
1 Gradient and Hamiltonian systems

1.1 Gradient systems

These are quite special systems of ODEs, Hamiltonian ones arising in conserva-
tive classical mechanics, and gradient systems, in some ways related to them,
arise in a number of applications. They are certainly nongeneric, but in view of
their origin, they are common.

A system of the form
X ′ = −∇V (X) (1)

where V : Rn → R is, say, C∞, is called, for obvious reasons, a gradient system.
A critical point of V is a point where ∇V = 0.

These systems have special properties, easy to derive.

Theorem 1. For the system (1), if V is smooth, we have (i) If c is a regular
point of V , then the vector field is perpendicular to the level hypersurface V −1(c)
along V −1(c).

(ii) A point is critical for V iff it is critical for (1).
(iii) At any equilibrium, the eigenvalues of the linearized system are real.
More properties, related to stability, will be discussed in that context.

Proof.

(i) It is known that the gradient is orthogonal to level surface.
(ii) This is clear essentially by definition.
(iii) The linearization matrix elements are aij = −Vxi,xj

(the subscript no-
tation of differentiation is used). Since V is smooth, we have aij = aji, and all
eigenvalues are real.

1.2 Hamiltonian systems

If F is a conservative field, then F = −∇V and the Newtonian equations of
motion (the mass is normalized to one) are

q′ = p (2)

p′ = −∇V (3)

where q ∈ Rn is the position and p ∈ Rn is the momentum. That is

q′ =
∂H

∂p
(4)

p′ = −∂H
∂q

(5)

where

H =
p2

2
+ V (q) (6)
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is the Hamiltonian. In general, the motion can take place on a manifold, and
then, by coordinate changes, H becomes a more general function of q and p. The
coordinates q are called generalized positions, and q are the called generalized
momenta; they are canonical coordinates on the phase on the cotangent manifold
of the given manifold.

An equation of the form (4) is called a Hamiltonian system.

Exercise 1. Show that a system x′ = F (x) is at the same time a Hamiltonian
system and a gradient system iff the Hamiltonian H is a harmonic function.

Proposition 1. (i) The Hamiltonian is a constant of motion, that is, for any
solution X(t) = (p(t), q(t)) we have

H(p(t), q(t)) = const (7)

where the constant depends on the solution.
(ii) The constant level surfaces of a smooth function F (p, q) are solutions of

a Hamiltonian system

q′ =
∂F

∂p
(8)

p′ = −∂F
∂q

(9)

Proof. (i) We have

dH

dt
= ∇pH

dp

dt
+∇q

dq

dt
= −∇pH∇q +∇qH∇p = 0 (10)

(ii) This is obtained very similarly.

1.2.1 Integrability: a few first remarks

Hamiltonian systems (with time-independent Hamiltonian) in one dimension are
integrable: the solution can be written in closed form, implicitly, asH(y(x), x) =
c; in terms of t, once we have y(x) of course we can integrate x′ = G(y(x), x) :=
f(x) by quadratures (using separation of variables). Note that for an equation
of the form y′ = G(y, x), this is equivalent to the system having a constant of
motion. The latter is defined as a function K(x, y) defined globally in the phase
space, (perhaps with the exception of some isolated points where it may have
“simple” singularities, such as poles), and with the property that K(y(x), x) =
const for any given trajectory (the constant can depend on the trajectory, but
not on x). Indeed, in this case we have

d

dx
K(y(x), x) =

∂K

∂y
y′ +

∂K

∂x
= 0

or

y′ = −∂K
∂x

/
∂K

∂y
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and the trajectories are the same as those of

ẋ =
∂K

∂y
; ẏ = −∂K

∂x
(11)

which is a Hamiltonian system.

1.2.2 Dependence on initial conditions

Consider the system

y′ = F (y, x); y(0) = y0; y0 ∈ Rn (12)

Proposition 2. If F is smooth, then in a neighborhood of (0, y0), y(x; y0) is
smooth in both x and y0.

Proof. We can prove this by extending the system (12) to include y0. Maybe
more transparently we can use the contraction mapping principle as follows.
The proof is standard, so we only sketch it.

We write (12) in integral form,

y = y0 +

∫ x

0

F (y(s), s)ds = N (y, x;x0) (13)

and check that for small ε it is a contraction in the sup norm in a ball in
C(Dε × B), the functions continuous in x and y0, where B is a ball of radius
2‖y0‖.

Thus y is continuous in y0. Now we differentiate formally w.r.t. y0. Denoting
by M the matrix Dy0y we get the matrix equation

M ′ = [DyF (y(x; y0))M ; M(0) = I ⇔M(x) = I +

∫ x

0

DyF (y(s; y0))M(s)ds

(14)
where y(x; y0) is taken as a known function, which is continuous in x, y0. This
equation is also contractive in the space of matrix valued continuous functions
in the sup norm is ε is small. We can continue in this way and see that the
derivatives of all order exist and are continuous. It is straightforward to check
that y =

∫
∂y
∂τ dτ where τ is one of the components of y0. The existence and

continuity of higher order derivatives is checked similarly.

With lower regularity we can for instance prove the following. Write the
differential equation in integral form,

x = x0 +

∫ t

0

F (x(s))ds = N (x, x0) (15)

Theorem 2. Assume F is uniformly Lipschitz in x in an open set O and let
K be a compact set contained in O. Then there exists a T = T (K) s.t. for
any x0 ∈ K the solution x(t, x0) exists and is in O for all t, |t| 6 T and x is
continuous (thus uniformly continuous) in (x0, t) ∈ K × [−T, T ].
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Proof. Consider the integral equation with initial conditions in a neighborhood
of x0.

x = x0 + ξ +

∫ t

0

F (x(s))ds = N (x, x0) (16)

Let κ be the Lipschitz constant of F in O, that is,

|F (x)− F (x′)| 6 κ|x− x′|, ∀x, x′ ∈ O (17)

Note first that, by the compact covering theorem there is a δ s.t. ∀x ∈ K and
x′ s.t. d(x, x′) 6 δ we have x′ ∈ O. Define K ′ = {x ∈ O|d(x,K) 6 δ} and
let M = maxx∈K′ |F |. Finally, choose T s.t. MT 6 δ/3 and κT 6 1/2 and
|ξ| < δ/3.

Consider the integral equation (16) in the Banach space B of functions con-
tinuous in |t| 6 T and in ξ, ξ + x0 ∈ K, |ξ| < δ/3, in the sup norm. Take the
closed ball B = {x ∈ B|‖x− x0‖ 6 δ/3}. The conditions above ensure that

(x, t, x0+ξ) ∈ B×[−T, T ]×K ⇒ N (x;x0) ∈ B and N is contractive in B (18)

and the result follows.

1.3 Example

As an example for both systems, we study the following problem: draw the
contour plot (constant level curves) of

F (x, y) = y2 + x2(x− 1)2 (19)

and draw the lines of steepest descent of F .
For the first part we use Proposition 1 above and we write

x′ =
∂F

∂y
= 2y (20)

y′ = −∂F
∂x

= −2x(x− 1)(2x− 1) (21)

The critical points are (0, 0), (1/2, 0), (1, 0). It is easier to analyze them using
the Hamiltonian. Near (0, 0) H is essentially x2 + y2, that is the origin is a
center, and the trajectories are near-circles. We can also note the symmetry
x → (1 − x) so the same conclusion holds for x = 1, and the phase portrait is
symmetric about 1/2.

Near x = 1/2 we write x = 1/2 + s, H = y2 + (1/4 − s2)2 and the leading
Taylor approximation gives H ∼ y2−1/2s2. Then, 1/2 is a saddle (check). Now
we can draw the phase portrait easily, noting that for large x the curves essen-
tially become x4 + y2 = C “flattened circles”. Clearly, from the interpretation
of the problem and the expression of H we see that all trajectories are closed.
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Figure 1:

Figure 2:

The perpendicular lines solve the equations

x′ = −∂F
∂x

= −2x(x− 1)(2x− 1) (22)

y′ = −∂F
∂y

= −2y (23)5



We note that this equation is separated. In any case, the two equation obviously
share the critical points, and the sign diagram can be found immediately from
the first figure.

Exercise 2. Find the phase portrait for this system, and justify rigorously its
qualitative features. Find the expression of the trajectories of (22). I found

y = C

(
1

(x− 1/2)2
− 4

)

2 Flows, revisited

Often in nonlinear systems, equilibria are of higher order (the linearization has
zero eigenvalues). Clearly such points are not hyperbolic and the methods we
have seen so far do not apply.

There are no general methods to deal with all cases, but an important one
is based on Lyapunov (or Liapunov, or Lyapounov,...) functions.
Definition. A flow is a smooth map

(X, t)→ Φt(X)

A differential system
ẋ = F (x); F ∈ Rd (24)

generates a flow
(X, t)→ x(t;X)

where x(t;X) is the solution at time t with initial condition X.
The derivative of a function G along a vector field F is, as usual,

DF (G) = ∇G · F

If we write the differential equation associated to F , (24), then clearly

DFG =
d

dt
G(x(t))|t=0

2.1 Lyapunov stability

Consider the system (24) and assume x = 0 is an equilibrium.
Then

1. xe = 0 is Lyapunov stable (or simply stable) if starting with initial condi-
tions near 0 the flow remains in a neighborhood of zero. More precisely,
the condition is: for every ε > 0 there is a δ > 0 so that if |x0| < δ then
|x(t)| < ε for all t > 0.

2. xe = 0 is asymptotically stable if furthermore, trajectories that start close
to the equilibrium converge to the equilibrium. That is, the equilibrium
xe is asymptotically stable if it is Lyapunov stable and if there exists δ > 0
so that if |x0| < δ, then limt→∞ x(t) = 0.
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2.2 Lyapunov functions

Let X∗ be a fixed point of (24). A Lyapunov function for (24) is a function
defined in a neighborhood O of X∗ with the following properties

(1) L is differentiable in O.
(2) L(X∗) = 0 (this can be arranged by subtracting a constant).
(3) L(x) > 0 in O \ {X∗}.
(4) DFL 6 0 in O.
A strict Lyapunov function is a Lyapunov function for which
(4’) DFL < 0 in O.
Finding a Lyapunov function is often nontrivial. In systems coming from

physics, the energy is a good candidate. In general systems, one may try to find
an exactly integrable equation which is a good approximation for the actual one
in a neighborhood of X∗ and look at the various constants of motion of the
approximation as candidates for Lyapunov functions.

Theorem 3 (Lyapunov stability). Assume X∗ is a fixed point for which there
exists a Lyapunov function L. Then

(i) X∗ is stable.
(ii) If L is a strict Lyapunov function then X∗ is asymptotically stable.

Proof. (i) Consider a small ball B 3 X∗ contained in O. Let α be the minimum
of L on ∂B. By the definition of a Lyapunov function, (3), α > 0. Consider the
following subset:

U = {x ⊂ B : L(x) < α} (25)

From the continuity of L, we see that U is an open set. Clearly, X∗ ⊂ U . Let
X ∈ U . Then x(t;X) is a continuous curve, and it cannot have components
outside B without intersecting ∂B. But an intersection is impossible since by
monotonicity, L(x(t)) 6 L(X) < α for all t. Thus, trajectories starting in U are
confined to B, proving stability.

