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1. Review: Complex numbers, functions of a complex
variable

◦ Complex numbers, C form a field; addition, multiplication of com-
plex numbers have the same properties as their counterparts in R.
◦ There is no “good” order relation in C. Except for that, we op-

erate with complex numbers in the same way as we operate with real
numbers.
◦ A function f of a complex variable is a function defined on some

subset of C with complex values. Alternatively, we can view it as a
pair of real valued functions of two real variables. We write z = x+ iy
with x, y real and i2 = −1 and write x =Re(z), y =Im(z). We write

f(z) = f(x+ iy) = u(x, y) + iv(x, y)

◦We note that i2 = (−i)2 = −1. There is no fundamental distinction
between i and −i, or an intrinsic way to prefer one over the other. This
entails a fundamental symmetry of the theory, symmetry with respect
to complex conjugation 1.
◦ Based on the basic properties of complex numbers, we can right

away define a number of elementary complex functions: z, 1/z and
more generally form ∈ Z we easily define zm and in fact any polynomial∑K

m=0 cm(z − z0)m.
◦ To be able to define and work with more interesting functions we

need to define continuity, derivatives and so on. For this we need to
define limits. Seen as a pair of real numbers (x, y), the modulus of

z, |z| =
√
x2 + y2 gives a measure of length and thus of smallness

which induces a natural norm which makes C a complete metric space.
Convergence then reduces to one of real numbers:

(1.2) zn → z ⇔ |z − zn| → 0 as n→∞

The topology of C is the same of that of R2, if we identify z = x + iy
with the point (x, y) ∈ R2. Some basic facts in topology are reviewed
in Appendix §42.1.

1More precisely, z = x+ iy → z = x− iy is an involution and a field isomorphism
of C
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In the sequel, a domain in C is an open connected set in C. Examples
are disk of radius r > 0 centered at some point z0 ∈ C:

(1.3) D(z0, r) := {z : |z − z0| < r}

The special cases r = 0 (the empty set, ∅) and r = ∞ (the whole of
C) are open. Usually, we will assume that an open set is nontrivial,
r ∈ R+. The unit disk D

D := D(0, 1)

will play a special role as a canonical choice of a disk.

Exercise 1.1. Show that zn → z if and only if Re (zn) → Re (z) and
Im (zn)→ Im (z). Using completeness of R show that C is a complete
normed space.

Definition 1.2. For functions, limits are similarly reduced to the real
case: limz→z0 f(z) = a if |f(z)− a| → 0 as z → z0.

2. Convergent power series

2.1. Series. A series is written as

(2.2)
∞∑
k=0

ak

where ak are complex, and is said to converge if, by definition, the
sequence of partial sums

(2.3) SN :=
N∑
k=0

ak

converges as N →∞.
The series is said to converges absolutely if the real-valued series

(2.4)
∞∑
k=0

|ak|

converges.

Exercise 2.3. Check that a necessary condition of convergence is ak →
0 as k →∞ and that absolute convergence implies convergence. Verify
that the convergence criteria that you know from real analysis: the
ratio test, the n-th root test, in fact any test that does not rely on
signs carry over to complex series. The proofs over C require minor, if
any, modifications of the standard proofs in R.
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2.2. Power series. A power series centered at z0 is a series of the form

(2.5)
∞∑
k=0

ck(z − z0)k

where ck, z, z0 are complex.

Theorem 2.4 (Abel). If for some z1 6= z0 the series

(2.6)
∞∑
k=0

ck(z1 − z0)k

converges, then

(2.7)
∞∑
k=0

ck(z − z0)k

converges absolutely and uniformly in any disk D(z0, r) if r < |z1− z0|.

For a proof, reduce the question to a familiar one about real series
and use the completeness of C.

Abel’s theorem tells us that the region of convergence of a power
series is a disk (perhaps together with parts of its boundary). The
largest r for which a series (2.7) converges for all z ∈ D(z0, r) is called
the radius of convergence. The disk of convergence may be degen-
erate: in one extreme situation it is a point, z = z0 (zero radius of
convergence) in the other, the whole complex domain (“infinite radius
of convergence”).

2.3. Differentiability of power series.

Theorem 2.5. If the power series

(2.8) S(z) =
∞∑
k=0

ck(z − z0)k
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converges in the open disk D(z0, r), r > 0 (see Theorem 2.4), then S(z)
has derivatives of all orders in D(z0, r)}. In particular,

S ′(z) =
∞∑
k=0

kck(z − z0)k−1(2.9)

S ′′(z) =
∞∑
k=0

k(k − 1)ck(z − z0)k−2(2.10)

.....(2.11)

S(p)(z) =
∞∑
k=0

k(k − 1) · · · (k − p+ 1)ck(z − z0)k−p(2.12)

.......(2.13)

and all these series converge in D(z0, r) to the corresponding derivative
of S.

Proof. For the proof we only need to show the result for S ′: for larger
p the proof follows by induction. Furthermore, by taking z′ = z − z0

we reduce the problem to the case when z0 = 0. Let |z| < ρ < r and
choose h small enough so that |z|+ |h| < ρ. Note that

(z + h)n − zn = nzn−1h+
n(n− 1)

2
zn−2h2 + · · ·+ hn

and thus

(z + h)n − zn

h
= nzn−1 +

n(n− 1)

2
zn−2h+ · · ·+ hn−1

hence

(2.14)

∣∣∣∣(z + h)n − zn

h
− nzn−1

∣∣∣∣ =

∣∣∣∣n(n− 1)

2
zn−2h+ · · ·+ hn−1

∣∣∣∣
6
n(n− 1)

2
|z|n−2|h|+ · · ·+ |h|n−1 6

n(n− 1)

2
|ρ|n−2|h|

The last inequality is obtained by replacing z, h by |z|, |h| respectively,
repeating otherwise the calculations above, and applying Taylor’s re-
mainder formula to the real valued function (|z|+ |h|)n at the end:

(|z|+ |h|)n−|z|n−n|z|n−1|h| = n(n−1)
2

(|z|+ δ)n−2|h|2 with δ ∈ (0, |h|).

Thus, for the partial sums SN(z) =
∑N

k=0 ck(z − z0)k we have∣∣∣∣SN(z + h)− SN(z)

h
− S ′N(z)

∣∣∣∣ 6 K
h

r′2

N∑
k=0

k(k − 1)

2

( ρ
r′

)k−2
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for some r′ ∈ (ρ, r) and K > 0 (check!) and taking N →∞

(2.15)

∣∣∣∣S(z + h)− S(z)

h
− S ′(z)

∣∣∣∣ 6 K
h

r′2

∞∑
k=0

k(k − 1)

2

( ρ
r′

)k−2

The series on the right hand side of (2.15) is convergent, ρ is indepen-
dent of h and thus the right hand side of (2.15) converges to zero as
h→ 0. �

Corollary 2.6. Show that S(k)(z0) = k!ck and thus (2.8) is the con-
vergent Taylor series of S.

Corollary 2.7. Assume S(z) converges in a disk D(z0, r) and that
there is a sequence {zn}n∈N with an accumulation point at z0 so that
S(zn) = 0 for all n ∈ N. Then S(z) is identically zero.

Proof. We can assume without loss of generality that the sequence
itself converges to z0 and z0 = 0. We show that this implies that all
coefficients of S(z) are zero. We write

(2.16) S(z) = c0 + zT (z)

where T converges in D(0, r). We have, by assumption

(2.17) S(zn) = 0 = lim
n→∞

[c0 + znT (zn)]

and thus c0 = 0. From here we proceed by induction, as S(z)/z is a
power series with the same properties as S etc. (check!)

2.4. Some basic functions.
◦ The exponential. We define

(2.18) ez =
∞∑
k=0

zn

n!

This series converges for any z ∈ C and thus it is differentiable for any
z in C by Theorem 2.5. We have, by (2.9)

(2.19) (ez)′ = ez

Thus,

(2.20) (eze−z)′ = 0

and thus eze−z does not depend on z, and takes the same value ev-
erywhere, the value for z = 0. But we see immediately that e0 = 1.
Thus

(2.21) eze−z = 1 ⇔ e−z = 1/ez
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Exercise 2.8. We tacitly used something more: what? Fill in the
missing details.

In the same way,

(2.22) (ez+ae−z) ′ = (ez+a)′e−z + ez+a(e−z)′ = 0

⇔ ez+ae−z = eae0 = ea ⇔ ez+a = ezea

which provides us with the fundamental property of the exponential.
Also, we immediately check Euler’s formula: for φ ∈ R we have

(2.23) eiφ = cosφ+ i sinφ

Exercise 2.9.

(2.24) es = 1 ⇔ s = 2Nπi, N ∈ Z

◦ The logarithm. In the complex domain the log is a trickier function.
For the moment we look at a simpler question, that of defining log(1+z)
only for |z| < 1. This is done via the convergent Taylor series

(2.25) log(1 + z) = z − z2/2 + z3/3− z4/4 + · · ·

By (2.9) we get

(2.26)
d

dz
log(1 + z) = 1− z + z2 − z3 + · · · = 1

1 + z
if |z| < 1

Exercise 2.10. Show that if |s| is small we have

log(es) = s; elog(1+s) = 1 + s

We will return later to the question of defining log z for more general
z ∈ C, z 6= 0 and we will study its properties carefully. It is one of the
fundamental “branched” complex functions.

2.5. Operations with power series. If S and T are power series
convergent at z0, then so are S + T, S×T , also S/T if T (z0) 6= 0 and
S(T ) if T (z0) = z0 etc. Formulas for these new series are obtained by
working with the series as if they were polynomials. For instance,

(2.27) ST = s0t0+(s1t0+s0t1)(z−z0)+(s2t0+s1t1+s0t2)(z−z0)2+· · ·

Exercise 2.11. (a) If S and T are two power series with radius of
convergence r, then ST has radius of convergence at least r.

(b) Write three terms of the series S/T if T (z0) 6= 0.
(c)∗ Under the assumptions above, show that S/T has nonzero radius

of convergence.
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3. Differentiability

Definition. A complex function is continuous at z0 if f(z)→ f(z0)
as z → z0.

Exercise 3.12. Show that polynomials are continuous in C.

Likewise, we can now define differentiability.
Definition. A function f is differentiable at z0 if, by definition,

there is a number, call it f ′(z0) such that

f(z)− f(z0)

z − z0

→ f ′(z0) as z → z0

Exercise 3.13. Show that differentiation has the properties we are
familiar with from real variables: sum rule, product rule, chain rule
etc. hold for complex differentiation. (As you will see, proving this
amounts to nothing more than mimicking the proofs over the reals.)

3.1. The Cauchy-Riemann equations. Analytic functions can be
defined by many equivalent properties, that we will soon explore.

Definition 3.14. The function f defined in a domain D is analytic in
D if it is differentiable at all points in D.

Differentiability in C is far more demanding than differentiability
in R. For the same reason, complex differentiable functions are much
more regular and have better properties than real-differentiable ones.

We will see that if f is analytic, then its derivative is also analytic,
implying that f has continuous derivatives of all orders.

We will also see later that analyticity in a domain D is equivalent to
the convergence of the Taylor series at all points z0 ∈ D.

As a first definition equivalent to differentiability, an analytic func-
tion is a function which satisfies the Cauchy-Riemann (C-R) equations:

Theorem 3.15 (C-R). (1) Assume that f = u + iv is analytic in a
domain D in C. Then the Cauchy-Riemann equations hold:

(3.2)
ux = vy
uy = −vx

throughout D and u, v are continuously differentiable in D (“belong to
C1(D)”).

(2) Conversely, if (u, v) are differentiable and satisfy (3.2) in D, then
f is differentiable in D.
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Proof. (1) Let f(z) = u(x, y) + iv(x, y) and f ′(z0) = a+ ib. We have

(3.3)

f(z)−f(z0) = u(x, y)−u(x0, y0)+iv(x, y)−iv(x0, y0) = [f ′(z0)+ε(z)](z−z0)

= (a+ ib)[x− x0 + i(y − y0)] + ε(z)(z − z0)

= a(x− x0)− b(y − y0) + ia(y − y0) + ib(x− x0) + ε(z)(z − z0)

where ε(z)→ 0 as z → z0 implying ux, uy, vx, vy exist at z0 and satisfy
the C-R equations.

(ii) Differentiability of u and v at (x0, y0) implies

(3.4) f(z)− f(z0) = u(x, y)− u(x0, y0) + iv(x, y)− iv(x0, y0)

= ux(x0, y0)(x− x0) + uy(x0, y0)(y − y0)

+ivx(x0, y0)(x−x0)+ivy(x0, y0)(y−y0)+ε(x, y)(x−x0)+η(x, y)(y−y0)

where ε and η go to zero as z → z0.

Exercise 3.16. Show that (3.3) and (3.4) are compatible if and only if
(3.2) hold. (The real and imaginary parts must be equal to each other,
and x− x0 and y − y0 are independent quantities.)

3.2. Analyticity at infinity. As |z| → ∞, 1/z → 0. By definition f
is analytic at infinity if f(1/z) is analytic at zero.

4. Integrals

Integration plays an important role in complex analysis. As we shall
see, the derivative of a function can be written as an integral, and many
of the nice properties of analytic functions originate in this fact.

If f(t) = u(t)+iv(t) is a complex-valued function of one real variable

t then
∫ b
a
f(t)dt is defined by

(4.2)

∫ b

a

f(t)dt =

∫ b

a

u(t)dt+ i

∫ b

a

v(t)dt

This reduces the questions of complex integration to the familiar real
integration.

Note 4.17. In the following, unless otherwise specified, we assume that
the curves we use are piecewise differentiable.

Note.
Let γ(t) = x(t) + iy(t), t ∈ [a, b] be a parametrized curve. We define

using (4.2) ∫
γ

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt
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Note that the sign of the integral depends on the orientation of γ,
specified by stating that t goes from a to b, rather than only t ∈ [a, b]. It
is natural to say that γ(a) is the starting point of γ, and γ(b) is its final
point. The same geometric curve with opposite orientation is denoted
by −γ; a formula is easily found as (−γ)(t) = x(a+b−t)+iy(a+b−t),
t ∈ [a, b]. We see that

(4.3)

∫
−γ
f(z)dz =

∫ a

b

f(γ(t))γ′(t)dt = −
∫
γ

f(z)dz

If γ(a) = γ(b) the curve is called closed. Positive orientation, the
counterclockwise one, is assumed (unless otherwise specified), and we
denote

∮
γ

:=
∫
γ
.

Exercise 4.18. Show that

(4.4)

∫
γ

f(z)dz =

∫
γ

(
udx− vdy

)
+ i

∫
γ

(
udy + vdx

)
Exercise 4.19. Show that the integral along a curve (as a set) depends
on the parametrization of the curve it only through a sign.

A curve is called simple if it has no self-intersections. For example,
the circle is simple, but the figure ”8” is not.

A domain D is called simply connected if any simple closed curve
γ contained it D can be deformed to a point continuously through
curves completely contained in D. More precisely, there is a continuous
function of two variables F (t, s) = x(t, s) + iy(t, s) defined on [a, b] ×
[0, 1] with values in D such that F (t, 0) = γ(t) and F (t, 1) = p, a
point in D. Intuitively, a simply connected domain has no holes. For
example a disk is a simply connected domain, but a punctured disk, or
an annulus: {z ∈ C| r < |z| < R}, are not simply connected.

Theorem 4.20 (Cauchy). Assume D is a simply connected domain
and that f is continuously differentiable in D. If γ is a piecewise dif-
ferentiable simple closed curve contained in D then

(4.5)

∮
γ

f(z)dz = 0

Proof. Start with the decomposition (4.4) and use Green’s theorem
to write

(4.6)

∫
γ

(
udx− vdy

)
= −

∫ ∫
Int(γ)

(
∂v

∂x
+
∂u

∂y

)
dxdy = 0
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which vanishes by (3.2) The second integral in (4.4) is dealt with sim-
ilarly. �

It is sometimes useful to integrate analytic functions along the bound-
ary of their analyticity domain. This can be done for instance if f is
continuous up to this boundary; Cauchy’s theorem still holds:

Exercise 4.21. Assuming that f is analytic on D, continuous on D,
and that D is a rectifiable curve of winding number one show that (4.5)
holds if γ is a simple closed curve in D.

5. Cauchy’s formula

5.1. Homotopic curves. Let D be domain in C. Two curves in D
are said to be homotopic in D if they can be continuously deformed
into each other by a deformation inside D (see paragraph preceding
Theorem 4.20). For example, if D is simply connected then any simple
closed curve is homotopic to a point, see Fig. 1. As another example, if
D is the annulus {z |1 < |z| < 2} then all circles |z| = r with 1 < r < 2
are homotopic to each other, but not to a point, while any simple closed
curve not going around 0 is homotopic to a point.

γ

Figure 1. All dotted curves inside γ are homotopic to
each other and to the central point.

We will find useful to consider curves γ1,2 in D, say given by two
functions γ1,2(t) for t ∈ [a, b], which have the same endpoints, γ1(a) =
γ2(a), and γ1(b) = γ2(b). Two such curves are called homotopic with
fixed endpoints if they can be continuously deformed into each other
through a transformation preserving the endpoints with range within
D, see Fig. 2.

5.2. Independence of the integral on the path. Line integrals are
additive w.r.t. the domain of integration: consider an oriented curve
γ1, and then let γ2 start at the final point of γ1, say, γ1(t) for t from
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γ

γ

1

2

Figure 2. Two homotopic curves, γ1 and γ2.

a to b, γ2(t) for t from b to c, with γ1(b) = γ2(b). We denote for short
γ1 + γ2 the concatenated curve from t from a to c and we have by
definition

(5.2)

∫
γ1+γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz

(i) Suppose f is analytic in a simply connected domainD, and γ1,2 are
two oriented curves in D, having the same endpoints. Then γ = γ1−γ2

is a closed curve and by (4.5), (5.2), (4.3) we find

0 =

∫
γ1+γ2

f(z) dz =

∫
γ1

f(z) dz −
∫
γ2

f(z) dz

and therefore the integral of an analytic function on a simply connected
domain is path independent:

(5.3)

∫
γ1

f(z) dz =

∫
γ2

f(z) dz

(ii) If the domain is not simply connected, formula (5.3) clearly still
holds if the domain enclosed by the closed curve γ1 − γ2 is simply
connected and completely included in D; in other words, (5.3) holds if
if γ1 and γ2 are homotopic with fixed endpoints in D, see Fig. 3.

(iii) Moreover, (5.3) holds if γ1,2 are closed curves homotopic in D.
This is easily seen by writing γ1− γ2 as a sum of closed curves, each

homotopic in D to a point.

5.3. Cauchy’s Formula. Let D be a domain in C and z0 ∈ D. The
functions (z−z0)−n, n = 1, 2, ... are analytic in D\{z0}. Thus, if γ1 and
γ2 are two closed curves in D not passing through z0, and homotopic
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γ

γ

1

2

γ
3

γ
4

Figure 3. γ1 and γ2 are not homotopic in the yellow
domain while γ3 and γ4 are.

to each-other in D \ {z0} then

(5.4)

∫
γ1

(z − z0)−ndz =

∫
γ2

(z − z0)−ndz

Clearly, these integrals are zero if γi does not contain z0 inside. To
calculate the integrals on a simple closed curve encircling z0 it suffices,
by (5.4), to do calculation when the curve is a circle, which can be done
explicitly. Indeed, a circle centered at z0 with radius ρ is parametrized
by z = z0 +ρ(cos(t)+ i sin(t)) = ρeit, t ∈ [0, 2π] (where we used Euler’s
formula), and we get

(5.5)

∮
dz

(z − z0)n
=

i

ρn−1

∫ 2π

0

e−i(n−1)tdt =

{
2πi if n = 1
0 otherwise

Theorem 5.22 (Cauchy’s formula). If f is analytic in the simply con-
nected domain D and γ is piecewise a differentiable simple closed curve
in D around z, we have

(5.6) f(z) =
1

2πi

∮
γ

f(s)

s− z
ds

Proof. We write

(5.7)
1

2πi

∮
γ

f(s)

s− z
ds =

1

2πi

∮
γ

f(s)− f(z)

s− z
ds+

1

2πi

∮
γ

f(z)

s− z
ds = f(z)

where the middle interval vanishes by Cauchy’s theorem 4.20.

