π]).

Let’s first start with L2 convergence. It is easy to check that {ek}k∈Z = { 1√
2π

eikx}k∈Z form an

orthonormal system in H = L2([−π, π]). Thus, by Bessel’s inequality, for any f ∈ H

∞

∑
−∞
〈 f , ek〉ek

converges in L2. We now show that the closure of the span of {ek}k∈Z contains all indicator
functions of intervals, implying, by the density of simple functions, that the closure of the span
is H.

4Jean-Baptiste Joseph-Fourier (1768-1830)
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Theorem 75 (The Riemann-Lebesgue Lemma, first iteration...). Assume f ∈ L1([−π, π]). Then,

lim
|n|→∞

∫ π

−π
f (s)einsds = 0 (20)

Proof. Take first f ∈ L2([−π, π]). The integral above equals cn =
√

2π〈 f , en〉. By Bessel’s inequal-
ity, ∑n∈Z |cn|2 < ∞, in particular cn → 0 as |n| → ∞. Since L2 is dense in L1, the result follows
by an ε/3 argument.

8.1 The Dirichlet kernel

Let f ∈ L2(I). The symmetric partial Fourier sums of f are given

Sn(x) =
n

∑
k=−n
〈 f , ek〉ek =

∫ π

−π
f (s)

n

∑
k=−n

ek(s)ek(x)ds =
1

2π

∫ π

−π
f (s)Dn(x− s)ds (21)

where the Dirichlet kernel Dn is given by

Dn(x) =
n

∑
k=−n

eikx =
e−nix − enix

e−ix − eix =
e−(n+1/2)ix − e(n+1/2)ix

e−ix/2 − eix/2 =
sin((n + 1/2)x)

sin(x/2)
(22)

The Dirichlet kernel plays (as expected!) an important role in Fourier analysis. We know from

-3 -2 -1 1 2 3

-5

5

10

15

20

Figure 1: The Dirichlet kernel for n = 10, D10 (left) Dn on I for n = 1, ..., 20. The peak grows like
n, with a width 1/n and oscillations of frequency n away from it (right)

Bessel’s inequality that Sn(x) converges in the sense of L2, and as you saw already in a homework
and will be reproved soon, converges to f .

Lemma 76. Let (a, b) ∈ [−π, π). Then

lim
n→∞

∫ b

a
Dn(x)dx =


0 if 0 /∈ [a, b]

2π if 0 ∈ (a, b)

π if 0 ∈ {a, b}
(23)
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Proof. First, from the definition it follows that∫ π

−π
Dn(s)ds = 2π; and, since Dn is even,

∫ π

0
Dn(s)ds = π (24)

Assume now 0 /∈ [a, b]. Then the function g(x) = χ(a,b)(e
−ix − eix)−1 ∈ L2 and (22) shows that∫ b

a Dn(s)ds = 2π〈g, e−n − en〉 → 0 as n→ ∞, by Theorem 75. If 0 ∈ (a, b), then

∫ b

a
Dn(s)ds =

∫ π

−π
Dn(s)ds−

∫ a

−π
Dn(s)ds−

∫ π

b
Dn(s)ds = 2π + εn

where εn → 0 as n→ ∞, since 0 is not in the last two intervals of integration.

Proposition 77. (a) If (a, b) ∈ [−π, π], the Fourier series of χ(a,b) converges in H to χ(a,b). The Fourier
series also converges pointwise to χ(a,b) at any point of continuity and to the half sum of the right limit
and left limit at the (at most two) points of discontinuity.

(b) {ek}k∈Z form a Hilbert basis in L2.

Proof. (a) Indeed, ∫ π

−π
χ(a,b)(s)Dn(x− s)ds =

∫ b

a
Dn(x− s)ds =

∫ x−a

x−b
Dn(s)ds

and pointwise convergence follows from Lemma 76. Since the series converges in L2 (by Bessel),
the L2 limit is the same as the pointwise limit, χ(a,b) (justify this point).

(b) Staircase functions are in the closure of the span of {ek}k∈Z and are dense in L2.

We only proved convergence of symmetric sums to χ(a,b). However, this combined with the
fact that the Fourier series of χ(a,b) is L2 convergent implies that the Fourier series of χ(a,b)

converges in L2 to χ(a,b).

8.2 Pointwise convergence

Since trig polynomials are smooth functions, we might expect that the Fourier series of a contin-
uous function converges pointwise. This is further suggested Proposition 77 (a). This however
is not true. First, we note that trig polynomials are 2π-periodic, and we have to impose 2π-
periodicity on the space of continuous functions. This is equivalent to identifying the endpoints
of [−π, π] upon which it becomes a circle, S1. Continuous, periodic functions on [−π, π] can be
identified with C(S1).

Proposition 78. For all n > 1, ‖Dn‖1 > 8
π log n.

By modifying slightly the proof below, you can show that

lim
n→∞

‖Dn‖1

log n
=

8
π
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Proof. Let m = n + 1/2. We have

∫ π

−π

∣∣∣∣ sin(mx)
sin(x/2)

∣∣∣∣ dx = 2
∫ π

0

| sin(mx)|
sin( x

2 )
> 4

∫ π

0

| sin(mx)|
x

= 4
∫ mπ

0

| sin x|
x

dx

> 4
m−1

∑
k=0

(−1)k

k + 1

∫ (k+1)π

kπ
sin xdx =

8
π ∑

j=1

1
j
>

8
π
(log m + γ) (25)

where γ is the Euler constant.

What this shows is that, for any fixed a, the functionals Λa;N = f 7→ SN( f ; a) are not bounded
in the Banach space C(S1). From this and the uniform boundedness principle we see that there
is at least one continuous function for which the Fourier series diverges at some point. In fact,
one can show that the family of continuous functions whose Fourier series converges at a given
a is of first Baire category in C(S1).

Note 79. It is a deep theorem (Carleson, 1966) that, for a fixed function in Lp, p ∈ (1, ∞) (in particular,
continuous), the set of points where the symmetric Fourier series converges pointwise is of full measure.
In the opposite direction, for any set of zero measure there is a continuous function whose Fourier series
diverges on that set.

More regularity than continuity is needed for pointwise convergence. We start with a suffi-
cient condition, definitely not optimal, but general enough, for now.

Proposition 80. (a) If f ∈ AC(S1) and f ′ ∈ L2(S1) (e.g. f ∈ C1(S1)), then

lim
n→∞
‖Sn( f , x)− f (x)‖u = 0

(b) The linear span of the {ek}k∈Z (“the trig polynomials”) is dense in C(S1), in sup norm.

Proof. (a) Note first that, under these assumptions for f ,∫ π

−π
f ′(s)e−iksds = ik

∫ π

−π
f (s)e−iksds⇒ Sn( f ′) = Sn( f )′

Uniform convergence follows from the fact that ‖ f ′ − S( fn)′‖2 → 0 and ‖ f − Sn‖2 → 0 and
Exercise 7 below.

(b) Periodic piecewise linear functions are dense in sup norm in the space of periodic contin-
uous functions, and satisfy the assumptions in a).

Note that density of trig polynomials in C(S1) does not imply that the Fourier series converge
there. They generally don’t, see discussion above.

Note 81. Another way to prove (a) above is to use Parseval and Cauchy-Schwarz. Since f ′ ∈ L2, we have
∑k∈Z |kck|2 < ∞. This implies that

∑
k 6=0
|ck| = ∑

k 6=0
|ck|k(k−1) 6

(
∑
k 6=0
|kck|2

)1/2(
∑
k 6=0

k−2

)1/2

< ∞

Thus the Fourier series converges absolutely, and then uniformly by the Weierstrass M test.
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Exercise 7. Assume {gn}n∈N is a sequence of functions in AC([−π, π]) with L2 derivatives. Assume
further that limn→∞ ‖gn‖2 + ‖g′n‖2 = 0. Show that limn→∞ ‖gn‖∞ = 0.

Exercise 8. Show that when f ∈ Cn([0, 2π]), n > 1, is 2π-periodic then the Fourier series of f ,
∑∞

k=−∞ ckeikx converges to it uniformly together with the first k − 1 derivatives, and the derivatives are
given by ∑∞

k=−∞ ck(ik)meikx, m 6 n− 1. In particular, the sequence {ckkm}m∈Z is bounded.
Show that if f ∈ C1 except for a finite number of discontinuities where it has lateral limits, then the

Fourier series of f converges pointwise everywhere to f except at the discontinuities, where it converges to
the half sum of the lateral limits.

9 The heat equation

The heat equation is a parabolic partial differential equation that describes the variation in tem-
perature in a given region Ω over time:

∂u
∂t

= ∆u, u(0, x) = u0(x), x ∈ Ω; u(t, ·)|∂Ω
= f (26)

where ∆ is the Laplacian and the spacial variables run over some domain Ω ⊂ Rn. Here u0 is
the initial condition, the temperature distribution at t = 0, and f is the boundary condition, the
temperature distribution on ∂Ω. The function u is assumed C2 with continuous partial derivatives
up to ∂Ω.

Equilibrium distributions are time-independent solutions of (26), in the sense

∆u = 0, x ∈ Ω; u|∂Ω
= f (27)

Proposition 82 (Uniqueness). If u1, u2 solve (26) or (27), then u1 = u2.

Proof. If u1, u2 are solutions, then u1 − u2 = v is a solution of the PDE with u0 = 0, f = 0. It
suffices to show that the only such solution is zero. The proof is based on the energy method. Start
with (26), u0 = f = 0, multiply by v and integrate over Ω:∫

Ω
v

∂v
∂t

dV =
d
dt

∫
Ω

v2dV =
∫

Ω
v∆vdV =

∫
Ω
[∇ · (v∇v)− (∇v)2]dV (28)

where we used the identity ∇ · (v∇v) = (∇v)2 + v∆v. Now, since v = 0 on ∂Ω the divergence
theorem implies ∫

Ω
∇ · (v∇v)dS =

∫
∂Ω

v∇v · dS = 0

and thus
d
dt

∫
Ω

v2dV︸ ︷︷ ︸
>0

= −
∫

Ω
(∇v)2dV 6 0 (29)

Since
∫

Ω v2dV > 0, is nonincreasing and vanishes at t = 0, it means
∫

Ω v2dV = 0 and thus v = 0
for all x, t. For (27), the left side of (29) is simply zero, giving ∇v = 0⇒ v = const = 0.

If we find a solution to (26) or (30), we know it is the solution.
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Let’s analyze equilibrium distributions of (26) in two dimensions, with C2 boundary condition
in a disk. The equation becomes

∂2u
∂x2 +

∂2u
∂y2 = 0, u|S1

= f (θ) ( f ∈ C2) (30)

This equation also describes the electric potential u(x, y) in a disk where charges are placed on
S1 only, with a density f .

In polar coordinates we get

∂2u
∂r2 +

1
r

∂u
∂r

+
1
r2

∂2u
∂θ2 = 0, u|S1

= f (θ) (31)

A method of solving simple PDEs such as (31) is by separation of variables. Inserting u(r, θ) =

R(r)T(θ) in (31) and dividing by RT we get

r2 R′′

R
+ r

R′

R
= −T′′

T
(32)

Now we note that the left side of the equation above does not depend on θ and the right side
does dot depend on r, and thus they are independent of both variables, hence constant, say λ

r2 R′′

R
+ r

R′

R
= λ = −T′′

T
(33)

The ODE T′′ = −λT has the general solution C1ei
√

λt + C2e−i
√

λt. There are constraints on λ: T
must be periodic of period 2π, and this means λ = m2, m ∈ Z, and then

T(θ) = ameimθ + a−me−imθ (34)

For the equation
r2R′′ + rR′ = λR (35)

we make the substitution r = ln x, R(r) = g(x) and get

g′′ = m2g⇒ g(x) = Aemx + Be−mx ⇒ R(r) = Arm + Br−m (36)

if m 6= 0 and R(r) = A + b ln r for m = 0. We note that ln r and r−m for m > 0 as well as rm for
m < 0 are not C2. Retaining only the solutions that are C2, we get the general separated-variables
solutions

um(r, θ) = r|m|eimθ , m ∈ Z (37)

Now, (26) is linear, and thus if U and V are solutions, then so is aU + bV. The most general
solution that we can obtain from (37) is the closure of the span of such solutions,

u(r, θ) = ∑
m∈Z

amr|m|eimθ (38)
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and with (38) we have at r = 1 (we’ll check that the limit when r → 1 exists),

∑
m∈Z

ameimθ = f (θ) (39)

that is, the left side is the Fourier series of f . Since f ∈ C2, |am| 6 const/m2 for large m and, by
the Weierstrass M test the series in (38) converges for all r 6 1. The fact that u is C2 for r < 1
follows from the general theory of power series. We have thus proved:

Theorem 83. The heat equation in a disk (30) has a unique solution, (38).

Exercise. Separate variables in the time-dependent heat equation in a disk. The radial ODE has solutions
as Bessel functions, Jm(λr); stop here if you are not familiar with them.

9.1 Examples

(1) Take a disk where the temperature on the boundary is given by f (θ) = sin θ. Then, the
(unique) solution is simply r sin θ = y. (2) Similarly, for any trig polynomial, the series represent-

Figure 2: Solution of the heat equation in the disk with condition sin(4θ) on S1.

ing u is finite. It is interesting to see what happens if the temperature has many changes on the
boundary, say u = sin(4θ). Write the solution in closed form, as a function of x, y.

Exercise 9. Show that the heat equation on S1,

∂u
∂t

=
∂2u
∂θ2 ; u(0, x) = u0(x) ∈ C2(S1) (40)

32/75



Math 6212, Real Analysis II

has the unique solution

u(t, θ) = ∑
m∈Z

ame−m2t+imx where u0(x) = ∑
k∈Z

ameimx (41)

In a few steps from here Fourier analysis intersects another major topic in analysis, complex
function theory.

Lemma 84. The Fourier coefficients of a real-valued function come in complex-conjugate pairs: a−m = am.

Proof. Check this.

Thus we can write

u(r, θ) = 2< ∑
m>0

amrmeimθ = 2< ∑
m>0

am(reiθ)m = 2< ∑
m>0

amzm; z = x + i sin y (42)

where we wrote reiθ = r cos θ + ir sin θ = x + iy = z.
The series

S(z) = ∑
m>0

amzm (43)

converges absolutely and uniformly if |z| < 1 (check). A function S(z), defined in an open
connected region in C is said to be analytic if every point has an open disk around it where S
has a convergent Taylor series. Our S is thus analytic in the open unit disk.