(ii)

1. Note first that X∗ is the only critical point in O since d
dtL(x(t;X∗1 )) = 0

for any fixed point.

2. Note that trajectories x(t;X) with X ∈ U are contained in B, a compact
set, and thus they contain limit points, i.e., points x∗ s.t. x(tn, X) → x∗

for some sequence tn ↑ ∞. Any limit point x∗ is strictly inside U since
L(x∗) < L(x(t);X) < α.

3. Let x∗ be a limit point of a trajectory x(t;X) where X ∈ U . Then, by 1
and 2, if x∗ ∈ U 6= X∗, then x∗ is a regular point of the field.

4. We want to show that x∗ = X∗. We will do so by contradiction. Assuming
x∗ 6= X∗ we have L(x∗) =: λ > 0, again by (3) of the definition of L.

5. By 3 the trajectory {x(t;x∗) : t > 0} is well defined and is contained in B.
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6. We then have L(x(t;x∗)) < λ∀t > 0.

7. We look at the increasing sequence tn in 1. For any n, the set

V = {X : L(x(tn+1 − tn;X))} < λ (26)

contains x∗ and is open, so

L(x(tn+1 − tn;X1)) < λ (27)

for all X1 close enough to x∗.

8. Let n be large enough so that x(tm;X) ∈ V for all m > n.

9. Note that, by existence and uniqueness of solutions at regular points we
have

x(tn+1;X) = x(tn+1 − tn;x(tn;X)) (28)

10. On the one hand L(x(tn+1)) ↓ λ and on the other hand we got L(x(tn+1)) <
λ. This is a contradiction.

2.3 Examples

Hamiltonian systems, in Cartesian coordinates often assume the form

H(q, p) = p2/2 + V (q) (29)

where p is the collection of spatial coordinates and p are the momenta. If this
ideal system is subject to external dissipative forces, then the energy cannot
increase with time. H is thus a Lyapunov function for the system. If the
external force is F (p, q), the new system is generally not Hamiltonian anymore,
and the equations of motion become

q̇ = p (30)

ṗ = −∇V + F (31)

and thus
dH

dt
= pF (p, q) (32)

which, in a dissipative system should be nonpositive, and typically negative.
But, as we see, dH/dt = 0 along the curve p = 0.

For instance, in the ideal pendulum case with Hamiltonian

H =
1

2
ω2 + (1− cos θ) (33)

The associated Hamiltonian flow is

θ′ = ω (34)

ω′ = − sin θ (35)
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Then H is a global Lyapunov function at (0, 0) for (36) (in fact, this is true
for any system with nonnegative Hamiltonian). This is clear from the way
Hamiltonian systems are defined.

Then (0, 0) is a stable equilibrium. But, clearly, it is not asymptotically
stable since H = const > 0 on any trajectory not starting at (0, 0).

If we add air friction to the system (36), then the equations become

θ′ = ω (36)

ω′ = − sin θ − κω (37)

where κ > 0 is the drag coefficient. Note that this time, if we take L = H, the
same H defined in (33), then

dH

dt
= −κω2 (38)

The function H is a Lyapunov function, but it is not strict, since H ′ = 0 if ω = 0.
Thus the system is stable. It is however intuitively clear that furthermore the
energy still decreases to zero in the limit, since ω = 0 are isolated points on
any trajectory and we expect (0, 0) to still be asymptotically stable. In fact, we
could adjust the proof of Theorem 3 to show this. However, as we see in (32),
this degeneracy is typical and then it is worth having a systematic way to deal
with it. This is one application of Lasalle’s invariance principle that we will
prove next.

3 Some important concepts

We start by introducing some important concepts.

Definition 3. 1. An entire solution x(t;X) is a solution which is defined for
all t ∈ R.

2. A positively invariant set P is a set such that x(t,X) ∈ P for all t >
0. Solutions that start in P stay in P. Similarly one defines negatively
invariant sets, and invariant sets.

3. The basin of attraction of a fixed point X∗ is the set of all X such that
x(t;X)→ X∗ when t→∞.

4. Given a solution x(t;X), the set of all points x∗ such that solution x(tn;X)→
x∗ for some sequence tn → ∞ is called the set of ω-limit points of
x(t;X). At the opposite end, the set of all points x∗ such that solution
x(−tn;X) → x∗ for some sequence tn → ∞ is called the set of α-limit
points. These may of course be empty.

That is,

ω(X) := {x : lim
n→∞

x(tn, X) = x for some sequence tn → +∞} (39)
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and, similarly, the α-limit set is defined as

α(X) := {x : lim
n→∞

x(tn, X) = x for some sequence tn → −∞}. (40)

Proposition 4. Assume X belongs to a closed, positively invariant set P s.t.,
with K = P, the hypotheses of Theorem 2 are satisfied. Then, the ω-limit
set ω(X) is a closed invariant set: solutions with initial condition in ω(X) are
entire. A similar statement holds for the α-set.

Proof. 1. (Closure) We show the complement of ω(X) is open. Let b ∈
ω(X)c. Then for some ε > 0, d(x(t,X), b) > ε for all t. If |b′ − b| < ε/2,
then by the triangle inequality, lim inft→∞ d(x(t,X), b′) > ε/2 > 0 for all
t.

2. By Theorem 2 the function x(t, x0) exists for any x0 ∈ P, |t| 6 T and is
uniformly continuous for all x0 ∈ P and |t| 6 T . Since P is a compact
set in O and positively invariant, for any τ > 0 the function x(τ, x0)
exists for any x0 ∈ P and is uniformly continuous in x0 ∈ P (we write
τ = nT + T1, T1 < T , use induction in n and the fact that x(t + t′, X) =
x(t′, x(t,X)).)

3. Note that for any |T ′| 6 T , the limit limn→∞ x(tn+T ′, X) exists and thus
belongs to ω(X). This is the case because x(tn + T ′, X) = x(T ′;x(tn))
and by uniform continuity of x in the initial condition and in |t| 6 T . In
fact the restriction |T ′| 6 T is not needed since we can write T ′ = nT +T1
as in 2 above.

4. As a consequence, note now that for any |t| 6 T and x∗ ∈ ω(X) we have
x(t, x∗) ∈ ω(X). It follows immediately that x(t±T, x∗) ∈ ω(X) if |t| 6 T ,
writing t = nT + T1 as above, we see that x(t, x∗) = limx(tn + t,X) ∈
ω(X).

4 Lasalle’s invariance principle

Theorem 4. Let X∗ be an equilibrium point for x′ = F (x) and let L : U → R (U
open) be a Lyapunov function at X∗. Let P ⊂ U be compact, positively invariant
containing X∗. Assume there is no entire trajectory in P−{X∗} along which L
is constant. Then X∗ is asymptotically stable, and P is contained in the basin
of attraction of X∗.

Proof. Since P is compact and positively invariant, then X ∈ P ⇒ ω(X) ⊂ P.
If ω(X) = {X∗}, ∀X, the assumption follows easily (check!). So, we may
assume there is an x∗ 6= X∗ which is also an ω-limit point of some x(t;X). By
Proposition 4, the trajectory x(t;x∗) is entire. Since L is nondecreasing along
trajectories, we have L(x(t;X)) → α = L(x∗) as t → ∞. (This is clear for the
subsequence tn, and the rest follows by inequalities: check!) Since x(t, x∗) =
limx(tn + t,X), by continuity, L(x(t, x∗)) = α, contradiction.
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Figure 3:

4.1 Example: analysis of the pendulum with drag

Of course this is a simple example, but the way Lasalle’s invariance principle is
applied is representative of many other problems.

Intuitively, it is clear that any trajectory that starts with ω = 0 and θ ∈
(−π, π) should asymptotically end up at the equilibrium point (0, 0) (other
trajectories, which for the frictionless system would rotate forever, may end up
in a different equilibrium, (2nπ, 0). For zero initial ω, the basin of attraction
of (0, 0) should exactly be (−π, π). In general, the energy should be less than
precisely the one in this marginal case, H = 1 − cos(π) = 2. Then, the region
θ0 ∈ (−π, π), H < 1− cos(π) = 2 should be the basin of attraction of (0, 0).

So let c ∈ (0, 2), and let

Pc = {(θ, ω) : H(θ, ω) 6 c, and |θ| 6 arccos(1− c) ∈ (−π, π)} (41)

In H, θ coordinates, this is simply a closed rectangle and since (H, θ) is a
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continuous map, its preimage in the (ω, θ) plane is closed too.
Now we show that Pc is closed and forward invariant. If a trajectory were

to exit Pc, it would mean, by continuity, that for some t we have H = c+ δ for
a small δ > 0 (ruled out by Ḣ 6 0 along trajectories) or that |θ| > arccos(1− c)
for some t which implies, from the formula for H the same thing: H > c.

Now there is no nontrivial entire solution (that is, other than X∗ = (0, 0))
along which H = const. Indeed, H = const implies, from (38) that ω = 0
identically along the trajectory. But then, from (35) we see that sin θ = 0
identically, which, within Pc simply means θ = 0 identically. Lasalle’s theorem
applies, and all solutions starting in Pc approach (0, 0) as t→∞.

The phase portrait of the damped pendulum is depicted in Fig. 3

5 Gradient systems and Lyapunov functions

Recall that a gradient system is of the form (1), that is

X ′ = −∇V (X) (42)

where V : Rn → R is, say, C∞ and a critical point of V is a point where ∇V = 0.
We have the following result:

Theorem 5. For the system (1): (i) If c is a regular value of V , then the vector
field is orthogonal to the level set of V −1(c).

(ii) If a critical point X∗ is an isolated minimum of V , V (X)− V (X∗) is a
strict Lyapunov function at X∗, and then X∗ is asymptotically stable.

(iii) Any α− limit point of a solution of (1), and any ω− limit point is an
equilibrium.

Note 1. (a) By (iii), any solution of a gradient system tends to a limit point
or to infinity.

(b) Thus, descent lines of any smooth manifold have the same property: they
link critical points, or they tend to infinity.

(c) We can use some of these properties to determine for instance that a
system is not integrable. We write the associated gradient system and determine
that it fails one of the properties above, for instance the linearized system at
a critical point has an eigenvalue which is not real. Then there cannot exist a
smooth H so that H(x, y(x)) is constant along trajectories.

Proof. (i) is straightforward.
(ii) If an equilibrium point is isolated, then ∇V 6= 0 in a set of the form

|X−X∗| ∈ (0, a). Then −|∇V |2 < 0 in this set. Furthermore, V (X)−V (X∗) >
0 for all X with |X − X∗| ∈ (0, a). Then, in this neighborhood, V is a strict
Lyapunov function.