6. Taylor series of analytic functions

Assume f is analytic in D and let z0 ∈ D. Consider the disk

D(z0, ρ) = {s : |s− z0| < ρ}
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with ρ small enough so that its closure D(z0, ρ) = {s : |s− z0| ≤ ρ} is
contained in D. Let C(z0, ρ) = ∂D(z0, ρ) be its boundary (the circle of
radius ρ centered at z0).

By Theorem 5.22 we have, for z ∈ D(z0, ρ)

(6.2) f(z) =
1

2πi

∮
C(z0,ρ)

f(s)

s− z
ds

We write

(6.3)
1

s− z
=

1

s− z0 − (z − z0)

=
1

s− z0

[
1 +

z − z0

s− z0

+ · · ·+
(
z − z0

s− z0

)n]
+

1

s− z

(
z − z0

s− z0

)n+1

and thus

(6.4) f(z) =
1

2πi

n∑
k=0

∮
C(z0,ρ)

(z − z0)k
f(s)

(s− z0)k+1
ds

+
1

2πi

∮
C(z0,ρ)

f(s)

(s− z)

(z − z0)n+1

(s− z0)n+1

therefore

(6.5) f(z) =
n∑
k=0

ck(z − z0)k + E(z, z0, n)

where

ck =
1

2πi

∮
C(z0,ρ)

f(s)

(s− z0)k+1
ds

and

(6.6) E(z, z0, n) =
1

2πi

∮
C(z0,ρ)

f(s)

(s− z)

(z − z0)n+1

(s− z0)n+1

It is not hard to see that the remainder E(z, z0, n) → 0 as n → ∞,
and this implies that series

∑∞
k=0 ck(z − z0)k converges to f(z), by the

definition of convergent series. But we can do better, we can provide
an estimate for the remainder, as follows.
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Let R so that |z − z0| < R < ρ. The path C(z0, ρ) can be replaced
by C(z0, R) in (6.6), and then a direct estimate gives

(6.7)
∣∣E(z, z0, n)

∣∣ =
∣∣∣ 1

2πi

∮
C(z0,R)

f(s)

(s− z)

(z − z0)n+1

(s− z0)n+1

∣∣∣
6

1

2π
max
D(z0;ρ)

|f | |z − z0|n+1

(R− |z − z0|) Rn+1
2πR

= max
D(z0;ρ)

|f | |z − z0|n+1

(R− |z − z0|) Rn
=

αn

1− α
max
D(z0;ρ)

|f |; α :=
ρ

R

From these considerations it follows that

Theorem 6.23. If f is analytic in a domain D and z0 ∈ D, then f
has derivatives of any order at z0.

Therefore if f is analytic on D, so are f ′, f ′′, etc.

Corollary 6.24. If f is differentiable in the domain D then it is con-
tinuously differentiable and thus analytic.

Proof. As we saw, F (z) =
∫ z
a
f(s)ds is continuously differentiable thus

analytic. Therefore F ′′ = f ′ exists in D implying f ′ is continuous in
D.

Furthermore:

Theorem 6.25 (Taylor series; Cauchy’s formula for higher deriva-
tives). If f(z) is continuously differentiable in D and z0 ∈ D then
there exists ρ such that, for z ∈ D(z0; ρ) we have

(6.8) f(z) =
∞∑
k=0

ck(z − z0)k where

ck =
1

2πi

∮
C(z0;ρ)

f(s)

(s− z0)k+1
ds =

f (k)(z0)

k!

Proof. We have already proved everything in this theorem except
the last equality, which follows since by Theorem 2.5

f (n)(z) =
∞∑
k=n

ck
k!

(k − n)!
(z − z0)k−n

which for z = z0 gives f (n)(z0) = cn n!, hence the last equality of (6.8).
�

Note 6.26. The expression of f (k) as an integral makes differentiation
a “smooth” operation on analytic functions, unlike usual differentiation
in real analysis.
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Remark 6.27. The disk of convergence of the Taylor series of an an-
alytic function cannot, by the estimate (6.7), be zero. We claim that
the radius of convergence of the series exactly equals the radius r of
the largest disk centered at z0 where f is analytic (“the distance to the
nearest singularity”), see Fig. 4. Indeed, in any smaller disk we can

R

Figure 4. Disk of convergence of a Taylor series where
the yellow region is a domain of analyticity and the red
dot is a singularity.

apply Theorem 6.25 above. If the radius of convergence were larger
than r, f would be analytic in a larger domain since convergent power
series are, as we have seen, analytic.

Example. Consider the function 1
1+z2

. Its Taylor series at z = 0 is

1

1 + z2
=
∞∑
k=0

(−1)k+1z2k, convergent for |z| < 1

and on the boundary of the disk of convergence there are singularities
of 1

1+z2
, namely z = ±i.

7. More properties of analytic functions

Assume f is analytic in D(z0, ε) and all derivatives of f are zero at
z0. Then f is zero in the whole of D(z0, ε) (check). More is true.

Proposition 7.28. Assume f is analytic in a domain D and all deriva-
tives at z0 ∈ D of f are zero. Then f is identically zero in D.

Proof. For any z ∈ D there is a polygonal line P joining z0 to z:
segments [zj−1, zj], j = 1, . . . , n (with zn = z) and disks D(zj, rj) ⊂ D.
(see Proposition 42.18).

.............mine
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Elementary geometry arguments show that we can find some ρ > 0
so that any disk centered at a point on P and of radius ρ is contained in
D. We cover P by a finite number of disks of radius ρ, centered at the
equally spaced points on P , so that the center of each disk is contained
in the previous one (for example, their centers are ρ/2 distance apart).
The first disk is centered at z0. Then f is identically zero on the first
disk. This means that f and all its derivatives are zero at the center of
the second disk, hence f is identically zero on the second disk as well.
The argument is continued up to the last disk, showing that f(z) = 0.

............yours
Since ∂D = (C \ D) ∩ D, then ∂D is compact, dist(P, ∂D) := a > 0

and P is contained in D = ∪z∈PD(z, a) ⊂ D. We can choose a finite
subset {zi = z1, ..., zn = zf} ∈ P (where zi are considered as ordered
successively on P ) such that P ⊂ ∪z1,...,znD(zi, a) ⊂ D. The set {z :
f(z) = 0} is closed since f is continuous.

Either either f is identically zero on D, or there is a smallest j so
that f is not . Now, f ≡ 0 in D(zj−1, a) and since D is a covering of P ,
D(zj−1, a) ∩D(zj, a) = S 6= ∅. By elementary geometry, we can find a
finite set of disks of radius ε < a, the first one contained in S and the
center of every one of them contained in the previous disk, the last one
centered at zj. By local Taylor expansions of f in these disks we get a
contradiction (how?).

Exercise 7.29. ** Permanence of relations. Use Proposition 7.28 to
show that sin2 z+cos2 z = 1 in C. Relations between analytic functions
that hold in R extend in C. Formulate and prove a theorem to this
effect.

See also §??.

Theorem 7.30 (Morera). Let f be continuous in a simply connected
domain D and such that

∮
γ
fds = 0 for any simple piecewise differen-

tiable closed curve γ contained in D. Then f is analytic in D. The
same is true if we restrict the set of curves γ to triangles.

Proof. Let z0 ∈ D and let F (z) =
∫ z
z0
f(s)ds. Here the integral is

along any path from z0 to z which is contained in D; note that the
value of the integral does not depend on the choice of the path, by the
assumption of the theorem.

Then F is continuously differentiable in D and F ′ = f (this is a
straightforward calculation: check). By Theorem 6.23 f is analytic. �

Exercise 7.31. Find a similar argument in the case when the set of
curves γ is restricted to triangles.
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We have now three equivalent views of analytic functions: as dif-
ferentiable functions of z, as sums of power series, and as continuous
functions with zero loop integrals. All these characterizations are quite
valuable.

Theorem 7.32 (Weierstrass’s theorem). Assume that fn are analytic
in the domain Ω and converge uniformly on any compact set in Ω to
f . Then f is analytic in Ω. Furthermore, f ′n → f ′ uniformly on any
compact set in Ω.

Note 7.33. Clearly this implies that for any k ∈ N f
(k)
n → f (k) uni-

formly on any compact set in Ω.

Proof. Let T be a triangle contained in the compact K ⊂ Ω. Then, by
analyticity,

(7.2)

∫
T

fn(z)dz = 0

Uniform convergence that implies f is continuous and

(7.3)

∫
T

f(z)dz = 0

Using Morera’s theorem, we see that f is analytic. The properties of
the derivatives are immediate, by Cauchy’s formula.

Corollary 7.34. Assume γ is a piecewise differentiable curve and that
f(·, t) is analytic in a neighborhood of γ for any t. If γ is of infinite
length, assume additionally that the radius of analyticity has a nonzero
lower bound ε along the curve and

∫
γ
|f(z + a, t)|d|t| exists for any a

with |a| < ε to apply Fubini’s theorem.

Proof. Use Cauchy’s formula for the derivative and justify the inter-
change of orders of integration.

Corollary 7.35 (Liouville’s theorem). A function which is entire
(meaning analytic in all of C) and bounded in C is constant.

Proof. LetM be the maximum of |f | in C. We have, by Theorem 6.25

(7.4) f ′(z) =
1

2πi

∮
C(0;ρ)

f(s)

(s− z)2
ds

and thus

(7.5) |f ′(z)| 6 1

2π
M

1

ρ2
2πρ = M/ρ

Since this is true for any ρ, no matter how large, it follows that f ′(z) ≡
0. Then f is a constant. �
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Exercise 7.36. * Show that an entire function other than a polynomial
must grow faster than any power of |z| along some path as z →∞.

8. The fundamental theorem of algebra

One classical application of Liouville’s Theorem is the Fundamental
Theorem of Algebra: a polynomial Pn(z) of degree n has exactly n roots
in C, counting multiplicity.

For its proof, note that it is enough to show that any nonconstant
polynomial has at least one root C; then the argument can be com-
pleted by induction on the degree of the polynomial.

Exercise 8.37. Let P be a nonconstant polynomial. Then there exists
an R s.t. 1/P is analytic in the domain {z : |z| > R} and 1/P (z)→ 0
as |z| → ∞.

Now it is clear that any polynomial nonconstant Pn(z) must have a
root, since otherwise 1/Pn(z) would be entire and bounded (check this,
using for instance Exercise 8.37).

9. Harmonic functions

A real-valued, C2 function u(x, y) which satisfies Laplace’s equation

(9.2) uxx + uyy = 0

in some domain U is called harmonic in U .

Theorem 9.38. Let D be a simply connected domain in C. A function
u is harmonic in D if and only if u is the real part of an analytic func-
tion: u = Re(f) with f analytic in D; f is unique up to an arbitrary
imaginary constant.

Note 9.39. Of course, in the theorem above, “real part” can be re-
placed by “imaginary part”.

Proof. If u = Re(f) then u ∈ C∞ (check this, for instance by using
the Taylor series of f). Then (9.2) follows immediately from the CR
equations. In the opposite direction, consider the field E = (−uy, ux).
We check immediately that this is a potential field and thus E = ∇v
for some v (unique up to an arbitrary constant). But then, by the CR
theorem, u+ iv is analytic in D. �

In other words, for any harmonic function u, there exists a function v,
harmonic on the same domain, and unique up to an additive constant,
so that u+ iv is analytic. The function v is called harmonic conjugate
of u.
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Lemma 9.40. Let f = u + iv be analytic near a point z0 and assume
f ′(z0) 6= 0. Then the curves u(x, y) = u(x0, y0) and v(x, y) = v(x0, y0)
exist near z0, they are smooth and orthogonal to each-other.

The fact that f ′(z0) 6= 0 implies, by C-R that ∇u,∇v are nonzero at
x0, y0. The rest follows from the implicit function theorem in R2, and
from ∇u · ∇v = 0, a consequence of C-R.

9.1. Digression: Potential and Hamiltonian flows. Consider an
autonomous system of ODEs in a domain D: ẋ = E1(x, p); ṗ = E2(x, p)
is a Hamiltonian system if there is an H ∈ C1(D) s.t. E1 = ∂H

∂p
and

E2 = −∂H
∂x

. It is a potential system if there is a V ∈ C1(D) s.t.

E1 = ∂V
∂x

and E2 = ∂V
∂p

. We see that a system is both potential and

Hamiltonian if there exist two functions H and V s.t. ∂H
∂p

= ∂V
∂x

and
∂H
∂x

= −∂V
∂p

. If H and V are smooth enough, then a system is both

potential and Hamiltonian iff H and V are harmonic functions, the real
and imaginary partof an analytic function. In Hamiltonian systems, H
is a conserved quantity that is d

dt
H(x(t), y(t)) = ∂

∂H
ẋ+ ∂

∂H
ṗ = 0 for any

solution, as can be easily checked. In gradient systems, 〈ẋ, ṗ〉 (when
nonzero) clearly gives the direction of steepest ascent of V at the point
〈x, p〉.

10. The maximum modulus principle

An analytic function in a domain D can attain its maximum absolute
value only on the boundary of D:

Theorem 10.41. Assume f is analytic and nonconstant in the domain
D. Then |f | has no maximum point in D, unless f is a constant.

Usually the proofs use Cauchy’s formula. Look up these other proofs,
because they extend to harmonic functions in more than two dimen-
sions.

We will give a proof based on Taylor series.
Proof. Assume that z0 ∈ D is a point of maximum. (Recall that D is

by definition open). The result is easy if maxD |f | := M = 0 (check).
Replacing f by f/M and z by z− z0 without loss of generality, we can
assume that M = 1 and z0 = 0. If f is not 1 everywhere, then there
exists k > 0 so that the Taylor coefficient ck of f at 0 is nonzero, and
in some D(0, ρ) we have

f(z) = 1+ckz
k+ck+1z

k+1+· · · = 1+ckz
kE(z); E(z) := 1+dkz+dk+1z

2+· · ·
Let z1 be s.t. ckz

k
1 ∈ R+ and small enough s.t. Re (E(z1)) > 0 (check

that this is possible) we get |f(z1)| > 1, a contradiction. �
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Exercise 10.42. Show that if |f | has a minimum in D, then this min-
imum is zero.

Let f be analytic in a neighborhood of z0 and k ∈ N be the least
positive index for which ck 6= 0. A direction d ∈ C is a steepest ascent
direction at z0 of f if ckd

k ∈ R+. We saw that these exist at any point
in the domain of analyticity of f . As its name suggests, this is the local
direction of the fastest increase of the modulus of f . A curve γ that
follows at each point a steepest ascent direction (is tangent to d = d(z)
for all z ∈ γ is a steepest ascent curve.

Exercise 10.43. * Find the maximum and minimum values of | sin z|
inside the closed unit disk.

Harmonic functions in a domain D also attain their maximum as
well as the minimum value on ∂D.

Theorem 10.44. Assume u is harmonic and non-constant in D. Then
u has no minimum or maximum in D.

Proof. Let u = Re(f) and define g = ef . We saw that g is analytic
in D. By the properties of the exponential that we have shown already,
we have ef = eueiv; |ef | = eu and then u has a maximum if and only if
|g| has a maximum. But this cannot happen strictly inside D. For the
minimum, note that min(u) = −max(−u) �

10.1. Application. The soap film picked up by a thin closed wire has
the minimum possible area compatible with the constraint that it is
bordered by the wire, since the potential energy is proportional to the
surface area. It then follows easily that the shape function u satisfies
Laplace’s equation. This is shown in many books (e.g. in Fisher’s
book on complex analysis ref??). It follows from Theorem 10.44 that
this minimal surface is flat if the wire is flat. This is probably not a
surprise. We will however be able to solve Laplace’s equation with any
boundary constraint, and this will provide us with a lot of insight on
these minimal surfaces.

10.2. Principal value integrals. Suppose that f is analytic in a do-
main containing the simple closed piecewise differentiable curve C. By
Cauchy’s theorem we have

(10.2)
1

2πi

∮
C

f(s)

s− z
ds =

{
f(z) if z is inside C

0 otherwise

What if z lies on C? Then of course the integral is not defined as it
stands. A number of reasonable definitions can be given though, and
they agree as far as they apply. In one such definition a symmetric
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segment of the curve centered at z of length ε is cut and then ε is
taken to zero, giving the ”Cauchy principal part integral” denoted P

∮
(and in many other ways). Another definition is to take the half sum
of the integral on a curve circumventing z from the outside and of the
integral on a curve circumventing z from the inside.

Definition 10.45. If f is integrable on any [a, cn] and on any [dn, b]
if a < cn < dn < b and lim cn = lim dn = L, then

(10.3) P

∫ b

a

f(s)ds = lim ε ↓ 0

∫ L−ε

a

f(s)ds+

∫ b

L+ε

f(s)ds

if the limit exists.

Exercise 10.46. Show that if C is a smooth closed curve and f is
analytic in a neighborhood of C, then

(10.4)
1

2πi
P

∮
C

f(s)

s− z
ds =

1

2
f(z)

and it coincides with the symmetric cutoff value defined above. The
same equality holds up to a sign, if C is a compact piece of a smooth
curve, approached from one side– the sign depends on the side. One of
many ways to prove this is on p. 94.

Exercise 10.47. Show that if f is integrable on (a, b) then

(10.5) P

∫ b

a

f(s)ds =

∫ b

a

f(s)ds

11. Linear fractional transformations: a first look

Exercise 11.48. ** Let a ∈ (0, 1), θ ∈ R. Show that

(11.2) z 7→ T (z) := eiθ
a+ z

1 + az

is a one-to-one transformation of the closed unit disk onto itself.

12. Poisson’s formula

Proposition 12.49. Assume u is harmonic in the open unit disk and
continuous in the closed unit disk. Then

(12.2) u(0) =
1

2π

∫ 2π

0

u(eit)dt
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Proof. If v is the harmonic conjugate of u then f := u+iv is analytic
in the open unit disk, and we have by Cauchy’s formula for any ρ < 1,

(12.3) u(0) + iv(0) = f(0) =
1

2πi

∮
C(0;ρ)

f(s)

s
ds =

1

2π

∫ 2π

0

f(ρeit)dt

=
1

2π

∫ 2π

0

u(ρeit)dt+ i
1

2π

∫ 2π

0

v(ρeit)dt

We get (12.2) by taking the real part of (12.3) and passing to the limit
ρ→ 1. �

Exercise 12.50. * (i) Let u as in Proposition 12.49 and T as in Ex-
ercise 11.48. Show that

(12.4) U(z) = u(T (z))

is harmonic in the open unit disk and continuous in the closed unit
disk.

(ii) Show that, if z0 = aeiθ we have

(12.5) u(z0) =
1

2π

∫ 2π

0

u

(
eiθ

a+ eis

1 + aeis

)
ds

Proposition 12.51 (Poisson’s formula). Let u be as in Proposition 12.49
and z0 = aeiθ with a < 1. We have

(12.6) u(aeiθ) =
1

2π

∫ 2π

0

1− a2

1− 2a cos(t− θ) + a2
u(eit)dt

Conversely, if u(eit) is continuous, then u(aeiθ) defined by (12.6) is
harmonic in D and continuous on D.

The proof of (1) is left any easy exercise:

Exercise 12.52. Prove (12.6) by making the change of variable

(12.7) eiθ
a+ eis

1 + aeis
= eit

in (12.5).

The proof of (ii) is not so immediate, and we will return to it in
§30.1.

12.1. The Dirichlet problem for the Laplacian in D. Formula
(12.6) gives the solution of Laplace’s equation in two dimensions with
Dirichlet boundary conditions, namely with u specified on the bound-
ary , when the domain is D. A simple change of variables adapts this
formula to any disk. More generally, we will see that the formula can
be adjusted to accommodate for the general case of the domain lying in
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the interior of any simple, closed, piecewise differentiable curve. This
is a consequence of the Riemann mapping theorem.

12.2. The Neumann problem for the Laplacian in D. This is
another important problem associated with Laplace’s equation, finding
its solution v on a specified domain, with given normal derivative vn
its boundary. Let for example the domain be the unit disk D, with its
boundary S1, the unit circle, where we assume that vn is continuous up
to the boundary. Since v is harmonic in the unit disk, it has a harmonic
conjugate u ∈ C2(D). If x2 + y2 = 1 then the normal derivative of v
equals the tangential derivative of u:

vn = 〈x, y〉 · 〈vx, vy〉 = 〈x, y〉 · 〈−uy, yx〉 = 〈y,−x〉 · 〈ux, uy〉 = ut

We now note that there is a necessary condition on v for the Neumann
problem to have a solution: u being well-defined, it does not change
after one loop and thus

(12.8)

∮
utds = 0 =

∮
vnds

Given that vn = ut, vn on the boundary determines ut and thus u on
the boundary up to an additive constant, and using Poisson’s formula
(12.6) we get u in D, therefore v.