Under our assumption (30) the series converges absolutely and uniformly indeed, in the
closed unit disk |z| 6 1, and we have f (θ) = 2<S(eiθ). Let’s look again at the definition of the
Fourier coefficients:

am =
1

2π

∫ π

−π
f (θ)e−imθdθ =

1
2π

∫ π

−π
2<S(eiθ)e−imθdθ =(eiθ = ζ) =

1
2πi

∫
S1

2<S(ζ)ζ−m−1dζ (44)

Substituting in (43) we get, for |z| < 1,

<S(z) = ∑
m>0

1
2πi

∫
S1
<S(ζ)ζ−m−1zmdζ =

1
2πi

∫
S1
<S(z) ∑

m>0
zmζ−m−1dζ =

1
2πi

∫
S1

<S(ζ)
ζ − z

dζ (45)

A similar results holds with < replaced by =. Indeed, =S(reiθ) satisfies the heat equation with
boundary condition =S(eiθ). Adding up these two, we obtain the celebrated Cauchy formula

S(z) =
1

2πi

∫
S1

S(ζ)
ζ − z

dζ, z ∈ D (46)

(for the unit disk, and under C2 assumptions, which are too strong). This is simply meant to
illustrate deeper links between various branches of analysis. It is not necessarily a particularly
natural way to build complex analysis, nor is it the path that led Cauchy to it in the early
nineteenth century.

Note 85. (a) We did not not prove that the heat equation extended to C with a given complex boundary
condition has a solution. It generally doesn’t. See what the conditions are to have <∑m>0 amzm +

i=∑m>0 bmzm = ∑m>0 cmzm.
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(b) Functions that are < or = of an analytic function are called harmonic functions. They are the
solutions in 2d of the steady-state heat equation.

9.2 The vibrating string

The equation for a vibrating string is the one-dimensional wave equation

∂2u
∂t2 −

∂2u
∂x2 = 0 (47)

We change variables to place the fixed endpoints of the string at −π, π. Let the initial shape of
the string be given by u0. The problem becomes

∂2u
∂t2 −

∂2u
∂x2 = 0; u(0, x) = u0(x); u(t,±π) = 0 (48)

Exercise 10. Assume that u0(x) is C2. Solve (48) by separation of variables and show that

u(x, t) =
∞

∑
m=1

(am cos(mt) + bm sin(mt)) sin(mx);

u(0, x) =
∞

∑
m=1

am sin(mx), ut(0, x) =
∞

∑
m=1

mbm sin(mx) (49)

Notice that the time dependence is a superposition of cosines of integer multiples of a funda-
mental frequency, generated by the fundamental mode sin x. If we normalize again the units so that
the fundamental mode is 440Hz (A 440) the next frequency is A 880, one octave up, and the third
one is E 1320 “a perfect fifth”. The theory of harmony originates in the understanding of string
vibrations, which goes back to ancient Greece (harmonikos = “skilled in music”). “Harmonic
Analysis” takes its name from this.

9.3 The Poincaré-Wirtinger inequality

In full generality, this states

Proposition 86. Let Ω be a bounded connected open subset of Rn with a Lipschitz boundary, and let
1 6 p < ∞. Then there exists a constant C, depending only on Ω and p such that for every function u in
the Sobolev space W1,pΩ we have

‖u− uΩ‖Lp(Ω) ≤ C‖∇u‖Lp(Ω),

where
uΩ =

1
|Ω|

∫
Ω

u(y)dy

We will return to this form when we introduce Sobolev spaces. For now, let’s look at this one
dimensional version for functions in C1([a, b]), a < b ∈ R; ‖ · ‖2 denotes the L2 norm on [a, b]

Proposition 87. If f ∈ C1([a, b]) and
∫ b

a f = 0, then

‖ f ‖2 6
b− a

π
‖ f ′‖2
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and the constant (b− a)/π is optimal. Equality occurs iff f (x) = A sin(π(t− a)/(b− a)).

Proof. The key element is proving the inequality (and optimality) when f ∈ C1(S1). Let the
Fourier coefficients of f be {cn}n∈Z. We have

‖ f ‖2 = ∑
n∈Z

|cn|2 6 ∑
n∈Z

|ncn|2 = ‖ f ′‖2
2

The rest is left for the exercise below.

Exercise 11. (a) Fourier series can be defined of course for functions of more general period T. If we are
interested in functions f periodic on a, a + T, then f (ωx + β) is periodic on [−π, π], if ω = 2π/T
and β = −π − aω. Carry out the changes of variables and write the Fourier series of f in terms of the
exponentials {eikωx}k∈Z.

(b) If f is as in the statement, extend it to a function on [a− T, a + T] which is odd with respect to a,
and then apply (a) and the result in the proof above.

9.4 The Riemann-Lebesgue lemma

Proposition 88. If f ∈ L1(R), then x 7→
∫

R
f (s)eixsds ∈ C0(R)

Proof. First, |ei(x+ε)s− eixs|| f (s)| 6 2| f (s)| and continuity follows by dominated convergence. For
the second part, note that staircase functions are dense in L1(R), and for a staircase function,
the integral goes to zero like const/|x|, by explicit calculation. Let f ∈ L1, take ε > 0, choose a
staircase function g so that ‖ f − g‖1 < ε/2 and an R large enough so that for all x, |x| > R we
have |

∫
R

g(s)eixsds| < ε/2. The rest is just the triangle inequality.

Exercise 12. Let a > 0 and consider the function f given by f (x) = x−aχ[1,∞)(x). Show that F(k) =∫
R

eikx f (x)dx ∈ C0(R) if a > 1, and F ∈ C0(R \ {0}) if a 6 1. Show furthermore that for a ∈ (0, 1),
k1−aF(k) is bounded for small k, and, when a = 1, F(k) + ln k is bounded near k = 0. (Hint: integration
by parts is one way, but it’s probably simpler to change the variable to u = kx.)

We have the following extension to Proposition 88:

Proposition 89. If a1, a2 > 0, C1, C2 ∈ C and f − C1x−a1χ[1, ∞)− C2(−x)−a2χ(−∞,−1] ∈ L1(R),
then x 7→

∫
R

f (s)eixsds→ 0 as k→ ∞.

Proof. This is immediate from Proposition 88 and Exercise 12.

Exercise 13. Extend this result to Rn: if f ∈ L1(Rn), then x 7→
∫

Rn f (s)eix·sdns ∈ C0(Rn).

9.5 Hurwitz’s proof of the isoperimetric inequality

A curve is rectifiable iff the supremum of the perimeters of polygons built by joining finitely
many points on the curve is finite. With the intuition that the shortest distance between two
points is along a straight line, we see that a curve is rectifiable iff its total length is finite. It is
easy to show that the supremum is finite iff there is a parametrization (x(t), y(t)), t ∈ [−π, π]

with x, y in BV([−π, π]).

Theorem 90. Assume Γ is a rectifiable simple closed curve in R of length 2π. Then the area of the interior
of the curve is 6 π and it equals π iff the curve is a circle.
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Hurwitz gave the first rigorous proof of this theorem in 1902. He used Fourier series along
the lines of the proof below, in which we assume a slightly stronger condition, that x, y are in
AC([−π, π]).

Proof. The area of a domain D is

A =
∫∫
D

dxdy (50)

where dxdy is the Lebesgue measure in R2. Recall Green’s theorem,∫
Γ

Ldx + Mdy =
∫∫

int(Γ)

(
∂M
∂x
− ∂L

∂y

)
dxdy

Now, for the vector field L = −y, M = x, Green’s theorem and (75) give

A =
1
2

∫
Γ

xdy− ydx =

∣∣∣∣12
∫ π

−π

[
x(s)y′(s)− y(s)x′(s)

]
ds
∣∣∣∣ (51)

The arclength measure is given by d` =
√
(x′)2 + (y′)2ds. Parameterizing by arclength ` := t

instead of s we have
√

dx
dt

2
+ dy

dt
2
= 1, and thus

1
2π

∫
Γ
(x′)2 + (y′)2dt = 1 (52)

As the curve is closed, x and y are in AC(S1) with derivative in L2, and we have

x = ∑
m∈Z

ameimt; x′ = ∑
m∈Z

imameimt; y = ∑
m∈Z

bmeimt; y′ = ∑
m∈Z

imbmeimt; am = a−m; bm = b−m (53)

Parseval and (52) give
∑

m∈Z

m2(|am|2 + |bm|2) = 1 (54)

Using (51) and again Parseval (how?) we get A = π

∣∣∣∣∣ ∑
m∈Z

m(ambm − bmam)

∣∣∣∣∣ and thus

π−1A 6 2 ∑
m∈Z

|m||am||bm| 6 ∑
m∈Z

|m|(|am|2 + |bm|2) 6 ∑
m∈Z

|m|2(|am|2 + |bm|2) 6 1 (55)

with equality iff am = bm = 0 for all |m| > 1, which you can check is equivalent to Γ being a
circle.

10 Some conditions for pointwise convergence

Cα(S1) is the class of functions on S1 which are Hölder continuous of exponent α: f ∈ Cα(S1) if

Cα( f ) = sup
x 6=y∈S1

| f (x)− f (y)|
|x− y|α < ∞
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Theorem 91. If f ∈ Cα(S1), α ∈ (0, 1], then there is a constant C > 0 s.t. ‖Sn − f ‖u 6 C ln(n)n−α,
where C depends on α only.

Proof. This proof shows that convergence is linked to the rapid oscillation of Dn, through sin(nx+
x/2), which triggers, in this class of functions, substantial cancellations.

We can assume
‖ f ‖∞ 6 1

Let m = n+ 1/2. By changes of variables, (21) can also be written as Sn(x) = (2π)−1
∫ π
−π Dn(s) f (x−

s)ds, and thus

2π(Sn(x)− f (x)) =
∫ π

−π
Dn(s)( f (x− s)− f (x))ds =

∫
|s|6ε

Dn(s)( f (x− s)− f (x))ds

+
∫
|s|>ε

Dn(s)( f (x− s)− f (x))ds (56)

where ε will be chosen suitably small. We start with an estimate of the |s| 6 ε integral. For small
ε, sin(s/2) > 2

3 and

∫
|s|6ε
|Dn(s)( f (x− s)− f (x))|ds 6 3

∫
|s|6ε

∣∣∣∣ f (x− s)− f (x)
s

∣∣∣∣ ds 6 3Cα( f )
∫
|s|6ε
|s|α−1ds 6

6Cα( f )εα

α

Cancellations are responsible for decay in the remaining region; we identify the cancellations
and rewrite the integral so that these are singled out: we have sin(ms) = − sin(m(s + π

m )). Let
Ik = {x : |x| ∈ [ε + k π

m , ε + (k + 1) π
m ]}, k1 ∈N be the largest j so that ε + (2j− 1) π

m < π and

h(s, x) =
f (x− s)− f (x)

sin(s/2)

We get

∫
|s|>ε

Dn(s)( f (x− s)− f (x))ds =
∫
|s|>ε

h(s, x) sin(ms)ds =
k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds + εm (57)

where εm is the contribution of the endpoint intervals:

|εm| 6
∣∣∣∣∣
∫
|s|∈[ε+(2k1−1) π

m ,π]
h(s, x) sin(ms)ds

∣∣∣∣∣ 6 Cπ

m
, C < 3

We combine successive integrals by shifting the variable by ∓π/m in all odd-index intervals:

k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds =
k1−1

∑
j=0

∫
I2j∪I2j+1

h(s, x) sin(ms)ds =
k1−1

∑
j=0

∫
I2j

(h(s, x)− h(s∓ π
m )) sin(ms)ds

Now, in each interval I2j, sin ms is positive and the oscillations have been removed. At this stage,
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we can take absolute values without significant loss in the estimates.∣∣∣∣∣ k1

∑
k=0

∫
Ik

h(s, x) sin(ms)ds

∣∣∣∣∣ 6 k1−1

∑
j=0

∫
I2j

|h(s, x)− h(s∓ π
m )|ds (58)

we note that, if sδ > 0 and |s| > ε, then |h(s + δ, x)− h(s)| 6 |s|−2+α|δ|+ 2Cα( f )|s|−1|δ|α, and,
for some a > 0, b > 0 only depending on Cα( f ) the right side of (58) is, up to irrelevant constants
c1, ..., c4, bounded by

c1m−1
∫ π

ε
s−2+αds + c2m−α

∫ π

ε
s−1ds 6

c3

mε1−α
+

c4

mα
| log ε|

We now choose ε to obtain a best estimate (up to constants). Choose εα = m−1ε−1+α or ε = m−1,
to get for some other irrelevant constants c5, ..., c7,

2π|Sn(x)− f (x)| 6 c5m−α log m (59)

Exercise 14. Use the same approach to show that the Fourier coefficients of a function f ∈ Cα(S1) decay
at least as fast as const.|n|−α as n→ ∞.

Exercise 15 (Cesàro summation). (a) Let {an}∞
n=1 be a sequence, and denote by sk its partial sums,

sk = a1 + · · ·+ ak =
k

∑
n=1

an. The sequence {an}∞
n=1 is called Cesàro summable, with Cesàro sum A if

the series of arithmetic means converges to A:

lim
n→∞

1
n

n

∑
k=1

sk = A

What is the Cesàro sum of 1− 1 + 1− 1 · · · ?

Exercise 16 (Abel means and Abel summability). If {an}n∈Z is a sequence, then the Abel mean of
the sequence is the function

A(r, θ) =
∞

∑
n=−∞

r|n|aneinθ

Note that, if an are the Fourier coefficients of a C2 function f , then the Abel mean is the solution of the
heat equation in the disk with f on the boundary! If the sequence is one-sided, that is indexed by N, then
one simply takes am = 0 for m 6 0. The sequence is Abel summable if

lim
r→1

A(r, 0) = A

exists. What is the Abel sum of 1− 2 + 3− 4 · · · ?
Show that (convergent to A)⇒ (Cesàro summable⇒ to A)⇒(Abel summable to A).

We can think of these summation methods as extensions of convergent summation: exten-
sions of the functional that associates to a convergent sequence its limit. These functionals have
a number of expected properties, see. Both fail to commute with multiplication of sequences.
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More powerful summation methods exist: Borel summation of series is an important summation
method (it relies on a form of Fourier analysis!).

10.1 Approximation to the identity

The convolution of two functions on S1 is defined as the commutative and distributive product

( f ∗ g)(x) =
∫ π

−π
f (s)g(x− s)ds

Theorem 92 (Young’s convolution inequality). If f ∈ L1, g ∈ Lp, and 1 6 p 6 ∞, then ‖ f ∗ g‖p ≤
‖ f ‖1‖g‖p.

Proof. Use Minkowski’s inequality for integrals.

The difficulties in establishing convergence of Fourier series can be attributed to the diver-
gence of the L1 norm of the Dirichlet kernel. A good kernel is one which has most of the features
of the Dirichlet kernel, but with finite L1 norm.