(iii) Note that if x is a point where ∇V = 0, then x is an equilibrium. If Ω
is an orbit along which V is constant, then dV/dt = 0 = −|∇V |2 at any point
along the trajectory, so all points are equilibria. There are no nontrivial limit
sets.
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Figure 4: The Lorenz attractor

6 Sections; the flowbox theorem

Consider first a planar system x′ = f(x) with f smooth, and a point x0 such
that f(x0) 6= 0. A section through x0 is a curve which is transversal to the
flow, and passes through x0. To be specific, take a unit vector V0 at x0 which
is orthogonal to f(x0), say (−f2(x0), f1(x0))/|f(x0)|. We draw a line segment
in the direction of V0,

S = {h(u) := x0 + uV0|u ∈ (−ε, ε)} (43)

Once more, since f is continuous, for small δ there is a small ε so that we have
V0 · (−f2(h(u)), f1(h(u)))/|f(h(u))| > 1 − δ if u ∈ (−ε, ε). That is, the field is
transversal to the section in a small neighborhood of x0. By the same estimate,
V0 ·(−f2(h(u)), f1(h(u)))/|f(h(u))| has constant sign along S, which means that
the field and the flow cross S in the same direction throughout S. See the left
side of fig. 7.

Definition 5. The segment S defined above is called local section at x0.

6.0.1 The flowbox theorem for planar system; geometric approach

There is a diffeomorphic change of coordinates in some neighborhood of x0,
x↔ z so that in coordinates z the field is simply ż = e1 := (1, 0).
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Ψ

Figure 5: Flowbox and transformation

To straighten the field, we construct the following map, from a neighborhood
of x0 of the form

N = {Ψ(t, u) := x(t;h(u)) : |t| < δ, u ∈ (−ε, ε)}

where ε and δ are sufficiently small. Then, (t, u) 7→ x(t;h(u)) is a diffeomor-
phism since the Jacobian of the transformation at (0, 0) is

det


∂Ψ1

∂t

∂Ψ1

∂u

∂Ψ2

∂t

∂Ψ2

∂u

 = det

(
f1 V1
f2 V2

)
= |f(x0)| 6= 0 (44)

Clearly, the inverse image of trajectories through Ψ are straight lines, (t, u0), as
depicted. The associated flow in the set Ψ−1(N ) is

dt

dt
= 1;

du

dt
= 0 (45)

6.0.2 The flowbox theorem, in general

Consider a vector field F at a regular point, say 0, with F (0) 6= 0. Without loss
of generality we can assume that F (0) = αe1 where e1 is the first unit vector
and by rescaling time we can assume α = 1. We seek a local diffeomorphism
x = w + h(w), h = o(w) s.t.

ẇ = e1 (46)

This is the case if

ẇ +
∂h

∂w
ẇ = e1 +

∂h

∂w
e1 = ẋ = F (w + h(w)) (47)

and thus, since F (0) = e1, we have

∂h

∂w
e1 = F (w + h(w))− F (0) = g(w + h(w)) (48)

14



which is equivalent to the system

∂hj
∂w1

= gj(w + h(w)) (49)

which we write in integral form

hj(w1, ..., wn) =∫ w1

0

gj(s+ h1(s, w2, ..., wn), ..., wn + hn(s, w2, ..., wn)))ds (50)

which is contractive for small w. We see that hj(0, w2, ..., wn) = 0. This is
built into the initial conditions in the integral equation, and also natural, since
w1 = w1(0) + t;wi = wi(0).

6.0.3 Local versus global

Given the linearization theorem above, any system would be Hamiltonian, lo-
cally, near a regular point of the field. A system is a properly Hamiltonian one
if the Hamiltonian is defined in a wide enough region of the phase space.

7 Limit sets, Poincaré maps, the Poincaré Bendix-
son theorem

In two dimensions, there are typically two types of limit sets: equilibria and
periodic orbits (which are thereby limit cycles). Exceptions occur when a limit
set contains a number of equilibria, as we will see in examples.

The Poincaré-Bendixson theorem states that if ω(X) is a nonempty compact
limit set of a planar system of ODEs containing no equilibria, then ω(X) is a
closed orbit. We will return to this important theorem and prove it.

Beyond two dimensions however, the possibilities are far vaster and limit
sets can be quite complicated. Fig. 4 depicts a limit set for the Lorenz system,
in three dimensions. Note how the trajectories seem to spiral erratically around
two points. The limit set here has a fractal structure.

We begin the analysis with the two dimensional case, which plays an impor-
tant role in applications.

We have already studied the system r′ = 1/2(r−r3) in Cartesian coordinates.
There the circle of radius one was a periodic orbit, and a limit cycle. All
trajectories, except for the trivial one (0, 0) tended to it as t→∞.

We have also analyzed many cases of nodes, saddle points etc, where trajec-
tories have equilibria as limit sets, or else they go to infinity.

A rather exceptional situation is that where the limit sets contain equilibria.
Here is one example
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7.1 Example: equilibria on the limit set

Consider the system

x′ = sinx(− cosx− cos y) (51)

y′ = sin y(cosx− cos y) (52)

The phase portrait is depicted in Fig. 6.

Figure 6: Phase portrait for (51).

Exercise 1. Find the equilibria of this field and their type. Justify the qualita-
tive elements in Fig. 6.

In the example above, we see that the limit set is a collection of fixed points
and orbits, none of which periodic.
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7.1.1 Closed orbits

A closed orbit is a solution whose trajectory is a closed curve (with no equilibria
on it). Let C be such a trajectory.

Note that the trajectory x(t,X) is differentiable, the flow is always in the
direction of the field, since

ẋ(t) = f(x(t))

and furthermore, the speed is, as we see from the above

|ẋ(t)| = |f(x(t))|

Since trajectories and f are smooth and there are no equilibria along C,
|ẋ(t)| = |f(x)| is bounded below, and C is traversed in finite time. That is,
starting at a point x1 ∈ C, after a (finite) time T , then, the solution returns to
x1. From that time on, the solution must repeat itself identically, by uniqueness
of solutions. It then means that the solution is periodic, and there is a smallest
τ so that Φt+τ (x1) = Φ(x1). This τ is called the period of the orbit.

Proposition 6. (i) If x1 and x2 lie on the same solution curve, then ω(x1) =
ω(x2) and α(x1) = α(x2).

(ii) If P is a closed, positively invariant set and x2 ∈ P, then ω(x2) ⊂ P;
similarly for negatively invariant sets and α(x2).

(iii) A closed invariant set, and in particular a limit set, contains the α−limit
and the ω−limit of every point in it.

Proof. Exercise.

Exercise 2. Show that τ is the same for any two points x1, x2 on C.

7.2 Time of arrival

Figure 7: Time of arrival function

We consider all solutions in the domain O where the field is defined and
a section S. Some of the trajectories intersect S. Since the trajectories are
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continuous, if x(t, z0) intersects S, then there is a first time of arrival, the
smallest t so that x(t, z0) ∈ S.

This time of arrival is continuous in z0, as shown in the next proposition.

Proposition 7. Let S be a local section at x0 and assume x(t0; z0) = x0. Let
W be a neighborhood of z0. Then there is an open set containing z0, U ⊂ W
and a differentiable function τ : U → R such that τ(z0) = t0 and

x(τ(X), X) ∈ S (53)

for each X ∈ U .

Note 2. In some sense, a small subsegment of the section S is carried back-
wards smoothly through the field arbitrarily far, assuming that the backward flow
exist for a sufficiently long time, and that the subsegment is small enough.

Proof. A point x1 belongs to the line ` containing S iff x1 = x0 + uV0 for some
u. Since V0 is orthogonal to f(x0) we see that x1 ∈ ` iff (x1 − x0) · f(x0) = 0.

We look now at the more general function

G(x, t) = (x(t;X)− x0) · f(x0) (54)

We have, by assumption
G(z0, t0) = 0 (55)

We want to see whether we can apply the implicit function theorem to

G(x, t) = 0 (56)

For this we need to check ∂
∂tG

∣∣
(z0,t0)

. But this equals

x′(t;X) · f(x0)
∣∣
(t0,z0)

= |f(x0)|2 6= 0 (57)

Then, there is a neighborhood of t0 and a differentiable function τ(x) so that

G(x, τ(x)) = 0 (58)

7.3 The Poincaré map

The Poincaré map is a useful tool in determining whether closed trajectories
(that is, periodic orbits) are stable or not. This means that taking an initial
close enough to the periodic orbit, the trajectory thus obtained would approach
the periodic orbit or not.

The basic idea is simple, we look at a section containing a point on the
periodic orbit, and then follow the successive re-intersections of the perturbed
orbit with the section. Now we are dealing with a discrete map xn+1 = P (xn).
If P (xn) → x0, the point on the closed orbit, then the orbit is asymptotically
stable. See Figure 12.
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X_{n+1}=P(X_n)

X1

X2
X3

Figure 8: A Poincaré map.

It is often not easy to calculate the Poincaré map; in general it can’t quite be
easier than calculating the trajectories, but it is a very useful concept, and it has
many theoretical applications; furthermore, we often don’t need fully explicit
knowledge of P .

Let’s define the map P rigorously.
Consider a periodic orbit C and a point x0 ∈ C. We have

x(τ ;x0) = x0 (59)

where τ is the period of the orbit. Consider a section S through x0. Then
according to Proposition 7, there is a neighborhood of U of x0 and a continuous
function τ(x) close to the period τ such that x(τ(X), X) ∈ S for all X ∈ U .
Then certainly S1 = U ∩ S is an open set in S in the induced topology. The
return map is thus defined on S1. It means that for each point in X ∈ S1 there
is a point P (X) ∈ S, so that x(τ(X);X) = P (X) and τ(X) is the smallest time
with this property. Note that now τ(x) is not a period, though it is “very close
to one”: the trajectory does not return to the same point.

This is the Poincaré map associated to C and to its section S.
This can be defined for planar systems as well as for higher dimensional ones,

if we now take as a section a subset of a hyperplane through a point x0 ∈ C. The
statement and proof of Proposition 7 generalize easily to higher dimensions.

In two dimensions, we can identify the segments S and S1 with intervals on
the real line, u ∈ (−a, a), and u ∈ (−ε, ε) respectively, see also Definition 5.
Then P defines an analogous transformation of the interval (−ε, ε), which we
still denote by P though this is technically a different function, and we have

P (0) = 0
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P (u) ∈ (−a, a), ∀u ∈ (−ε, ε)

We have the following easy result, the proof of which we leave as an exercise.

Proposition 8. Assume that x′ = f(x) is a planar system with a closed orbit
C, let x0 ∈ C and S a section at x0. Define the Poincaré map P on an interval
(−ε, ε) as above, by identifying the section with a real interval centered at zero.
If |P ′(x0)| < 1 then the orbit C is asymptotically stable.

Example 3. Consider the planar system

r′ = r(1− r) (60)

θ′ = 1 (61)

In Cartesian coordinates it has a fixed point, x = y = 0 and a closed orbit,
x = cos t, y = sin t;x2 + y2 = 1. Any ray originating at (0, 0) is a section of the
flow. We choose the positive real axis as S. Let’s construct the Poincaré map.
Since θ′ = 1, the return time is 1, for any x ∈ R+ we have x(2π;X) = x(0, X).
We have P (1) = 1 since 1 lies on the unit circle. In this case we can calculate
explicitly the solutions, thus the Poincaré map and its derivative.