13. Isolated singularities, Laurent series

By definition f has an isolated singularity at z0 if f is analytic in
a disk D(z0, ρ) \ {z0} for some ρ > 0. Note that we allow for the
possibility that z0 is a point of analyticity of f , or, to be precise, that
there exists an extension of f analytic in D(z0, ρ). For example the
functions e1/z and 1/ sin z have an isolated singularity at zero, whereas
the singularity of ln z is not isolated (we will see that ln is not well
defined in D \ {0}).

Proposition 13.53 (Laurent series). A function f analytic in Dρ(z0)\
Dρ′(z0) where 0 < ρ′ < ρ has the convergent representation

(13.2) f(z) =
∑
k∈Z

ak(z − z0)k, for z ∈ Dρ(z0) \ Dρ′(z0)

where

ak =
1

2πi

∮
f(s)

(s− z0)k+1
ds, k ∈ Z

with the integral taken on any circle around z0 of radius less that ρ.
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Figure 5. Circles of integration and cut in the proof of
the Laurent series expansion.

Note. The number a−1 is called the residue of f at z0: a−1 =Res(f ; z0).
Proof. Replacing z − z0 by z we see that there is no loss of generality
in assuming z0 = 0.

Consider the annulus between two circles Co, Ci in Dρ\Dρ′ , as in Fig.
5 (Co is the outside circle, and Ci is the interior one). Make a cut in
the annulus as shown. The remaining region is simply connected and
Cauchy’s formula applies there:

(13.3) f(z) =
1

2πi

∮
Co

f(s)

s− z
ds− 1

2πi

∮
Ci

f(s)

s− z
ds

where we used the fact that the boundary of the cut annulus is the
closed path composed of Co, ran counterclockwise from the cut point
back to it, followed by the segment ` along the cut, then Ci going
clockwise, and back to the starting point following −`. The rest of
the proof is similar to Taylor theorem’s proof and is left as an exercise
below. �

Exercise 13.54. Complete the proof of formula (13.2) by expanding
the integrands in (13.3) in powers of z/s and s/z respectively, and
estimating the remainders as we did for obtaining formula (6.2).

Note. Convince yourselves that (13.3) gives a decomposition of f into
a part f1 analytic in the disk enclosed by Co and a function f2 analytic
in 1/z outside the disk enclosed but Ci. In [3] this decomposition is
used for a nice proof of (13.2). �
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Definitions. An isolated singularity z0 of f is a pole of order M
if ak = 0 for all k < −M , it is a removable singularity if it is “a pole
of order 0” (in this case, f extends to a function f̃ analytic in the
whole disk and given by the Taylor series of f at z0) and an essential
singularity otherwise. By slight abuse of notation we typically do not
distinguish f̃ from f itself.

For example e1/z has an essential singularity at z = 0. Application
of (13.2) yields

(13.4) e1/z =
∞∑
k=0

z−k/k!

Note. The part of the Laurent series containing the terms with nega-
tive k is called the principal part of the series.
Note. Laurent series are of important theoretical value. However,
calculating effectively a function near the singularity from its Laurent
series is another matter and it is usually not very practical to use
Laurent series for this purpose. A Laurent series is antiasymptotic: its
convergence gets slower as the singularity is approached.

14. *Laurent series and Fourier series

In this subsection we rely a bit more heavily on functional analysis.
However, the results are not used in the rest of the book, and this
part can be safely skipped. Let f ∈ C2(R) be 2π−periodic and ck :=
1

2π

∫ 2π

0
f(s)e−iksds. Let f̃(eis) = f(s); we see that f̃ is well defined on

the unit circle. By integration by parts we can check that for some
constant C and all k we have |ck| 6 Ck−2. Then

∞∑
k=0

ckz
k =: g(z)

converges absolutely and uniformly in D, and thus g is analytic in D
and continuous up to the boundary. We see that∮

D

g(s)− f̃(s)

sk+1
= 0∀k > 0 and

∮
D

g(s)

sk+1
ds = 0∀k < 0

Similarly, define

−1∑
k=−∞

ckz
−k =: h(z)
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If H(z) = h(1/z) we have H(ζ) =
∑∞

n=1 c−mζ
m and H is analytic in D

and continuous in D. Now,

c−m =
1

2πi

∮
D

H(s)

sm+1
ds = − 1

2πi

∮
D

h(1/t)

t−m+1
dt

and also∮
D
H(s)sn−1ds = 0 ∀n > 1⇔

∮
D
h(t)t−k−1ds = 0 ∀k > 1

Let U(z) = h(z) + g(z) defined for z ∈ ∂D. We have∮
(U(s)− f̃(s))skds = 0 ∀k ∈ Z

Let F (x) = U(eix). Then F − f is orthogonal on eikz for all k and thus
is zero everywhere. One way to see this is to use Parseval’s theorem
(convince yourself that this is not a circular proof). But since F and
f are continuous, we have f = F .

15. Calculating the Taylor series of simple functions

One easy way to calculate Taylor series is to use §2.5.
Example. (1) The Taylor series of the function z−1 sin z is

(15.2)
sin z

z
= 1− z2/6 + z4/120 + · · ·

(2) The Taylor series of the function z/ sin z is

(15.3)
z

sin z
=

1

1− (z2/6− z4/120 + · · · )
= 1 + (z2/6− z4/120 + · · · )+

(z2/6− z4/120 + · · · )2 + · · · = 1 + z2/6− z4/120 + z4/36 + · · ·
= 1 + z2/6 + 7z4/360 + · · ·

The first function defined is entire; the second one is not. What is the
radius of convergence of the second series?

Exercise 15.55. * Find the integral of 1/ cos z on a circle of radius
1/2 centered at z0 = π/2.
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z1

γ

Figure 6. Multiply connected domains

16. Residues and integrals

Proposition 16.56. Let D be a simply connected domain. Consider
a function f which is analytic in the domain D\∪nk=1Dk where Dk are
disjoint disks centered at zk ∈ D, and consider a simple closed curve
piecewise differentiable γ which encircles each Dk once, see Figure 11.
We have

(16.2)

∮
γ

f(s)ds = 2πi
n∑
k=1

Res(f)z=zk

Exercise 16.57. Prove Proposition 16.56 by deforming and cutting the
curve of integration appropriately.

Example. Calculate ∮
dz

sin3 z
on a circle of radius 1/2 around the origin.
Solution. We have, in D(0, 1/2),

(16.3)
1

sin3 z
=

1

(z − z3/6 + z5/120 · · · )3
=

1

z3

1

(1− z2/6 + z4/120 · · · )3
=

1

z3

(
1 + z2/2 + 17z4/120

)
+ · · · )

and thus the residue of sin−3(z) at z = 0 is 1/2 and the integral equals
πi.

Exercise 16.58. Show that if f has a pole of order m at z = zi then

(16.4) Resfz=zi =
[(z − zi)mf(z)](m−1)

z=zi

(m− 1)!

by applying Laurent’s formula near z = zi.
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17. Integrals of trigonometric functions

Contour integration is very useful in calculating or estimating Fourier
coefficients of periodic functions. Consider the integral

(17.2) I =

∫ 2π

0

cos(nt)

2 + cos t
dt = Re (J); J :=

∫ 2π

0

eint

2 + cos t
dt

Let z = eit. Then

(17.3) J = −i
∮
C

zn−1

2 + (z + 1/z)/2
dz = −2i

∮
C

zn

z2 + 4z + 1
dz

where C is the unit circle. The roots of z2 + 4z + 1 are −2 ±
√

3 and
only one, z0 = −2 +

√
3 lies in the unit disk. Thus,

(17.4) J = −2i · 2πi zn0
2z0 + 4

⇒ I =
4πzn0

2z0 + 4

18. Counting zeros and poles

Notations and definitions. (1) Assume f is analytic in a disk Dρ(z0)
and f(z0) = 0. Then, in Dρ(z0) we have

(18.2) f(z) =
∞∑
k=1

ck(z − z0)k

If f is not identically zero then there exists some k0 such that ck0 6= 0
(see Proposition 7.28). The smallest such k0 is called the order (or
multiplicity) of the zero z0. For a meromorphic function g (see p. 13),
the order of a pole at z0 is the multiplicity of the root of 1/g at z0.

Exercise 18.59. (The zeros of an analytic function are isolated)
Assume f 6≡ 0 is analytic near z0 and f(z0) = 0. Use Taylor series to
show that there is some disk around z0 where f(z) = 0⇒ z = z0.

Assume f is meromorphic in D; let γ be a piecewise differentiable
simple closed curve contained in D together with its interior Γ. Note
that by assumption the region of analyticity of f strictly exceeds Γ. For
the purpose of the next proposition, the assumptions can be relaxed,
allowing γ to be the boundary of the analyticity domain of f if we
impose continuity conditions on f and f ′. Check this.

Theorem 18.60 (counting zeros and poles). Let N be the total number
of zeros of f in Γ counting multiplicities and let P be the number of
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Figure 7. The image of the circles of radius 1/4 (inner-
most curve), of radius 3/4 (middle curve) and of radius
5/4 all centered at zero under the map (z − 1)(z − 1/2).

poles, each pole being counted p times if it has order p. Then

(18.3)
1

2πi

∮
γ

f ′(s)

f(s)
ds = N − P

Proof. The function f ′/f is also meromorphic. It has a pole of order
1 and residue ni at a zero of order ni of f and a pole of order 1 and
residue −pi at a pole of order pi of f (check!). The rest follows from
(16.2).

Note 18.61 (The argument principle). If we take, formally for now,
g = ln f , then g′ = f ′/f and then (18.3) shows that the change in ln f
as we traverse positively γ is N − P . Another formulation is that we
take the image of a parametrization of γ under f . Then, N −P counts
the number of times the image turns around zero.

Exercise 18.62. Let f(z) = exp(1/z) − 1; clearly 0 is an essential
singularity and Proposition 18.60 does not apply. Find however, as a
function of ε > 0, how many times the curve {f(εeit) : t ∈ [0, 2π)}
turns around zero.

18.1. Hurwitz’s theorem. This theorem shows that a uniform limit
of nonzero functions is nonzero. More precisely,
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Theorem 18.63 (Hurwitz). If fn are analytic and nonzero in a domain
Ω ⊂ C and fn converge to f 6≡ 0 uniformly on compact sets, then f(z)
has no zeros on Ω either.

Proof. We do the analysis in the neighborhood of a point z0; as usual
we can take z0 = 0. Since f 6≡ 0, there is a Dδ such that f(z) 6= 0
on ∂Dδ \ {0} (apply Corollary 2.7). Since fn → f uniformly (together
with f ′n by Weierstrass’s Theorem 7.32), f ′n/fn converge uniformly as
n→∞ to f ′/f on the circle ∂Dδ/2(0). The rest follows from Theorem
18.60.

18.2. Rouché’s Theorem.

Theorem 18.64 (Rouché). Assume f and h are analytic in the inte-
rior Γ of the piecewise differentiable simple closed curve γ, continuous
in the closure Γ and that on γ we have |h| < |f |. Then the number
of zeros of f and f + h in Γ is the same (we can think of f + h as a
“small” perturbation of f).

Proof. Note that all the assumptions hold in a small neighborhood of
γ too. Since 0 6 |h| < |f |, f can have no zeros on γ. We have

(18.4) f + h = f · (1 + h/f) = fQ⇒ f ′ + h′

f + h
=
f ′

f
+
Q′

Q

Since we have |h/f | < 1 the series q =
∑∞

k=1 k
−1(−1)k+1(h/f)k is

analytic function in a neighborhood of γ (see Corollary ??), and we have
q′ = Q′/Q (check!). But then, evidently,

∮
q′ = 0 and the proposition

follows.

Exercise 18.65. * Reformulate and prove the proposition when f and
h, f ′ and h′ are continuous up to the boundary γ but not necessarily
beyond.

19. Inverse function theorem

Theorem 19.66. Assume f is analytic at z0 and f ′(z0) = a 6= 0.
Then there exists a disk Dε(z0) such that f is invertible from Dε(z0) to
D = f(Dε(z0)) and the inverse is analytic.

Without loss of generality, we may assume that z0 = 0 and f(z0) =
0. We have f(z) = az + z2g(z) where g(z) → g(0) as z → 0. We
want to find a disk of injectivity for f . Take M > |g(0)| and take
ε < 5−1|a|M−1 small enough so that |g| < M in D3ε. Let z1 ∈ Dε and
f(z1) = w. We show that f(z) = w and z ∈ Dε implies z = z1 which
means that f is one-to-one from the disk Dε to D = f(Dε). We have
f(z)−w = az+z2g(z)−az1−z2

1g(z1) = a(z−z1)+z2g(z)−z2
1g(z1). We
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apply Rouché’s theorem in f(D3ε): since |z1| < ε and |z| = 3ε, we have
|a(z−z1)| > 2|a|ε. On the other hand, |z2g(z)−z2

1g(z1)| < 9ε2M+ε2M .
By direct calculation we see that Rouché’s theorem applies, with f =
a(z − z1) and h = z2g(z) − z2

1g(z1), if 10ε2M < 2|a|ε which holds by
construction. But the equation a(z − z1) = 0 has only one root in D3ε

and thus so does f(z) − f(z1) = 0. (Note that z1 is in the smaller
disk D3ε.) Differentiability is shown by a direct verification, as in usual
calculus –check!).

20. Analytic continuation

Assume that f is analytic in D and f1 is analytic in D1, D1 ⊃ D and
f = f1 in D. Then f1 is an analytic extension of f . We also say that
f1 has been obtained from f by analytic continuation.

The point of view favored by Weierstrass was to regard analytic
functions as properly defined chains of Taylor series, up to a natural
equivalence (more about this later), each one of them being the analytic
continuation of the adjacent ones. If f is analytic at z0, then there exists
a disk of radius ε centered at z0 such that f is the sum of this series;
we take ε0 to be the largest ε with this property. If we take a point
z1 inside this disk, f is analytic at z1 too, and thus near z1 it is given
by a series centered at z1. The disk of convergence of this series is, as
we know, at least equal to the distance d(z1, ∂Dε(z0)), but in general
it could be larger. (Convince yourselves that this is the case with the
function 1/(1 + z) if we take a disk centered at z = 0 and then a disk
centered at z = 1/2.) In the latter case, we have found a function f1,
piecewise given by the two Taylor series, which is analytic in the union
Dε(z0) ∪ Dε1(z1).
Uniqueness. If there is an analytic continuation in Dε(z0) ∪ Dε1(z1),
then it is unique (use Proposition 7.28 to show this).

In fact, we can continue this process and define chains z0, z1, ... such
that f is analytic in Dεi(zi). These are elements of a “global analytic
function”. This “global analytic function” is not necessarily a func-
tion, since the chains may intersect each other while the value of the
continuation of f in the overlap region can be different.

It is useful to experiment with this procedure on log(1+z) which we
have defined as an analytic function for |z| < 1. What happens if we
take a chain around z = −1?

One can also find that there is a region in C where the function is
well defined by this procedure, but no Taylor disk crosses the boundary.
Then we have found a maximal region of analyticity, the boundary
of which is called “natural boundary” or “singularity barrier”. More
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generally a simple curve, closed or not, is a natural boundary if f is
analytic on (possibly one-sided) neighborhood of the curve, no point
on γ at which f has a limit (note: it can have no limit at any point)
is a point of analyticity of f . The standard example of such a function
is f(z) =

∑∞
k=0 z

2k : we have f(z)→∞ as z → 1, and also as z → −1

to i and −i and more generally as z → e2πiN/2M , (N,M) ∈ N2, which
form a dense set on the unit circle. This precludes analyticity at any
point on the circle (why is that?).

Exercise 20.67. ** Consider the rational numbers r = p/q (we as-
sume p and q are relatively prime) and associate to it Npq = 7p5q (check
that this is injective as a function from Q to N). Take the function

(20.2) f(z) =
∞∑
Npq

2−Npq

z − p/q

Show that the series converges for z ∈ C \ R and that R is a natural
boundary for f .

How can this example can be modified to obtain an analytic function
f in any domain bounded by a simple closed curve γ, and γ is a natural
boundary of f?

21. The Schwarz reflection principle

Assume f is analytic in the domains D1,D2 which have a common
piece of boundary, a piecewise differentiable curve γ. Assume further
that f is continuous across γ. Then, by Morera’s theorem, f is ana-
lytic in D1 ∪ D2 (check this statement). This allows us to do analytic
continuation, in some cases.

Theorem 21.68 (The Schwarz reflection principle). Assume f is an-
alytic in a domain D in Hu (see p. 42.2) whose boundary contains an
interval I ⊂ R and assume f is continuous on D ∪ I and real valued
on I. Then f has analytic continuation across I, in a domain D ∪D∗
where D∗ = {z : z ∈ D}.

Note 21.69. see §30.5 for a generalization of this result.

Proof. Consider the function F (z) equal to f in D∪I and equal to f(z)
in D∗ ∪ I. This function is continuous in D ∪ I ∪D∗ (explain this con-
tinuity). It is also analytic in D∗ as it can be immediately seen using a
local Taylor series argument. Now Morera’s theorem applies: integrals
along closed curves completely contained in D or D∗ are evidently zero,
whereas since a curve crossing I can be split into two integrals, with
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I as the splitting, traversed twice, in opposite directions (where is the
fact that f is real on I used?). Check the details.

Note. When we learn more about conformal mappings, we shall see
that much more generally, a function admits a continuation across a
curve γ if the curve is an analytic arc (we will define this precisely) and
f(γ) is an analytic arc as well.

Example 21.70. The square root function defined by
√
z = ρ1/2eiφ/2

if z = ρeiφ, φ ∈ [0, π) is analytic in the upper half-plane and continu-
ous down to [0,∞) and real-valued there, and thus can be continued
analytically in the lower half plane by Schwarz reflection. What is the
continuation? Let z = ρe−iθ ∈ Hl (θ ∈ (0, π)). Then z = ρeiθ ∈ Hu

where
√

was defined:
√
z = ρ1/2eiθ/2. Then

√
z = ρ1/2e−iθ/2. Note that

although
√

extends to the lower half plane as well, it is not continu-

ous in C: the limits as z approaches R− from above and from below
exist, but they are different. We can continue the square root further,
however. Note that the lower half plane continuation has a limit which
is purely imaginary on R−. Then i

√
z is purely real on R− and the

Schwarz reflection principle applies. It is easy to see that the resulting
analytic continuation to Hu will be different (by a sign) from the orig-
inally defined

√
. The square root function is a branched function; we

will look more carefully at this in the next section.

22. Multi-valued functions

As we discussed, as a result of analytic continuation in the complex
plane we may get a global analytic function which is not necessarily a
function on C since the definition is path–dependent; the function is
thus defined on a space of paths or curves, modulo homotopies.

As long as the domain of continuation is simply connected, we still
get a function in the usual sense:

Exercise 22.71. ** Assume that f is analytic in Dε(z0) and that we
have and two piecewise differentiable curves γ1 and γ2 joining z0 to z
which can be continuously deformed into each-other and furthermore
analytic continuation exists along each intermediate curve:

That is, there is a smooth map γ : [0, 1]2 7→ C such that γ(s, 0) =
z0 ∀s ∈ [0, 1] and γ(s, 1) = z1∀s ∈ [0, 1] and furthermore f admits
analytic continuation from z0 to z1 along t 7→ γ(s, t), t ∈ [0, 1] for any
s ∈ [0, 1].

Assume that D = γ((0, 1)2) is simply connected. Show that there is
an analytic function F in D which coincides with f in Dε(z0). As we
know, this continuation is then unique. (Rough sketch: consider the
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first curve which by compactness is covered by a finite number of disks
of analytic continuation. Choose an intermediate curve close enough
so that it is well covered by the same disks. From this point, it should
be straightforward.)

The simplest example is perhaps the logarithm. In real analysis
lnx =

∫ x
1
s−1ds. Clearly the function z−1 is analytic in C \ {0} and we

can define

(22.2) ln[C] z =

∫ z

1;C

s−1ds

where integration starts at 1 and is performed along the curve C. This
integral only depends on the homotopy class of the curve C in C \ {0}.