Definition 93. A family {Kn}n∈N ⊂ L1(S1) is said to be an approximation to the identity (approximate
identity) if

(a) For all n > 1, with K̂n := f 7→ Kn ∗ f , we have∫ π

−π
Kn(s)ds = 1 (i.e. K̂n1 = 1) (60)

(b)
sup
n>1

∫ π

−π
|Kn(s)|ds = M < ∞ ((i.e. ‖K̂n‖L∞→L∞ = 1) (61)

(c) For any ε > 0 we have

lim
n→∞

∫
|x|∈[ε,π]

|Kn(s)|ds = 0 (Approximate identity) (62)

For positive kernels, which are often encountered, (61) follows from (60).

Theorem 94. (a) Let {Kn}n∈N be an approximation to the identity family. Then, for any f ∈ L∞(S1) we
have

lim
n→∞

(Kn ∗ f )(x) = f (x) (63)

at any point where f is continuous. If f ∈ C(S1) then ‖Kn ∗ f − f ‖∞ = 0.
(b) If f ∈ Lp(S1), 1 6 p < ∞, then limn→∞ ‖K̂n f − f ‖p = 0,
(c) For 1 6 p 6 ∞ we have supn ‖K̂n‖p→p 6 M. If 1 6 p < ∞, the sequence of operators {K̂n}n∈N

converges weakly to the identity.

Proof. The proof is similar to that of Theorem 91 (only simpler). Let x be a point of continuity of f .
Given ε, let δ be s.t. | f (x− s)− f (x)| 6 ε if |s| 6 δ. We decompose the integral (Kn ∗ f )(x)− f (x)
as in (56),∫ π

−π
Kn(s)( f (x− s)− f (x))ds =

∫
|s|6δ

Kn(s)( f (x− s)− f (x))ds +
∫
|s|>δ

Kn(s)( f (x− s)− f (x))ds

(64)
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We bound the first integral by using the sup norm for f (x− s)− f (x) and the L1 norm for Kn:∣∣∣∣∫|s|6δ
Kn(s)( f (x− s)− f (x))ds

∣∣∣∣ 6 ε
∫
|s|6δ
|Kn(s)| ds 6 ε (65)

and we use the assumptions on Kn in the second one∣∣∣∣∫|s|>δ
Kn(s)( f (x− s)− f (x))ds

∣∣∣∣ 6 ‖ f ‖∞

∫
|s|>δ
|Kn(s)|ds→ 0 as n→ ∞ (66)

(b) Let f ∈ Lp and let g ∈ C(S1) be s.t. ‖ f − g‖1 < ε. Using Young’s inequality for convolu-
tion, we see that supn ‖Kn‖p→p 6 M and, for large enough n,

‖K̂n f − f ‖p 6 ‖K̂ng− g‖p + ‖ f − g‖p + ‖K̂n(g− f )‖p 6 ‖K̂ng− g‖p + 2‖ f − g‖p 6 (2 + M)ε

(c) follows immediately from (b).

Exercise 17. Why isn’t this proof working when p = ∞? Does the result extend to L∞? (Leave this
second part until the end of the next section.)

11 The Fejér kernel

The Cesàro averages of Sn are

σn( f )(x) =
1
n

n−1

∑
k=0

Sn( f ) =
1
n

n−1

∑
k=0

Dn ∗ f =

(
1
n

n−1

∑
k=0

Dn

)
∗ f =: Fn ∗ f

Here Fn is the Fejér kernel,

Fn(x) =
1
n

n−1

∑
k=0

sin(nx + x/2)
sin(x/2)

=
1
n

sin2(nx/2)
sin2(x/2)

where the last equality is a simple exercise.

Lemma 95. The Fejér kernel is an approximation to the identity.

Proof. Since 1
2π

∫ π
−π Dn(s)ds = 1 for all n, we have, for all n,

1
2π

∫ π

−π
Kn(s)ds = 1

and since Fn is a positive kernel, this proves (a) and (b) in the definition. It is clear that

1
n

∫
|s|>ε

sin2(ns/2)
sin2(s/2)

ds 6
1
n

∫
π>|s|>ε

ds
sin2(s/2)

→ 0 as n→ ∞

We then find, as a corollary, the following.
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Theorem 96. If f ∈ L∞(S1), then {Sn( f )}n∈N is Cesàro summable to f at any point of continuity of f .
If f ∈ C(S1), then the Cesàro sums of {Sn( f )}n∈N converge uniformly to f .

Corollary 97. If f ∈ L∞(S1) and its Fourier coefficients are all zero, then f = 0 at any point of continuity.

Proof. This is immediate, since the Cesàro sums are zero.

Corollary 98. Trig polynomials are dense in C(S1) in ‖ · ‖∞.

Proof. (We proved this already in Proposition 80, in a different way.)

12 The Poisson kernel

Let f ∈ L∞(S1). Then, its Fourier coefficients {an}n∈N are bounded, and thus the Abel means

Ar( f )(t) = ∑
n∈Z

anr|n|eint (67)

converge absolutely and uniformly for r < 1, and we can interchange summation and integration
to write

Ar( f )(t) =
1

2π

∫ π

−π
f (s) ∑

n∈Z

r|n|ein(t−s)ds = (Pr ∗ f )(t) (68)

where Pr(t) is the Poisson kernel,

Pr(t) = ∑
n∈Z

r|n|eint =
1− r2

1− 2r cos t + r2 (69)

as you can easily check.

Proposition 99. Pr are an approximation to the identity 5

The fact that 1
2π

∫ π
−π Pr = 1 (property (a)) follows from integrating the series term by term. For

(b) we note that the kernels are positive. Property (c) follows from the fact that Pr are bounded
and go to zero uniformly in any closed interval in (0, π].

We have proved:

Theorem 100. The Fourier series of an L∞(S1) function is Abel summable to f at any point of continuity
of f . If f ∈ C(S1), then the series is uniformly Abel summable to f .

Returning to the heat equation, we find that

Theorem 101. The heat eq. (31) with f continuous, the uniform limit of u(r, θ) as r→ 1, has a unique
solution (38) and (39).

Corollary 102. If f ∈ L1 has zero Fourier coefficients then it is zero a.e. Thus the Fourier coefficients
uniquely determine the function.

Note again that this does not say that the Fourier series converges to the function in L1! Kol-
mogorov showed in the 1920’s that there exist L1 functions for which the Fourier series diverges
everywhere. See also Note 79 above.

5Indexed by the continuous variable r ∈ [0, 1). The definition is virtually the same as in the discrete case.
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Exercise 18. Check that the map U, U( f ) = {an}n∈Z, where {an}n∈Z are the Fourier coefficients of f ,
is a unitary operator between L2([−π, π]) and `2(Z). What is the image under U of the functions in
AC(S1) with derivative in L2(S1)? (This is the domain of definition of the self-adjoint operator i d

dx on S1.)

12.1 Several variables

Assume f ∈ C1((S1)2). Then,

f (x, ·) = ∑
k∈Z

ck(x)eiky where ck(x) =
1

2π

∫ π

−π
f (x, t)e−iktdt (70)

Now, ck ∈ C1(S1) (why?), and hence

f (x, y) = ∑
k∈Z

(
∑

m∈Z

ck,meikx

)
eiky where ckm =

1
2π

∫ π

−π
ck(s)e−imsds =

∫∫
[−π,π]2

f (s, t)e−i(ms+kt)dsdt

(71)
Uniform and absolute convergence (justify!) means that, we can write

f (x) = ∑
n∈Z2

cnein·x (72)

Exercise 19. (a) Under smoothness conditions as above, formulate and prove a theorem about Fourier
series in n dimensions.

(b) Write down a formula for the Fourier series of functions which are periodic, but have different
periods in the different directions in Rn.

The following exercise illustrated the duality between regularity (smoothness) and decay of
the Fourier coefficients for functions that have point singularities. By the latter we mean that
for each point at which the function is not smooth, there is an interval centered at that point in
which there is no other point of non-smoothness.

Exercise 20. Let
f (x) = ∑

n∈N

sin nx
nα

; (α > 0, x ∈ [−π, π]) (73)

(1) Show that (73) converges pointwise for all x.
(2) We now use a rudimentary form of Borel summation (see also more about this form of Borel

summation) to determine the regularity of f . Using the definition of the Gamma function, show that

1
nα

=
1

Γ(α)

∫ ∞

0
pα−1e−npdp (74)

Show that this implies that for x 6= 0 we have

f (x) =
1

Γ(α)

∫ ∞

0
pα−1 ∑

n∈N

sin(nx)e−npdp =
1

Γ(α)

∫ ∞

0
pα−1 sin x

2(cosh p− cos x)
dp (75)
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For α = 1 the last integral is elementary,

2 f (x) =


−x− π, x < 0

0, x = 0

−x + π, x > 0

Prove that f (x) is C∞ away from zero (actually, it is analytic).
(3) Take now x > 0 and small. Write (75) as

1
xΓ(α)

∫ ∞

0
pα−1 x2a(x)

p2b(p) + x2c(x)
dp (76)

and show that a, b and c are smooth in a neighborhood of zero, that a(0) = b(0) = c(0) = 1 and that
b(p) > 1 for p > 0. With the change of variable p = xq we get, for x > 0 small,

f (x) =
1

xα−1Γ(α)

∫ ∞

0
qα−1 a(x)

q2b(qx) + c(x)
dq (77)

and that, as x → 0+ we have

lim
x→0

∫ ∞

0
qα−1 a(x)

q2b(qx) + c(x)
dq =

∫ ∞

0

qα−1

q2 + 1
dq =

π

2 sin(απ/2)
(78)

(The last expression is most easily proved by the residue theorem, but you don’t need to justify it; this
explicit value is not terribly important here.) Use (78) to conclude that

lim
x→0

f (x)(
|x|α

x

) =
π

2Γ(α) sin(απ/2)
; α ∈ (0, 1) (79)

Thus f has precisely one point singularity, x = 0. Show that, for α ∈ (1, 2), f ∈ Cα−1(S1).
(d) Show that for α ∈ (0, 1), f ∈ Lp for any p ∈ [1, 1/(1− α)). Are the Fourier coefficients of f those

implied by the series?

Note 103. It is useful to sketch this function for some α ∈ (0, 1).
This particular relation, 1/nα 7→ (x− x0)α−1 between decay and regularity is generally true for point

singularities. In the general class Cα, the (sharp) correspondence is 1/nα ↔ f ∈ Cα with a proof similar
to that of Theorem 91.

13 The Fourier transform

If f is not periodic, but compactly supported, we can extend it to a periodic function, with, say,
the size of the support for period, and analyze it using Fourier series. Now if f ∈ L1(Rn) is not
periodic, it still makes sense to calculate the “coefficients”,

(F f )(k) = f̂ (k) =
∫

Rn
e−2πi〈x,k〉dx, k ∈ Rn (80)
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The function f̂ is called the Fourier transform of f . The inverse Fourier transform (we’ll shortly
why “inverse”) is

(F−1 f )(k) = f̌ (k) =
∫

Rn
e2πi〈x,k〉dx, k ∈ Rn (81)

Lemma 104. The translation τa := f 7→ f (x + a) is continuous in Lp, 1 6 p < ∞.

Proof. Since Cc(Rn) is dense in Lp, 1 6 p < ∞ it suffices to prove this for Cc(Rn). Let f be
continuous and compactly supported in K. Translation is evidently linear, and thus it suffices to
prove continuity at zero. We have

lim
a→0
‖τa f − f ‖p 6 m(K)1/p‖ lim

a→0
‖τa f − f ‖∞ = 0 (82)

by uniform continuity.

Finally, note that if f is 1-periodic, then the function g = x 7→ f ((2π)−1x) is 2π periodic, and
thus we have

f ((2π)−1x) = ∑
k∈Z

eikx 1
2π

∫ 2π

0
f ((2π)−1s)e−iksds

which implies

f (x) = ∑
k∈Z

e2πikx
∫ 1

0
f (s)e−2πiksds (83)

It is convenient to first analyze these transforms in a space of smooth, rapidly decreasing func-
tions.

13.1 The Schwartz space S

Let α, β be multiindices, that is tuples (m1, m2, ..., mn) ∈ Nn
0 , where N0 = N ∪ {0}. We use the

multidimensional conventions

|α| =
n

∑
i=1

αi, xα =
n

∏
i=1

xαi
i , ∂α =

∂|α|

(∂x)α
|x|2 =

n

∑
i=1

x2
i ; and

(
n
α

)
=

n!
∏n

i=1 αi!

The Schwartz space S of rapidly decreasing functions on Rn is defined as

S (Rn) =
{

f ∈ C∞(Rn) : ‖ f ‖N,β < ∞ ∀N ∈N0, β ∈Nn
0
}

(84)

where
‖ f ‖N,β = sup

x∈Rn

∣∣∣(1 + |x|)N∂β f (x)
∣∣∣ . (85)

These are smooth functions that decrease faster than any inverse power of x2.

Proposition 105. S is a Fréchet space.

Proof. Only completeness needs to be checked. Since C(Rn) is complete, a Cauchy sequence
{ fk}k∈N in all ‖ · ‖N,β implies that { fk}k∈N convergences in all ‖ · ‖N,β to some functions gN,β.
It remains to identify these gN,β, which is a simple exercise given the calculus theorem stating,
in one dimension, that if { f ′n}n∈N converge uniformly to some function h and { fn(x0)}n∈N con-
verges for some x0, then { fn}n∈N converge uniformly on compact sets to some f and h = f ′.
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Recall that a Fréchet space is a special case of a metrizable space, one in which the metric is
translation invariant, ρ( f , g) = ρ( f − g, 0). If the family of semi-norms is ‖ · ‖n, then a metric
which induces the same topology is

ρ( f , 0) = ∑
n∈N

2−n ‖ f ‖n

1 + ‖ f ‖n

Conversely, a metric space is Fréchet if it is complete, locally convex (look up this notion) and the
metric is translation-invariant.

Lemma 106. The families of seminorms{
‖|x|α∂β f ‖∞

}
N,β∈Nn

0

and
{
‖(1 + |x|)N∂β f ‖∞

}
α∈Nn

0 ,N∈N0
; (86)

induce the same topology on S .

Proof. Indeed,

|x|α < (1 + |x|)|α|; (1 + |x|)N =
N

∑
k=0

(
N
k

)
|x|k 6

N

∑
k=0

(
N
k

)( n

∑
i=1
|xi|
)k

= ∑
β,|β|6N

aβ|x|β

for some nonnegative coefficients aβ and thus the distance induced by the first family of semi-
norms goes to zero iff the distance induced by the second one does.

Compactly supported smooth functions, C∞
c (Rn) are an important subset of S . A prototypical

such function is the function η below, compactly supported in the unit ball and smooth.

Proposition 107. The function

η(1− |x|2) :=

e
− 1

1−|x|2 ; |x| < 1

0; |x| > 1
(87)

is in C∞
c (Rn).

Proof. This follows from the chain rule and the fact that the function t 7→ e−1/tχ
R+(t) is in

C∞(R), see Exercise 3/p.239 in Folland.