We have
ln r(t)− ln(r(t)− 1) = t+ C (62)

and thus

r(t) =
Cet

Cet − 1
(63)

where we determine C by imposing the initial condition r(0) = x: C = x/(x−1).
Thus,

r(t) =
xet

1− x+ xet
(64)

and therefore we get the Poincaré map by taking t = 2π,

P (x) =
xe2π

1− x+ xe2π
(65)

Direct calculation shows that P ′(1) = e−2π, and thus the closed orbit is stable.
We could have seen this directly from (65) by taking t→∞.

Note that here we could calculate the orbits explicitly. Thus we don’t quite
need the Poincaré map anyway, we could just look at (64). When explicit solu-
tions, or at least an explicit formula for the closed orbit is missing, calculating
the Poincaré map can be quite a challenge.

8 Monotone sequences in two dimensions

There are two kinds of monotonicity that we can consider. One is monotonicity
along a solution: x1, ..., xn is monotone along the solution if xn = x(tn, X) and
tn is increasing in n. Or, we can consider monotonicity along a segment, or more
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generally a piece of a curve. On a piece of a smooth curve, or on an interval
we also have a natural order (or two rather), by arclength parameterization of
the curve: γ2 > γ1 if γ2 is farther from the chosen endpoint. To avoid this
rather trivial distinction (dependence on the choice of endpoint) we say that a
sequence {γn}n is monotone along the curve if γn is inbetween γn−1 and γn+1

for all n. Or we could say that a sequence is monotone if it is either increasing
or else decreasing.

If we deal with a trajectory crossing a curve, then the two types of mono-
tonicity need not coincide, in general. But for sections, they do.

Proposition 9. Assume x(t;X); t ∈ [0, τ ] is a solution of a planar system
x′ = f(x), s.t. f is regular and nonzero in a sufficiently large region. Let S be a
local section. Then monotonicity along the solution x(t;X) assumed to intersect
S at x1, x2, ... (finitely or infinitely many intersection) and along S coincide.

Note that all intersections are taken to be with S, along which, by definition,
they are always transversal.

Proof. We assume we have three successive distinct intersections with S, x1,
x2, x3 (if two of them coincide, then the trajectory is a closed orbit and there
is nothing to prove).

We want to show that x3 is not inside the interval (x1, x2) (on the section, or
on its image on R). Consider the curve C1 = {x(t;x1) : t ∈ [0, t2]} where t2 is the
first time of re-intersection of x(t;x1) with S. By definition x(t2 − t1;x1) = x2.
C1 is a smooth curve, with no self-intersection (since the field is assumed regular
along the curve) thus of finite length. If completed with the line segment J
linking x1 and x2, C1 ∪ J is a closed continuous curve. By Jordan’s lemma, we
can define the inside int C and the outside of the curve, D =ext C. Note that
the field has a definite direction along [x1, x2], by the definition of a section.
Note also that it points towards ext C, since x(t;x1) exits int C at t = t2. Then,
no trajectory can enter int C. Indeed, it should intersect either x(t;x1) or else
[x1, x2]. The first option is impossible by uniqueness of solutions. The second
case is ruled out since the field points outwards from J . Thus x(t3, x) = x3
must lie in ext C, thus outside [x1, x2].

The next result shows points towards limiting points being special: parts of
closed curves, or simply infinity.

Proposition 10. Consider a planar system and z ∈ ω(x) (or z ∈ α(x)), as-
sumed a regular point of the field. Consider a local section S through a regular
point z̃. Then the intersection of {Φt(z) : t > 0}∩S has at most one point (note
that we are dealing with Φt(z) and not Φt(x)).

Proof. Assume there are two distinct intersection points x(t1, z) = z1 and
x(t2, z) = z2 on S. By Proposition 4, {Φt(z) : t > 0} ⊂ ω(x); in particu-
lar, z1 and z2 are also in ω(x). There are then infinitely many points on Φt(x)
arbitrarily close to z1 and infinitely many others arbitrarily close to z2, by the
definition of ω(x).
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x1

x2

Figure 9: Monotone sequence theorem

We can assume without loss of generality that the points that converge to
z1 lie on S. Indeed, this can be arranged by a small change in tj as follows:

The first arrival times at S for the trajectory Φt(z1) is clearly zero. By the
continuity of τ , if j is large enough s.t. Φtj (x) is close to z1, then τ(Φtj (x))
exists by Proposition 7; τ(Φtj (x)) and is arbitrarily small if j is large enough.
Thus, by choosing tj + τ(Φtj (x)) instead of tj , we can arrange that Φtj (x) ∈ S.
Similarly, we can arrange that the points converging to z2 are on S.

Also w.l.o.g. (rotating and translating the figure) we can assume that S =
(−a, b) ∈ R and [z1, z2] ⊂ (−a, b). We know that x(tj , X), where tj are the
increasing times when x(tj , X) ∈ S, are monotone in S = (−a, b). Thus they
converge. But then, by definition of convergence, they cannot be arbitrarily
close to two distinct points.

9 The Poincaré-Bendixson theorem

Theorem 6 (Poincaré-Bendixson). Let Ω = ω(x) be a nonempty compact limit
set of a planar system of ODEs, containing no equilibria. Then Ω is a closed
orbit.

Proof. First, recall that Ω is invariant. Let y ∈ Ω. Then Φt(y) is contained
Ω, and then Φt(y) has infinitely many accumulation points in Ω. Let z be one
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of them and let tj be s.t. x(tj , y) = z + o(1). Let S be a section though z.
As in the Proposition 10, we can assume that x(tj , y) ∈ S. By Proposition 10,
x(tj , y) = x(tj′ , y)∀j, j′, and thus the trajectory is periodic and tj+1− tj = T is
the period.

We have to now show that Ω is a closed orbit (and not a collection of distinct
ones).

We take a section through y, and consider the sequence x(tj , X) of points on
x(t,X) approaching y. By the continuity of the Poincaré map and continuity
w.r.t. initial conditions, tj+1 − tj = T + o(1) for large j. Thus any t = tj + s
for some j and s ∈ (o(1), T + O(1)), By continuity w.r.t. initial conditions,
x(tj + s,X) = x(s, y) + o(1), thus the distance between x(s, y) and Ω) is zero.

Exercise 1. Where have we used the fact that the system is planar? Think how
crucial dimensionality is for this proof.

10 Applications of the Poincaré-Bendixson the-
orem

Definition. A limit cycle is a closed orbit γ which is the ω-set, or an α− set
of a point X /∈ γ. These are called ω limit cycles or α limit cycles respectively.

As we see, closed orbits are limit cycles only if other trajectories approach
them arbitrarily. There are of course closed orbits which are not limit cycles.
For instance, the system x′ = −y, y′ = x with orbits x2 + y2 = C for any C
clearly has no limit cycles.

ω− limit cycles have at least one-sided stability.

Corollary 11. Assume γ is an ω−limit cycle. Then there is a one-sided (or
two-sided) neighborhood N of γ s.t. X ∈ N ⇒ ω(X) = γ.

Proof. Take a section S through any point on γ. Similar to the construction
for the monotonicity proof, we take the region R bounded by the trajectory
from xj to xj+2, see Fig. 11. Note that any point X starting on S in an open
neighborhood of some X in (xj , xj+1) has the property ω(X) = γ. Indeed, the
blue region in the figure has, by assumption no equilibrium and, because of non-
intersection of trajectories and continuity of the return time, if j is large enough,
will cross the section S in a time tj+1− tj +o(1) somewhere in (xj+1, xj+2), and
in general will cross S in (xk, xk+1) for all k > j. The rest is immediate.

Corollary 12. Assume ω(X) = γ, γ 63 X is a limit cycle. Then there exists a
neighborhood O of X s.t. ∀X ′ ∈ O we have γ = ω(X ′).

Proof. Let t0 be large enough so that Φt(X) ∈ N , the one-sided neighborhood of
stability of γ, for all t > t0. Take any t1 > t0 and a small enough neighborhood
O1 of x1 = Φt1(X), so that, in particular, O1 ⊂ N . Clearly, Φ−t1(x1) =
X. As diam(O1) → 0, we have diam(Φ−t1(O1)) → 0 as well, by continuity
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Figure 10: One-sided stability

with respect to initial conditions. Also by continuity of Φt, and noting that
Φ−t(Z) = (Φt)

−1(Z), we see that O2 := Φ−t1(O1) is an open set, which clearly
contains X. By construction, ω(X ′) = γ for all X ′ ∈ O2.

Corollary 13. If a planar system has a first integral J that is not constant in
any open set, then it has no limit cycles.

Proof. Indeed, if γ = ω(X) is a limit cycle for some X, then by Corollary 12
there is a neighborhood OX so that ω(X ′) = γ for all X ′ ∈ OX . We know that
J is constant along any trajectory. Let Y0 ∈ γ. By continuity, J(X ′) = J(Y0)
for any X ′ ∈ OX .

Corollary 14. Let P be a compact, simply connected, positively invariant set.
Then P contains at least a limit cycle or an equilibrium.

Proof. Assume to get a contradiction that there were no equilibria or limit
cycles in P. By invariance, P must contain the ω limit set Ω of any X ∈ P. By
Poincaré-Bendixson, ω(X) is a closed curve which is not a limit cycle, and thus
X ∈ ω(X), and ω(X) is a closed orbit. Take now X1 in int(ω(X)); then similarly
ω(X1) is a closed orbit and X1 ∈ ω(X1) ( ω(X). We can form, by induction,
a nested sequence of closed orbits ω(Xj), each of them strictly contained in the
interior of the previous one. We consider now the set of all such nested sequences
and let ν be the inf of the areas of the regions inside these ω(Xj). If ν 6= 0,
then we take a nested sequence of closed orbits whose areas converge to ν and
let P be the intersection of all ω(Xj) ∪ int(ω(Xj)). This is a compact, simply
connected invariant set P. If P has nonempty interior, then for any point X
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in int(P), ω(X) is a closed trajectory also contained in int(P) (why?) and this
ω(X) necessarily has area < area(P) < ν, contradiction. If instead P has empty
interior, then for any X ∈ P, ω(X) cannot be a curve, as smooth curves have
nonempty interior. Then ω(X) is an equilibrium, contradiction.

Corollary 15. Let γ be a closed orbit and U its interior. Then U contains at
least an equilibrium.

Proof of the Corollary. We first show that if there is no equilibrium in U then
there are infinitely many limit cycles. Indeed, P = U ∪ γ is positively invariant
and then it must contain a limit cycle. If γ itself is the only limit cycle or
equilibrium in P, then, since P is also negatively invariant, γ is also the α−limit
set of any point in P, but this would violate monotonicity along sections (check!).
If there were finitely many limit cycles in P then there would be one of minimal
area, impossible by the arguments in Corollary 14.

Thus, that there are infinitely many limit cycles γn in U . We can furthermore
assume they are contained in each other, since each limit cycle contains an
equilibrium or yet another limit cycle (strict inclusion). Now we can repeat the
last part of the proof of Corollary 14, since a limit cycle is, in particular, a closed
orbit. (At the end of that proof, ω(X) cannot be a closed orbit, otherwise, once
more, it would contain an even smaller one.)