Let C be a piecewise differentiable curve starting at 1 which does not
contain 0. Drop for now the superscript: ln[C] z = ln z (this is custom-
ary, but we keep in mind that dependence on C persists). The function
eln z is well defined along the curve C and analytic in a neighborhood
of any point in C. We find

(22.3)

(
eln z

z

)′
= 0

and thus

(22.4) eln z = zeln 1 = z

Can you prove (22.4) using permanence of relations?
The log thus defined is the inverse of the exponential. Therefore, if

we write z = ρeiφ then by Exercise 2.9
(22.5)
ρeiφ = eln ρ+iφ = eln z ⇔ ln z = ln ρ+ iφ+ 2Nπi (for some N ∈ Z)

for any choice of the curve of integration.
Thus, we have proved

Proposition 22.72. For any piecewise differentiable curves C1 and C2

we have there is an N ∈ Z so that ln[C1] z − ln[C2] z = 2Nπi.

This is the log “function” as a global analytic function. It has a
branch point at z = 0 and it is multivalued. We sometimes say it is
defined in C up to an additive integer multiple of 2πi. If we choose a
value of N , then we have chosen a “branch” of the log. But what does
this choice mean?
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23. Branches of the log. The natural branch of the log

Alternatively, as in Exercise 22, we can take a simply connected
domain in C and define a function ln, relative to that domain.

Lemma 23.73. Let D be a simply connected domain in C not con-
taining zero. Then, for a ∈ D, the function lnD z =

∫ z
a
s−1ds is well

defined and analytic in D, it is injective and its inverse is a−1ez.

Proof. The function lnD z :=
∫ z
a
s−1ds is well defined and analytic in

D Evidently, by the argument leading to (22.4) we have eln z = z/a
showing injectivity.

Note 23.74. (i) The log in Lemma 23.73 is the branch of the log associ-
ated to D. When no confusion is possible we simply drop the subscript
D.

(ii) Often C \ R− is the domain needed, and this is the “natural
branch” of the log.

The price that we pay if we need to restrict ln to a simply connected
domain D not containing zero is that there is nothing special about
∂D except for 0: the log will have analytic continuation through ∂D.
No singularity exists, except for zero; in the natural branch, defined
in C \ R−, R− does not have singular points. The problem is that
the analytic continuation of log through R− is different, by ±2πi from
the definition of the log that we already had on the other side. This
multivaluedness shows you that C \ R− is a maximal domain in C of
analyticity of the chosen branch.

Look at the figures below, and try to understand for which values of
z we get the same value for the different branches of ln z defined here.

23.1. Generalization: log of a function. If g is a function defined
in a region in C we can define ln g by

(23.2) ln g =

∫ z

a

g′(s)

g(s)
ds

Now, depending on the properties of g, the homotopy classes will be in
general more complicated.

For instance, if g = g1 is a rational function, all the zeros and poles
S = {zi, pj} of g1 are points where the integral, thus the log, is not
defined. We are now dealing with homotopy classes in C \ S.

It is convenient to define a branch of ln g1 by cutting the plane along
rays originating at the points in S. Convince yourselves that this can
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z = 0 z = 1

z = z0

Figure 8. The natural branch of the log, with a cut
along R−; Im ln z ∈ (−π, π). R− is not special, analytic
continuation along the upper and lower paths exist, but
differ by 2πi.

z = 0 z = 1

z = z0

Figure 9. A branch of the log with a cut along iR−;
Im ln z ∈ (−π/2, 3π/2). Analytic continuation along the
upper and lower paths still differ by 2πi.

be done so that the remaining region D is simply connected. Then
log g1 is well defined in D and analytic.

23.2. General powers of z. Once we have defined the log, it is nat-
ural to take

(23.3) zα = eα ln z

Since ln z is defined along a piecewise differentiable curve, modulo
homotopies in C \ {0}, so is zα. For a general α ∈ C, the mul-
tivaluedness of zα is inherited from the multivaluedness of the log:
eα(ln z+2NπI) = eα ln ze2Nπiα. Note however that if p ∈ Z then the value



40

z = 0

γ

Figure 10. Yet another branch, in C cut along a spiral
γ. Now Im ln z is unbounded.

A domain for

ln

(
z + 1

z2 + 1

)
z = −i

z = 0

z = i

Figure 11. Cuts defining the log of a rational function.
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does not depend on the homotopy class and the definition (23.3) de-
fines a function in C\{0}, with a pole at zero if p < 0 and a removable
singularity if p > 0. Convince yourselves that this definition coincides
with the usual power, defined algebraically.

Another special case is that when α = p/q, p, q relatively prime
integers. In this case e2(p/q)πi only takes q distinct values.

Note. Beware of possible pitfalls.

(23.4) eln z1+ln z2 = eln z1eln z2 = z1z2

However, this does not mean ln z1 + ln z2 = ln z1z2, but just that

(23.5) ln z1 + ln z2 = ln z1z2 + 2Nπi

For the same reason, zα1zα2 is not necessarily zα1+α2 . Note the falla-
cious calculation2

(23.6) 1 =
√

1 =
√

(−1)(−1) =
√
−1
√
−1 = i · i = −1 (?!)

24. Evaluation of definite integrals

Contour integrals, and because of this, many definite integrals for
which the endpoints are at infinity, or at special singular points of
functions can be evaluated using the residue theorem. We have the
following simple consequence of this theorem.

Proposition 24.75. Let R be a rational function, continuous on R
and such that ∃C ∈ R+ s.t. |R(z)| 6 C|z|−2 in C. (Convince yourself
that this bound holds if the numerator has degree lower by two than the
denominator.) Then

(24.2)

∫ ∞
−∞

R(x)dx = 2πi
∑
zi∈Hu

Res(R; z = zi)

where zi are poles of R.

Exercise 24.76. The upper half plane is evidently not special; formu-
late and prove a similar result for the lower half plane Hl. Note that if
all residues are in the Hu (or all in the Hl) the integral is zero.

2 This calculation was done as presented by an early version of a computer
algebra program.
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−A A

A+ iA

C1

A− iA

Figure 12.

Proof. Under the given assumptions, we take as a contour the square
in the figure below and write

(24.3)

∫ ∞
−∞

R(x)dx = lim
A→∞

∫ A

−A
R(x)dx

= lim
A→∞

∮
[−A,A]∪C1

R(z)dz − lim
A→∞

∫
C1

R(z)dz

= 2πi
∑
zi∈Hu

Res(R; z = zi)− lim
A→∞

∫
C1

R(z)dz = 2πi
∑
zi∈Hu

Res(R; z = zi)

since

(24.4)

∣∣∣∣∫
C1

R(z)dz

∣∣∣∣ 6 constA−2(3A) = 3A−1 → 0 as A→∞

Note It is useful to interpret the method used above as starting with
the integral along the real line and pushing this contour towards +i∞.
Every time a pole is crossed, a residue is collected. Since there are
only finitely many poles, from a certain “height” on the contour can
be pushed all the way to infinity, and that integral vanishes since the
integrand vanishes at a sufficient rate.

Example. Find

I =

∫ ∞
−∞

1

1 + x4
dx

Solution The singularities of R in the upper half plane are at z1 = eiπ/4

and z2 = e3iπ/4 with residues 1/[(1 + x4)′]z=zi . The result is I = π/
√

2.
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25. Certain integrals with rational and trigonometric
functions

We focus on integrals often occurring in integral transforms, of a
type which can be reduced to

(25.2)

∫ ∞
−∞

eiaxQ(x)dx

a > 0, where Q has appropriate decay so that the integral makes
sense. We would like to push the contour, as above, towards +i∞
since the exponential goes to zero in the process. We need Q to satisfy
decay and analyticity assumptions too, for this process to be possible.
Jordan’s lemma provides such a result suitable for applications.

Lemma 25.77 (Jordan). Assume a > 0 and that Q is analytic in the
domain D = {z : Im (z) > 0, |z| > c} and that γ in Hu (or Hl) is the
semicircle of radius ρ > c centered at zero. Assume furthermore that
Q(z)→ 0 as |z| → ∞ in D. Then,

(25.3)

∫
γ

eiazQ(z)dz → 0 as ρ→∞

Proof. Choose ε > 0 and let ρ0 be such that |Q(z)| < ε for all z with
|z| > ρ0. Then, for ρ > ρ0 and γ as above we have

(25.4)

∣∣∣∣∫
γ

eiazQ(z)dz

∣∣∣∣ =

∣∣∣∣∫ π

0

eiaρe
iφ

Q(ρeiφ)ρieiφdφ

∣∣∣∣
6 ε

∫ π

0

ρe−ρa sinφdφ = 2ε

∫ π
2

0

ρe−ρa sinφdφ

To calculate the last integral we bound below sin θ by bθ for some
b > 0. By the symmetry sin t = sin(π − t) the integral is twice the
one on [0, π/]. By an elementary calculation we see that t−1 sin t is
decreasing on [0, π/2] and thus sin θ > 2θ/π for θ in [0, π/2] and we get

(25.5)

∣∣∣∣∫
γ

eiazQ(z)dz

∣∣∣∣ 6 ε

∫ π/2

0

2ρe−2ρaφ/πdφ 6
επ

a

and the result follows.

Proposition 25.78. Assume a > 0 and Q is a rational function con-
tinuous on R and vanishing as |z| → ∞ (that is, the degree of the
denominator exceeds the degree of the numerator). Then

(25.6)

∫ ∞
−∞

Q(x)eiaxdx = 2πi
∑
zi∈Hu

Res(Q(z)eiaz; z = zi)
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The proof is left as an exercise: it is a simple combination of Jordan’s
lemma and of the arguments in Proposition 24.75. (Note also that∫∞

1
z−1eiz exists.)

Example Let τ > 0 and find

(25.7) I =

∫ ∞
0

cos τx

x2 + 1
dx

Solution. The function is even; thus we have

(25.8) 2I =

∫ ∞
−∞

cos τx

x2 + 1
dx = Re

∫ ∞
−∞

eiτx

x2 + 1
dx

which is of the form in Proposition 25.78 and thus a little algebra shows

I =
π

2
e−τ

Note that we have calculated the cos Fourier transform of an even func-
tion which is real–analytic (this means it is analytic in a neighborhood
of the real line). The result is exponentially small as τ → ∞. This
is not by accident: formulate and prove a result of this type for cos
transforms rational functions with no poles on R.

Example([10] p. 116) Assume Re z > 0. Show that

(25.9) I(z) =

∫ ∞
0

t−1(e−t − e−tz)dt = log z

Solution (for another solution look at the reference cited) Note that
the integrand is continuous at zero and the integral is well defined.
Furthermore, it depends analytically on z and Corollary 7.34 applies.
We have

(25.10) I ′(z) =

∫ ∞
0

e−tzdt = z−1 ⇔ I(z) = log z + C

Check that the constant C is zero.
Example: A common definite integral. Show that

(25.11)

∫ ∞
0

sin t

t
dt =

π

2

Solution This brings something new, since a naive attempt to write

(25.12)

∫ ∞
−∞

sin t

t
dt = Im

∫ ∞
−∞

eit

t
dt (??)

cannot work as such, since the rhs is ill–defined. But we can still apply
the ideas of the residue calculations in these lectures. Here is how.
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(1) Use the box argument (see figure below) or be creative with
Jordan’s lemma to show that∫ ∞

−∞

sin t

t
dt =

∫ ∞+i

−∞+i

sin t

t
dt =

∫ ∞
−∞

sin(t+ i)

t+ i
dt

(2) Now we can write∫ ∞
−∞

sin(t+ i)

t+ i
dt =

∫ ∞
−∞

ei(t+i) − e−i(t+i)

2i(t+ i)
dt =

∫ ∞
−∞

ei(t+i)

2i(t+ i)
dt−

∫ ∞
−∞

e−i(t+i)

2i(t+ i)
dt

The first integral is zero, by Proposition 25.78. The last term equals∫ ∞
−∞

−ei(t−i)
−2i(t− i)

dt

to which Proposition 25.78 applies again, giving the stated result (check!)

C

C

C1

2

3

−A A

Exercise 25.79. ** Find ∫ ∞
0

sin4 t

t4
dt

26. Integrals of branched functions

We now show that, for α ∈ (0, 1) we have

(26.2)

∫ ∞
0

t−α

t+ 1
dt =

π

sin πα

Note that the integrand has an integrable singularity at t = 0 and
decays like t−α−1 for large t, thus the integral is well defined. The
integral is performed along R+ so we know what t−α means. We extend
t−α to a global analytic function; it has a branch point at t = 0 and
no other singularities. Consider the region in the figure below. t−α is
analytic in C \ R+ \ {0}. Note first that the integral along any ray
ρeit, ρ ∈ [0,∞] equals the limit when 0 < ε → 0 of the integral along
ρeit, ρ ∈ [ε,∞]. Thus

(26.3)

∮
R1∪R2∪R3

t−α

t+ 1
dt = 2πiRes

(
t−α

t+ 1
; z = −1

)
= 2πie−πiα
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iε

A

D

z = 0

R1

R3

R2

Figure 13.

In the limit ε→ 0 we get (check)∫ A

0

t−α − t−αe−2πiα

t+ 1
dt+

∫
R3

t−α

t+ 1
dt = 2πie−πiα

In the limit A→∞,
∫
R3

vanishes and
∫ A

0
converges to

∫∞
0

. We get

(26.4)

∫
R+

t−α − t−αe−2πiα

t+ 1
dt = (1− e−2πiα)

∫
R+

t−α

t+ 1
dt = 2πie−πiα

The rest is straightforward.
More generally, we have the following result.

Proposition 26.80. Assume Re a ∈ (0, 1) and Q is a rational function
which is continuous on R+ and is such that xaQ(x)→ 0 as x→ 0 and
as x→∞. Then

(26.5)

∫ ∞
0

xa−1Q(x)dx = −πe
−πia

sin aπ

∑
Res(za−1Q(z); zi)

where zi are the poles of Q.

Exercise 26.81. ** Prove Proposition 26.80.
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Exercise 26.82. ** Let a ∈ (0, 1). Calculate

P

∫ ∞
0

xa−1

1− x
dx

where P denotes the Cauchy principal part, as defined before.

Exercise 26.83. ∫ ∞
0

x−1/2 lnx

x+ 1
dx

(There is a simple way, using the previous results.)

27. Conformal Mapping

Laplace’s equation in two dimensions

(27.2) ∆f = fxx + fyy = 0

describes a number of problems in physics; it describes for instance the
flow of an incompressible fluid, the space dependence of the electric
potential in a region where the density of charges, ρ is zero and the
electric and magnetic fields E and B fields are time-independent. For
the latter problem, Maxwell’s equations are ∇ · E = ε−1

0 ρ = 0 and
∇ × E = −∂B

∂t
= 0. The second equation implies E = −∇V , for

some V (called potential) and the first equation gives ∆V = 0. Since
the electric field is produced by charges, the boundary conditions are
expected physically to determine the solution. A typical problem would
be to solve eq. (27.2) with u = V in D with V given on ∂D (Dirichlet
problem).

In the case of two-dimensional incompressible fluid flow, let 〈v, u〉 be
the velocity field. Incompressibility translates into

(27.3) div〈u, v〉 = vx + uy = 0

while the fact that the flow is irrotational implies

(27.4) ∇×V = 0⇒ ux − vy = 0

(27.3) and (27.4) imply that 〈v, u〉 are harmonic conjugates. In any
simply connected domain, (27.4) implies V = ∇ϕ for some ϕ called
velocity potential. We can check that ∆ϕ = 0, thus ϕ is harmonic. Its
harmonic conjugate ψ is called the stream function. In the physical
applications above, the ODE system associated with V and E are both
potential and gradient. In the case of fluid flow, the lines of constancy
of ψ are parallel to the flow, see §9.1. If the fluid flows in some domain
D, a natural boundary condition is that the fluid does not flow through
∂D, that is 〈v, u〉 · 〈n1, n2〉 = 0 where 〈n1, n2〉 is the normal direction
to the boundary; this is also known as a no-penetration condition.
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Laplace’s equation where the normal derivative is given on ∂D is called
a Neumann problem.

We already know the general solution of the Dirichlet problem when
D is a disk, (12.7). The solution of the Dirichlet problem exists and is
unique in any connected domain D with smooth enough boundary and
continuous data on the boundary.

27.1. Uniqueness. We can show uniqueness at this stage. For if we
had two solutions u1, u2 then u = u1 − u2 would satisfy (27.2) with
u = 0 on ∂D. But a harmonic function reaches both its maximum and
minimum on the boundary. Thus u ≡ 0. A similar argument shows
that in the Neumann problem, u is determined up to an arbitrary
constant.

Example 27.84. The Faraday cage. ( In two dimensions) explain
why a region surrounded by a conductor does not feel the electrical
influence of static outside charges.

Solution. The electric potential along a conductor, at equilibrium,
is zero. For otherwise, there would be a potential difference between
two points, thus an electric current i = V/R where R is the resistivity.
This would contradict equilibrium.

Thus we deal with (27.2) with V = C on ∂D. Since V = C is a
solution, it is the solution. But then E = −∇V = 0 which we wanted
to prove �.

27.2. Existence. We have already mentioned that the Dirichlet prob-
lem has a unique solution in any disk, if the boundary condition is
continuous. What about other domains?

It is often the case in PDEs that a symmetry group exist and then it
is very useful in solving the equation and/or determining its properties.

It turns out that (27.2) has a huge symmetry group: the equation is
conformally invariant. This means the following.

Proposition 27.85. If u solves (27.2) in D and f = f1+if2 is analytic
and such that f : D1 → D, then u(f1(s, t), f2(s, t)) is a solution of
(27.2) in D1 := f−1(D).

Proof. Let D ⊂ D be a disk. We know that u has a harmonic conju-
gate v determined up to an additive constant. Let g = u+ iv. Then g
is analytic in D. Let D1 = f−1(D), which is an open set in D1 since in
particular f is continuous. Then the composite function g(f) is ana-
lytic in D1, and in particular u(f1(s, t), f2(s, t)) and v(f1(s, t), f2(s, t))
satisfy the CR equations in D1. But then u(f1(s, t), f2(s, t)) is har-
monic in D1. Since this holds near any point in D2, the statement is
proved.
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f

Figure 14. To be made rigorous in the sequel.

We will be mostly interested in analytic homeomorphisms which have
many nice properties. Two regions that are analytically homeomorphic
to each-other are called conformally equivalent.

The Riemann mapping theorem, which we will prove later, states
that any simply connected domain other that C itself is conformally
equivalent to the unit disk. The boundary of the region is then mapped
onto the unit circle. The “orbit” of the disk under the group of con-
formal homeomorphisms group contains every simply connected region
other that C itself.

The conformal group is large enough so that by its action we can solve
Laplace’s equation in any simply connected domain (the boundary has
to be smooth enough for the boundary condition to make sense; C1,α

is sufficient.)
This is one of many motivations for a careful study of conformal

maps.

27.3. Heuristics. Let f be analytic at z0, f ′(z0) = a 6= 0 (w.l.o.g.
z0 = 0, f(0) = 0) and consider a tiny neighborhood N of zero. If zβ
are points in N then

(27.5) f(zβ) ≈ azβ

All these points get multiplied by the same number a. Multiplication
by a complex number rescales it by |a| and rotates it by arg a. If we
think of zβ as describing a figure, then f(zβ) describes the same figure,
rotated and rescaled. The shape (form) of the figure is thus preserved
and the transformation is conformal.

Since a tiny square of side ε becomes a square of side |aε| areas are
changed by a factor of |a2|.

We make this rigorous in what follows.
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27.4. Preservation of angles. Assume f is analytic in a disk D and
that f ′ 6= 0. The angle between two smooth curves γ(t) and Γ(t)
which cross at a point z = γ(t0) = Γ(t1) (w.l.o.g. we can take t0 =
t1 = 0)is by definition the angle between their tangent vectors, that
is arg γ′(0)− arg Γ′(0), assuming of course that these derivatives don’t
vanish.

The angle between the images of these curves is given by

(27.6)

arg[f(γ)′(0)]− arg[f(Γ)′(0)] = arg[f ′(γ(0))γ′(0)]− arg[f ′(Γ(0))Γ′(0)]

= arg f ′(γ(0))+arg γ′(0)−
(

arg f ′(Γ(0))+arg Γ′(0)
)

= arg γ′(0)−arg Γ′(0)

That is to say the image of two curves intersecting at an angle α is a
pair of curves intersecting at the same angle α. Plreservation of angles
means that a small enough domain is transformed into a similar one,
only rotated and rescaled.

