Homework 1: Nets vs sequences

Ovidiu Costin

01/17/2018

If $\{X_i\}_{i \in I}$ are topological spaces then the product space is defined as $X = \prod_{i \in I} X_i = \left\{ f : I \rightarrow I \right\}$

 $\bigcup_{i \in I} X_i \mid (\forall i) (f(i) \in X_i) \};$ the product topology is defined to be the coarsest topology (i.e. the topology with the fewest open sets) for which all the projections p_i ($p_i(x) = x_i$) are continuous. In this topology a net $\langle f_{\alpha} \rangle$ converges iff $\forall i \in I, f_{\alpha}(i)$ converges, that is, the topology is that of pointwise convergence of functions. The fact that X is nonempty for general X_i is equivalent to the axiom of choice, AC. The construction below however makes virtually *no use of AC*.

For $r \in [0,1]$ let $X_r = [0,1]$. Then $X = \prod_{r \in [0,1]} X_r$ is the space of all functions from [0,1] into itself.¹

Let \mathcal{F} be the set of all finite subsets of [0, 1]. That is, $F \in \mathcal{F}$ if for some $n \in \mathbb{N}$ $F = \{r_1, ..., r_n\}, r_i \in [0, 1]$. Check that \mathcal{F} is a directed set under the following order relation: $F_1 \preccurlyeq F_2$ if, by definition, $F_1 \subset F_2$.

For $F \in \mathcal{F}$ define the function f_F by $f_F(x) = 0$ if $x \in F$ and $f_F(x) = 1$ otherwise. Consider the net $\tilde{f} = \langle f_F \rangle_{F \in \mathcal{F}}$.

1. Show $\lim_{F \in \mathcal{F}} f_F = 0$, the zero function.

2. Consider a strictly ascending infinite sequence $F_1 \prec F_2 \prec \cdots \prec F_n \cdots$. Find $\lim_{i \to \infty} f_{F_i}$.

3. ("Sequences are too short for this topology.") Is there any choice of F_i as above such that $\lim_{i\to\infty} f_{F_i} = 0$?

4. Is *X* first countable?

5. Is there any sequence f_1, f_2, \cdots with elements in the net \tilde{f} , as above, a *subnet* of \tilde{f} ?

¹By Tychonoff's theorem, *X* is compact; this fact uses AC, but we don't use compactenss.