This function can be used as a building block to define other interesting compactly supported
functions. For instance, the function

φ(x) =


1; |x| 6 1

exp
(

1
|x|2−1

+ 1
|x|2−4

)
1+exp

(
1

|x|2−1
+ 1
|x|2−4

) ; |x| ∈ (1, 2)

0; |x| > 2

(88)

is a smooth function, compactly supported in the ball of radius 2 and equals 1 in the closed ball
of radius 1: B1(0) ≺ φ ≺ B2(0)c.
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Proposition 108. C∞
c (Rn) is dense in S(Rn)

Proof. Let φn = x 7→ φ(x/n) with φ as in (88). If f ∈ S(Rn),then { f φn}n∈N is a sequence of
compactly supported functions which, we claim, converges to f in the topology of S . Indeed, we
have

∂α( f (x)φn(x)) = ∑
β6α

nβ−α

(
α

β

)
∂β f (x)(∂α−βφ)(x/n)

= ∂α f (x) + ∑
β6α,β 6=α

nβ−α

(
α

β

)
∂β f (x)(∂α−βφ)(x/n)− (1− φ(x/n))∂α f (x) (89)

and note that, for any h, since supx∈Rn |h(x)| = supx∈Rn |h(x/n)|, we have

xγ ∑
β6α,β 6=α

nβ−α

(
α

β

)
∂β f (x)(∂α−βφ)(x/n)→ 0 as n→ ∞

Finally, for any γ, if n is large enough, then |∂α f (x)| 6 C|x|−γ−1 if |x| > n, while 1− φ(x/n) = 0
if |x| 6 n which means xγ(1− φ(x/n))∂α f (x)→ 0 as well.

Other important examples of functions in S are the Gaussians, or polynomials multiplying
Gaussians,

xie−ax2
, (a > 0)

Lemma 109. The maps F and F−1 are continuous linear transformations from S into itself. Furthermore,
F interchanges multiplication by the variable with differentiation, as follows:

F (∂αxβ f ) = (−1)β(2πi)α−βkα∂βF ( f ) (90)

Proof. We have, by integration by parts,

F (∂αxβ f ) = (−2πik)α(−1)αF (xβ f ) =
(−2πik)α(−1)α

(−2πi)β
∂βF ( f ) (91)

Linearity is clear. Finally, we see that, up to a constant (that we can write down)

‖ f̂ ‖α,β = (2π)α−β‖F (∂αxβ f )‖∞ 6 ∑
α′6α,β′6|β|+n

cα′β′‖ f ‖α′,β′ (92)

for some specific constants that can be determined by expanding out ∂αxβ f .

Lemma 110 (Improper Riemann integrals and sums). Assume f ∈ C(Rn) and ‖|x|n+1 f ‖u = M <

∞. Then,
lim
ε→0

εn ∑
k∈Zn

f (εk) =
∫

Rn
f (x)dx (93)

Proof. Fix a δ > 0 small enough and choose R > δ−1 so that for |x| > R we have | f (x)| <
(M + 1)/|x|n+1. Note that the number of points in the set {k ∈ Zn : m 6 ε|k| < m + 1} cannot
exceed the volume of the shell {x : ε|x| ∈ [m− ε, m + 1 + ε]}, which is bounded by Cn(m/ε)n−1
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for some positive Cn and thus, for small ε,∣∣∣∣∣εn ∑
k∈Zn

f (εk)− εn ∑
k∈Zn :ε|k|<R

f (εk)

∣∣∣∣∣ 6 Cn(M + 1)εn ∑
m>R/ε

ε2

m2 6 Cn(M + 1)
εn+3

R
6 δ/2 (94)

On the other hand, for some other constant C′n we have∣∣∣∣∫|x|<R
f (x)dx−

∫
Rn

f (x)dx
∣∣∣∣ 6 (M + 1)C′n

R
6 const.δ (95)

Choosing ε small, we can arrange that∣∣∣∣∣
∫

Rn
f (x)dx− εn ∑

k∈Zn

f (εk)

∣∣∣∣∣ 6 δ (96)

since the sum above is simply a Riemann sum for the integral and f is smooth.

Theorem 111 (Fourier inversion theorem in S). (i) The Fourier transform is one to one from S(Rn)

onto itself and S(Rn) F−1F = FF−1 = I, the identity operator.
(ii) (Plancherel) If f ∈ S(Rn), then ‖ f ‖2 = ‖F f ‖2.

Proof. The fact that F is one-to-one onto follows from the inversion formula. Since F−1F is
continuous, it suffices to show that F−1F = I on the dense set C∞

c (Rn). Take f ∈ C∞
c (Rn) and ε

small enough so that f is supported in K = [−ε−1/2, ε−1/2]n. Extending f as a periodic function
on Rn with period ε−1 in any of the variables x1, ..., xn we obtain

f (x) = εn ∑
k∈Zn

e2πikε
∫ ε−1

2

− ε−1
2

f (s)e−2πiksεds = εn ∑
k∈Zn

e2πikε
∫ ∞

−∞
f (s)e−2πiksεds

= εn ∑
k∈Zn

e2πikε f̂ (kε)→ FF−1 f (97)

as ε→ 0 by Lemma 110.
(ii) Similarly, it is enough to show this on C∞

c (Rn); if f is smooth and compactly supported,
then, ∫

Rn
| f (s)|2ds =

∫
K
| f (s)|2ds = εn ∑

k∈Zn

|(F f )(kε)|2 →
∫

Rn
|(F f )(k)|2dk (98)

Corollary 112. F extends to an isomorphism on L2(Rn) with F−1 as its inverse.

Proof. Sn is dense in L2(Rn).

Lemma 113. L2(Rn) ⊂ L1(Rn) ∩ C∞
c (Rn).

Proof. Let f ∈ L1(Rn) ∩ C∞
c (Rn) and K be the compact set outside which | f | 6 1. Then,

‖ f ‖2 =
∫

K
| f |2dm +

∫
Kc
| f |2dm 6

∫
K
| f |2dm +

∫
Kc
| f |dm 6

∫
K
| f |2dm + ‖ f ‖1 < ∞
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Lemma 114 (A formula for F in L2). If f ∈ L2, then

lim
R→∞

∥∥∥∥ f̂ −
∫
|x|6R

e−2πiks f (s)dm
∥∥∥∥

2
= 0

If f ∈ L1(Rn) ∩ L2(Rn), then the extension of F to L2 is the same as F .

Proof. This is immediate since f χ|x|6R converge to f both in L1 and (by Parseval) in L2.

Note 115. The result above is sometimes written

f̂ = l.i.m
R→∞

∫
|x|6R

e−2πiks f (s)dm

Note also that instead of balls we can take any sequence {Kn}n∈N of compact sets s.t. limn→∞ m(Kc) = 0.

Theorem 116. If f ∈ L1(Rn) and F f ∈ L1(Rn), then F−1F f = f .

Proof. This follows immediately from Lemmas 113 and 114.

Theorem 117 (Hausdorff-Young inequality). Assume 1 6 p 6 2 and p−1 + q−1 = 1. Then, the
Fourier transform is a bounded map from Lp to Lq with norm at most one. This is proved by interpolation,
using Riesz-Thorin with p0 = q0 = 2, p1 = 1, q1 = ∞. We have ‖ f̂ ‖2 = ‖ f ‖2 and ‖ f̂ ‖∞ 6 ‖ f ‖1

13.2 The Fourier inversion theorem, a direct approach

We show the inversion formula in R. Let f ∈ S(R). Then, F−1F f equals

lim
R→∞

∫ R

−R
eikx

∫ ∞

−∞
e−iky f (y)dydk = lim

R→∞

∫ ∞

−∞
f (x−u)

∫ R

−R
eikudk du = lim

R→∞

(∫ 0

−∞
+
∫ ∞

0

)
f (x−u)

2 sin Ru
u

du

= lim
R→∞

2
∫ ∞

0

f (x + s) + f (x− s)− 2 f (x)
s

sin(Rs)ds + 4 f (x)
∫ ∞

0

sin s
s

ds = 2π f (x)

In the last integral above we changed Ru to s, and the integral before it goes to zero by the
Riemann-Lebesgue lemma Proposition 89 and the fact that the expression multiplying sin ku is
smooth.

Note also the appearance in the process of the kernel u−1 sin(Ru), which has the same effect
as the Dirichlet kernel, in concentrating the main contribution of the integral to a vanishing
neighborhood of zero.

Proposition 118. If f (x) = e−πα|x|2 with <(α) > 0, then f̂ (k) = α−n/2e−π|k|2/α.

Proof. In one dimension this follows from the fact that

d f̂
dk

= −2π

α
k f̂

as it can be checked by integration by parts and that f̂ (0) = α−1/2. The extension to Rd is
immediate, since the multiple integral is a product of one-dimensional integrals of the type
above.
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14 Some applications of the Fourier transform

14.1 The Schrödinger equation for a free particle in Rd

The wave function ψ(x, t) of a particle has the following interpretation:|ψ(x, t)|2dm is the proba-
bility density that, as a result of a measurement at time t, the particle will be found at position x.
Then clearly we must have

∫
Rd |ψ(x, t)|2dm(x) = 1 for any t, in particular ψ ∈ L2(Rd).

In the case of a single particle of mass m in an external potential V(x, t), ψ satisfies the PDE

ih̄
∂ψ

∂t
= − 1

2m ∆ψ + V(x, t)ψ

This is an evolution equation which requires an initial condition ψ(x, t0) = ψ0(x). Here E =

− 1
2m ∆ is the kinetic energy operator E = p2

2m =: 1
2m∇2. In atomic units, h̄ = 2m = 1. A particle is

free if the external potential is zero,

i
∂ψ

∂t
= −∆ψ

The Laplacian is a symmetric operator,

l.i.m.
R→∞

∫
|x|6R

(ψ ∆ϕ− ϕ ∆ψ) dV = l.i.m.
R→∞

∮
|x|=R

(
ψ

∂ϕ

∂n
− ϕ

∂ψ

∂n

)
dS = 0

Lemma 119. If ‖ψ(x, 0)‖2 = 1, then ‖ψ(x, t)‖2 = 1 for all t.

Such an evolution is called unitary, for obvious reasons.

Proof. By taking the complex conjugate of the Schrödinger equation,

−ih̄
∂ψ

∂t
= − 1

2m ∆ψ + V(x, t)ψ

Multiplying the first equation by ψ, the second by ψ and subtracting, we get and subtracting the
two equations, and integrating over Rd we get

i
d
dt

∫
Rd
|ψ|2dm = l.i.m.

R→∞

∫
|x|6R

ψ ∆ψ− ψ ∆ψ = 0

We now take the Fourier transform in L2(Rd),

iψ̂′ = 4π2k2ψ⇒ ψ(x, t) = ψ̂0(k)e−4π2ik2t

The Fourier transform ψ̂ is the probability amplitude of the momentum, k. We see that the
probability distribuion in k is |ψ̂0|2, and it is independent of time. The momentum is conserved.

Now,
ψ(x, t) =

∫
Rd

e−4π2ik2t+2πikxψ̂0(k)dk

What happens when t becomes large? It is not difficult to see that the Riemann-Lebesgue
lemma can be adapted to show that ψ(x, t)→ 0 as t→ ∞.
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Concretely, let’s assume that ψ0(x) = e−παx2
. Then, by Proposition 118, we have ψ̂0(k) =

α−d/2e−πk2/α and we get, using again Proposition 118,

ψ(x, t) = α−d/2
∫

Rd
e2πikx−πk2(4πit+α−1)dk = (1+ 4iπαt)−d/2 exp

(
− παx2

16π2α2t2 + 1
+ 4i

π2α2tx2

16π2α2t2 + 1

)
If d = 3 we see that the probabilty of finding the particle in a ball of fixed radius decays roughly
like t−3, while the shape of the probability distribution is an ever widening Gaussian. The particle
disperses out of any finite region.

14.2 The Airy equation

The Airy functions Ai and Bi satisfy the ODE

y′′ = xy

The solutions are entire, since it is a linear ODE with entire coefficients. Taking the Fourier
transform (with the normalization

∫
R

e−ikxy(x)dx) we get

−k2ŷ = i
dŷ
dk

with the solution
ŷ = Ceik3/3

meaning

y(x) =
∫ ∞

−∞
eik3/3+ikxdk

is (up to a multiplicative constant) one of the two linearly independent solutions of the ODE.
With the normalization above, it is indeed, the Airy function Ai(x). Or is it even a solution of
the ODE? If we differentiate twice in x under the integral sign, we get an integral that does not
converge, even conditionally.

But this does not mean that y′′(x) does not exist! It simply means that the representation is
inadequate for this purpose. Instead, the contour of integration can be homotopically rotated:

y(x) =
∫ ∞eπi/6

−∞e−πi/6
eik3/3+ikxdk

In this way, whe |k| is large, the integrand decreases roughly like e−|k|
3/3, and y(x) is now mani-

festly analytic in C!

15 Convolution

Recall that the convolution of f and g is defined as

( f ∗ g)(y) =
∫

Rn
f (x)g(y− x)dx
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Theorem 92 shows in particular that convolution is well defined on L1(Rn)× L1(Rn). The follow-
ing theorem shows, in particular, that multiplication and convolution are Fourier-dual to each
other.

Theorem 120. Suppose f , g ∈ L1. Then

f̂ ∗ g = f̂ ĝ; f̂ g = f̂ ∗ g

and, if a ∈ Rn, ten
τ̂a f (k) = eika f̂ (k)

Proof. This is a calculation, relying on Fubini:

( f̂ ∗ g)(k) =
∫∫

f (y− x)g(x)e−2πikydxdy =
∫∫

f (y− x)g(x)e−2πikxe−2πik(y−x)dxdy

=
∫

f (y− x)e−2πik(y−x)d(y− x)
∫

g(x)e−2πikxdx = f̂ (k)ĝ(k) (99)

The equality immediately following it is now obvious by the inversion formula. The last equality
is clear from an immediate calculation.

As a result, we should investigate further the properties of convolution.

Proposition 121. Assuming that the integrals are well-defined (e.g., f , g ∈ L1),
a) f ∗ g = g ∗ f .
b) ( f ∗ g) ∗ h = f ∗ (g ∗ h).
c) For a ∈ Rn, τa( f ∗ g) = (τa f ) ∗ g = f ∗ (τag).
d) If f , g ∈ S , then f ∗ g ∈ S .
e) If A = {x + y : x ∈ supp( f ), y ∈ supp(g)}, then supp( f ∗ g) ⊂ A.

Proof. For e) note that for all x, if z /∈ A then f (x)g(z− x) = 0. The first three properties follow
by density if they hold in L1, where they are obvious from Theorem 120; d) is immediate from
Theorem 120 and Lemma 109.