27.5. Rescaling of arc length. The arc length along a curve γ(t) is
given by

(27.7) L(γ) =

∫ b

a

|γ′(t)|dt =:

∫
γ

d|z|

If f is analytic, then
(27.8)

L(f(γ)) =

∫ b

a

|f(γ)′(t)|dt =

∫ b

a

|f ′(γ(t))| |γ′(t)|dt =

∫
γ

|f ′(z)|d|z|

and thus the arc length is locally stretched by |f ′(z)|.

27.6. Transformation of areas. The area of a set A is

(27.9)

∫∫
A

dxdy

while after the transformation (x, y) 7→ (u(x, y), v(x, y)) the area be-
comes

(27.10)

∫∫
f−1(A)

|J |dudv

where the Jacobian J is, using the CR equations, |f ′|2 (check!).
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Note 27.86. It is interesting to remark that it is enough that (u, v) is
a smooth transformation that preserves angles for u+ iv to be analytic.
It is also enough that it rescales any figure by the same amount for it
to be analytic or anti-analytic (f is analytic), see [3], p 74. This gives
a very nice characterization of analytic functions: they are those which
are “locally Euclidian”.

Note 27.87. Observe that we did not require f to be globally one-
to-one. The simple fact that f is analytic with nonzero derivative
makes it conformal. We need to impose bijectivity for two regions
to be conformally equivalent. On the other hand, if f is an analytic
homeomorphism betweenD1 andD2 then f is conformal (that is, f ′ 6= 0
in D). This follows from the following proposition.

Proposition 27.88. Assume that f : D1 7→ D2 is analytic, that for
some z0 ∈ D1 we have f (j)(z0) = 0 if j = 1, ...,m − 1 and f (m)(z0) =
a 6= 0. W.l.o.g. assume z0 = 0 and f(z0) = 0. Then, in some disk
D(ε, 0), f is m-to-one, that is for any 0 6= w ∈ f(D(ε, z0)) the set
f−1(w) consists in precisely m different points.

Proof. In a neighborhood of 0 we have, with a 6= 0

f(z) = zm(a+ b1z + b2z
2 + · · · ) = zmg(z)

and g(z) is analytic, g(0) = a and thus g 6= 0 in some disk D = D(0, ε1).
Then in D(0, ε1) ln g is well defined (by

∫
g′/g) and analytic and so

is therefore h = exp(m−1 ln g) = g1/m. For a given ζ, our equation
becomes (zh(z))m = ζ, equivalent to m equations, zh(z) = ym :=

|ζ| 1m eim−1φ+ 2πik
m , k = 0, 1, ...,m− 1, where φ = arg ζ. The function zh

is analytic at zero and (zh)′(0) = h(0) 6= 0. By the inverse function
theorem, the equation zh = ym has exactly one solution if |y| = |ζ| is
small enough. �.

27.7. The open mapping theorem.

Theorem 27.89. Let D be a domain and f : D → C be a nonconstant
analytic function. Then f is open, that is, the images of open sets are
open.

Proof. We want to check that a small neighborhood of any x0 ∈ D is
mapped into an open set. The composition of open maps is clearly
open. By composition with translations (clearly open) we can set x0 =
0, f(x0) = 0. If f ′(0) 6= 0 f is bijective between a disk Dε into f(Dε)
and (since the inverse is continuous) f is open. If f ′ 6= 0 then, by
Proposition 27.88 it can be written as zm−1(zg(z)) with g(0) 6= 0 for
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f(z) = z2

Figure 15. To be made rigorous in the sequel.

some m > 1 (check). Since [zg(z)]′(0) = g(0) 6= 0, zg(z) is invertible
and the result is immediate.

28. Linear fractional transformations (Möbius
transformations)

We assume some familiarity with these transformations, and we re-
view their properties.

A linear fractional transformation (LFT) is a map of the form

(28.1) S(z) =
az + b

cz + d

where ad− bc 6= 0. If c = 0 we have a linear function. If c 6= 0 we write

(28.2)
az + b

cz + d
=
a

c
− ad− bc
c2(z + d/c)

and we see that S is meromorphic, with only one pole at z = −d/c. It
is also clear from (28.2) that S(z1) = S(z2) iff z1 = z2 and in particular
S ′(z) 6= 0. They are one-to-one transformations on the Riemann sphere
too (that is, the point at infinity included). LFTs are conformal.

Proposition 28.1. LFTs form a group with respect to function com-
position.

Proof: Exercise.



53

Exercise 28.2. Show that z 7→ 1/z maps a line or a circle into a line
or a circle. Hint: Show first that the equation

αzz + βz + βz + γ = 0

where α, γ ∈ R and β ∈ C and |β|2 > αγ is the most general equation
of a line or a circle. Then apply the transformation to the equation.

As a result we have an important property of LFTs

Proposition 28.3. An LFT maps a line or a circle into a line or a
circle.

Proof. A general LFT is the composition of Euclidian transformations
and inversion:

(28.3) z 7→ w1 = z + d/c 7→ w2 = c2w1 7→ w3

=
1

w2

7→ w4 = −(ad− bc)w3 7→ w5 = w4 +
a

c

It is clear that the statement holds for all linear transformations. We
only need to show that this is also the case for inversion, z 7→ 1/z.
This follows from Exercise 28.2 �

28.1. Finding specific LFTs. As we know from elementary geometry
a line is determined by two of its points and a circle is determined by
three. We now show that for any two circles/lines there is a LFT map-
ping one into the other, and in fact they can be determined explicitly.
Let z1, z2, z3 be three points in C. Then the transformation

(28.4) S =
z1 − z3

z1 − z2

z − z2

z − z3

maps z1, z2, z3 into 1, 0,∞ in this order; this is easy to check. If one of
z1, z2, z3 is ∞, we pass the transformation to the limit. The transfor-
mations in these limit cases are is

(28.5)
z − z2

z − z3

,
z1 − z3

z − z3

,
z − z2

z1 − z2

respectively.

Exercise 28.4. Check that a LFT that takes (1, 0,∞) into itself is the
identity.

To find a transformation that maps z1, z2, z3 into z̃1, z̃2, z̃3 in this or-

der, clearly we apply ˜̃S := S̃−1S. By Exercise 28.4 this transformation
is unique.
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28.1.1. Cross ratio. If zi, i = 1...4 are four distinct points and wi =
S(zi) then (check!)

w1 − w2

w1 − w3

w3 − w4

w2 − w4

=
z1 − z2

z1 − z3

z3 − z4

z2 − z4

This is often a handy way to determine the image of a fourth point
when the transformation is calculated using three points.

Exercise 28.5. Associate to a LFT the coefficients matrix

(28.6) M̂ :=
az + b

cz + d
7→
(
a b
c d

)
If T1 and T2 are LFTs, then show that

(28.7) M̂(T1 ◦ T2) = M̂(T1)M̂(T2)

where the product on the right side of (28.7) is the usual matrix prod-
uct.

28.2. Mappings of regions. We know that LFTs are conformal and
one-to-one and transform circles/lines onto circles/lines. What about
their interior? We look at this problem more generally.

By definition a curve is traversed in anticlockwise direction if the
parameterization is such that the interior is to the left of the curve as
the parameter increases (brush up the notions of orientation etc. if
needed).

f

Proposition 28.6. Assume that f : D 7→ D1 is analytic and γ is
a simple piecewise differentiable closed curve contained in D together
with its interior.

If f is one-to-one from γ to f(γ), then f maps one-to-one confor-
mally Int(γ) onto f(Int(γ)) and preserves the orientation of the curve.
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Proof. From the assumptions it follows that f(γ) is a simple curve. Let
w0 ∈Int(f(γ)). Cauchy’s formula implies

(28.8)
1

2πi

∫
f(γ)

dw

w − w0

= 1

On the other hand by assumption f is one-to-one on γ and we can
change variables w = f(z), z ∈ γ, and we get

(28.9) 1 =
1

2πi

∫
γ

f ′(z)dz

f(z)− w0

=
1

2πi

∫
γ

(f(z)− w0)′dz

f(z)− w0

and by Proposition 18.60 (and since f is analytic) this shows that
f(z)−w0 has exactly one zero in Int(γ), or there is exactly one z0 such
that f(z0) = w0. Then f is conformal, one-to-one onto between Int(γ)
and f(Int(γ)). This also shows that f preserves orientation, otherwise
the integral would be −1.

Exercise 28.7. * (i) Find a LFTs that maps the unit disk onto the
upper half plane.

(ii) Find a LFTs that maps the disk (x− 1)2 + (y− 2)2 = 4 onto the
unit circle and the center is mapped to i/2.

(iii) Find the most general linear fractional transformation that maps
the unit disk onto itself.

28.3. As usual, we let D be the open unit disk.

Theorem 28.8 (Schwarz lemma). Let f : D→ D be analytic and such
that f(0) = 0. Then

(i)

(28.10) |f(z)| 6 |z|
for all z ∈ D.

(ii) If there is some z0 ∈ D such that for z = z0 we have equality in
(28.10) then f(z) = eiφz for some φ ∈ R.

(iii) |f ′(0)| 6 1 and if equality holds then again f(z) = eiφz for some
φ ∈ R.

Proof. (i) Since f(0) = 0, the function f(z)/z extends analytically in
D. By the maximum modulus principle,∣∣∣∣f(z)

z

∣∣∣∣ 6 lim
r↑1

max
|z|=r

∣∣∣∣f(z)

z

∣∣∣∣ = 1

(ii) If z0 is such that equality in (28.10) holds, then z0 is a point
of maximum of |f(z)/z|, which cannot happen unless f(z)/z = C =
f(z0)/z0.
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(iii) The inequality follows immediately from (28.10). Assume f ′(0) =
eiφ, φ ∈ R. If f(z) 6≡ eiφz, then we can write

f(z)/z = eiφ(1 + zmeiψh(z))

where h is analytic and h(0) ∈ R+. If we then take z = ε exp(−iψ/m)
with ε small enough we contradict (i). �

Corollary 28.9. If h is an automorphism of the unit disk and h(0) = 0
then h(z) = eiφz for some φ ∈ R.

Proof. We must have, by Theorem 28.8 |h(z)| 6 |z|. But the inverse
function h−1 is also an automorphism of the unit disk and h−1(0) = 0.
Thus |h−1(z)| 6 |z| for all z, in particular |z| = |h−1(h(z))| 6 |h(z)|
or |z| 6 |h(z)|. Thus |h(z)| = |z| for all z and the result follows from
Theorem 28.8 (ii).�

28.4. Automorphisms of the unit disk. We have seen that

(28.11) S(z) = eiφ
z − α
1− αz

with φ ∈ R and |α| < 1

maps the unit disk one-to-one onto itself.
The converse is also true:

Theorem 28.10. Any automorphism f of D into itself is of the form
(28.11) with α = f−1(0).

Proof. The function h = S ◦ f−1 is an automorphism of the unit disk
and h(0) = S(α) = 0. But then Corollary 28.9 applies and the result
follows. �.

Exercise 28.11. Show that the automorphisms of the upper half plane
are of the form az+b

cz+d
with ad − bc > 0 (see also Exercise 28.5). The

automorphism is unique, the identity, if ϕ(0) = 0 and ϕ(1) = 1.

28.5. Miscellaneous transformations. We illustrate below a num-
ber of useful transformations; the references, esp. [1], [8] for more ex-
amples. A good number of interesting domains can be mapped to the
unit disk using combinations of these transformations. Note that by
Proposition 28.6 it suffices to examine carefully the way the boundaries
are mapped to understand the action of a map on a whole domain.

28.5.1. The Joukovski transformation. This is an interesting map which
straightens the region in the upper half plane above the unit circle (of
course, by slight modifications, you can choose other radii or centers
along R+) to the upper half plane. It is given by

(28.12) z 7→ z +
1

z
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Figure 16. Velocity field lines in Joukovski’s domain

Exercise 28.12. Explain the effect of this map on the region depicted.

i

1−1 −2 0 2

z+1/z

As a nice application, we can find the flow lines of a river pass-
ing above a cylindrical obstacle. Indeed, the free flow in the upper
half plane is horizontal, with constant velocity, say one. More pre-
cisely, 〈1, 0〉, coming from the velocity potential ϕ(x, y) = y is a har-
monic function and the associated velocity field is 〈1, 0〉. It satisfies the
boundary condition ∂ϕ/∂x = 0, the tangential derivative is zero, which
means that the vertical velocity is zero, the non-penetration condition.
The associated analytic function, up to an irrelevant constant, is just
f(z) = z. If J = J1 + iJ2 denotes the Joukovski transformation, then
J2(x1, y1) is harmonic and satisfies the no-penetration condition since
the composition I ◦ J is conformal. The fluid flow lines are then given
by J2(x1, y1) = const. plotted with Maple in Fig 28.5.1.
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Exercise 28.13. *
Find an explicit formula for flow lines in the previous example.

Other common mappings are depicted in the following figures. The
transformation of the half plane into the disk is also called the Cayley
transform. It plays an important role in the theory of unbounded
operators. It is natural seek a Möbius transformation to map R onto
∂D. Now a point is on the circle iff it is of the form x/x for some nonzero
x, and the transformation should then be of the form (az− i)/(az + i)
with a real (which we can choose, up to rescaling, to be 1) 3.

z2

Exercise 28.14. ** (i) Check the transformation in the figures above.
(ii) Draw a similar picture for the mapping sin z from the upper half

strip bordered by the half-lines x = ±π/2, y > 0.
(iii) Find a conformal homeomorphism of the quarter disk |z| <

1, arg(z) ∈ (0, π/2) onto the upper half plane.
(iv) Find a conformal homeomorphism of the half disk |z| < 1, arg(z) ∈

(0, π) onto the half strip x < 0, y ∈ (0, π).
(iv) Find a conformal homeomorphism of the right half plane (H+)

with a cut along [0, 1] in H+.

3This “qualitative” construction is based on a suggestion of I. Glogic.
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R = 1

i
1 + z

1− z

Re z > 0

z − i
z + i

z
2

|z| < 1, y > 0 0 6= |z| < 1, z /∈ R+

−4

a+

a−

φ0

6

Example 1 It is useful to remark that we can find linear fractional
transformations which map a region between two circles into a half
plane (or disk) using very simple transformations. Let us map the
“moon crescent” M below into a half plane.
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The equations of the circles are x2 + y2 = 16 and (x− 3)2 + y2 = 9.
Solving these equations for the intersection points a± we get a± =
8/3± 4i

√
5/3. The angle between the circles equals the angle between

a+ − 3 and a+ that is arg[(a+ − 3)/a+] = arctan(
√

5/2). The idea is
that if we map by an LFT one of the intersection points to infinity, the
arccircles become lines for which question is easier.

If we map a− 7→ 0, 0 7→ 1 and a+ 7→ ∞ by a LFT, concretely

(28.13)
a+

a−

z − a−
z − a+

then both arccircles become rays (since they end at∞). The small arc
becomes R+ and the larger one a ray of angle φ0 (by conformality at
a−: check these statements).

To transform this sector of opening π0 to the upper half plane we
simply use a ramified transformation z 7→ zπ/φ0 .
Example 2 Solve ∆u = 0 in the region |z| < 1, arg(z) ∈ (0, π/2) such
that on the boundary we have: u = 1 on the arc and u = 0 otherwise.
Solution. Strategy: We find conformal homeomorphism of this region
into the strip {z = x + iy : y ∈ (0, 1)} such that the arc goes into
y = 1 and the segments into y = 0. The solution of the problem in this
region is clear: u = Im z. Then we map back this function through the
transformations made.

How to find the transformation? We are dealing with circles, strips,
etc so it is hopeful we can get the job done by composing elementary
transformations. There is no unique way to achieve that, but the end
result must be the same.

(1) The transformation z 7→ z2 opens up the quarter disk into a half
disk. On the boundary we still have: u = 1 on the arc and u = 0
otherwise.

(2) We can now open the half disk into a quarter plane, by sending
the point z = 1 to infinity, as in Example 1, by a linear fractional
transformation. We need to place a pole at z = 1 and a zero at z = −1.
Thus the second transformation is z 7→ i1+z

1−z . The segment starting at

−1 ending at 1 is transformed in a line too, and the line is clearly R+

since the application is real and positive on [0, 1) and 1 is a pole. What
about the half circle? It must become a ray since the image starts at
z = 0 and ends at infinity. Which line? The image of z = i is w = i.
Now we deal with the first quadrant with boundary condition u = 1
on iR+ and u = 0 on R+.

(3) We open up the quadrant onto the upper half plane by z 7→ z2.
(4) We now use a rescaled log to complete the transformation. The

composite transformation is
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2

π
ln

(
1 + z2

1− z2

)
Exercise** The temperature distribution also satisfies Laplace’s

equation. (1) Map M onto a strip as in Example 2. What is the
distribution of temperature in the domain M if the temperature on the
larger arc is 1 and 0 on the smaller one? What shape do the lines of
constant temperature have?

(2) What is the distribution of temperature in the domain and with
the boundary conditions described in example 2? Draw an approximate
picture of the lines of

29. The Riemann Mapping Theorem

Using elementary transformations we can conformally map a quite
limited family of domains onto D; with the maps we used in the previous
section, the boundary is always very simple. The Schwarz-Christoffel
formulas in §30,generally nonelementary provide conformal maps be-
tween any polygons and the upper half plane (which, as we saw can
be mapped onto the unit disk). In principle, however, any simply con-
nected domain other than C can be mapped onto the D:

Theorem 29.1 (Riemann Mapping theorem). Given any simply con-
nected domain D other than C there is an analytic homeomorphism
between D and D.

This map is unique if for some z0 ∈ D it is normalized by the condi-
tions f(z0) = 0 and f ′(z0) ∈ R+.

The Riemann mapping theorem was stated by Riemann in 1851 for
domains with piecewise regular boundary, and he provided a proof
based on solving a Dirichlet problem for the Laplacian. The method
used, the Dirichlet’s principle was not quite right. Nonetheless, Rie-
mann’s approach can be made to work, and the idea is worth discussing.
Roughly, with z0 ∈ D one looks for a map in the form

ψ(z) = (z − z0) exp(f(z)); f = u+ iv

with f analytic in D, or equivalently u harmonic in D. The boundary
condition is u(z) = − ln |z − z0| on ∂D. The Poisson equation was
solved through the variational reformulation of the Dirichlet problem
using Dirichlet’s principle. However, while the Dirichlet functional is
bounded below and has an infimum, it may may not reach this infi-
mum. Weierstrass found that indeed this can happen for the Dirichlet
functional. The first rigorous proof in full generality was given by
Caratheodory in 1912.
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*
The proof of this major theorem involves concepts and results that

are very important and useful of their own. We will study these in
detail.

29.1. Equicontinuity. We look at functions f : M 7→ M ′ where
M,M ′ are metric spaces. We recall that if the metrics are d and d′, a
function is uniformly continuous if

(29.1) ∀δ ∃ε
(
∀(z, z0) ∈M2, d(z, z0) < ε⇒ d′(f(z), f(z0)) < δ

)
We can assume that the metric d′ is a bounded function, for we
can always replace it by d′′ = d′/(1 + d′) (check that d′′ is a metric,
topologically equivalent to d′ 4) and convergence with respect to d′′ is
the same as convergence with respect to d′.
Definition. An equicontinuous family F is a collection of continuous
functions with the same continuity parameters at every point:

(29.2) ∀x∃δ(x)s.t.∀ε > 0,∀y&∀f, d(x, y) < δ ⇒ d′(f(x), f(y) < ε

Definition 29.2. Let M,M ′ be a complete metric spaces. Then a col-
lection of continuous functions F from M to M ′ is a normal family
if it is pre-compact, i.e., if any sequence {fn}n∈N ⊂ F contains a sub-
sequence that converges uniformly on compact subsets of M .

Exhaustion by compact sets. We note that if the metric space Ω
is C, Rn or a subset M of these, we write

(29.3) M =
⋃
n∈N

Kn, Kn = {x ∈M : d(x, 0) + 1/d(x, ∂Ω) 6 n}

where d is the usual Euclidian distance. Note that the sets Kn are
closed and bounded, therefore compact; their union covers M .

Metrizability of the topology of uniform convergence on
compact sets On each Kn in (29.3) we define the distance between
two functions f and g in a manner analogous to the L∞ distance:

(29.4) δn(f, g) = sup
x∈Kn

d′′(f(x), g(x))

and we create a distance on the whole of M which takes advantage of
the compact exhaustion:

(29.5) ρ(f, g) =
∞∑
n=1

2−nδn(f, g)

(recall that d′′ 6 1).