Corollary 16. If K is positively (or negatively) invariant, then it contains an
equilibrium.

Proof. Combine Corollaries 14 and 15.

11 The Painlevé property

As mentioned on p.2, Hamiltonian systems (with time-independent Hamilto-
nian) in one dimension are integrable: the solution can be written in closed
form, implicitly, as H(y(x), x) = c; in terms of t, once we have y(x) of course
we can integrate x′ = G(y(x), x) := f(x) in closed form, by separation of vari-
ables. The classification of equations into integrable and nonintegrable, and in
the latter case finding out whether the behavior is chaotic plays a major role in
the study of dynamical systems.

As usual, for an n−th order differential equation x′ = f(x), a constant of
motion is a function K(u1, ..., un, t) with a predefined degree of smoothness
(analytic, meromorphic, Cr etc.) and with the property that for any solution
y(t) we have

d

dt
K(y(t), y′(t), ..., y(n−1)(t), t) = 0

There are multiple precise definitions of integrability, and no one perhaps is
comprehensive enough to be widely accepted. For us, let us think of a system as
being integrable, relative to a certain regularity class of first integrals, if there
are sufficiently many global constants of motion so that a particular solution
can be found by knowledge of the values of the constants of motion.

25



If f is analytic, it is usually required that K is analytic too, except perhaps
for isolated singularities (in particular, single-valued; e.g., the log does not have
an isolated singularity at zero, whereas e1/x does).

We note once more that an integral of motion needs to be defined in a wide
region. The existence of local constants along trajectories follows immediately
either from the flowbox theorem, or from the implicit function theorem: indeed,
if x′ = f(x) is a system of equations near a regular point, x0, then evidently there
exists a local solution x(t;x0) = ϕt(x0). It is easy to check that Dx0

x|t=0 = I,
so we can write, near x0, t = 0, x0 = K(x, t) = Φ−t(x). Clearly K is constant
along trajectories. Not a very explicit function, admittedly, but smooth, at
least locally. K is thus obtained by integrating the equation backwards in time.
This is not a very useful constant of motion however, since in general it is only
defined for small t: typically for larger t singularities will arise.

Assume now that f is an analytic function, so that it makes sense to extend
the equation to C.

If t is in the complex domain, we can in principle circumvent possible sin-
gularities, and define K by analytic continuation around singularities. When is
this possible? If the singularities are always isolated, and in particular solutions
are single valued, it does not matter which way we go. But if these are, say,
square root branch points, if we avoid the singularity on one side we get +

√
and on the other −√. There is no obvious way to prescribe a systematic path
of analytic continuation since the Riemann surface is solution-dependent. We
will see in the next section that this is typically not a mere failure to find a
systematic prescription.

On the other hand, if we impose the condition that the equation have only
isolated singularities (at least, those depending on the initial condition, or mov-
able, then we have a single valued global constant of motion, take away some
lower dimensional singular manifolds in C2.

Such equations are said to have the Painlevé property (PP) and are inte-
grable, at least in the sense above. But it turns out, in those considered so far
in applications, that more is true: they were all ultimately reduced to linear
equations.

Failure of the Painlvé property and nonintegrability

In the case the movable singularities of solutions of a meromorphic equation are
branch points we don’t expect simple, closed form solutions which are single-
valued in C. Indeed, assume that the solution y(z) is given by Φ(z, y(z)) = 0
where Φ is nontrivial, and analytic (or meromorphic) in C2. Then Φ should be
constant along the trajectory. We follow the solution y on a Riemann surface
avoiding the singularities. Since the solution is not single valued, after surround-
ing one singularity we end up with y1(z), a solution of the same ODE, but a
different one. The expectation is that by wandering “randomly” around branch
points we generate a family of solutions dense in the space of all solutions (dense
branching). This is because of the huge amount of freedom we have in choos-
ing the continuation path. In case of dense branching– the typical situation in
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Figure 11: A continuation path for a solution with movable singularities

fact– then Φ(z, y) takes the same value on a dense set of y and thus it does not
depend on y; of course it cannot depend only on x and thus Φ is a number,
contradiction. One of course has to check whether in a particular ODE dense
branching occurs, but this is generically the case and failure of the PP is a “red
flag” when trying to solve equations in any explicit way.

11.1 The Painlevé equations

11.2 Spontaneous singularities: The Painlevé’s equation
PI

Let us analyze local singularities of the Painlevé equation PI,

y′′ = y2 + x (66)

The standard existence and uniqueness theorem guarantees that there is a
unique solution in any region where y is bounded, and this solution is analytic.

In a neighborhood of a point where y is large, keeping only the largest terms
in the equation (dominant balance) we get y′′ = y2 which can be integrated
explicitly in terms of elliptic functions and its solutions have double poles. Al-
ternatively, we may search for a power-like behavior

y ∼ A(x− x0)p

where p < 0 obtaining, to leading order, the equation Ap(p− 1)xp−2 = A2(x−
x0)2 which gives p = −2 and A = 6 (the solution A = 0 is inconsistent with our
assumption). Let’s look for a power series solution, starting with 6(x− x0)−2 :
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y = 6(x−x0)−2 +c−1(x−x0)−1 +c0 + · · · . We get: c−1 = 0, c0 = 0, c1 = 0, c2 =
−x0/10, c3 = −1/6 and c4 is undetermined, thus free. Choosing a c4, all others
are uniquely determined.

Series solutions at movable singularities for neighboring
equations

It is convenient to make the substitutions y(x) = 6(x− x0)−2 + δ(x) where for
consistency we should have δ(x) = o((x− x0)−2) and taking x = x0 + z we get
the equation

δ′′ =
12

z2
δ + z + x0 + δ2 (67)

In this form, the singular point of y is now placed at z = 0 and zero is a
singularity of the equation.

Note that with the standard substitution that we used for Frobenius systems,
u1 = δ, u2 = zδ′ we get the system

u′1 = z−1u2

u′2 = 12z−1u1 + z−1u2 + zu21 + z2 + zx0 (68)

which can be extended to an autonomous system by adding ż = z, and P1
becomes equivalent to

u̇1 = u2

u̇2 = 12u1 + u2 + z2u21 + z3 + z2x0

ż = z (69)

where 0 is a critical point of the field. The linearized matrix at zero M of this
system and its corresponding diagonal form D are given by

M =

 0 1 0
12 1 0
0 0 0

 ; D =

−3 0 0
0 4 0
0 0 1

 (70)

we see that the system is resonant, with eigenvalues in the Siegel domain.
Typically therefore we do not expect local analytic linearization. Typical

would mean here that we allow for generic nonlinear monomials instead of the
specific ones.

However, for P1, by “accident” the solutions of (67) are locally analytic.
Substituting

δ(z) = c0 + c1z + ...

in (67) we get
−12c0z

−2 − 12c1z
−1 + ... = 0

forcing c0 = c1 = 0. Thus a power series would have the form

δ(z) =

∞∑
k=2

ckz
k (71)
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which, used in (67), gives

[−10c2 − x0] + (−6c3 − 1) z + 8c5z
3 +

(
18c6 − c22

)
z4 + (30c7 − 2c2c3) z5

+
(
−2c2c4 − c32 + 44c8

)
z6 + · · · = 0 (72)

We note that the coefficient of z2 is zero, and c4 is undetermined. For any value
of c4, the recurrence for ck determines uniquely these coefficients.

The fact that c4 is not determined is due to 4 being an eigenvalue of the linear
part, and that there are no obstructing monomials. If we take a modification of
(67), for instance

δ′′ =
12

z2
δ + z + az2 + x0 + δ2 (73)

we get as before c0 = 0, c1 = 0 and

[−10c2 − x0] + (−6c3 − 1) z + az2 + 8c5z
3 +

(
18c6 − c22

)
z4 + · · · = 0 (74)

Now an equation for c4 is still missing, and the term z2 cannot be eliminated
(unless a = 0, which is the original P1.) As in the linear case, we expect log z
to appear in the expansion. Indeed, substituting

δ(z) =

6∑
k=2

ckz
k +Az4 ln z (75)

in (73) we get

−10c2−x0 +(−6c3 − 1) z+(7A+ a) z2 +8c5z
3 +
(
18c6 − c22

)
z4 + · · · = 0 (76)

which is now solvable (at least to order 6).

Existence of a convergent power series for δ in (67)

To show that there indeed is a convergent such power series solution we substi-
tute Note now that our assumption δ = o(z−2) makes δ2/(δ/z2) = z2δ = o(1)
and thus the nonlinear term in (67) is relatively small. Thus, to leading order,
the new equation is linear. This is a general phenomenon: taking out more
and more terms out of the local expansion, the correction becomes less and
less important, and the equation is better and better approximately by a linear
equation. It is then natural to separate out the large terms from the small terms
and write a fixed point equation for the solution based on this separation. We
write (67) in the form

δ′′ − 12

z2
δ = z + x0 + δ2 (77)

and integrate as if the right side were known. This leads to an equivalent integral
equation. Since all unknown terms on the right side are chosen to be relatively
smaller, by construction this integral equation is expected to be contractive.

Click here for Maple file of the formal calculation (y′′ = y2 + x)

29

http://www.math.ohio-state.edu/~costin/821/p.ps


The indicial equation for the Euler equation corresponding to the left side
of (77) is r2 − r − 12 = 0 with solutions 4,−3 (same as the eigenvalues of the
linearized matrix, of course). By the method of variation of parameters we thus
get

δ =
D

z3
− 1

10
x0z

2 − 1

6
z3 + Cz4 − 1

7z3

∫ z

0

s4δ2(s)ds+
z4

7

∫ z

0

s−3δ2(s)ds

= − 1

10
x0z

2 − 1

6
z3 + Cz4 + J(δ) (78)

the assumption that δ = o(z−2) forces D = 0; C is arbitrary. To find δ formally,
we would simply iterate (78) in the following way: We take r := δ2 = 0 first
and obtain δ0 = − 1

10x0z
2 − 1

6z
3 + Cz4. Then we take r = δ20 and compute δ1

from (78) and so on. This yields:

δ = − 1

10
x0z

2 − 1

6
z3 + Cz4 +

x20
1800

z6 +
x0
900

z7 + ... (79)

This series is actually convergent. To see that, we scale out the leading power
of z in δ, z2 and write δ = z2u. The equation for u is

u = −x0
10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0
10
− z

6
+ Cz2 + J(u) (80)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ε such that this is a contractive equation for u in the ball
‖u‖∞ < C1 in the space of analytic functions in the disk |z| < ε. We conclude
that δ is analytic and that y is meromorphic near x = x0. Note. The analysis
above does not prove that the solutions are meromorphic functions in C (why
not?).

Exercise 1. Show that y′′ = y2+P (x) where P is a polynomial has the Painlevé
property iff P (x) = ax + b where, modulo elementary changes of variables,
a = 1, b = 0.