Proposition 122. Let p, q be conjugate exponents, f ∈ Lp, g ∈ Lq. Then f ∗ g exists pointwise every-
where, f ∗ g ∈ BC(Rn) and ‖ f ∗ g‖∞ 6 ‖ f ‖p‖g‖q. Furthermore, if p ∈ (1, ∞), then f ∗ g ∈ C0.

Proof. Pointwise existence and the uniform bound follow right away from Hölder’s inequality.
Noting that ∫

f (x)g(y− x)dx =
∫

f (x)(Sg)(x)ds

where S = τy ◦ J, (Jg)(x) = g(−x), continuity follows from Lemma 104. Finally, we note that
p ∈ (1, ∞) implies q ∈ (1, ∞) and thus Cc(Rn) is dense in Lp and in Lq. By Proposition 121 e)
Cc is preserved by convolution, and if fn → f in Lp and gn → g in Lq, then, by the first part
of the Proposition, fn ∗ gn → f ∗ g uniformly. Since the uniform closure of Cc is C0, the result
follows.

The following is a refinement of Proposition 121, d).
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Proposition 123. If f ∈ L1 and g ∈ Ck with ∂αg ∈ BC for |α| 6 k, then f ∗ g ∈ Ck and for all α, |α 6 k
we have ∂α( f ∗ g) = f ∗ (∂αg).

Proof. This follows from the theorem of differentiation under the integral sign (T. 2.27, Folland).

16 The Poisson summation formula

Theorem 124. Assume f ∈ C(Rn), ‖|x|n+ε f (x)‖∞ < ∞, and ‖|k|n+ε f̂ (k)‖∞ < ∞ for some ε > 0.
Then,

∑
k∈Zn

f (k) = ∑
j∈Zn

f̂ (j)

and more generally,
∑

l∈Zn

f (x + l) = ∑
j∈Zn

f̂ (j)e2πij·x (100)

The sum (P f )(x) := ∑k∈Zn f (x + k) is called a periodization of f .

Proof. Note first that, under the given assumptions, the sums are uniformly and absolutely con-
vergent. The function ∑k∈Zn f (x + k) is in C(Tn) ⊂ L2(Tn). Note that

f̂ (j) =
∫

Rn
e−2πik·x f (x)dx = ∑

m∈Zn

∫
T+m

e−2πik·x f (x)dx

= ∑
m∈Zn

∫
T

e−2πik·x f (x + m)dx =
∫

T
e−2πik·x ∑

m∈Zn
f (x + m)dx (101)

and (100) simply expresses convergence of the Fourier series of P f to P f . Uniform convergence
implies pointwise convergence to P f . The first equality, which is the most commonly used form
of Poisson summation, follows from (100) by taking x = 0.

This theorem has many applications, for instance in calculating sums in closed form, when
the Fourier transform of a function is more easily summed than the function itself.

For instance, if a ∈ R+, we have

1̂
x2 + a2 = a−1e−a|k|

which implies, using Poisson summation, that

∑
j∈Z

1
j2 + a2 = πa−1 coth(aπ) (102)

(check!), which, by a limiting procedure (which?) contains the special case

∑
j∈N

1
j2

=
π2

6
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Eq. (102) is an instance of the Mittag-Leffler theorem, which expresses a meromorphic function
by a “partial-fraction-like” expansion. In the same way we get

∑
j∈N

1
j4 + a4 =

π
(

sinh
√

2πa + sin
√

2πa
)

√
2a3
(

cosh
√

2πa− cos
√

2πa
)

implying (how?)

∑
j∈N

1
j4

=
π4

90

Exercise 21. Prove the duality formula

∑
n∈Z

e−πn2x = x−1/2 ∑
n∈Z

e−π n2
x

Note: the function on the left side of the equation above is the Jacoby theta function, θ(x).

16.1 The Gibbs phenomenon
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Figure 3: Characteristic function of [−1/4, 1/4]: the partial Fourier sum with 20 terms (left), 100
(right) and the graphical superposition of the Fourier sum with 20− 100 terms (below).

The Gibbs phenomenon is the remarkable way in which the Fourier series behaves at a jump
discontinuity of a piecewise smooth function. The Gibbs phenomenon can be heard as “ringing”
near transients, such as sounds from percussion instruments. It roughly results from the fact that
we are trying to approximate a discontinuous function by smooth ones. Recalling the duality
between smoothness and decay of the Fourier coefficients, a discontinuity will result in their
slow decay. Therefore, the Fourier terms in the difference between a partial sum and the limit
will have significant amplitude, resulting in fast oscillating defects. This “defect” only occurs
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in finite sums, since we know that in the limit the Fourier series converges everywhere to the
average of the left and right limits of a piecewise-smooth function. This also means that the
location of the maximum defect changes with thje number of terms, to allow for the limit to
exist.

The Fourier sums of the function f (x) = −1 if x ∈ (−1/2, 0) and 1 if x ∈ (0, 1/2)6 is

SN(x) =
N

∑
k=0

4 sin(2π(2k + 1)x)
π(2k + 1)

The derivative of such a sum can be calculated explicitly,

S′N(x) = 4
sin(4π(N + 1)x)

sin(2πx)

and an elementary argument shows that the first positive maximum of SN occurs at x0 = 1
4(N+1) .

We have

SN(x0) =
N

∑
k=0

4 sin
(

2π(2k+1)
4N+4

)
π(2k + 1)

→ 1
π

∫ π

0

sin x
x

dx = π−1 Si(π) = 1.1789797444 · · · as N → ∞

by recognizing that the sum is a Riemann sum for the integral (check!) We see that the sums
converge nonuniformly to f , with an “overshot” of about 18% in uniform norm.

Exercise 22. Show that the overshot by a factor of π−1 Si(π) of the Fourier sums occurs is the same at
any jump discontinuiuty of a piecewise smooth function.

17 Applications to PDEs

In this chapter we use ξ for the Fourier variable: this is the most frequent convention in PDEs.

17.1 The heat equation on the circle

This is given by
∂u
∂t

=
∂2u
∂x2 , u(x, 0) = f (x) (103)

Assume first that f is smooth enough so that

f (x) = ∑
j∈Z

aje2πijx

By separation of variables (see (41)) we get

u(x, t) = ∑
n∈Z

ane−4π2n2te2πinx (104)

6Note that the point values of the function at the discontinuity are irrelevant, as they wash out as a result of the
integration involved in calculating Fourier coeffcients.
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In discrete Fourier space, û, the solution is given by the product of the Fourier coefficients of
u(x, 0) and the Fourier coefficients of the heat kernel for the circle,

Ht(x) = ∑
n∈Z

e−4πn2te2πinx (105)

and therefore, with convolution on the circle given by ( f ∗ g)(y) =
∫ 1

0 f (x)g(y − x)dx, we get
(check!)

u = f ∗ Ht (106)

In terms of the Jacobi theta function,

ϑ(z; τ) =
∞

∑
n=−∞

exp
(
πin2τ + 2πinz

)
= 1 + 2

∞

∑
n=1

(
eπiτ

)n2

cos(2πnz) =
∞

∑
n=−∞

qn2
ηn, <τ > 0 (107)

we have Ht(x, t) = ϑ(x; 4πit).

17.2 The heat equation on the line; smoothening by convolution

This is the same as (103), except with x ∈ R.

Theorem 125 (Uniqueness). Assume u is continuous on R+ ×R, u(t, ·) ∈ S with bounded seminorms
uniformly in 0 < t < T, u(x, 0) = 0, and that u satisfies (103). Then u = 0.

Proof. The proof is very similar to that in §9. The decay and smoothness of S are obviously too
strong.

Let’s now build the solutiuon. The Fourier transform of (103) on the line reads

∂û
∂t

= −4π2ξ2û (108)

which is now an ODE, with ξ as a parameter. This gives,

û(t, ξ) = f̂ (ξ)e−4π2ξ2t (109)

The convolution theorem implies
u = f ∗ Ht (110)

where
Ht(x) = F−1

(
e−4π2ξ2t

)
= (4πt)−1/2e−x2/4t (111)

Theorem 126. If f ∈ S , then the solution of (103) on R is (110), and u(t, ·) ∈ S ; ‖u(t, ·)− f ‖∞ → 0
and ‖u(t, ·)− f ‖2 → 0 as t→ 0

Proof. First, note that û(t, ·) ∈ S uniformly in t, implying that u(t, ·) ∈ S uniformly in t. Next,

|u(x, t)− f (x)| =
∣∣∣∣∫

R
f̂ (ξ)

(
e−4π2ξ2t − 1

)
e2πiξxdξ

∣∣∣∣ 6 ∫
R
| f̂ (ξ)|

∣∣∣e−4π2ξ2t − 1
∣∣∣ dξ → 0 (112)
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by dominated convergence. For the L2 norm, we use Plancherel:

‖u(t, ·)− f ‖2
2 = ‖û(t, ·)− f̂ ‖2 =

∫
R
| f̂ (ξ)|2

∣∣∣e−4π2ξ2t − 1
∣∣∣2 dξ → 0 (113)

again by dominated convergence.

Corollary 127 (Smoothening by convolution). Let f ∈ Cc(R). Then gt = f ∗ Ht ∈ S (in fact, gt is
entire) and gt → f uniformly as t→ 0.

Proof. Indeed, if f ∈ C(R), then f̂ ∈ C∞(R) ∩ C0(R), hence f̂ (ξ)e−4π2ξ2t ∈ S (gt is in fact entire
because f̂ (ξ)e−4π2ξ2t decays superexponentially). The rest follows from Theorem 126.

Theorem 128. The heat kernel on the circle is the periodization of the heat kernel on the line:

Ht(x) = ∑
n∈Z

Ht(x + n) (114)

Proof. This follows immediately from (111), (105) and the general form of Poisson’s summation
formula.

Corollary 129. The heat kernel is positive, and the family {Ht}t>0 is an approximation to the identity.

Proof. Positivity follows from (114). It is clear from (105) that
∫ 1/2
−1/2 Ht(x)dx = 1. We have to show

that the integral of Ht over an interval not containing 0, say J = (α, β) where 0 < α < β < 1/2
vanishes in the limit t → 0. Note that for x ∈ J and 0 6= n ∈ Z we have |1 + x/n| > |1− β| := ε,
implying |x + n| > |n|ε and thus

∑
|n|>1
Ht(x + n) 6 ∑

|n|>1
(4πt)−1/2e−ε2n2/4t → 0 as t→ 0 (115)

by monotone convergence, which implies, by dominated convergence,

∫
J

Ht(x)dx 6
e−α2/4t

(4πt)1/2 (β− α) +
∫

J
∑
|n|>1
Ht(x + n)dx → 0 as t→ 0 (116)

Corollary 130. For any continuous initial condition f , the heat equation on the circle has a unique
smooth solution, u(x, t) = (Ht ∗ f )(x).

Proof. Indeed, Ht ∗ f is smooth and solves the heat equation for any t > 0 and, by Corollary 129,
limt→0 Ht ∗ f = f .

17.3 Linear PDEs

A differential operator is an operator L of degree m has the general form

L = ∑
|α|6m

aα(x)Dα; L f = ∑
|α|6m

(2πi)−|α|aα(x)∂α f
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and it is with constant coefficients if aα(x) = bα are independent of x. Let f ∈ S . Then,

F (L f )(ξ) = ∑
|α|6m

bαξα f̂ (ξ) = P(ξ) f̂ (ξ) (117)

The polynomial P(ξ) is called total symbol of L, or simply symbol. The part of the polynomial
containing the terms of highest degree only,

∑
|α|=m

bαξα

is called principal symbol. For a second order partial differential operator L with principal
symbol

∑
i+j=2

bijξ
i
1ξ

j
2

the operator is called elliptic if the matrix B = {bij}i,j is positive or negative definite, hyperbolic
if B is not definite but det(B) 6= 0 and parabolic if exactly one eigenvalue of B is zero. Thus, ∆ is
elliptic, ∂2

x − ∂2
y is hyperbolic, and ∂t − ∂2

x is hyperbolic. The names derive from the form of the
symbol: for the Laplacian, the symbol is −ξ2

1− ξ2
2 whose level lines are ellipses; the level lines are

hyperbolas for ξ2
1− ξ2

2; the heat equation has total symbol ξ1 + ξ2
2 whose level lines are parabolas;

whether the parabola is concave or convex is also important. Let’s examine these four types of
equations on the circle, with conditions (initial, boundary, etc) in S performing (discrete) Fourier
transform in one variable only.

For the wave equation, we get
[ûtt]j = −4π2 j2ûj

with solutions uj = aje−2πijt + bje2πijt, meaning

u(x, t) = ∑
j∈N

aje−2πij(x+t) + ∑
j∈N

bje2πij(x−t)

and the solution is completely determined if we provide u(x, 0), ut(x, 0) (we note that u(x, t) =
f (x + t) + g(x− t), more about this in a moment). For the Laplacian, uxx + uyy = 0, once more
taking the Fourier transform in y only, we get ûxx = ξ2û, meaning that, formally,

u(x, t) = ∑
j∈N

aje−2π j(ix+y) + ∑
j∈N

bje2πij(ix−y)

Initial conditions in S mean that the coefficients ak, bk decrease faster than any power of ξ, but
not necessarily exponentially fast. This means that the terms with jy < 0 in the first sum and
−jy > 0 in the second must vanish, and we get, if the problem is formulated in the half plane
x ∈ R, y ∈ R+,

u(x, y) = ∑
j∈N

aje−2π(|j|y+ijx)

which is completely determined by just one initial condition, u(x, 0) = f . We also note that for
y > 0, the solution is analytic in x, with some finite (in general) radius of analyticity. We saw that
the heat equation solution is also determined by one initial condition, and the solution becomes
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entire at any t > 0. Finally, the backward heat equation would have the formal solution

∑
j∈Z

ake4π2 j2t+ijx

and, for generic initial conditions in S , this is nonsense for any t > 0 (the solution, assumed C2

in x, would have a convergent Fourier series if it existed at all).
The principal symbol of a second order hyperbolic operator ξ2

1 − ξ2
2 factorizes over the reals.

In the physical domain we have the factorization ∂2
t − ∂2

x = (∂t − ∂x)(∂t + ∂x) = ∂τη where
τ = t− x, η = t + x which effectively reduces the PDE to ODEs:

∂τηu = 0⇒ ∂τu = f (τ)⇒ u = F(τ) + G(η) = F(t− x) + G(t + x)

The Poisson equation ∆u = 0 is elliptic, and in a given domain it needs one boundary
condition: either u∂Ω = f or the normal derivative ∂u

∂n |∂Ω = g.
Note the important role of the principal symbol: it’s nature dictates the growth of the Fourier

coefficients, which control the existence and smoothness of solutions.

17.4 Operators and symmetries

If G is a group of transformations on a space of functions, then L is invariant under G if L(γ f ) =
γL f for all γ ∈ G. For instance if G = T is the group of translations, f (x) 7→ f (x + γ), γ ∈ R,
commutation means that L( f (·+ a)) = (L f )(·+ a).