4In separable spaces, i.e. ones which contain a countable dense set, equivalence
holds iff convergence in one metric is equivalent to convergence in the other.
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Exercise 29.3. Check that ρ is a metric on C(M)– the continuous
functions on M . Check that convergence with respect to ρ is equivalent
with uniform convergence on compact sets. Check that F is a complete
metric space if M ′ is a complete metric space.

Theorem 29.4. A family F is normal iff its closure F with respect to
ρ is compact.

Proof. This follows from the fact that a space is compact iff any se-
quence has a convergent subsequence. �

29.1.1. The Ascoli-Arzelà Theorem.

Theorem 29.5 (Ascoli-Arzelà). A family F of continuous functions
in the region Ω ⊂ C with values in a metric space M ′ is normal in Ω
iff the following conditions are both satisfied:

(i) F is equicontinuous at any x ∈ Ω.
(ii) ∀z ∈ Ω ∃K1 compact in M ′ such that ∀f ∈ F , f(z) ∈ K1.

This is a standard theorem. We leave the proof for the Appendix,
§42.3.
Proposition 29.6. Let now M ′ ⊂ Rn and F be a normal family from
Ω to M ′. Let K ⊂ Ω be compact. Then the bound on f(z) can be made
z independent in K:

(29.6) sup
z∈K,f∈F

|f(z)| = m <∞

Proof. Since F is a normal family, for any point a we can find δ(a)
such that

(29.7) ∀b,∀f, |a− b| < δ ⇒ |f(a)− f(b)| < 1

Extract a finite covering of K from the balls above, let aj be the centers
of the balls and δ0 be the smallest δ in the finite cover. We denote
mj = sup{|f(aj)| : f ∈ F} and m = 1 + maxj{mj}. Then, for any
x ∈ K there is an aj such that |x− aj| < δ0. Therefore, by the choice
of m and aj (29.7) we have, for any f ∈ F ,

(29.8) |f(x)| 6 |f(x)− f(aj)|+ |f(aj)| = 1 +mj 6 m �
Theorem 29.7 (Montel). Consider a domain D ⊂ C and assume F
is a family of analytic functions D such that for every compact K ⊂ D
we have sup{|f(z)| : z ∈ K, f ∈ F} = m(K) <∞. Then the family is
normal.

Proof. If the derivatives of the functions in F are equibounded in K,
then equicontinuity follows easily (check).
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Let K be a compact set in D ⊂ C and let 0 < r = d(K, ∂D. Let
K ′ = {z : d(z,K) 6 r/2. K is clearly compact and contained in D.
For f ∈ F and z ∈ K we have

(29.9) |f ′(z)| 6 1

2π

∣∣∣∣∣
∮
∂Dr/2(z)

f(s)

(s− z)2
ds

∣∣∣∣∣ 6 m(K ′)

r

proving the result.

29.2. The Riemann Mapping Theorem.

Definition 29.8. (i) D and D′ will be called conformally equiva-
lent if there is a map which is analytic together with its inverse (bi-
holomorphism) from D onto D′. (ii) An analytic function is univalent
(or schlicht) if g(z1) = g(z2)⇒ z1 = z2.

Theorem 29.9 (Riemann mapping theorem). Given any nonempty
simply connected domain Ω ⊂ C other than C itself, a point z0 ∈ Ω
and the normalization conditions ϕ(z0) = 0, ϕ′(z0) ∈ R+ there exists a
unique biholomorphism ϕ(z) between Ω and D.

Note 29.10. The fact that C must be an exception follows from the
fact that an entire bounded function is constant.

Corollary 29.11. D above can be replaced by other domains such as
Hu. Indeed we can use the composition ϕ ◦ T1 ◦ T2 where T1(z) =
1−z
1+z

which transforms Hu into D, and T2 is any automorphism of Hu,

T2(z) = az+b
cz+d

with a, b, c, d ∈ R (cf. Exercise 28.11).

Proof of the corollary. This is straightforward and we leave it as an
exercise.

Proof of the Riemann Mapping Theorem
Uniqueness. This part is easier. If ϕ1 and ϕ2 are two functions with
the stated properties, then S := ϕ1(ϕ2)−1 is a biholomorphism of the
unit disk and S(0) = 0. By Schwarz’s lemma S(z) = zeiθ for some θ.
S ′(0) > 0 implies θ = 0.
Existence.

Note 29.12. Clearly, in the proof we can replace the arbitrary domain
D with any set conformally equivalent to it. Therefore, we first sim-
plify the domain by elementary transformations: it turns out that it is
enough to prove the result for Ω ⊂ D with z0 = 0.

Note 29.13. By assumption there is a point in C\Ω, which, by trans-
lation if needed, we can assume to be 0. Ω 6= ∅ ⇒ a ∈ Ω, a 6= 0. The
transformation z → z/a maps it to 1.
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Lemma 29.14. (i) There is a biholomorphic branch of the log (log z =∫ z
1
s−1ds) between Ω and log(Ω) (with exp as its inverse, of course).
(ii) C \ log(Ω) contains an open disk.
(iii) There is a bounded set Ω′ conformally equivalent to Ω.
(iv) There is a biholomorphism g s.t. g(Ω) ⊂ D with g(z0) =

0, g′(0) > 0.

Proof. (i) See Lemma 23.73 and Note 29.13.
(ii) Let L = log(Ω). We claim that L ∩ (2πi + L) = ∅.5 Indeed, if

z ∈ L, then z = lnx for some x and if z+ 2πi ∈ L too, then ez+2πi = x
in contradiction with Lemma 23.73. 2πi+L is a nonempty open set. 6

(iii) By translation if needed, we can assume that the missing disk is
Dε(0) for some ε. Now the function z 7→ z−1 biholomorphically maps
Ω onto a set Ω′ ⊂ D. After the transformations, z0 is mapped to some
a ∈ D.

(iv) An automorphism A of the disk maps any ∅ 6= Ω′ ⊂ D onto
Ω′′ ⊂ D and z0 to zero. A′(a) can be changed by multiplication by
eiθ to make the derivative of the composition of all the maps above
positive at z0.

We can thus assume wlog that Ω ⊂ D and z0 = 0.
Heuristics of the rest of the proof. Since 0 < |x| < 1⇒ 1 >

√
|x| >

|x|. If Ω 6= D, we should be able to expand Ω by taking appropriate
square roots. By Schwarz’s lemma we expect that we “ultimately”
reach the sought-for transformation when ϕ(0) has been maximized.

Definition 29.15. Let F be the set of biholomorphic maps between Ω
and a subset of D, which vanish at zero and have positive derivative
there.

F is nonempty since the identity is in F .

Proposition 29.16. (i) M := sup{f ′(0)|f ∈ F} is attained by an F
in F .

(ii) If F (Ω) 6= D, then there is an F1 ∈ F with F ′1(0) > M (a
contradiction which finishes the proof of the theorem).

Proof. (i) For any f ∈ F , by assumption, |f(z)| < 1 ∀z ∈ Ω. By
Montel’s Theorem 29.6 F is a normal family, thus if fn ∈ F and
f ′n(0) = mn → M then {fn}n∈N has a convergent subsequence to a
function f which, by Hurwitz’s theorem (18.63) is a biholomorphism.
By Weierstrass’s theorem (7.32) f ′(0) = M .

5If S is a set, x+ S := {x+ z : z ∈ S}.
6Argument streamlined by Irfan Glogic.
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(ii) Let a ∈ D \F (Ω). First we use an automorphism of D to map Ω
to a set in D \ {0}:

(29.10) f1(z) =
F (z)− a
1− aF (z)

Since f1(Ω) ⊂ D \ {0}, there is a branch of the square root in f1(Ω).
Now we can define

(29.11) f2(z) =
√
f1(z), ∀z ∈ Ω

Note that f2 is a biholomorphism and that f2(Ω) ⊂ D. We see that
f2(0) =

√
−a := b 6= 0. We now move b to zero and change the phase

of the derivative to zero through another automorphism of the disk:

(29.12) F1(z) =
f2(z)− b
1− bf2(z)

|f ′2(b)|
f ′2(b)

, ∀z ∈ Ω

A straightforward calculation shows that

(29.13) F ′1(0) =
1 + |a|
2
√
|a|
F ′(0) > F ′(0) = M

Exercise 29.17. If we start with a simply connected domain Ω ( D,
take a point in D\Ω, apply the transformations in (ii), and then repeat
this process indefinitely, does the process necessarily converge to ϕ?
(Hint: think of what happens if a is on the boundary of Ω.)

30. Boundary behavior.

30.1. Another look at Poisson’s formula. Check that Poisson’s
formula (12.6) can be written also, with z = aeiθ, as

(30.1) u(z) = Re f(z); f(z) :=
1

2πi

∮
∂D

s+ z

s− z
u(s)

ds

s

Proposition 30.1. (i) The operator L defined by Lu =: L(u) =
Re f(z) with f as in (30.1) is linear (for any constants a, b and piece-
wise continuous functions u and v, L(au + bv) = aL(u) + bL(v) and
positive (u > 0⇒ Lu > 0.

(ii) For any continuous u, Ltu is analytic in D, and with u = C =
const. (LtC)(z) = (LC)(z) = 1∀|z| < 1.

(iii) max∂D |u| 6 M then supD |Lu| 6 M (the operator has norm
one).
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Proof. (i) This follows directly from (12.6)).
(ii) By linearity, it is enough to check this when C = 1. We decom-

pose the integrand as:

(30.2)
s+ z

s(s− z)
=

2

s− z
− 1

s

Now, by residues, if u = 1, f = 1 and thus u = 1 on D.
(iii) Indeed, M − u is nonnegative and so is M + u thus −M =

L(−M) 6 Lu 6 LM = M .

Let also Lt be defined by Lu = Re f(z) with f as in (30.1).

Lemma 30.2. For any continuous u, Ltu is analytic in D, and with
u = 1 Ltu = Lu(z) = 1∀|z| < 1.

Note also that

Theorem 30.3. Assume g(s) is continuous on ∂D. Then Lg is har-
monic in D, continuous in D and, if z0 ∈ ∂D, then (Lg)(zn) → u(z0)
as zn → z0 if |zn| < z0 ∀n.

We can assume wlog that z0 = 1 and that g(1) = 0. Indeed, the
latter can be arranged by taking ĝ = g − g(1) and remembering that
L(g(1)) = g(1)L(1) = g(1). Choose a small arc Cε ⊂ ∂D centered at
1 where |g| < ε. Define g1 = g on Cε and zero on C2 = ∂D \ Cε and
g2 = g − g1. As z → 1, Ltg2 is zero: indeed Ltg2 is analytic at 1 and
thus limLtg2(zn) exists as zn → 1. But

(30.3) Re
eiθ + eiϕ

eiθ − eiϕ
= 0 if θ 6= φ (both in [0, 2π))

Thus limzn→1(Ltg2)(zn) = 0. Now, since |g1| < ε on ∂D, by Proposition
30.1 |Ltg1)(zn)| < ε finishing the proof.

30.2. Behavior at the boundary of biholomorphisms: a general
but relatively weak result. We derive an easy but useful result [3]:
if D is a simply connected domain and ϕ maps it conformally onto D,
then ϕ(z) approaches ∂D as z approaches ∂D, in a sense defined below
(which does not imply that ϕ(z) converges).

Let D be a domain. Informally, a sequence or an arc approaches
the boundary if eventually recedes away from any point in the region.
Convince yourselves that the precise definition below corresponds to
this intuitive description if D to be D, Hu or a cut disk.
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Definition 30.4. A sequence zn → ∂D as n → ∞ if for any compact
set K ⊂ D there exists n0 such that for all n > n0 we have zn 6∈
K. Similarly, for an arc γ : [0, 1] → D, γ(t) → ∂D if ∀K ∃t0 ∈
(0, 1) s.t. γ(t) /∈ K if t > t0.

Theorem 30.5. If ϕ : D → D′ is a domain biholomorphism and
z → ∂D, then ϕ(z)→ ∂D′.
Proof. We prove the statement for sequences; the one for arcs is al-
most identical. Since ϕ is biholomorphic, any compact covering of D
generates a compact covering of D′ and vice-versa. Let zn → ∂D and
let K ′ ⊂ D′ be any compact set. By definition,

zn → ∂D ⇒ ∃n0 s.t.∀n > n0 zn 6∈ K
Since ϕ is one to one, ϕ(zn) 6∈ K ′ either.

Corollary 30.6. If ϕ : D → D is a biholomorphism, then |ϕ(z)| → 1
as z → ∂D.

30.3. A reflection principle for harmonic functions. Let Ou ⊂
Hu be such that ∂Ou ⊃ I := [a, b] ∈ R. We denote by Ol the reflection
of Ou across I.

Theorem 30.7. Assume v is harmonic in Ou continuous on Ou ∪ I
and v = 0 on I. Then v extends to a harmonic function on Ou∪I∪Ol.

Note 30.8. Theorem 21.68 is an easy consequence of Theorem 30.7.

Proof. [6] As in the Schwarz reflection principle, the extension of v is
defined through

(30.4) v(z) := −v(z) ∀z ∈ Ol

The property of a function being harmonic is a local one, so it is enough
to check that this is for some family of disks covering O. For disks in
Ou this is so by assumption while for disks ⊂ Ol it follows directly from
(30.4). Consider now a disk Dε containing part of I as its diameter.
Laplace’s equation ∆v = 0 with the continuous boundary solution
v(z), z ∈ ∂Dε ∩ Hu and −v(z), z ∈ ∂Dε ∩ Hl has a unique solution V
in Dε, see §27.1 and Proposition ??. The boundary condition is odd
w.r.t. y, and, by uniqueness (since −V (z) is also a solution), V is odd
too, thus zero on I. It is then a harmonic function in Dε which must
coincide with v(z) in Dε ∩ Hu since they satisfy the same boundary
condition (on ∂Dε∩Hl∪∂Dε∩I) and similarly, it coincides with −v(z)
in the reflected domain.

Exercise 30.9. Show that if f = u+ iv is analytic in a domain Ou as
in the theorem and v is zero on I, then u is continuous at I.
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Γ

Γ
~

f

Note 30.10. The following interesting construction is given in [3], p.27.

As usual, if f is analytic, then f is analytic too, where f(z) = f(z).
(Note that Check that

(30.5) 2u(x, y) = f(x+ iy) + f(x− iy)

for all x, y for which the rhs makes sense. (Note that f(x − iy) = fz
is not analytic, but this does not matter in the following). Assuming
also that the expression u(z/2, z/2i) makes sense, we have (check!):

(30.6)

2u(z/2, z/2i) = f(z) + f(0) = f(z) + C ⇒ f(z) = 2u(z/2, z/2i)− C
(⇒ v(z) = Im (2u(z/2, z/2i)− C))

In particular, no integration is needed to get f or v from u. This
certainly works by the principle of permanence of relations for ratio-
nal functions, or other simple functions. Can you make this work in
general?

30.4. Real-analytic functions.

Definition 30.11. A function f is real-analytic on I := [a, b] if for
any t0 ∈ I we have γ(t) =

∑
k ck(t− t0)k, where the series converges.

Since I is compact, by the finite covering property we see that f
extends to an analytic function in a neighborhood of I, which provides
an equivalent definition of real-analyticity.

Definition 30.12. A proper analytic arc is the image of some I under
a real analytic function γ : I → C with the property |γ′| > 0 on I.

An equivalent definition of a proper analytic arc is that γ extends to
an isomorphism between a neighborhood of I and its image.

30.5. An extension of the Schwarz reflection principle. Infor-
mally this states that if f is analytic in a domain D which contains an
analytic arc γ , if f is continuous up to γ and if the image of γ is an
analytic arc, then f extends analytically beyond γ.
Definitions Let γ be a proper analytic arc bounding a domain D.
Then γ : I → C, I = [a, b] is a one-sided boundary of D if for any
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z0 ∈ γ(I) there is a disk Dε(z0) s.t. either γ−1(Dε(z0)) ∩ D ⊂ Hu or
γ−1(Dε(z0)) ∩ D ⊂ Hl.

7 In this case, we also say that D lies on one
side of γ. As usual, by analytic continuation of a function f across a
curve, we mean that there is an analytic function f̂ in a neighborhood
of the curve which coincides with f wherever they are both defined.
Note that the analytic continuation is unique. The theorem below is
the “conformally mapped” Schwarz reflection principle.

Theorem 30.13 (Analytic reflection across arcs). Let D be a domain
and assume that D lies on one side of the proper analytic arc γ. Let f
be analytic in D and continuous on D∪γ, assume that f(γ) ⊂ γ̃ where
γ̃ is a proper analytic arc, and finally that f(D) lies on one side of γ̃.
Then f extends analytically across γ.

Proof. By assumption γ and γ̃ are images of the closed intervals I and I ′

under isomorphisms, Γ, Γ̃ respectively. Now Γ̃(f(γ)) = Ĩ; Furthermore
ψ = Γ̃◦f◦Γ is defined on an open subsetO of, say, Hu and is continuous
up to I, and ψ is real valued on I. Then, by the Schwarz reflection
principle, ψ extends analytically to the reflection across I of O. The
desired analytic continuation is Γ−1 ◦ ψ ◦ Γ̃−1.

Theorem 30.14. Let D ( C,D 6= ∅ be a simply connected domain
and ϕ a biholomorphism between D and D. If ∂D contains a proper
analytic arc γ, lies on one side of γ, then

(i) ϕ extends analytically across γ
(ii) if zn → z0 ∈ γ, then ϕ(zn)→ ϕ(z0) ∈ γ.
(iii) Furthermore, this extension is one-to-one on s, thus in a neigh-

borhood of D ∪ s.

Note 30.15. Applying a linear fractional transformation (nondegen-
erate ones are one-to-one we see that a similar statement holds if D is
replaced by a half-plane.

In particular, if the boundary of D is piecewise analytic then ϕ ex-
tends analytically to a domain D′ ⊃ D and in particular it is continuous
in D. (It is also biholomorphic in some domain D′′ ⊃ D.)

Proof. (i) Follows from Theorem 30.13.
(ii) follows immediately from (i).
(iii) Assume we had f ′(z0) = 0 for some z0 ∈ γ; Then f(z) is a

piece of an analytic arc near f(z0). f(z0) divides γ in two subarcs
whose relative angle at z0 is π. Then in a neighborhood of z0 f , by
Proposition 27.88 is n-to-one for some n > 2, and the two subarcs would

7Recall that γ extends to an isomorphism.
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be mapped by (f ′)−1 into 2n subarcs of ∂D and the angle between two
successive ones being π/n (check!). But this violates the fact that ϕ
is one-to-one in the interior and maps ∂D to ∂D as proved in (i). We
know that |f | = 1 on ∂D and thus ln f is defined in a neighborhood
of any point z0 ∈ γ. If |f ′| > 0 on γ, this is true, by continuity, in a
neighborhood of γ.

30.6. Behavior at the boundary, a stronger result. We recall
that a Jordan curve in C is a continuous map γ defined (say) on [0, 1]
with values in C which is injective, that is γ(t1) = γ(t2) only if t1 = t2
or t1 = 0 and t2 = 1 where in the latter case it is a closed Jordan
curve. We also recall that a closed Jordan curve divides C into exactly
two regions, one bounded and one unbounded. The bounded region is
called the interior of the curve. A Jordan domain is the interior of a
Jordan curve.

A point z0 ∈ ∂D is called accessible if there is a sequence {zn}n∈N ⊂
D and a continuous function γ : [0, 1]→ D which passes through all zn
(∀n∃tn ∈ [0, 1] s.t. γ(tn) = zn. If D is the interior of any Jordan curve,
then any point on ∂D is accessible (why is this true?).

Theorem 30.16 (Boundary behavior). Let D be a bounded domain.
(i) If z0 is an accessible point of ∂D then the biholomorphism ϕ with the
unit disk has a limit (call it ϕ(z0)) as z → z0, z ∈ D and ϕ(z0) ∈ ∂D.

(ii) If z1 and z2 are accessible points of ∂D then ϕ(z1) 6= ϕ(z2).

In particular, if D is the interior of a simple, closed Jordan curve,
then the map ϕ extends to a continuous 1− 1 function in D.