Click here for Maple file of the formal calculation, for y′′ = y2 + x2

11.2.1 The six Painlevé equations

This is the list of the six Painlevé equations:
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P1 w′′ = 6w2 + z

P2 w′′ = 2w3 + zw + α

P3 w′′ =
1

w
(w′)

2 − 1

z
w′ +

αw2 + β

z
+ γw3 +

δ

w

P4 w′′ =
1

2w
(w′)

2
+

3

2
w3 + 4zw2 + 2(z2 − α)w +

β

w

P5 w′′ =

(
1

2w
+

1

w − 1

)
(w′)

2 − 1

z

dw

dz

+
(w − 1)2

z2

(
αw +

β

w

)
+
γw

z
+
δw(w + 1)

w − 1

P6 w′′ =
1

2

(
1

w
+

1

w − 1
+

1

w − z

)(
dw

dz

)2

−
(

1

z
+

1

z − 1
+

1

w − z

)
dw

dz

+
w(w − 1)(w − z)

z2(z − 1)2

(
α+

βz

w2
+
γ(z − 1)

(w − 1)2
+
δz(z − 1)

(w − z)2

)
(81)

A nonintegrable example

The following is a nonintegrable case of the Abel class of ODEs:

y′ = y3 + x (82)

We claim that all singularities are branch points. First, we note that the stan-
dard existence and uniqueness theorem guarantees that the solution of (82) is
analytic in any region where y is bounded; for a point x0 to be singular we need
that y →∞ as x→ x0. Near the singular point we must have y′ ∼ y3 which by
direct integration gives y ∼ ±(2x)−1/2.

To show that this is indeed the behavior near a point z0 where y blows up,
we take y = 1/u, x = z0 + z and get

dz

du
= − u

1 + u3z0 + u3z
(83)

in this presentation u = 0, z = 0 is a regular point of the ODE, and the solution

is analytic. It is clear that z = −u
2

2 (1 + h(u)) where h is analytic and h(0) = 0.
We leave it as a straightforward exercise to check that this implies the existence
of two solutions of (82) in the form y = ±(x− x0)−1/2H(

√
x− x0) where H is

analytic.

Exercise 2. Show that an equation of the form

y′ = P (y) +Q(x) (84)

where P and Q are polynomials has the Painlvé property iff P is quadratic, in
which case the equation is Riccati, thus integrable.
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12 Asymptotics of ODEs: first examples

Asymptotic behavior typically refers to behavior near an irregular singular point.
Remember from Frobenius theory that regular singular points (say z = 0)

of an nth order ODE are characterized by the order of the poles relative to the
order of differentiation. Homogeneous equations with regular singularities are
of the form

y(n) +
A1(z)

z
y(n−1) + · · · Aj(z)

zj
y(n−j) + · · · An(z)

zn
y = 0 (85)

where Aj(z) are analytic at zero.
A singularity is regular iff there is a fundamental system of solutions in the

form of a finite combination of terms of the form za,A(z), lnj z where a may be
complex, j 6 n− 1, A(z) analytic.

Thus the general solution at an irregular singular point is not given by a
convergent power series. Two things can happen:

· Solutions do not have power-like behavior (usually this means exponential
behavior).

· Series exist but are divergent.

Consider first the very simple ODE

y′ = Ay/zp; p > 1 (86)

near z = 0. The general solution is

y = C exp(−Az−p+1/(p− 1)) (87)

Note that this function has no power series at z = 0 (in C); the behavior is
exponential.

Most often, irregular singularities are placed at infinity (to characterize a
singularity at infinity, make the substitution z = 1/x). Then, in first order
equations with coefficients behaving polynomially, infinity is an irregular singu-
lar point if the equation is of the form y′ = Axq(1 + o(1))y, q > −1. Equation
(86), after the transformation z = 1/x becomes

y′ = axqy; a = −A, q = p− 2 (88)

and infinity is an irregular singular point if q > −1, and the solution is given by

y = C exp

(
axq+1

q + 1

)
(89)

For the second new phenomenon, consider the equation

y′ = −y + 1/x; y →∞ (90)
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We can make it homogeneous by multiplying by x and differentiating once more.
By taking z = 1/x you convince yourself that the resulting equation is second
order with a fourth order pole at zero.

Eq. (90) has a power series solution. Indeed, inserting

y =

∞∑
k=0

ck/x
k (91)

in (90) we get ck = (k − 1)ck−1; c1 = 1 ⇒ ck = (k − 1)! and thus

y =

∞∑
k=0

k!/xk+1 (92)

The domain of convergence of this expansion in empty.
Many equations for special functions have an irregular singularity at infinity.
Typical equations

1. Bessel:
y′′ + x−1y′ + (1− α2/x2)y = 0 (93)

2. Parabolic cylinder functions

y′′ + (ν + 1
2 −

1
4z

2)y = 0 (94)

3. Airy functions

y′′ = xy (95)

as well as many nonlinear ones

4. Elliptic functions
y′′ = y2 + 1 (96)

5. Painlevé P1

y′′ = 6y2 + x (97)

etc.

It is important to understand the behavior of irregular singularities. Start
again from the example (86). It is clear that the singularity remains irregular
if z−p is replaced by z−p + · · · where · · · are terms with higher powers of z.
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The WKB method

Given the exponential behavior at an irregular singular point, it is natural to
make an exponential substitution y = ew. Of course, at the end, we re-obtain
the solution we had before. Only, the equation for w′ will admit power-like,
instead of exponential behavior.

This substitution works in much more generality, and it is behind what is
known as the WKB method.

Let’s illustrate this on second order equations with rational coefficients:

y′′ +R1y
′ +R2y = 0; R1, R2 rational (98)

A Liouville transformation y = exp(− 1
2

∫
R1) transforms (100) into

u′′ + (R2 −
1

2
R1 −

1

4
R2

1)u = 0 (99)

and thus we can assume without loss of generality that the equation was of the
form

y′′ −Ry = 0; R = P/Q P,Q polynomials (100)

to start with. The singularity at infinity is irregular iff degP >degQ− 1. The
substitution suggested by the previous discussion is y = eW . This gives

W ′
2

+W ′′ = R (101)

It is easy to see theat the dominant balance is W ′
2 ∼ R. Then, W ∼ xa,

a = degP − degQ. Since the differential equation can be written in integral
form, the asymptotic behavior is differentiable. This means

W ′
2 ∼ x2a−2 � xa−2 = W ′′ (102)

The balance W ′
2 � W ′′ is quite universal in WKB-like problems. Then we

write the equation as
f = ±

√
R− f ′; f = W ′ (103)

and iterate under the assumption (102). This implies f ′ � R, and with the
plus sign we get

f [n+1] =

√
R− f ′[n]; f [0] = 0 (104)

We get

f [1] =
√
R+ · · ·

f [2] =
√
R− 1

4

R′

R
+ · · · (105)

f [3] =
√
R− 1

4

R′

R
− 5R′

2 − 4RR′′

R5/2
+ · · ·

We see that, if R ∼ xa, then

R′/R ∼ x−1;
5R′

2 − 4RR′′

R5/2
∼ x−2−a/2 (106)
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confirming the asymptotic nature of the expansion: the successive corrections
have more and more negative powers of x. By integration

W =

∫ x

a

√
R(s)ds− 1

4
lnR+

1

8

R′

R
3
2

+
1

32

∫ x

a

R(s)′
2

R(s)
5
2

ds (107)

giving

y ∼ R− 1
4 e

∫ x
a

√
R(s)ds

(
1 +

1

8

R′

R
3
2

+
1

32

∫ x

a

R(s)′
2

R(s)
5
2

ds+ · · ·

)
(108)

Similarly, the minus sign results in

y ∼ R− 1
4 e−

∫ x
a

√
R(s)ds

(
1− 1

8

R′

R
3
2

− 1

32

∫ x

a

R(s)′
2

R(s)
5
2

ds+ · · ·

)
(109)

12.1 Example: the Airy equation (95)

Substituting y = ew in (95) we get

w′′ + w′
2

= x (110)

or, choosing the plus sign,

f =
√
x− f ′ =

√
x− f ′

2
√
x
− f ′

2

8x3/2
+ · · · (111)

The sequence of iterations (105) gives

f [0] =
√
x

f [1] =
√
x− 1

4x
(112)

f [2] =
√
x− 1

4x
− 5

32
x−5/2

etc. In terms of w, we get

w = C1 +
2

3
x3/2 − 1

4
lnx+

5

48
x−3/2 (113)

and thus

y ∼ Ce 2
3x

3
2 x−1/4

(
1 +

5

48
x−3/2 + · · ·

)
(114)

We justify this asymptotic expansion next.
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12.1.1 Rigorous justification of the asymptotics for (95)

Theorem 7. There exist two linearly independent solutions of (95) with the
(two) asymptotic behaviors (corresponding to different choices of sign)

y± ∼ e±
2
3x

3
2
x−1/4(1 + o(1)) as x→ +∞ (115)

A similar analysis can be performed for x→ −∞.

Proof. It is enough to show that w±−[± 2
3x

3
2− 1

4 lnx]→ 0 as x→∞. We choose
the sign +, for which the analysis is slightly more involved. Define w =

√
x+ g

and consider the equation for g,

g′ + 2
√
xg = − 1

2
√
x
− g2 (116)

or, more generally
g′ + 2

√
xg = H(x) (117)

The differential equation (117) with initial condition g(x0) = 0 (chosen for
simplicity) where x0 > 0 will be chosen large, is equivalent to

g (x) = e−4/3 x
3/2

∫ x

x0

H (s) e4/3 s
3/2

ds (118)

In our specific case, we have

H(x) := − 1

2
√
x
− g(x)2 (119)

and thus

g (x) = −e−4/3 x
3/2

∫ x

x0

1

2
√
s

e4/3 s
3/2

ds− e−4/3 x
3/2

∫ x

x0

g2(s)e4/3 s
3/2

ds (120)

What is the expected behavior of the first integral? We can see this by L’Hospital
(which, you can check, applies). We have(∫ x

x0

1

2
√
s

e4/3 s
3/2

ds

)′
(

e4/3 x
3/2

4x

)′ =
1

1− 2x−3/2
→ 1 (x→ +∞) (121)

and thus

= −e−4/3 x
3/2

∫ x

x0

1

2
√
s

e4/3 s
3/2

ds ∼ − 1

4x
x→ +∞ (122)

Let’s more generally, look at the behavior of∫ x

x0

sneAs
m

ds (123)
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where m > 0 We look at the value of l for which, by L’Hospital, we would get(∫ x
x0
xneAx

m
)′

(xleAxm)
′ =

xn+1−l−m

Am+ lx−m
→ C (124)

where C 6= 0 is some constant. We need l = n −m + 1 and C = (Am)−1. In
particular,

e−4/3 x
3/2

∫ x

x0

s−ae4/3 s
3/2

ds ∼ 1

2
x−a−1/2 x→ +∞ (125)

Since the behavior of the first term of (118) is −1/(4x), consistent with our
formal WKB analysis and thus g should be O(1/x), this suggests we write
g = u/x. We get

u (x)

= −xe−4/3 x
3/2

∫ x

x0

1

2
√
s

e4/3 s
3/2

ds− xe−4/3 x
3/2

∫ x

x0

u2(s)s−2e4/3 s
3/2

ds =: Nu

(126)

We analyze this equation in L∞[x0,∞). We first need bounds on the main
ingredients of (126), that is on integrals of the form

e−4/3 x
3/2

∫ x

x0

s−ae4/3 s
3/2

ds (127)

which are valid on [x0,∞) and not merely as x → ∞. The asymptotic in-
formation (125) is helpful, but concrete bounds would provide more informa-
tion (though this is not necessary if we merely want to prove an expansion as
x → ∞). From the limiting information, it follows that for any A > 1, if x0 is
large enough, we have

e−4/3 x
3/2

∫ x

x0

s−ae4/3 s
3/2

ds < A
1

2xa+1/2
, (128)

To find a specific x0, we look at

f(x) =

∫ x

x0

s−ae4/3 s
3/2

ds−Ae4/3 x
3/2 1

2xa+1/2
(129)

We note that f(x0) < 0. Calculating f ′, we get

f ′(x) = x−ae4/3 x
3/2

−Ax−ae4/3 x
3/2

(
1− a+ 1/2

2x3/2

)
= −x−ae4/3 x

3/2

[
A− 1− A(a+ 1/2)

2x3/2

]
(130)
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It is clear that f ′ < 0 if x > x(A) where

x(A)3/2 =
A(1 + 2a)

4(A− 1)
(131)

Thus we proved

Lemma 17. If A > 1, with x(A) as given in (131) we have∫ x

x(A)

s−ae4/3 s
3/2

ds < Ae4/3 x
3/2 1

2xa+1/2
(132)

for all x > x(A).