Another way to write this is to note that f 7→ γ f is a linear operator; call it Γ. Then the
operators L and Γ commute, LΓ − ΓL =: [L, Γ] = 0. Symmetries often place such restrictions
on L that the operator is virtually determined by them. In physics, this is an important way to
determine the fundamental laws of various theories.

Let’s look at the question of which second order operators commute with the isometries of
Rn, the group generated by T and O(n). Recalling our more general analysis of isometries of
Hilbert spaces, all elements of O(n) must be (real-valued) unitary transformations, R ∈ O(n) ⇒
RR∗ = I = RRt. In particular, |det R| = 1.

Lemma 131. The Fourier transform commutes with O(n) : R ∈ O(n) ⇒ R(F f (ξ)) = (F f )(Rξ) =

(F f (R·)(ξ).

Proof. Changing variable Rx = y,

f̂ (Rx) =
∫

Rn
e−2πi〈ξ,x〉 f (Rx)dx =

∫
Rn

e−2πi〈ξ,Rty〉 f (y)dy =
∫

Rn
e−2πi〈Rξ,y〉 f (y)dy = f̂ (Rξ)

Theorem 132. A differential operator L commutes with the isometries of Rn iff it is a polynomial in ∆,
L = Q(∆).

Proof. It is easy to see, as in the beginning of the paragraph, that L must have constant coefficients.
In Fourier space it is a polynomial in P(ξ) which, by Lemma 131, commutes with O(n). We
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decompose the polynomial by homogeneous components,

P(ξ) =
M

∑
m=0

∑
|α|=n

aαξα =
M

∑
m=0

Pm(ξ)

Next, we note that

0 = λ−M[P(Rλξ)− P(λξ)]⇒ lim
λ→∞

λ−M[P(λRξ)− P(λξ)] = PM(Rξ)− PM(ξ) = 0

This means that the highest order homogeneous polynomial is itself O(n)-invariant. Subtracting
PM from P and repeating the argument implies that PM−1 commutes with O(n) and inductively,
all homogeneous components Pj(ξ) do. Take the unit sphere, S = {ξ : |ξ| = 1} and note that
O(n) acts transitively on S. This follows from the exercise below. Thus Pj(Rξ) = Pj(ξ) on S
implies Pj = aj = const on S, entailing Pj(ξ) = aj|ξ|j which is only possible if j is even, and thus
a2k+1 = 0 and P2k(ξ) = a2j(ξ

2
1 + ... + ξ2

n)
j.

Exercise 23. Show that SL(n) acts transitively on Rn \ {0} and (thus) O(n) acts transitively on the unit
sphere in Rn.

17.5 Fourier transform of functions analytic in the lower half plane

Let f ∈ L1 ∩ C0(R) be s.t. f̂ ∈ L1. Recall that this implies that F−1 f̂ = f .

Proposition 133. (i) Assume that f ∈ L1 ∩ C0(R) is s.t. f̂ ∈ L1, and that f is analytic in the upper half
plane H, and that | f (z)| → 0 as |z| → ∞ in H. Then f̂ (ξ) = 0 if ξ < 0.

(ii) Assume f ∈ L1 ∩ C0(R) and f (ξ) = 0 for ξ < 0. Then f̌ is analytic in the upper half plane and
| f (z)| → 0 as |z| → ∞ in H.

Proof. (i) Let ξ > 0. Take Cr to be the three upper sides of a box in C: the segment from r to
r− ir, followed by the segment from r− ir to −r− ir and finally from −r− ir to −r. Check that∫

Cr
e−iξx f (x)dx → 0 as r → ∞. Fix an ε and choose r large enough so that |

∫
|x|>r e−iξx f (x)dx|+

|
∫

Cr
e−iξx f (x)dx| < ε. We then have∣∣∣∣∫

R
e−iξx f (x)dx−

∫
[−r,r]∪Cr

e−iξx f (x)dx
∣∣∣∣ < ε

where
∫
[−r,r]∪Cr

means the integral over [−r, r] followed by the integral on Cr discussed above.
On the other hand, since f is analytic, Cauchy’s theorem implies that

∫
[−r,r]∪Cr

e−iξx f (x)dx = 0,
and since ε is arbitrary, the result follows.

(ii) Simply use dominated convergence and the Riemann-Lebesgue lemma.

17.6 The Laplace transform

Definition 134. Let F ∈ L1(R+). The Laplace transform of L is defined as

(LF)(x) =
∫ ∞

0
e−pxF(p)dp, <x > 0
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More generally, if e−axF ∈ L1 for some a > 0, then LF is defined by the same formula, for <x > a.

Theorem 135. If F ∈ L1(R+), then f (x) = LF is analytic in the right half plane H and continuous in
H. If f (ix) ∈ L1(R), then, for p > 0, F is given by the inverse Laplace transform,

F(p) =
1

2π

∫ ∞

−∞
eipx f (ix)dx =

1
2πi

∫ i∞

−i∞
f (z)epzdz

If sup |za f (z)| < ∞ for some a > 1, then we equivalently have

F(p) =
1

2πi

∫ c+i∞

c−i∞
f (z)epzdz

for any c > 0.

Proof. Analyticity in H follows from the fact that F ∈ L1: dominated convergence allows then for
differentiation inside the integral. Continuity in H also follows from dominated convergence. In
the limit x → 2πit, we get

(LF)(2πit) =
∫ ∞

0
e−2πitpF(p)dp = F̂(t)

The rest follows from the Fourier inversion theorem.

17.7 The adjoint operator

Recall that for a bounded operator B in a Hilbert space H , we can define the adjoint B∗ by
〈Bx, y〉 = 〈x, B∗y〉, where uniqueness is immediate and existence is guaranteed by the Riesz
representation theorem. An operator L which is not necessarily bounded is defined on some
domain dom(L) = Ω (we may assume that Ω is dense in H, otherwise the natural Hilbert space
to work in would be H1 = Ω). Naturally, the adjoint of L would be an operator L∗, defined on
some domain Ω∗ with the property

∀(x, y) ∈ Ω×Ω∗, 〈Lx, y〉 = 〈x, L∗y〉

Obvious questions are of course existence of such an L∗, and uniqueness. Uniqueness is easy: if
we have two operators L∗1 and L∗2 with the property above, then for any y such that L∗1,2 are both
defined, we have, for any x in the dense set dom(L),

〈x, (L∗1 − L∗2)y〉 = 0⇒ (L∗1 − L∗2)y = 0

For existence, define

dom(L∗) = {y ∈ H : ∃z ∈ H, 〈Lx, y〉 = 〈x, z〉} (118)

and define L∗ on dom(L∗) by
L∗y := z (119)

Definition 136. An operator A on a dense domain Ω ⊂ H is self-adjoint if A∗ = A. Note that this
means that dom(A∗) is no more, and no less than dom(A).
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Proposition 137. Let U be unitary from H to H′ and A : Ω → H a linear operator with dense domain.
Then UΩ is dense in H′, UA is well defined on UΩ and its adjoint in UA∗.

Proof. Since U is an isomorphism, this is a straightforward verification.

Example 138. Consider the operator D = i d
dx on S1. First, we see that for smooth functions, say

in C∞(S1), 〈D f , g〉 = 〈 f , Dg〉 and D∗ exists at least on C∞(S1), and on it D∗ = D. From the
definition of the adjoint, it is clear that the domain of D∗ gets larger if the domain of D shrinks.
Suppose we want to determine first the “maximal” set of functions in L∞ ⊂ L2 on which we
can define differentiation. We keep then C∞(S1) as a domain for D (or choose an even smoother
space if it helps), and determine the corresponding domain of D∗.

Let U = F , the discrete Fourier transform, a unitary map between L2(S1) and `2(Z). Then
UD is the operator of multiplication by −k and, to understand what the adjoint of D is, it is
enough to determine the adjoint of −k. We have

〈D f , g〉 = ∑
k∈Z

(−2πk fk)gk = ∑
k∈Z

fk(−2πkgk) =: ∑
k∈Z

fkzk

which implies zk = (−kgk), k ∈ Z. Thus, dom(D∗) = Ω∗ = {g ∈ H : (kgk)k∈Z ∈ `2(Z)}. Let
hk = −2πikgk, k ∈ Z; for k 6= 0 we have gk = i/(2πk)hk which means that g =

∫ x
0 h+Λ( f ) where

Λ(g) is an additive constant, which is a bounded linear functional on L2 (why?). Now, h ∈ L2

implies g ∈ AC(S1) (with derivative in L2). This is the largest domain of D, with range in L2. In
this simple example, if we extend dom(D) to Ω∗, the same argument shows that this extended
D is self-adjoint.

Example 138 indicates that if we want to extend D even further, then the extended domain,
or range, or both cannot consist of usual functions, even allowing for the generalizations used in
the Lp spaces.

Let us first relax the restriction on the range. The dual of Cc([−a, a]) is the space of Radon
measures on [−a, a]. The Heaviside function Θ(x) is not in AC (it’s not even continuous, of
course). As an element of the dual of Cc it acts as 〈Θ, φ〉 =

∫ a
0 φ(x)dx. Proceeding as in the

previous example, taking φ in the dense set C1([−a, a]), we would define Λ = d
dx Θ, as an element

of C∗c by

Λφ = −〈Θ,
d

dx
φ〉 = −

∫ a

0
φ′(s)ds = φ(0)⇒ Λ = δ(x)

where δ(x) is the Dirac mass measure at zero. Thus Θ′(x) = δ(x) exists, as a measure, δ(x). In
the same manner, we would get

Θ′′(x) = (φ 7→ φ′(0))

This is obviously not defined as a bounded functional on Cc([−a, a]), but it is in (C1([−a, a]))∗.
This logic prompts us to consider the baseline space of test functions D = C∞

c (Rn).

18 Distribution theory

“Il y a plus de 50 ans que l’ingénieur Heaviside introduisit ses régles de calcul symbolique,
dans un mémoire audacieux où des calculs mathématiques fort peu justifiés sont utilisés pour
la solution de problèmes de physique. Ce calcul symbolique, où opérationnel, n’a cessé de
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se développer depuis, et sert de base aux études théoriques des électriciens. Les ingénieurs
l’utilisent systématiquement, chacun avec sa conception personnelle, avec la conscience plus ou
moins tranquille ; c’est devenu une technique «qui n’est pas rigoureuse mais qui réussit bien».
Depuis l’introduction par Dirac de la fameuse fonction δ(x), qui serait nulle partout sauf pour
x = 0, de telle sorte que

∫ ∞
−∞ δ(x)dx = +1, les formules du calcul symbolique sont devenues

encore plus inacceptables pour la rigueur des mathématiciens. Écrire que la fonction d’Heaviside
Y(x) égale 0 pour x < 0 et a 1 pour x > 0 a pour dérivée la fonction de Dirac δ(x) dont la
définition même est contradictoire, et parler des dérivées δ′(x), δ′′(x),... de cette fonction denude
d’existence réelle, c’est dépasser les limites qui nous est permises. Comment expliquer le succès
de ces méthodes? Quand une telle situation contradictoire se présente, il est bien rare qu’il n’en
résulte pas une théorie mathématique nouvelle qui justifie, sous une forme modifiée, le langage
des physiciens ; il y a même là une source importante de progrès des mathématiques et de la
physique.”

“More than 50 years ago the engineer Heaviside introduced his symbolic calculus rules, in an
audacious memoir in which mathematical calculations with scant justification were used to solve
physical problems. This symbolic calculus, or operational calculus, has not ceased to be devel-
oped since, and serves as a foundation for the theoretical studies of electricians. The engineers
use it systematically, everyone using his own conception, with a more or less peaceful conscience;
it has become a technique “which is not rigorous, but is successful”. Ever since Dirac’s intro-
duction of the famous function δ(x), which would be zero everywhere except at x = 0, in such
a way that

∫ ∞
−∞ δ(x)dx = +1, the formulas of symbolic calculus have become even more unac-

ceptable for the rigor of mathematicians. To write that the Heaviside function Y(x) which equals
0 fo x < 0 and 1 for x > 1 has as a derivative the Dirac function δ(x), whose very definition
is contradictory, and then talk about the derivatives δ′(x), δ′′(x),... of this function devoid of
real existence, is to exceed the limits that are permitted to us. How can one explain the success
of these methods? When such a contradictory situation presents itself, it is rarely not the case
that a new mathematical theory emerges, which justifies, in a modified form, the language of of
physicists; there is even, in this, an important source of progress of mathematics and physics.”

Laurent Schwartz, Théorie des Distributions

18.1 The space of test functions D = C∞
c (Rn)

In the following we will say that a collection F of functions f are compactly supported in the
compact set K if there is an open set O with O = K such that f ≺ O for all functions in the
family.

18.2 The topology on D

The topology on D is that of an inductive limit of Fréchet space (called “an LF space”. It has the
following properties:

(i) A sequence { fn}n∈N converges to f ∈ D iff there is an n0 and a compact K such that all
fn, n > n0 are supported in K, and

∀α ∈ (N∪ {0})n, lim
n→∞
‖∂α( fn − f )‖∞ = 0
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(ii) A set S ⊂ D is bounded iff there is a compact K s.t. S is a bounded subset of C∞
c (K).

(iii) A sequence is Cauchy if there is a K s.t. all functions are supported in K and the sequence
is Cauchy in C∞

c (K).
(iv) Let Y be a locally convex topological space. A mapping A : D → Y is continuous if it is

continuous on every C∞
c (K).

(v) A linear functional Λ : D → C is continuous iff there is an N and a K s.t.

|Λφ| 6 cK sup{|∂αφ| : x ∈ K, |α| 6 N}

Note 139. The topology on D is not metrizable. Indeed, take a sequence of compact sets s.t. Kj ↑ Rn as
j→ ∞. Clearly, ∪jC∞

c (Kj) = D, but for every j, the interior of C∞
c (Kj) is empty (why?).

More precisely, D is an inductive limit of Fréchet spaces (see Appendix A) as follows. Let
K1 ⊂ K2 ⊂ . . . ⊂ Ki ⊂ . . . ⊂ Rn be compact sets s.t. for all i, Ki is contained in the interior of Ki+1

(e.g., the balls of radius i centered at the origin). Then D is the inductive limit of the sequence of
Fréchet spaces C∞

c (Ki).

Definition 140. D′, the dual of D, is the space of distributions. If F ∈ D′ its value on the function
φ ∈ D is denoted by by 〈F, φ〉, or even, by abuse of notation,

∫
F(x)φ(x)dx.

Definition 141. It is often useful to restrict test functions to smaller sets: If O is open (K is compact),
D(O) (D(K), resp.) denote the compactly supported infinitely differentiable functions whose support is
contained in O) (K resp.).