For space limitations we do not prove this interesting result; a proof,
essentially based on the first proofs by Lindelöf and Koebe, is found in
[6]. We shall not use conformal maps of this generality. In §31 we will
find that for polygons, ϕ can be expressed by quadratures.

30.6.1. A negative result. The following is a standard example of an
inaccessible point [8] shows that, in full generality, continuity of the
conformal mapping cannot be expected. Such is the case of the inac-
cessible point below. Take D to be an open horizontal rectangle with a
vertex at zero from which vertical line segments of length, say, 1/2 have
been removed, see Fig. 17 (check that 0 is inaccessible!). The image
of 0 on ∂D (which wlog can be taken as z = 1) must be a point of
discontinuity of the conformal map ϕ into the unit disk, for ϕ−1(1) = 0
and in any neighborhood of 1 there are infinitely many points where
ϕ−1 is 1/2.
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Figure 17. The origin is inaccessible

Figure 18. The conformal map of the unit disk through F

Illustration of nonanalytic behavior at all points the confor-
mal image of the unit disk.. Figure 18 shows the conformal image
of the unit disk under the map F defined by the functional equation
F (λz) = λF (z)(1 − F (z)),∀z ∈ D, F ′(0) = 1 for λ = 0.5i. The unit
disk is a natural boundary of F . The interior J of the curve corre-
sponds to the points in z ∈ C for which the solution of the one step
recurrence xn+1 = λxn(1−xn); x0 = z converges to zero. J is the Julia
set for the iteration of the quadratic map z 7→ λz(1− z). See [5].
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π(1− α)

Hu

f

dw = f ′(z)dz

dz dw

Figure 19. Schwarz-Christoffel transformations: two
adjacent sides of the polygon.

31. Conformal mappings of polygons and the
Schwarz-Christoffel formulas

For polygonal regions, the conformal map to the unit circle (or to
Hu obviously) can be done by quadratures. The transformation is still
usually nonelementary, but the integral representation gives us enough
control to describe the transformation quite well.

31.1. Heuristics. If f is biholomorphic at z0, the angle between the
tangent of a curve γ through z0 and the tangent to its image through
f is arg f ′(z0); we write this in differential form, dw = f ′(z)dz. We
want to map Hu to the interior of a polygon. We then choose the
positive orientation when traversing ∂Hu (which leaves the domain to
its left): this means traversing the boundary from R− to R+. For later
convenience we denote by παi the interior angles of the polygon.

Wlog we can place a vertex at zero, and rotate the polygon so that
one side is in R+. The red arrow indicates the positive orientation of
the polygon. Suppose that we want to map 0 to 0 and the segment in
blue on ∂Hu to the blue segment on the polygon, see Fig19. We see
that, to the left of z = 0, dw is rotated by −π(1 − α) with respect to
dz, while to the right of z = 0 (red arrow) dz and dw are parallel. A
transformation that behaves like this on the boundary is f ′(z) = zα−1.
We see that indeed the argument of f ′ (Im ln f ′ which exists locally
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since f ′ 6= 0) does not change except at the singularity, z = 0:

(31.1) (ln f ′)′ =
α− 1

z
∈ R (since z ∈ R)⇒ d arg f ′ = 0 for z 6= 0

Proposition 31.1. Any transformation f of a one-sided neighborhood
N in Hu of a segment I = [−a, b]; a, b > 0 which maps 0 to the vertex
w = 0 of the polygon and is continuous up to the boundary has the
property f(z) = zα−1h(z) where h is holomorphic in N ∪ I ∪ N . In
particular, f ′(z) = zα−1

∑∞
k=0 hkz

k where h(0) 6= 0 and the sum is
convergent.

Definition 31.2. We will call functions which are (locally) of the form
(z − z0)aH(z) with H holomorphic, ramified-analytic.

Proof. Let H =
∫
z−(α−1)f ′. Note that dH = z−(α−1)f ′dz maps the

blue vector on the left side of the polygon N into a vector parallel
to the red one, is continuous down to I. The image of I through
H =

∫
z−(α−1)f ′ will, by construction, be an interval in R. Schwarz’s

reflection principle and the continuity of H ensure that H has analytic
continuation in N ∪I ∪N . Thus H ′ is analytic too. Since the transfor-
mation h is one-to one (H(z) is strictly monotonic in z ∈ I, implying
H ′ = h 6= 0.

More generally, a transformation of the form

(31.2) f ′ =
n−1∏
i=1

(z − ai)αi−1

satisfies

(31.3) (ln f ′)′ =
n−1∑
i=1

αi − 1

z − ai
∈ R ⇒ d arg f ′ = 0 for z 6= ai

and arg f ′ changes by π(1 − αi) upon traversing ai. The points Ai :=
f(ai) on the polygon are the only ones where arg f ′ changes, and it
changes by +π(1− ai) (check the signs!). If the polygon P is a closed
curve, then infinity must be mapped into one of the vertices of P ,
and, since f is conformal (to be proven later) it cannot be one of the
{Aj, j = 1..n − 1} so it must be An. Recall that the sum of exterior

angles of a closed polygon is 2π, and thus B =
∑n−1

1 βi = 1 + αn,
βi := ai − 1. Note also that 1− ai/z is analytic at infinity: as z →∞
we have
(31.4)

f ′ = zB
n−1∏
i=1

(1− ai/z)βi = ζ−Bg(ζ); g(ζ) =
n−1∏
i=1

(1− aiζ)βi , ζ = 1/z



75

3

a2 a3a1 a4

A5

A4A3

πα3

πα4

πα5

A1

πα1

A2

πα2

Figure 20. Schwarz-Christoffel transformations: a
closed polygon.

If |ζ| < ε < max{1/|ai|, i = 1, ..., n− 1}, g is analytic and Re g(ζ) > 0,
implying that ln g is well defined. If z traverses ∂DR from +R to
−R where R = 1/ε in a positive direction the change in arg f ′ comes
solely from zB and it equals πB, the same change in argument that
(z − A)1−αn would produce. This “closes the polygon” with the last
vertex An = limz→∞ f(z). See figure. In the case of a closed polygon
we see that f is bounded on R. In the case of an open polygonal line,
the arguments are similar.

Theorem 31.3. (i) Let P be any polygon (closed or open) with n
vertices A1, ..., An and interior angles πα1, ..., παn. There is a choice
of a1, ..., an−1 ∈ R and C,C ′ ∈ C such that the function

(31.5) Φ = z 7→ C

∫ z

0

n−1∏
k=1

(s− ak)αk−1ds+ C ′

maps Hu into P (and Φ(ai) = Ai).
(ii) The function mapping D conformally into P is given by

(31.6) Φ = z 7→ C

∫ z

0

n∏
k=1

(bk − s)αk−1ds+ C ′

(iii) Moreover, all transformations between Hu or D and polygons
are of this form.

Remark 31.4. (i) It is important to note what freedom we have in
such transformations. Suppose we want to map a triangle ∆. All
triangles with same angles are similar, and a mapping between two
similar triangles reduces to scaling, rotation and translation. Thus we
need to understand one triangle with given angles αi. We take say
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a1 = 0 and a2 = 1, use the α’s, and see what triangle ∆1 is obtained;
note that it must be similar to ∆. Then, we can choose C and C ′ so
that we remap ∆1 to ∆. Thus we are able to map any triangle to Hu,
prescribing the position of the images of the vertices at will.

(ii) For n > 3, we can still place three points at will but the position
of the fourth one etc cannot be chosen arbitrarily. We see that we have
the freedom of n − 1 real constants, the a′is, and of two complex ones
C and C ′, a total of n + 3 real constants, whereas an arbitrary closed
polygon has 2n real constants as degrees of freedom (the position of its
vertices); 2n > n + 3 if n > 3. The ak for k > 4 are called accessory
parameters, and they are determined by the polygon and the values
of a1, ..., a3; for all but very simple cases, the accessory parameters are
calculated using special functions or (in general, if n > 4) numerically.
Symmetries help, if there are any.

Given the disparity in the number of available parameters versus
the degrees of freedom of the problem, it is not a priori clear that the
Schwarz-Chrsistoffel transformation should always work.

First proof of the Schwarz-Christoffel formula. We analyze closed poly-
gons, open ones being similar. We can first arrange that one vertex is at
zero and a second one at 1. Indeed, we can transform P by translation
and multiplications by a constant (changing C, C ′ in the Theorem)
into one geometrically similar to it, P̃ that has these properties. By
composition to the right with az + b we can arrange that 0 and 1 in
Hu are mapped into 0 and 1 in P̃ . Note that by Proposition 31.1 the
function F (z) = f ′(z)

∏n−1
i=1 (z − ai)

1−αi is analytic in Hu, does not
change its phase except perhaps at ai. But at every ai, F is real and
positive. Thus F is real on the real line and extends to an entire func-
tion. For the behavior at ∞ note that the transformation ζ = −1/z,
f(z) = G(ζ). z 7→ −1/z is an automorphism of Hu which maps ∞
to 0. Traversing R+ in z from 0 to ∞, returning to −∞ on a “large”
circle and moving in (−∞, 0) to the right corresponds to ζ traversing
(−∞,∞) from negative to positive values. To straighten the angle at
an (= 0 in ζ) we need, as in Proposition 31.1 to multiply G′(ζ) by
ζ1−αn : ζ1−αn dG

dζ
= H(1/z) where H is analytic in particular bounded.

Since d
dζ
G = ζ−2f ′(−1/ζ) it follows that z1+αnf ′ is analytic at infinity.

Now, 1−α1 + ...+1−αn = 2 implying 1−α1 + ...+1−αn−1 = 1+αn
and thus

(31.7) (z − a1)1−α1 · · · (z − αn−1)1−αn−1f ′ ∼ const.z1+αnf ′ as z →∞
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Figure 21. Successive reflections.

is entire and bounded, thus constant and hence

(31.8) (z − a1)1−α1 · · · (z − αn−1)1−αn−1f ′ = C

Corollary 31.5 (Analytic structure of f). The function f is ramified-
analytic (cf. Definition 31.2). In a neighborhood of aj we have

(31.9) f = C1jx
αjHj + C2j

where Hj is holomorphic.

Proof. This follows by straightforward integration of (31.8).

“Geometric” proof of the Schwarz-Christoffel formula. This proof is largely
based on [8]. A slightly different argument is used in [3]. We prove the
statement for a closed polygon, the one for open ones being very sim-
ilar. Examine again Example 21.70, since we shall use the reflection
principle in a somewhat similar way.

Let f be the conformal map between Hu and P . Since f transforms
an interval I of R+ into the line segment ` bounding P and P1, it
has analytic continuation across I, and in fact the image of Hu is P
and that of Hu is P1. This continuation can be reflected back, and we
obtain P2. By simple geometry, the two yellow polygons P and P2 are
Euclidian transformations of each-other, of the form P2 = aP + c for
some constants a and c with |a| = 1. Let f2 be the analytic continuation



78

of f to P2: we must have f2 = af + c, and in general f2n = anf + bn
with |an| = 1.

Note 31.6. It does not follow that f has analytic continuation through
the whole of R into Hl (the image of R is generally a nontrivial polygon
which is not an analytic arc). The analytic continuation can generally
only be performed across segments of the form Ii = (ai, ai+1) where
f(ai) = Ai, f(ai+1) = Ai+1, and we can reflect sets not containing R,
such as Hu. Indeed, the image of the analytic arc Ii is an analytic
arc, namely the side AiAi+1 of the polygon. But if we took instead
(ai−ε, ai+1, its image is a broken line, not an analytic arc. This was to
be expected given Proposition 31.1. We are dealing with a branched-
analytic function. A second reflection, around a different interval will
generally produce a function f2 on Hu different from f .

The continuation of f to P1, f1, and the continuation of f to P2n+1

satisfy f2n+1 = Anf1 + Bn where |An| = 1. Any successive reflections
of P about sides results in a polygon similar to P or Pf where Pf is
the flip of P about one side (any side will have the same effect). Any

continuation f̃ by successive reflections about sides of the polygon is
either a flip relates to f or the continuation of f across one of the sides
of P by f̃ = Af1 +B or A′f +B′, where |A| = |A′| = 1. The Riemann
mapping theorem implies that f ′ 6= 0 in P \V where V are the vertices,
where f might be singular.
P and P1 differ by a reflection. Then, the range f(P1) is the image

of a reflected region from Hu in Hl . Note that g(z) = f ′′(z)/f ′(z) =
f ′′1 (z)/f ′1(z) is analytic at any z except for a1, ..., an. By Proposition
31.1, g has a pole of order one with residue αi−1 at the ai. Since ai are
the only singularities of g, g is single valued and extends to C. Thus,

(31.10) G(z) = g(z)−
n−1∑
j=0

ak − 1

z − ak

is entire. If infinity corresponds to a vertex, then a similar argument
to the one used in Proposition 31.1 gives f ′′/f ′ ∼ z−1 for large z.
If instead f is analytic at infinity then f(z) =

∑∞
k=0 ckz

−k whence
g(z) ∼ const./z for large z. Thus

(31.11)
f ′′(z)

f ′(z)
=

n−1∑
j=0

ak − 1

z − ak

Integrating 31.11 the conclusion follows.
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Note 31.7. The second order linear ODE obtained after multiplying
(31.11) by f ′ is a Fuchsian equation: it has only regular singularities
in C∗ = C ∪∞ [4].

31.2. Another look at the sine function. Problem. Map the strip
indicated into Hu preserving the points marked with circles and the
positive orientation.

π−π −1            1

Solution The α’s at −π and π are both 1/2. We apply formula (31.5)
with a1 = −1, a2 = 1 and the integrand is then (s2−1)−1/2. Eq. (31.5)
therefore gives, for two arbitrary constants,

(31.12) Φ = C arcsin z + C ′

and therefore our map f = Φ−1 has the general form

(31.13) Φ−1(w) = sin(cw + c′)

We have now to choose c and c′ to match the prescribed points. We
must have sin(−πc+ c′) = −1 and sin(cπ + c′) = −1; the choice c′ = 0
and c = 1/2 matches these conditions. We get

(31.14) f(w) = sin(w/2)

32. Mapping of a rectangle: Elliptic functions

We map Hu in a rectangle. All the α’s in (31.5) are 1/2, as in §31.2.
We choose three ak as simple as possible, 0, 1, and ρ > 1, and study
the resulting rectangle. The freedom allows us to place three vertices
wherever we want; we choose C = 1 and C ′ = 0. The integrand is
s−1/2(s−1)−1/2(s−ρ)−1/2. If z ∈ Hu then so are s, s−1 and s−ρ. We
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take a branch of the square root with cuts in Hl, say −iR+, 1 − iR+

and ρ− iR+. The Schwarz-Christoffel transformation is

(32.1) Φ(z) =

∫ z

0

ds
√
s
√
s− 1

√
s− ρ

a nonelementary elliptic integral. To find the range of Φ, we evolve s
on R+ + iε and pass to the limit ε → 0. For instance, on (0, 1) the
arguments of s, s − 1 and s − ρ are 0, π, π resp., and thus arg(Φ) =
0 − π/2 − π/2. On I2 = (1, ρ) arg Φ = 0 + 0 − π/2, on I3 = (ρ,∞)
arg Φ = 0 and finally on I4 = (−∞, 0) arg Φ = −3π/2. Therefore,
starting with z = 0 and evolving towards +∞ and then from −∞ to 0,
Φ(z) traverses positively the boundary of the rectangle with vertices

(32.2) (0, 0),−(K1, 0),−(K1, K1 + iK2),−(0, iK2);

where K1 =

∫ 1

0

dx√
x(1− x)(ρ− x)

, K2 =

∫ ρ

1

dx√
x(x− 1)(ρ− x)

and both integrands are positive on the given interval. In particular,
we must have∫ 1

0

dx√
x(1− x)(ρ− x)

=

∫ ∞
ρ

dx√
x(x− 1)(x− ρ)

(32.3) ∫ 1

−∞

dx√
−x(1− x)(ρ− x)

=

∫ ρ

1

dx√
x(x− 1)(ρ− x)

(32.4)

where the integral is well defined since for large s the integrad is
bounded by const.s−3/2. The fact that the polygon closes is imme-
diate:

(32.5)

∫ ∞
−∞

dt√
t(1− t)(ρ− t)

= 0

(The branch cuts are in Hl and contour of integration can be pushed
up to i∞.)

Exercise 32.1. Prove one of these identities without using the Schwarz-
Christoffel theory. This can be done by changes of variables or using
(32.5).

32.1. Differential equation. We write

(32.6)
dΦ

dz
=

1√
z(z − 1)(z − ρ)

or

(
dz

dΦ

)2

= z(z − 1)(z − ρ)

differentiating with respect to ρ and dividing by dz/dΦ we get

(32.7) z′′ =
3

2
z2 − (ρ+ 1)z +

ρ

2
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s2

1
1− s2−s2

Figure 22. The evolution of s2, −s2 and 1− s2.

a second order autonomous equation. A linear change of variables of
the form z(Φ) = ay(bΦ)+c brings it to the canonical form of the elliptic
equation:

(32.8) y′′ = 6y2

with general solution y(x) = ℘(x+C1; 0;C2), where ℘ is the Weierstrass
elliptic function. A great deal of information can be extracted from this
equation alone, and we will return to it later.

32.2. The symmetric version of the elliptic integral. The double
symmetry of the rectangle suggests a symmetric choice of ai. The
following integral is called incomplete elliptic integral of the first kind

(32.9) F (φ, k) =

∫ sinφ

0

ds√
1− s2

√
1− k2s2

Here k ∈ (0, 1). Since we are interested in the analytic behavior of this
function, we will work instead with

(32.10) f(z, k) =

∫ z

0

ds√
1− s2

√
1− k2s2

This transformation is similar to but not quite in the form of (31.5).
The square roots are combined in pairs and the signs are different.
As before, we want to understand the image f(Hu). To clarify the
branches needed, we note that the integrand is bounded by const./s2

at infinity, and the integral along R+ equals the integral along R+ + iε,
ε > 0; we take the latter and pass to the limit ε → 0 after we have
clarified the phase of the integrand. To indicate the direction of the
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(0, iK ′)

(0, 0) (K/2, 0)

Figure 23. The fundamental rectangle.

limit, we write that the final integral is on R + i0+. In view of the
symmetry f(z, k) = f(−z, k) we only need to understand the map in
the first quadrant.

The branched function here is the square root. We make branch
cuts in such a way as to allow z (and thus s) to evolve in the first
quadrant. Note that, as s evolves on [0, a) + i0+, g1 := (1 − s2) and
g2 := (1− k2s2) evolve on [0, a)− i0+. Thus the cuts of the square root
have to be upward, that is in Hu.

On [0, 1) we take the natural, positive, value of the square root. The
first change of argument of g1, g2 is when a = 1, where the become
−π+, 0− resp. A second one occurs when a = 1/k when the argu-
ments become −π+,−π+ Consequently, the integrand has argument 0
on (0, 1), eiπ

−/2 on (1, 1/k) and eiπ
−

on (1/k,∞). As a result, the inte-
gral f(z, k) evolves counter-clockwise on a contour starting along R+

and changing direction twice by +π/2. As mentioned we can complete
the evolution of f by symmetry. Traversing R gives

(32.11)

∫ ∞
−∞

ds√
1− s2

√
1− k2s2

= 0

since, once more the contour can be pushed up towards i∞, and the
figure closes (how come it is possible to use four points instead of
three?). Φ(Hu) it is then a rectangle with vertices

(32.12) (−K/2, 0), (K/2, 0), (K/2, iK ′) and (−K/2, iK)

where

K =

∫ 1

−1

ds√
1− s2

√
1− k2s2

(32.13)

K ′ =

∫ 1/k

1

ds√
1− s2

√
1− k2s2

(32.14)

Observe that for s > 1/k we can write

(32.15)
√

1− s2
√

1− k2s2 = −ks2
√

1− s−2
√

1− (ks)−2
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(where the square roots on the right side are positive) and that the
function

√
1− ζ ζ = 1/s2 is analytic for |ζ| < 1. Thus f(z, k) is

analytic at infinity and for z > 1/k, writing
∫ z

0
=
∫∞

0
−
∫∞
z

we get

(32.16) f(k, z) = iK ′ −
∫ ∞
z

− 1

ks2
−
(
k−1 + k−3

2s4
+ · · ·

)
ds

= iK ′ +
1

kz
+
k−1 + k−3

6z3
· · ·

showing that f is analytic at infinity.