We will now write (126) in contractive form in a suitable ball in L∞[x0,∞).
We will make some choices of A, x0 etc, to write down something specific. The
proof of the theorem is completed by the following result.

Lemma 18. Let A = 2 and x0 > x(A), 2}. Consider the ball

B = {u : sup
x>x0

|u(x)| 6 1} (133)

Then N is contractive in B, and thus (126) has a unique solution u0 there.

Proof of the lemma. It is straightforward to check that NB ⊂ B. We have

|N (u2 − u1)| =
∣∣∣∣xe−4/3 x

3/2

∫ x

x0

(u2 − u1)(u2 + u1)s−2e4/3 s
3/2

ds

∣∣∣∣
6 ‖u2 − u1‖

2|x|
|x|5/2

6
2

|x0|3/2
‖u2 − u1‖ 6 2−1/2‖u2 − u1‖ (134)

On the other hand, as x → ∞, using (125) and the fact that ‖u0‖ < 1, we
have

g = − 1

4x
+ o(1/x) as x→∞ (135)

Nonlinear ODEs

Some nonlinear ODEs admit special solution that have asymptotic expansions
at infinity. Such is the case of many Painlevé equations, the Abel equation
discussed before, and more generally ODEs having that can be brought to the
form

y′ = Λy + x−1By + F (1/x, y); F (z, y) analytic near (0, 0), F = o(x−m, y2)
(136)

where m is large enough and Λ and B are constant matrices.
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Consider Abel’s equation (82) in the limit x → +∞. We first find the
asymptotic behavior of solutions formally, and then justify the argument. We
use the method of dominant balance that we will discuss in detail later. As x
becomes large, y, y′, or both need to become large if the equation (82) is to
hold. Assume first that the balance is between y′ and x and that y � x. If
y′ ∼ x then we have y ∼ x2/2 and y3 ∼ x6/8, and this is inconsistent since it
would imply x8/8 = O(x). Now, if we assume x � y3 then the balance would
be y′ ≈ y3, implying y ∼ − 1

2 (x − x0)−2; but this is small for x − x0 � 1,
which conflicts with what we assumed, x � y3. We have one possibility left:
y = ωx1/3(1 + o(1)), where ω3 = −1, which assuming differentiability implies
y′ = O(x−2/3) which is now consistent. We substitute

y = ωx1/3(1 + v(x)) (137)

in (82); for definiteness, we choose ω = eiπ/3, though any cube root of −1 would
work. We get

ωx1/3v′ + 3xv + 3xv2 + xv3 +
ω

3
x−2/3 +

ω

3
x−2/3v = 0 (138)

Now a consistent balance is between 3xv and −ω3 x
−2/3 meaning that v =

O(x−5/3).
To determine the power series formally, we would keep 3xv on the left side,

place all other terms on the right and iterate, starting with v[0] = 0.
For the purpose of justifying the analysis we place the formally largest

term(s) containing v and v′ on the left side and the smaller terms as well
as the terms not depending on v on the right side:

ωx1/3v′ + 3xv = h(x, v(x)); −h(x, v(x)) := 3xv2 + xv3 +
ω

3
x−2/3 +

ω

3
x−2/3v

(139)
We treat (139) as a linear inhomogeneous equation, and solve it thinking for
the moment that h is given.

This leads to

v = N (v);

N (v) := Ce−
9
5ω x

5/3

+
1

ω
e−

9
5ω x

5/3

∫ x

x0

e
9
5ω s

5/3

s−1/3h(s, v(s))ds (140)

We chose the limits of integration in such a way that the integrand is maximal

when s = x: if x → +∞, then x−1/3e
9
5ω x

5/3 → ∞, and our choice corresponds
indeed to this prescription.

The largest of the terms not containing v on the right side of (140) comes
from the term ω

3 x
−2/3 in h, and is of the order 1

3x
−5/3(1 + o(1)). Indeed, (125)

gives ∫ x
a
ebs

m

/snds

ebxm/xn
∼ b−1m−1x1−m; x→ +∞ (141)
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Again by dominant balance, we expect v = O(x−5/3). Thus, it is natural to
choose x0 large enough and introduce the Banach space

{f : ‖f‖ := sup
x>x0

|x5/3f(x)| <∞} (142)

or the region |x| > x0 in a sector S in the complex domain where Re
(
1
ωx

5/3
)
>

0 : arg x ∈ (− π
10 ,

π
2 ):

B = {f : ‖f‖ := sup
x∈S
|x5/3f(x)| <∞} (143)

and within this space a ball of size large enough – 2
3– to accommodate for the

largest term on the right side, ω
3 x
−2/3:

B1 := {f ∈ B : ‖f‖ 6 2

3
} (144)

Lemma 19. For given C, if x0 is large enough, then the operator N is con-
tractive in B1 and thus (140) (as well as (139)) has a unique solution there.

Proof. We first check that N (B1) ⊂ B1, by estimating each term in N . By
(141) we have for large enough x0, |Nx−m| = 1

3 |x|
−m−1(1+o(1)). In particular,

|N ω
3 x
−2/3| 6 ω

9 |x|
−5/3(1 + o(1)). The contribution of the other terms are much

smaller. For instance, |xv2| < Cx1−5/2‖v‖ we have |N (xv2)| = C|x|−5/2(1 +
o(1)).

To show contractivity, we note that, for k > 1,

|N (vk2 − vk1 )| 6 k‖v2 − v1‖|N
[
x−5/32(2/3)k−1x−5(k−1)/3

]

Note 4. We see that, in the way above, we cannot, in principle solve the given
ODE for any IC, that is for any C and x0: for a given C we need a large enough
x0, but this allows for “small” IC only.

13 Elements of eigenfunction theory–material com-
plementary to Coddington-Levinson

13.1 Properties of the Wronskian of a system

Lemma 20. Let A be a matrix on Cn. We have

det (I + εA) = 1 + εTr A+O(ε2) as ε→ 0 (145)

Proof 1. The property is obvious for(
1 + εa11 εa12
εa21 1 + εa22

)
(146)

For the general case, use induction and row expansion.
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Proof 2. Note that detB =
∏
j(1 + bj), where bj are the eigenvalues of B

(repeated if the multiplicity is not one). If (I + εA)v = µv then εAv = (µ− 1)v
that is, v = vj is an eigenvector ofA: Avj = ajv. Thus (1+εaj)vj = (I+εA)vj =
µvj ⇒ µ = (1 + εaj). The property now follows.

13.1.1 The Wronskian

The definition is

W [f1, ..., fn] =

∣∣∣∣∣∣∣∣
f1 ... fn
f ′1 ... f ′n
· · · · · · · · ·

f
(n−1)
1 ... f

(n−1)
n

∣∣∣∣∣∣∣∣ (147)

Lemma 21. Let
M ′ = AM (148)

be a matrix equation in Cn. We have

detM(t) = detM(0) exp

(∫ t

0

TrA(s)ds

)
(149)

Proof. We have (just by differentiability)

M(t+ ε)−M(t) = A(t)M(t)ε+ o(ε) (150)

and thus

M−1(t)M(t+ ε) = I +M−1(t)A(t)M(t)ε+ o(ε)

⇒ det
(
M−1(t)M(t+ ε)

)
= det

(
I +M−1(t)A(t)M(t)ε+ o(ε)

)
= 1 + Tr (A)ε+ o(ε) (151)

and thus

detM(t+ ε)

detM(t)
= 1 + Tr (A)ε+ o(ε)⇒ detM(t+ ε)− detM(t)

ε

= detM(t)Tr (A(t)) + o(1)⇒ (detM(t))
′

= detM(t)Tr (A(t)) (152)

and the result follows by integration.

Note that an equation of the kind we are considering,

Lf = p0(t)f (n) + p1(t)f (n−1) + · · ·+ pn(t)f = λf (153)

has the matrix equation counterpart

M ′ = AM (154)
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where

A =


0 1 0 ... 0
0 0 1 ... 0
· · · · · · · · · · · ·
−pnp0 −pn−1

p0
−pn−2

p0
... −p1p0

 (155)

and

M =


f1 ... fn
f ′1 ... f ′n
· · · · · · · · ·

f
(n−1)
1 ... f

(n−1)
n

 (156)

Clearly, TrA = −p1/p0. Thus we have

Corollary 22. The Wronskian W of a fundamental system for (153) satisfies

W (t) = W (0) exp

(
−
∫ t

0

p1(s)

p0(s)
ds

)
(157)

14 Discrete dynamical systems

Figure 12:
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The study of the Poincaré map leads naturally to the study of discrete dy-
namics. In this case we have closed trajectory, x0 a point on it, S a section
through x0 and we take a point x1 near x0, on the section. If x1 is sufficiently
close to x, it must cross again the section, at x′1, still close to x1, after the return
time which is then close to the period of the orbit. The application x1 → x′1
defines the Poincaré map, which is smooth on the manifold near x0.

The study of the behavior of differential systems is near closed orbits is often
more easily understood by looking at the properties of the Poincaré map.

In one dimension first, we are dealing with a smooth function f , where the
iterates of f are what we want to understand.

We write fn(x) = f(f(...(f(x)))) n times. The orbit of a point x0 is the
sequence {fn(x0)}n∈N, assuming that fn(x0) is defined for all n. In particular,
we may assume that f : J → J , where J ⊂ R is an interval, possibly the whole
line.