18.3 Examples of distributions

Check that the following are examples of elements of D′:

1. (Distributions generalize functions.) Any f ∈ L1(R) is a distribution, if interpreted as the
functional 〈 f , φ〉 =

∫
Rn f (x)φ(x)dx.

2. More generally, Radon measures are distributions acting by 〈µ, φ〉 =
∫

Rn φdµ.

3. The Dirac mass at zero, at times called “delta function”, is the functional δ(x) defined by
〈δ, φ〉 = φ(0). More generally, the Dirac mass at x0, δx0(x) is the distribution 〈δx0 , φ〉 =
φ(x0).

4. Derivatives of the Dirac mass at a point: 〈∂αδx0 , φ〉 = (−1)|α|∂αφ|x0 .

5. Let FN(x, y) = ∑N
k=−N e−2πik(x−y). Then, with φ ∈ C∞

c ([−1/2, 1/2]), and φk the Fourier
coefficients of φ, we have

〈FN(·, y), φ〉 =
N

∑
k=−N

φkeiky → φ(y) as N → ∞

and thus ∑N
k=−N e−2πik(x−y) → δy(x) as N → ∞, in D′(−1/2, 1/2).

Proposition 142 (Fundamental seqences). Assume f ∈ L1(Rn) and ‖ f ‖1 = 1; for t > 0 define
ft(x) = t−n f (x/t). Then ft → δ as t→ 0.
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Proof. Let φ ∈ D. Then,

〈 ft, φ〉 = t−n
∫

Rn
f (x/t)φ(x)dx =

∫
Rn

f (x)φ(xt)dx → φ(0)

by dominated convergence.

18.4 Support of a distribution

General distributions are not functions, as we have seen. In particular, if F, G ∈ D′ we cannot
meaningfully speak in general of F(x0), or say that F and G agree at some point. But agreement
on an open set is a meaningful notion:

Definition 143. F ∈ D′ is zero on the open set O if F restricted to D(O) is zero. Similarly, if F, G ∈ D′
we say that F and G agree on O if F− G = 0 on O.

Note that this notion coincides with usual equality of functions (a.e.) if F and G are functions.

Proposition 144. Let Oα be open sets with ∪αOα = O. If F ∈ D′(O) and F = 0 on each Oα, then
F = 0 on O.

Proof. Let φ ∈ D(O). Since supp(φ) is a compact set, φ ≺ O1 ∪O2 ∪ ... ∪Om for some m (where
we re-indexed the sets). Let ψj, j = 1, ..., m be a smooth partition of unity on supp(φ) with
ψj ≺ Oj. Then 〈F, φ〉 = ∑j〈F, ψjφ〉 = 0, by assumption.

Definition 145. For F ∈ D′, there is a maximal open set O in Rn on which F is zero (which could be
empty, of course). Then, the support of F is Rn \ O.

Example 146. The Dirac mass at x0 has {x0} as a support.

Note that D is embedded in D′ by

〈ψ, φ〉 :=
∫

Rn
ψ(s)φ(s)ds (120)

Definition 147. Let T be a linear continuous operator on D. T has a transpose if there is a linear
continuous operator T× on D s.t.

〈T×ψ, φ〉 =: 〈ψ, Tφ〉 (121)

As an example, the transpose of ∂α is (−1)|α|∂α. Note that the transpose is uniquely defined
by (T×)× = T and (121). Check that the transposes below exist and satisfy the rules in 1. and 2.

1. (aT + bS)× = aT× + bS×.

2. (TS)× = S×T×.

18.5 Extension of operators from functions to distributions

Proposition 148. Assume T is linear and continuous from D to D. Define T× by

〈T×F, φ〉 = 〈F, Tφ〉

Then T× is linear and continuous on D′.
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Proof. For linearity:

〈T×(aF1 + bF2), φ〉 = 〈aF1 + bF2, Tφ〉 = a〈F1, Tφ〉+ b〈F2, Tφ〉 = a < T×F1, φ〉+ b〈T×F2, φ〉

Continuity: By the definition of the topology on D′, and since Tφ ∈ D, if a net {Fα}α∈A is s.t.
Fα → F, then 〈Fα, Tφ〉 → 〈F, Tφ〉 7. (Where do we use the continuity of T?)

Examples. 1. (Differentiation) Let F be any L1
loc function. Then, F has derivatives of all orders

in the sense of distributions, since

〈∂αF, φ〉 = (−1)|α|
∫

Rn
F(x)∂αφ(x)

is a continuous functional on D. Note that if φ ∈ D, then ∂αφ ∈ D and φ 7→ ∂αφ is in D′
(why?). Thus, if F is a distribution, then ∂αF is a distribution, defined by (−1)|α|〈F, ∂αφ〉.

2. (Multiplication with smooth functions) If F ∈ D′ and ψ ∈ D, then Fψ ∈ D′, since T× :=
φ 7→ ψφ satisfies the hypotheses of the Proposition above (it acts continuously on D), and
Fψ is then the distribution 〈Fψ, φ〉 := 〈F, ψφ〉. Note that smoothness is needed in this
definition; if F = δ and ψ is a function in the sense of L∞ only, (ψφ)(0) is undefined, in
general. Likewise, if ψ ∈ Cnonly were in D′, then, since the derivative of any order of a
distribution is a distribution, it would follow that ψ(n+k)(0) are all definied, which is clearly
false in general. The product of two distributions is not defined, in general.

3. (Translation) Since
∫

Rn f (x + a)g(x)dx =
∫

Rn f (x)g(x − a)dx if f , g ∈ D, the extension to
D′ of translation is 〈τaF, φ〉 = 〈F, τ−aφ〉, and the proposition applies since T = τ−a is
continuous.

4. (Composition with linear transformations of Rn.) Let M be linear and invertible on Rn.
Then, (T×φ)(x) = φ(M−1x) is continuous, and the natural definition of F ◦ M (check by
taking F = ψ ∈ D)

〈F ◦M, φ〉 = |detM|−1〈F, φ ◦M−1〉

In particular, if R is the reflection Rφ(x) = φ(−x), we have

〈RF, φ〉 = 〈F,Rφ〉

Theorem 149 (Regularity). For any distribution F and compact K, there is a positive integer N(K) and
a positive constant c(K) s.t. for all φ ∈ D(K),

|〈F, φ〉| 6 c(K)|φ|N , where |φ|N = max
|α|6N

‖∂αφ‖∞ (122)

In other words, F ∈ [CN(K)]′.

Proof. By contradiction: assume the inequality is false for all N. Then, for any N there is a
φN ∈ D(K) s.t. |〈F, φN〉| = 1 and |φN |N 6 1/N. However, the sequence {φN}N∈N converges to
zero in D(K) which contradicts |〈F, φN〉| = 1 for all N.

7The spaces D and D′ are not sequential: there exist sequentially open sets which are not open. The class of all
sequentially open sets is not compatible with the vector space structure on D′, [2].

65/75



Math 6212, Real Analysis II

We can generalize the results in Exercise 7 as follows.

Proposition 150. Consider the space of functions which are in Cm(Tn) for all m 6 K− 1, with absolutely
continuous derivatives of order K− 1, and derivatives of order K in L2. Define the norms

‖g‖2
2,K = ∑

|α|6K
‖∂αg‖2

2 < ∞ (123)

(i) The space HK of such functions is a Hilbert space.
(ii) HK is equivalently characterized by the Fourier coefficient norm

‖g‖2
2,K = ∑

k∈Zn

(1 + |k|2)K|ĝk|2 < ∞ (124)

(iii) Smooth functions are dense in HK in the norm above.
(iv) If u ∈ HK and K > n/2, then u is continuous and ‖u‖∞ < const.‖u‖K where the constant does

not depend on u. More generally, if K > n/2 + M, then u ∈ CM(Tn) and |u|M 6 const‖u‖K, where the
constant does not depend on u. Consequently, iu K > n/2 + M, then HK is continuously embedded in
CM(Tn), and is a dense subset of CM(Tn).

Proof. (i) Straightforward: this norm comes from an inner product.
(ii) Parseval.
(iii) Smooth functions are those for which all norms above indexed by K ∈ N are finite.

Density is obvious, as if we simply truncate the series in (124) at k = kN , then the function
corresponding to it is smooth for any kN and in the limit kN → ∞ we recover the infinite sum.

(iv) We have, by Cauchy-Schwarz

(sup
Tn
|u|)2 6

(
∑

k∈Zn

|uk|
)2

6

(
∑

k∈Zn

(1 + |k|2)K|ûk|2
)

∑
k∈Zn

1
(|k|2 + 1)K 6 const.‖u‖K (125)

The case K > n/2 + M is similar and left as an exercise.

Theorem 151. Any distribution with compact support can be written in the form

F = ∑
|α|6L

∂αgα (126)

where gα are continuous functions and L is some nonnegative integer.

Proof. Let ψ ∈ D be supported in an open cube containing the support of F and which is one
on supp(F). Without loss of generality, we may assume that this is a cube side 1 centered at the
origin. By the definition of the support, we see that Fψ = F, and since ψφ is zero outside C, by
Theorem 149, there exist c = c(C) and M = M(C) s.t for all φ ∈ D we have

|〈F, φ〉| = |〈F, ψφ〉| 6 const.|ψφ|M 6 const.|φ|M

Let N > M + n/2. If u ∈ HN then u ∈ CM(Tn) and F is a linear functional on HN . F is also
continuous in ‖ · ‖N since |F(u)| 6 const.|u|M 6 const‖u‖N . Therefore, F is the inner product
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with an element g ∈ HN , and, if φ ∈ D ⊂ HN , we have

F(φ) = ∑
|α|6N

∫
Tn
(∂αφ)(∂αg) = (−1)|α| ∑

|α|6N

∫
Tn

g(∂2αφ) = ∑
|α|6N

〈(−1)|α|∂2αg, φ〉

Note 152. The functions gα can be chosen to be compactly supported. Indeed let χ ∈ D be s.t χ = 1 on
the support of F. Then F = Fχ and for any φ ∈ D we have

〈F, φ〉 = 〈F, χφ〉 = 〈∂αg, χφ〉 = 〈g, ∂α(χ, φ)〉 = ∑
β1+β2=α

〈g, cβ1β2 ∂β1χ∂β2 φ〉 = ∑
β1+β2=α

〈cβ1β2 g∂β1χ, ∂β2 φ〉

and thus
F = ∑

β1+β2=α

cβ1β2 ∂β2(g∂β1χ) = ∑
|γ|6|α|

∂γgγ

where supp gγ ⊂ supp χ.

Corollary 153. For any K, D is embedded densely in D′(K).

Proof. If F ∈ D′(K), then F = ∂βg for some continuous g, by the previous theorem. Let {ψn}n∈N

be a set of functions in D converging to g. In the topology of D′, ∂βψn → ∂βg.

Convolution with elements of D. This is defined, generalizing the convolution within D by
(check that it is a generalization!)

〈(F ∗ ψ), φ〉 = 〈F, φ ∗ Rψ〉

For example,

〈(δ ∗ ψ), φ〉 = 〈δ, φ ∗ Rψ〉 =
∫

Rn
φ(s)ψ(−(0− s))ds = 〈ψ, φ〉 ⇒ δ ∗ ψ = ψ

An alternative formula is obtained as follows. If φ and F are in D then

(F ∗ φ)(x) =
∫

Rn
F(s)φ(x− s)ds = 〈F(s), τxRφ〉 (127)

and simple estimates show that the operation is continuous in D; thus the extension of convo-
lution to D′ is given by (127). The two definitions coincide, by continuity and density of D in
D′.

Proposition 154 (Smoothing of distributions by convolution). F ∗ φ := 〈F, τxRφ〉 is C∞ and ∂αF ∗
φ = 〈F, ∂ατxRφ〉 = 〈F, τx∂αRφ〉 = (∂αF) ∗ φ = F ∗ ∂αφ.

Proof. Note first that the continuity of φ implies that limε→0(τεRφ− Rφ) = 0 in the topology of
D. Thus

〈F, τx+εRφ〉 → 〈F,Rτxφ〉 as ε→ 0

and thus the (usual) function g(x) = 〈F, τxφ〉 is continuous. Next (take first n = 1), we see that
ε−1(τεRφ− Rφ)→ Rφ′ in the topology of D, and thus

ε−1(〈F, τx+εRφ〉 − 〈F, τxRφ〉)→ 〈F, τxRφ′〉 = 〈F′, τxRφ〉 > as ε→ 0
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and g defined above is differentiable. Inductively, it is infinitely differentiable. Since proving
differentiability involves on variable at a time, the result follows.

18.6 The Hadamard finite part

Distributions can be used to regularize certain divergent integrals, as first anticipated by Hadamard
in the theory of hyperbolic PDEs. I adapt this example from [4]. The integral we want to regu-
larize is ∫ ∞

0
φ(x)x−3/2dx

Let f (x) = 0 for x < 0 and f (x) = −2x−1/2 for x > 0. Then

〈 f ′, φ〉 = −〈 f , φ′〉 = −
∫ ∞

0

φ′(x)
x1/2 = − lim

ε→0

∫ ∞

ε

φ′(x)
x1/2 = lim

ε→0

(∫ ∞

ε

φ(x)
x3/2 − 2φ(0)ε−1/2

)
which, at least when φ ∈ C1, is a finite number.

18.7 Green’s function

This is a very important method to solve inhomogenneous PDEs (or ODEs). Let Lx be a differen-
tial or partial differential operator in some domain with specified boundary conditions. Suppose
we solve the non-homogeneous problem LxG(x, y) = δ(x − y) (here, we take some licence in
the notation, and we agree that x ∈ Rn is the variable of the equation Lg = f and y ∈ Rn is a
parameter). Then,

Lx〈G(x, y), f (y)〉 = 〈LxG(x, y), f (y)〉 = 〈δ(x− y), f (y)〉 = f (x)

and thus, the solution of the non-homogeneous equation is obtained from a universal kernel for
the given equation, the Green function G(x, y) by

h(x) =
∫

G(x, y) f (y)dy⇒ Lxh = f

19 The dual of C∞(O)

The topology on C∞(O) is that of uniform convergence on compact sets. Take an increasing
sequence of precompact open subsets of O, {Oj}j with closures {Kj}j, Kj+1 ⊃ Oj whose union is
O and introduce the seminorms

‖ f ‖[j,α] = sup
x∈Kj

|∂α f (x)|

These seminorms define a Fréchet space structure on C∞(O).

Proposition 155. D(O) is dense in C∞(O).

Proof. Indeed, we can take a sequence of smooth functions ψj s.t. Kj ≺ ψj ≺ Oj+1 and it is clear
that limj ψj = 1 in the seminorms above, hence, for any φ ∈ C∞(O), limj ψjφ = φ in these same
seminorms.
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Let E ′(O) be the set of distributions compactly supported in O.

Proposition 156. The dual of C∞(O) is E ′(O). (Since the elements of E ′(O) are not defined on
C∞(O), we need to be more precise: any F ∈ E ′(O) extends uniquely to a linear continuous
functional on C∞(O), and conversely, the restriction of a linear continuous functional on C∞(O)
to D(O) is in D′(O).)

Proof. Let F ∈ E ′(O). Since supp F ⊂ ∪jOj, there is an m s.t. supp F ⊂ Om−1. If Km−1 ≺ ψ ≺ Om

then Fψ = F, and, by the regularity theorem, for any φ ∈ D and some N we have

|〈F, φ〉| = |〈Fψ, φ〉| = |〈F, ψφ〉| 6 C2 ∑
|α|6N

‖φ‖[m,α]

By continuity, F extends uniquely to φ ∈ C∞(O) by 〈F, g〉 = 〈F, ψg〉 with ψ as above.
Conversely, by the same argument as in the regularity theorem, for any continuous functional

G on C∞(O) there must be an N and m such that, for any φ ∈ C∞(O),

|〈G, φ〉| 6 const ∑
|α|6K

‖φ[m,α]‖ 6 const ∑
|α|6K

‖∂αφ‖

In particular, G is compactly supported in Om. Thus G is a continuous linear functional when
restricted to D(O); in other words, this restriction is in D′(O).

19.0.1 Convolution of distributions

Let F ∈ D′ and G ∈ E ′. Then, the natural definition of convolution is by dualization,

〈F ∗ G, φ〉 = 〈F,RG ∗ ψ〉

It can be shown that F ∗ G = G ∗ F in a number of ways, e.g. Exercises 20,21 in Folland, or by
density!

20 The Fourier transform

The Fourier transform of a compactly supported function (say in R),

φ̂(ξ) =
∫

R
e−2πiξxφ(x)dx

is never compactly supported (unless it is zero). Indeed ψ̂ is entire, and analytic functions that
vanish on a set with an accumulation point, then are identically zero. We need to enlarge the
space of test functions by allowing for slower decay at infinity, thus preventing the analyticity of
the Fourier transform. An enlarged space which is invariant under F is S .

Recall the topolgy of S , and that C∞
c (Rn) = D is dense in S in the topology of S .

Definition 157. S ′, the dual of S , is the space of tempered distributions.

While functions in D are zero outside a compact set, functions in S , while still going to zero
fast at infinity, they are fast-decaying only when compared to polynomials. This induces by
duality a constraint on the growth of the elements of the dual.
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Examples 158. (a). Let f be in L1
loc(R

n) and assume that, for some N, (1 + |x|)−N | f (x)| is
bounded in Rn. Then

∫ ∞
−∞ f (x)φ(x)dx is a continuous functional on S (check!).

(b). eax ∈ S(R)′ iff <a = 0. Indeed, if <a = 0, this follows from the previous example.
Otherwise, by symmetry, we can reduce to the case <a > 0; let φ be compactly supported
with

∫
φ = 1 and let ψj = φ(x − j)e−ax. We see that ψj → 0 as j → ∞ in S , while∫

e−axψj = 1 for all j.

Definition 159. A C∞ function ψ is slowly increasing if, together with its derivatives it does not grow
faster than polynomially. More precisely, for any α ∃N(α) ∈N s.t.∥∥∥∥ ∂αψ

(1 + |x|)N(α)

∥∥∥∥
∞
< ∞ (128)

Proposition 160. (i) If F ∈ S ′ and ψ is slowly increasing, then Fψ ∈ S ′.
(ii) If F ∈ S ′ and ψ ∈ S , then F ∗ ψ is slowly increasing, and, for φ ∈ S , we have

〈F, φ ∗ Rψ〉 =
∫

Rn
φ(x)(F ∗ ψ)(x)dx (129)

Proof. (i) 〈Fψ, φ〉 := 〈F, ψφ〉 is an element of S since ψφ is in S , as it is easy to check.
(ii) First, we have checked that F ∗φ is smooth if φ is. As in the proof of the regularity theorem,

for a given F to be in S ′, F must be bounded with respect to a finite number of seminorms that
define the Fréchet space S , that is, ∃m, N, C s.t. for all φ ∈ S

|〈F, φ〉| 6 C max{‖φ‖m,α : |α| 6 N}

Note also that for any x, y ∈ Rn, 1 + |x| 6 1 + |x − y| + |y| 6 (1 + |x − y|)(1 + |y|). Since
∂βF ∗ φ = F ∗ ∂βφ = 〈F, τxR∂βφ〉 we have

|∂βF ∗φ|(x) 6 max
|α|6N

sup
s
(1+ |s|)m|∂α+βφ(x− s)| 6 (1+ |x|)m max

|α|6N
sup

s
(1+ |x− s|)m|∂α+βφ(x− s)|

6 C(1 + |x− s|)m max
|α|6N+|β|

‖φ‖m,α (130)

Since D is dense in S , its embedding in D′ is dense in D′ ⊃ S ′ we can check that D is dense in
S ′. (129) is abvious if F ∈ D, and the rest follows by continuity and dominated convergence.

We note that for f , g ∈ S we have

〈 f̂ , g〉 =
∫∫

f (x)g(y)e−2πixydxdy = 〈 f , ĝ〉 (131)

the definition of the Fourier transform of a distribution should be: for F ∈ S ′ and g ∈ S ,

〈F̂, g〉 := 〈F, ĝ〉 (132)

It follows by duality that the basic properties of the Fourier transform that we established for
functions in S hold for functions in S ′. Check also the following Fourier transforms:

Fδ(x− x0) = e−2πix0k ⇒ F e2πik0x = δ(k− k0) (133)
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Note that the last equality can be interpreted as a generalized orthonormality relation of e2πik1x

and e2πik2x!

Exercise 24. Show that:
(i)

F (PV
1
x
) = −πi sgn (k)

(One way is to regularize the PV distribution, and show first that F
(

sgn(k)e−ε|k|
)
=

4iπx
4π2x2 + ε2 .),

and also
(ii)

Fχ[0,∞) =
1
2

δ(k) +
1

2πi
PV
(

1
k

)
F
(

δ(x)(n)
)
= (−2πi)nkn

(iii) In particular check that the Fourier transform of linear combinations of the delta function and its
derivatives are precisely the polynomials (and vice-versa).

(iv) Let {an}n∈Z be an `1 sequence. Then

F
(

∑
n∈Z

ane2πinx

)
= ∑

n∈Z

anδ(k− n)

which is the “Fourier spectrum ” of a periodic functions.

Proposition 161. Let F ∈ E ′. Then F̂ = 〈F, e−2πix·ξ〉. F̂ is an entire function of slow growth.

Proof. We use the decomposition in Note 152. Clearly, it is enough to prove the result for one
distribution of the form ∂γg where g is continuous and compactly supported. Let {φj}j∈N ⊂ D
be a sequence compactly supported in some K converging to g in D′. We then have

∂̂γφj =
∫

K
∂γφj(x)e−2πiξ·xdx = 〈∂γφj, e−2πiξ·x〉 = 〈φj, ∂γe−2πiξ·x〉

→
j→∞
〈g, ∂γe−2πiξ·x〉 = (−2πiξ)γ

∫
K

g(x))e−2πiξ·xdx (134)

and the rest is straightforward.

21 Sobolev Spaces

The Fourier transform has the important feature of transforming smoothness properties into
decay ones (and vice-versa). Furthermore, the Fourier transform is a unitary operator between
L2 spaces. In many applications (PDEs notably) it is convenient to bring together these features:
we can introduce L2 spaces whose norms enforce a given degree of smoothness. We have already
noted that the norm

‖ f ‖ = ∑
|α|6k
‖∂α f ‖2

2 (135)
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comes from an inner product (·, ·), and then the space of functions

{ f : ‖ f ‖ < ∞} (136)

is a Hilbert space, the Sobolev space Hk. Taking the Fourier transform of Hk, we obtain the
following dual (Fourier) norm

‖ f̂ ‖2 = ∑
|α|6k
〈ξα f̂ , ξα f̂ 〉2 = ∑

|α|6k
〈(|ξ|2)α f̂ , f̂ 〉2 6 const‖(1 + |ξ|2)k/2 f̂ ‖2

where const only depends on k. Noting that (1 + |z|)m 6 const.(1 + |z|m), we see that the norm
above is equivalent to

‖ f̂ ‖ = ‖(1 + |ξ|2)k/2 f̂ ‖2

In Fourier space we can immediately generalize the norms from k ∈ N to any s ∈ R, which can
be interpreted as a norm weighted by (1 + ∆)s/2. In fact, we have the following map:

Λs f = F−1((1 + |ξ|2)s/2F f ) (137)

We are now in position to define the Sobolev space Hs = Ws,2 by

Hs = {F ∈ S ′ : Λs f ∈ L2} (138)

The spaces Ws,p generalize Hs by using Lp norms,

Wk,p(Rn) := { f : Λs f ∈ Lp(Rn)}

Note that the elements of Sobolev spaces are distributions. Nonetheless, we have the following:

Proposition 162. If f ∈ Hs, then f̂ and f̌ are tempered functions.

Proof. Since f̌ = R f̂ , we only check the statements about f̂ . The fact that Λs f is a function (an
element of L2, more precisely), means (1 + |ξ|2)s/2 f̂ , and therefore f̂ , are functions.

Now, treating f as an element of S ′, and using the fact that f̂ is a function, we have

〈 f , φ〉 = 〈 f̌ , φ̂〉 =
∫

φ̂R f̂

which means that f̂ is a tempered distribution and thus a tempered function.

The inner product that we get by polarization is clearly

〈 f , g〉(s) =
∫

Rn
f̂ (ξ)(1 + |ξ|)s ĝ(ξ)dnξ

The following properties follow easily from the definition

Proposition 163. 1. H0 = L2 with ‖ · ‖(0) = ‖ · ‖2.

2. The Fourier transform is an isomorphism between Hs and L2(Rn, µ) where dµ = (1 + |ξ|2)sdξ.

3. S is dense in Hs for all s (this is most easily seen based on 1. above).
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4. If s > t, then ‖ · ‖(t) 6 ‖ · ‖(s) and Hs is dense in Ht in ‖ · ‖(t).

5. Λt is a unitary isomorphism between Hs and Hs−t for all s, t ∈ R.

6. Since |ξα| 6 (1 + |ξ|2)|α|/2, ∂α is a bounded map between Hs and Hs−|α|.

In one dimension δ(x) is in Hs if s < − 1
2 , and in n dimensions if s < − n

2 . We see that
regularity is measured more finely in this way.

Which Sobolev spaces consist of functions? The following theorem answers this important
question.

Theorem 164 (The Sobolev embedding theorem). If s > k + n/2, then
(i) Hs ⊂ Ck

0.
(ii) f ∈ Hs implies F (∂α f ) ∈ L1 and ‖F (∂α f )‖1 6 C‖ f ‖(s) where C only depends on k− s.

Proof. We prove (ii) first as (i) follows from it and the Riemann-Lebesgue lemma. We apply
Cauchy-Schwarz:

1
(2π)|α|

∫
|F∂α f | =

∫
|ξα f | 6

∫
(1 + |ξ|2) k

2 f̂ 6 ‖(1 + |ξ|2)s f̂ ‖2 ‖
1

(1 + |ξ|2)s−k ‖2

Theorem 165. If f ∈ H−s, then the functional φ 7→ 〈 f , φ〉 extends continuously to a functional on Hs

with norm ‖ f ‖(−s), and any element in the dual of Hs is of this form.

(Does this mean that the Hilbert space H−s “is the dual of” Hs?)

Proof. By Proposition 162 f̌ is a tempered function. Cauchy-Schwarz implies

|〈 f , φ〉 =
∫

f̂ φ̂ 6 ‖(1 + |ξ|2)−s/2 f̂ ‖ ‖(1 + |ξ|2)s/2φ̂‖ = ‖ f ‖(−s)‖φ‖(s) (139)

Conversely, we can start in Fourier space with f̂ , an element of FH−s and let it act on an element
of Hs by

〈 f , φ〉 =
∫

Rn
f̂ (ξ)φ̂(ξ)dξ

(
” =

∫
Rn

f (x)φ(x)dx”
)
=
∫

Rn
f̂ (ξ)(1 + |ξ|2)− s

2 φ̂(ξ)(1 + |ξ|2) s
2 dξ (140)

which, again by Cauchy-Schwarz shows that f is an element of S ′ which is also in Hs.

22 Appendix A: inductive limits of Fréchet spaces

Let V be a topological vector space over R or C.

Definition 166. The set A ⊂ V is

(a). Convex if a1, a2 ∈ A implies ta1 + (1− t)a2 ∈ A for any t ∈ [0, 1].

(b). Balanced if a ∈ A implies λa ∈ A if |λ| 6 1;
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(c). Bounded if for any neighborhood V of 0 there is a γ > 0 s.t. γV ⊃ A.

(d). Absorbent or absorbing if {∪t>0tA} = V . (The set A can be scaled out to absorb every point in the
space.)

Definition 167. (a). A family of seminorms on a vector space V is called separating if for any 0 6= v ∈ V
there is a seminorm ‖ · ‖α s.t. ‖v‖α > 0.

(b). V is called locally convex if the origin has a local base of absolutely convex absorbent sets.

Proposition 168. The topological vector space V is a locally convex space iff the topology is given by a
family of seminorms.

Proof. For the “if” part, the proof is immediate; the converse requires Minkovky’s functionals
and the Hahn-Banach separation theorem, see [3].

Theorem 169. Let V be a topological vector space whose topology is given by a family of seminorms. Then
V is metrizable, and a translation-invariant metric is determined by

ρ(x, 0) =
∞

∑
k=1

2−k ‖x‖k

1 + ‖x‖k
(141)

The balls B(0, r) := {x : ρ(x, 0) < r} are balanced. If V is complete with respect to ρ, then it is a Fréchet
space.

Proof. Largely a straightforward verification, see [3] , p. 437 and on.

Definition 170. Let
V1 ⊂ V2 ⊂ · · · ⊂ Vj · · ·

be a sequence of Fréchet spaces. Thw inductive limit topology on V is the strongest locally convex topology,
in which the injections Vi → V are continuous.

Theorem 171. Let V be an inductive limit of Fréchet spaces as in Definition 170.

(i). The open, convex, balanced neighborhoods of zero are the sets W s.t. W ∩ Vj are open, convex,
balanced neighborhoods of zero for all j, and these sets uniquely determine the topology of V .

(ii). A ⊂ V is bounded iff A is a bounded subset of some fixed Vn0 .

(iii). A sequence is Cauchy in V iff there is some n0 a.t. the sequence is contained Vn0 and is Cauchy
there.

(iv). Let X be a locally convex topological vector space. The linear map T : X → V is continuous iff the
restriction of T to Vj is continuous for every j.
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