The effects of the iteration are often easy to see on the graph of the iteration,
in which we use the bisector y = x to conveniently determine the new point. We
have (x0, 0)→ (x0, f(x0))→ (f(x0), f(x0))→ (f(x0), f(f(x0)), where the two-
dimensionality and the “intermediate” step helps in fact drawing the iteration
faster: we go from x0 up to the graph, horizontally to the bisector, vertically
back to the graph, and repeat this sequence.

There are simple iterations, for which the result is simple to understand
globally, such as

f(x) = x2

where it is clear that x = 1 is a fixed point, if |x0| < 1 the iteration goes to zero,
and it goes to infinity if |x0| > 1.

Local behavior near a fixed point is also, usually, not difficult to understand,
analytically and geometrically.

Theorem 8. (a) Assume f is smooth, f(x0) = x0 and |f ′(x0)| < 1. Then x0
is a sink, that is, for x1 in a neighborhood of x0 we have fn(x1)→ x0.

(b) If instead we have |f ′(x0)| > 1, then x0 is a source, that is, for x1 in a
small neighborhood O of x0 we have fn(x1) /∈ O for some n (this does not mean
that fm(x1) cannot return “later” to O, it just means that points very nearby
are repelled, in the short run.)

Proof. We show (a), (b) being very similar. Without loss of generality, we take
x0 = 0. There is a λ < 1 and ε small enough so that |f ′(x)| < λ for |x| < ε.
If we take x1 with |x1| < ε, we have |f(x1)| = |f ′(c)||x1| < λ|x1|(< ε), so the
inequality remains true for f(x1) : |f(f(x1))| < λ|f(x1)| < λ2|x1| and in general
fn(x1) = O(λn)→ 0 as n→∞.

In fact, it is not hard to show that, for smooth f , the evolution is essentially
geometric decay.
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When the derivative is one, in absolute value, the fixed point is called neutral
or indifferent. It does not mean that it can’t still be a sink or a source, just that
we cannot resort to an argument based on the derivative, as above.

Example 5. We can examine the following three cases:
(a) f(x) = x+ x3.
(b) f(x) = x− x3
(c) f(x) = x+ x2.

It is clear that in the first case, any positive initial condition is driven to
+∞. Indeed, the sequence fn(x1) is increasing, and it either goes to infinity or
else it has a limit. But the latter case cannot happen, because the limit should
satisfy l = l + l3, that is l = 0, whereas the sequence was increasing.

The other cases are analyzed similarly: in (a), if x0 < 0 then the sequence
still diverges. Case (c) is more interesting, since the sequence converges to zero
if x1 < 0 is small enough and to ∞ for all x1 > 0. We leave the details to the
reader.

It is useful to see what the behavior of such sequences is, in more detail.
Let’s take the case (c), where x1 < 0. We have

xn+1 = xn + x2n

where we expect the evolution to be slow, since the relative change is vanishingly
small. We then approximate the true evolution by a differential equation

(d/dn)x = x2

giving
xn = (C − n)−1

We can show rigorously that this is the behavior, by taking xn = −1/(n+c0)+δ,
δn0

= 0 and we get

δn+1 − δn =
1

n2(n+ 1)
− 2

n
δn + δ2n (158)

and thus

δn =

n∑
j=n0

(
1

j2(j + 1)
− 2

j
δj + δ2j

)
(159)

Exercise 1. Show that (159) defines a contraction in the space of sequences
with the property |δn| < C/n2, where you choose C carefully.

Exercise 2. Find the behavior for small positive x1 in (b), and then prove
rigorously what you found.
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14.1 Bifurcations

The local number of fixed points can only change when f ′(x0) = 1. As before,
we can assume without loss of generality that x0 = 0.

We have

Theorem 9. Assume f(x, λ) is a smooth family of maps, that f(0, 0) = 0 and
that fx(0, 0) 6= 1. Then, for small enough λ there exists a smooth function
ϕ(λ), also small, so that f(ϕ(λ), λ) = ϕ(λ), and the character of the fixed point
(source or sink) is the same as that for λ = 0.

Exercise 3. Prove the theorem, using the implicit function theorem.

The logistic map

This is the iteration of the simple quadratic polynomial

f(x) = λx(1− x)

or, the recurrence
xn+1 = λxn(1− xn) (160)

14.1.1 Iteration on [0, 1]

We can check that for λ ∈ [0, 1) x = 0 is a stable fixed point while for x ∈ (1, 3)
the nonzero root of λx(1− x)− x = 0 is stable.

For higher values of λ, up to about λ = 3.8 there are stable periodic orbits.
A periodic orbit of a map f of period k is a fixed point of fk.

For λ = 3.5 successive iterations with x0 = 0.5 yield

0.5, 0.875, 0.382812, 0.826935, 0.500898, 0.874997︸ ︷︷ ︸
period

, 0.382820, 0.826941, 0.500884,

The eventual period is the same for any initial condition.

14.1.2 Iterating the map 4x(1− x) on [0, 1]

For λ = 4, using (166) we see what substitution simplifies the recurrence: if
xn = sin2(2πt) then xn+1 = sin2(4πt), and thus xn = sin2(2n+1πt0).

The map is semi-conjugated (the map is not invertible) to t→ 2t mod 1.

14.2 The logistic map in C; conjugation with the doubling
map

The Julia set J , the filled-in Julia set and the Fatou set are defined as follows.
Taken as an iteration in C, if f is a rational function and xn = fn(x) where

fn is the n− th iteration of f we have the following equivalent characterizations
of J .
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Figure 13: Plot of f4 for λ = 3.5.

· J is the closure of repelling periodic points.

· J is the set of limit points of ∪nf−n(z)

· Importantly for us: If f is entire, e.g. a polynomial, then J is the boundary
of the set of points s.t. fn(z)→∞ as n→∞, and also

· If f is a polynomial, then J is the boundary of the filled Julia set; that is,
the boundary of the set {z : supn |fn(z)| <∞}.
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Figure 14: Plot of f1000, for λ = 3.4, 3.5, 3.56, 3.569.

Exercise 4. Show that the Julia set coincides with the interval [0, 1] if λ = 4
(without using the explicit formulas for G given below). Fig. 14.1.1 should give
you a hint.

The change of variable

x = − z
λ

+
1

2

transforms (160) into the c−parameter form

zn+1 = z2n + c, c =
λ

2
− λ2

4
(161)

Evidently, the Julia and Fatou sets of (160) and of (161) are the same.
The Mandelbrot setM is the set of values of c for which zn in (161) starting

with the fixed initial condition z0 = 0 are bounded.
The main cardioid in the Mandelbrot set is the set of values of c in (161) for

|λ| < 1
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Figure 15: The map f4 where f(x) = λx(1− x), λ = 2, 3, 3.5.

Since the transformation is not one-to-one, for these c, the corresponding λ’s
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Figure 16: The map f4 where f(x) = λx(1− x), λ = 3.8, 4.

are given by
λ = {ρeit, 2− ρeit : ρ ∈ [0, 1), t ∈ [0, 2π)} (162)

and this is exactly the set of λ for which there is an attracting fixed point
(check!). The bulbs correspond to values of λ for which there exist attracting
periodic points.

After the substitution x = −y−1,

yn+1 =
y2n

λ(1 + yn)
= f(yn) (163)

If c ∈ M there exists a unique map F , analytic near zero, with F (0) = 0,
F ′(0) = λ−1 so that (F ◦f ◦F−1)(z) = z2. Its inverse, G, used in [3], conjugates
(163) to the canonical map zn+1 = z2n, and it can be checked that

G(z)2 = λG(z2)(1 +G(z)); G(0) = 0, G′(0) = λ (164)

Equivalently (with ϕ = 1/G) there exists a unique map ϕ analytic in D \ {0},

f(ϕ(z)) = ϕ(z2); z ∈ D \ {0}; lim
z→0

zϕ(z) = 1/λ (165)

It follows that G(∂D) = J . For a short proof see [2].
In any hyperbolic component of M (components of M corresponding to

(unique) attracting cycles), the points z ∈ fix fn on the corresponding Julia set
have the property |f ′n(z)| > 1 and ϕ is continuous in D.
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Figure 17: The Mandelbrot set [6]
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Figure 18: The filled in Julia set for λ = 0.504, 2.48, 2.89, 3.28, 3.56, 3.68 [7].
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Check that for λ = 4, G has the explicit form

G(z) =
4z

(1− z)2
(166)

Check that this transformation maps conformally the interior of the unit disk
onto C \ (−∞,−1].

The other explicitly solvable cases are λ = −2, 0, 2. For λ = −2,

G(z) =
−2z

z2 + z + 1
(167)

while for λ = 2,

G(z) =
2z

1− z
(168)

For λ = 2, G maps the disk |z| 6 1 conformally onto the right half plane and
is one-to-one on the boundary. This corresponds to the disk {x : |x− 1

2 | 6
1
2}.

Equivalently, the map

H =
x− 1

2x

solves the equation
H(x2) = 2H(x)(1−H(x))

14.2.1 Chaos

A map from, say I = [0, 1] into itself is chaotic if [4]

1. Periodic points are dense in I.

2. f is transitive on I. That is, given any two subintervals of I, U1 and U2,
there is a point x0 ∈ U1 and an n > 0 s.t. fn(x0) ∈ U2.

3. f has sensitive dependence on parameters: there is a sensitivity constant
β > 0 s.t., for any x0 ∈ I and any open interval U about x0, there is some
other point y0 ∈ U s.t.

|fn(x0)− fn(y0)| > β

Surprisingly, the third condition (which depends on a metric) follows from
the second one (which is purely topological).

Clearly, the doubling map extracts one by one the binary digits of a num-
ber. The sequence of digits is the simplest example of symbolic dynamics:
they describe whether the n-th iterate of the initial condition falls in [0, 12 )
or in [ 12 , 1]. In general, a symbolic dynamic description of a map consists
of a partition {A1, A2, ..., An} of the phase space and of a sequence of
numbers j where σn(x0) = j if fn(x0) ∈ Aj .
A nice application of symbolic dynamics is Sharkovskii’s theorem, which
implies the following:
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Theorem 10. If a discrete dynamical system on the real line has a pe-
riodic point of least period 3, then it must have periodic points of every
other period.

More precisely, the following holds: Consider the following ordering of the
naturals:

3 ≺ 5 ≺ 7 ≺ 9 ≺ ... ≺ 2 · 3 ≺ 2 · 5 ≺ 2 · 7 ≺ 2 · 9 ≺
... ≺ 22 · 3 ≺ 22 · 5 ≺ 22 · 7 ≺ 22 · 9 ≺
... ≺ 23 · 3 ≺ 23 · 5 ≺ 23 · 7 ≺ 23 · 9

... ≺ 25 ≺ 24 ≺ 23 ≺ 22 ≺ 2 ≺ 1. (169)

Theorem 11 (Sharkovskii). Let F : R → R be continuous function and
suppose p ≺ q in the above ordering. Then if F has a point of least period
p, then F also has a point of least period q.

In the case of the logistic map, period doubling starts at λ ≈ 3.5699: the
period of the stable periodic fixed point keeps doubling as λ is increased.
More precisely,

λn−1 − λn−2
λn − λn−1

= cn → c = 4.6692 · · ·

where c is the Feigenbaum constant.
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