Exercise 32.2. ** Find changes of variables that connect (32.11) to
(32.1)

32.3. Continuation to the whole of C. Double periodicity. It is
interesting to see what happens to f by Schwarz reflection (of Hu) which
is more conveniently seen in the f plane. If the sequence of reflections is
about (−K/2, K/2), (K/2, K/2 + iK ′), (K/2, 3K/2), (K/2, K/2 + iK ′)
we return to the original domain. Since the values in each analytic
reflection are symmetric with respect to the reflecting axis, it is easy to
see by counting that the function continued through the four reflections
above coincides with the original one. The continuation is consistent
with the original definition. This is by no means guaranteed for a
general function reflected back on itself, see Example (21.70). The
inverse function E = f−1 is, by the same argument, periodic with
periods 2K horizontally and 2K ′i vertically, that is, E is a doubly
periodic function:

(32.17) E(z) = E(z + 2K) = E(z + 2iK ′)

0  −K/2 K/2

iK’

RR

R
R R

R

R
R R

00

01
11

10

1−10−1
−1−1

−10

−11

Nonconstant meromorphic functions with two periods in C are el-
liptic functions. The fundamental parallelogram associated to an
elliptic function f is the one with sides T1, T2 where T1, T2 are the
periods. Think whether the periods can be both real.
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By Liouville’s theorem elliptic functions must have at least one pole
in the fundamental parallelogram. Since the integral

∮
f(s)ds along the

boundary of the fundamental parallelogram vanishes by periodicity, the
function must have at least two poles, counting multiplicity.

32.4. Schwarz triangle functions and hypergeometric functions.
The upper half plane is homeomorphically mapped on a triangle of an-
gles α1π, α2π, π(1 − α1 − α2) by a Schwarz-Christoffel transformation
which has no auxiliary parameters, as we discussed:

(32.18) Φ(z) =

∫ z

0

sα1−1(s− 1)α2−1ds

(where we chose C = 1, C ′ = 0 for simplicity). In this case too we can
apply the reflection-continuation procedure of §32.3. We now imagine
the reflections having a common vertex. To insure a single valued
function upon successive reflections about the sides, we must return to
the starting triangle with no overlap or gap. Two successive reflections
amount to a rotation with twice the angle at the common vertex. We
must thus have αi = 1/ni, ni ∈ N. In algebraic terms the reflections
must generate a finite group, a special case of a Coxeter group. The
constraints are thus:

(32.19) α1 + α2 + α3 = 1; 1/αi ∈ N

There are only finitely many solutions (α1, α2, α3) of this equation
(why?). These are: (1

3
, 1

3
, 1

3
) (equilateral triangle) (1

2
, 1

3
, 1

6
) (half of an

equilateral triangle) and (1
2
, 1

4
, 1

4
) (isosceles right triangle). Then the

reflected images cover the whole plane and the mapping functions are
restrictions of meromorphic functions. These are special cases of the
Schwarz triangle functions.

Each triangle function corresponds to an elliptic function. We will
return to this topic later.
Differential equation. We can derive an equation with polynomial
coefficients for Φ as follows. In Φ′ = zα1−1(z − 1)α2−1 we write Φ =
zα1Φ1 and get, after dividing by zα1−1,
(32.20)

zΦ′1 +α1Φ1− (1−z)α2−1 = 0⇒ z

(1− z)α2−1
Φ′1 +

α1

(1− z)α2−1
Φ1−1 = 0

which we differentiate one more time to eliminate the constant 1 and
we get

(32.21) z(1− z)Φ′′1 + [α1 + 1− (2−α2−α1)z+]Φ′1 +α1(α2− 1)Φ1 = 0
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The differential equation for the hypergeometric function 2F1(a, b; c; z)
is the Riemann equation

(32.22) z(1− z)h′′ + [c− (a+ b+ 1)z]h′ − abh = 0

From the way we went from (32.20) to (32.21) (or by direct verification)
we see that one solution is z−α1 . Comparing with (32.22) the second
one is

(32.23) 2F1(α1, 1−α2;α1 +1; z)⇒ Φ = zα1 · 2F1(α1, 1−α2, α1 +1, z)

That is, in this case, the Schwarz-Christoffel transformation is a ratio
of two independent solutions of the special hypergeometric equation
(32.21).

In general, the map from Hu into a curvilinear triangle, one whose
sides are arccircles is given by the ratio of two independent solutions
of (32.22), where the angles α, β, γ are related to a, b, c by (cf. [8])

(32.24) a = 1
2
(1 + β − α− γ), b = 1

2
(1− α− β − γ), c = 1− α

Note 32.3. To see qualitatively why that is, before we work out the
mathematical details, since the sought-for function f transforms seg-
ments into arccircles, Möbius transforms of f map real segments into
real segments. Möbius transforms are conformal wherever defined, so
they preserve angles, and thus f should be ramified analytic at three
points, say {0, 1,∞} where it must be ramified-analytic.

Secondly, note that any function which is real-analytic (with real
values) on some interval I and s.t. f ′ 6= 0 on I conformally maps a
neighborhood of I into a neighborhood of f(I) (where, of course, f(I)
is an interval in R).

Finally, this approach would apply to any curvilinear polygon, and
the final ODE that we construct will still be second order linear, but
the solutions are generally quite complicated.

To find an f as in Note 32.3, a natural candidate would be a ratio
of two solutions of a real-valued linear second order ODE with ana-
lytic coefficients, whose solutions have only ramified singularities, at in
{0, 1,∞}. Such an ODE will have two linearly independent solutions,
f1 and f2

8. Define S = {a1f1 + a2f2|A1,2 ∈ C} (this of course is the
space of all solutions). Then,

(1) f1,2 are analytic in C∗ \ {0, 1,∞} while at the points 0, 1,∞
they are ramified-analytic;

(2) on each interval (−∞, 0), (0, 1) and (1,∞) there are two positive
linearly independent functions in S;

8Meaning that A,B ∈ C and Af1 +Bf2 = 0⇒ A = B = 0.
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(3) S is invariant under Schwarz reflections 9. This is because any
analytic continuation of a solution is a solution, by permanence
of relations.

(4) (f1/f2)′ 6= 0∀x ∈ R. 10

Then some ratio F1/F2 of two linearly independent F1,2 ∈ S maps the
upper half plane into a curvilinear triangle, that is, one whose sides
are line segments or arccircles (a line segment is a limiting case of
an arccircle, so we will call arccircle too). Indeed, take F1 and F2 in
S linearly independent, choose one of the intervals in (2) above, and
let F̃1 and F̃2 the functions which are real valued on the interval I.
We choose F̃1 and F̃2 s.t. F̃1/F̃2 is bounded at zero. By assumption,
F1,2 = A1,2F̃1 +B1,2F̃2 and

(32.25)
F1

F2

=
1 + aF̃1/F̃2

b+ cF̃1/F̃2

Now, F̃1/F̃2 is real-valued and one-to-one, and thus the right side of
(32.25) is a Möbius transformation of a line segment: an arccircle.
The image of R through F1/F2 consists of three arccircles, a general
curvilinear triangle, provided that the singularities are such that F1/F2

are continuous on R.
We now show that (32.22) is such an equation, for a, b, c satisfying

(32.24). The following integral representation due to Euler can be
checked to solve (32.22):

(32.26) 2F1(a, b; c; z) = K

∫ 1

0

H(z, x)dx,

where H(z, x) = xb−1(1− x)c−b−1(1− zx)−a assuming c > b > 0

The standard choice of K, immaterial here, is K−1 = B(b, c− b) with
B the Beta function 11. For the integral to exist, we need

(32.27) b− 1 > −1, c− b− 1 > −1,−a > −1

which are satisfied if α + β + γ < 1, α, β, γ ∈ R+, which is the case
for a hyperbolic triangle (with concave sides) as can be verified from

9Equivalently, the space generated by f1,2, S := {C1f1 + C2f2 : C1, C2 ∈ C} is
closed under continuations at the branch points (e.g., f1(ze2πi) = C1f1(z)+C2(z)).

10This in fact is implied by linear independence. Check this by first showing
that two functions are linearly independent iff their Wronskian W (f1, f2) := f ′1f2−
f ′2f1 6= 0.

11The formula is valid under the more general condition Re (c) > Re (b) > 0, but
here we only need real a, b, c.
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0 1I1
x = a

z

Figure 24. Hypergeometric contours

(32.24). Under this same condition, we have

(32.28) (b−1)+c−b−1−a < −1⇒ H(x, z) ∼ s−p, p > 1 as x→∞

Singularities of 2F1 For general a, b, c the behavior of h in (32.22) at
the singular points of the ODE, 0, 1,∞ 12 follows general results about
regular singular points of ODEs (Frobenius theory, cf. [4]); we will not
assume this here however. We will find the behavior of the solutions in
three different way, to illustrate various approaches.

Directly from the integral representation, the behavior can be calcu-
lated in the following way.

Clearly, (32.26) and Corollary 7.34 imply that 2F1 is analytic except
possibly on R+. If z → a ∈ R+\ /∈ {1} then we can use the analyticity
of the integrand at a to first homotopically deform the contour as shown
in Fig. 24. The new integral (of course, equal to the original one) is
manifestly analytic in z near a. Thus the only possible singularity is at
1 (since the integrand is manifestly analytic for small z, cf. Corollary
7.34).

At z = 0 we get

(32.29)
2F1(a, b; c; z)

K
=

∫ 1

0

xb−1(1− x)c−b−1dx > 0

12Writing the equation in the form h′′ + Q(x)h + R(x) = 0, {0, 1} are singular
points of P,Q. Ditto after the change of variable z = 1/t, y(z) = t−cY (t) at t = 0.
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To find the type of behavior at z = 1 it is convenient to take z = 1−ε
and change the variable to x = 1− s in the integral:

(32.30) K

∫ 1

0

h(z, (1− s))ds = K

∫ 1

0

(1− s)b−1sc−b−1(ε+ s− εs)−ads

By (32.28) We can then push the contour up toward +i∞,
(32.31)∫ 1

0

h(z, (1−s))ds =

(∫ +i∞

0

−
∫ +i∞

1

)
(1−s)b−1sc−b−1(ε+s−εs)−ads

The second integral is analytic in ε by the same Corollary 7.34.
In the first one, we change variable to s = εu, to get

(32.32) − εc−b−1−a+1

∫ +i∞

0

(1− εu)b−1uc−b−1(1 + u− εu)−ads

= −εc−b−a
∫ −∞

0

(1− εu)b−1uc−b−1(1 + u− εu)−ads

where the contour change is justified by (32.28).

Exercise 32.4. What is the phase of the last integral in (32.32)?

The integral in (32.32) is analytic in ε and thus

(32.33) 2F1(a, b; c; z) = A1 + A2(1− z)γ where A1,2 are analytic at 1

and A2(1) =
∫ +∞

1
uc−b−1(1 + u)−ads > 0. A second solution of (32.22)

is obtained, cf. [8], by noticing that the substitution h(z) = g(1 − z)
leads to the equation (32.22) with c replaced by C = a+ b+ 1− c. The
integral representation (32.26) still holds with c replaced by C = 1−γ,
and converges under the same conditions on α, β, γ as (32.26). The
behavior of the integrand at infinity is still of the form in (32.28).
Thus the same analysis applies, to show that there is a second solution
which is analytic at z = 1 and has a singularity at zero, with c− b− a
replaced by 1 − c = α. This also suggests making the substitution
h1 = z1−ch = zαh directly into (32.22); we get an equation of the form
(32.22), with A,B,C replaced by

(32.34) A = a+ 1− c, B = b+ 1− c, C = c− 2

which has an integral representation of the form (32.26) valid under
the same conditions on α, β, γ. Thus, near z = 0 we have two linearly
independent solutions, A1 analytic and A2 of the form zαA(z) with A
analytic and A(0) 6= 0. These are clearly linearly independent since
the second solution is not analytic at zero. In the same way, there are
two solutions, one analytic and positive at z = 1 and another one of
the form zγA(z), A analytic and positive for z < 1.
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From the ODE. Here we are assuming knowledge of basic properties
of linear ODEs: a linear combination (with constant coefficients) of so-
lutions is a solution (this can be checked directly) and the fact that the
space of solutions of a second order linear equation is two-dimensional
(i.e., there are exactly two free constants, or, in other words, there are
two linearly independent solutions which form a basis in the space of
all solutions).

With F01 given by (32.26), we notice as before that F is analytic
near zero and F (0) > 0. We look for a second solution in the form
F02 = F01g. The equation for g is

(32.35)
g′′

g′
= −2

F ′

F
+ q(x);

(
q(x) :=

(a+ b+ c)x− c
x(1− x)

)
= −2

F ′

F
− c

x
+A(x)

⇒ g′ = − c
x
A1(x)⇒ F01(x) = x−c+1A2(x) = xαA2(x);

with A,A1, A2 analytic (check the conclusions above). Since F is real-
valued for real z ∈ (0, 1), g is also real-valued, and it is an independent
solution (it has a manifestly different behavior at zero). At x = 1 we
make the substitution z = 1− y and we get
(32.36)
y(1− y)h′′+ [C − (a+ b+ 1)y]h′− abh = 0, C = a+ b+ c− 1 = 1− γ
In the same way as above we get two independent real valued solutions
for y real, F10(y) analytic and a second one F11 of the form yγA1 with
A1 analytic. They are in general different from the solutions F00(y)
and F00(y).

Finally the substitution h(z) = zaH(1/z) z = 1/Z in (32.22) results
in an equation of the same type as (32.22). The ratio of two solutions
behaves like z−β for large z. Now, any transformation of the type F1/F2

where F1 and F2 are real maps the interval (0, 1) into an interval. A
different choice f1/f2 is a Möbius transformation of F1/F2, and thus
it maps the interval (0, 1) into an arccircle. Keeping one combination
F1/F2 chosen so that F1/F2 → 0 as z → ∞ will then map R into a
curvilinear triangle, of angles α, β, γ.

Note 32.5. In the simplest nondegenerate case, Frobenius theory al-
lows to determine the behavior of solutions of linear meromorphic
ODEs, Lf , with regular singularities, say at z0 by a very simple method:
take L(z − z0)r and keep only the lowest power of (z − z0). This gives
a quadratic equation for r. If the solutions r1,2 do not differ by an in-
teger, then Lf = 0 has two linearly independent solutions in the form
(z − z0)r1,2A1,2(z), A analytic at z0.



90

Note 32.6. The equation satisfied by f1/f2, a ratio of solutions of the
hypergeometric equation is

(32.37) {w, z} =
1− α2

2z2
+

1− γ2

2(z − 1)2
+
α2 + γ2 − β2 − 1

2z(z − 1)
= 0

where {w, z} is the important Schwarzian derivative [8]:

(32.38) {w, z} =

(
w′′

w′

)′
− 1

2

(
w′′

w′

)2 (
w′ =

dw

dz

)
The Schwarzian derivative is invariant under any Möbius transforma-
tions of w as expected from our discussion and can be checked by
straightforward calculation.

33. Riemann-Hilbert problems: an introduction

An impressive number of problems can be reduced to so-called Rie-
mann Hilbert problems, and for many of them the only known way of
solution is via the associated Riemann-Hilbert problem.

Problems which can be solved with RH techniques include
(1) integrable models such as the transcendental Painlevé equations

e.g. y′′ = 6y2 + x (PI) and many others;
(2) relatedly, inverse scattering problems: find, from the scattering

data the potential q(x) in the time–independent Schrödinger equation

(33.1) ψxx + (k2 + q(x))ψ = 0

(3) questions in orthogonal polynomials, random matrices, combina-
torial probability;

(4) the nonlinear initial value problem for the KdV (Korteweg–
deVries) equation
(33.2)
ut+uxxx+uux = 0; u(x, 0) = u0(x), u→ 0 as |x| → ∞ (x ∈ R, t ∈ R+)

(5) integral equations of the type

(33.3) f(t) +

∫ ∞
0

α(t− t′)f(t′)dt′ = β(t)

(under suitable integrability conditions)
(6) finding the inverse Radon transform, a transform which is mea-

sured in computerized tomography,

33.1. A simple Riemann problem. Perhaps the simplest RH prob-
lem is: given a simple smooth contour C and f(t) a suitably regular
function on C, find an analytic function whose jump across C is f :

(33.4) Φ+(t)− Φ−(t) = f(t)



91

33.2. Generalization: ∂ (DBAR) problems. A particular case of
a RH problem is to find an analytic function with a given jump across
the real line:

(33.5) Φ+(x)− Φ−(x) = φ(x)

with Φ± analytic in the Hu (Hl) respectively.
If we let Φ be defined by Φ+ in the Hu and by Φ− in the Hl, then

we have

(33.6)
∂Φ

∂y
=

1

2
f(x)δ(y)

A general ∂ problem would be, given g, to solve

(33.7)
∂Φ

∂z
= g(x, y)

in some region D ⊂ C.

34. Cauchy type integrals

We recall that a function is Hölder continuous of order λ on a smooth
curve C if

(34.1) ∃ Λ > 0 s.t. ∀x, y ∈ C, |f(x)− f(y)| = Λ|x− y|λ

The condition implies continuity if λ > 0 and it is nontrivial if λ 6 1
(if λ > 1 then df/ds = 0).

Let C for now be a compact curve and φ be Hölder continuous on
C. Then the function

(34.2) Φ(z) =
1

2πi

∫
C

φ(s)

s− z
ds

is manifestly analytic for z /∈ C (you can check this by Morera’s theo-
rem using Fubini).

34.1. Asymptotic behavior for large z.

Exercise 34.1. Show that Φ(z) is analytic at infinity in z and that

(34.3) Φ(z) = −
∫
C
φ(s)ds

2πi

1

z
(1 + g(1/z)) as z →∞

as where g(1/z)→ 0 as z →∞.
Let C be a simple smooth contour and let t be an interior point

of C. By this we mean that C = {γ(s) : s ∈ [0, 1]} and t = γ(s1)
with s1 ∈ (0, 1). We can then draw a small circle centered at t which
intersects L in two points (a1 and a2). One arc of circle together with
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the curve segment between a1 and a2 form a closed Jordan curve, and
so does the other arc circle and the curve segment between a1 and a2.
A sequence approaches C from the left side if it eventually belongs to
the closed Jordan curve whose interior is to the left of C as the curve
is traversed positively (a similar definition applies to right limits).

34.2. Regularity and singularities. Let us first take a simple ex-
ample, in which φ is analytic in a neighborhood N of (0, 1) (note that
this does not exclude multi-valued functions singular at zero and real
analytic at any x ∈ (0, 1) s.a. ln z), and assume that 0 is an integrable
singularity (that is, φ ∈ L1((0, 1))). Then, the same argument we
used to analyze hypergeometric functions shows that Φ(z) is analytic
in Hu ∪ Hl ∪ N . The only possible singularities are at 0 and 1. If z
approaches a point a in (the interior of) (0, 1), say from Hu, then we
can, once more as in the analysis of hypergeometric functions locally
deform the contour before z “touches a” and obtain that the integral
equals φ(a) +A(z) with a analytic near a. What about A(a)? We can

use Exercise 10.46 to see that A(a) = ±1
2
φ(a)+P 1

2πi

∫ 1

0
φ(s)(s−t)−1ds.

The same, interestingly, holds more generally:

Theorem 34.2 (Plemelj’s formulas). Assume φ is Hölder continuous
on the simple smooth curve C, let t be an interior point of C and zn
approach t ∈ Int C from the left (right). If C is not bounded, assume
also that φ ∈ L1(C). Then, with the ± sign being + for left limit and
− for right limit,

(34.4) lim
n→∞

Φ(zn) = Φ±(t)

where

(34.5) Φ±(t) = ±1

2
φ(t) +

1

2πi
P

∫
φ(s)

s− t
ds

and

(34.6) P

∫
φ(s)

s− t
ds

(cf. Definition 10.45) exists.

Note 34.3. (i) The property is local. It is easy to see that it is enough
to prove it for the compact pieces of the curve C.

(ii) A similar statement can be obviously made when t is approached
along a curve, since all limits along subsequences coincide.
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It is clearly enough to show the formula as the contour is approached
from the left. It is also easy, and left as an exercise to extend the proof
from the case when C is a piece of R, say [−1, 1] to a more general
bounded curve (open or not): parametrize the curve and do similar
estimates).

We reduce to the case when φ is a constant in the following way. Let
zn = tn + iyn = t+ δn + iyn where δn → 0 and yn ↓ 0. We write

(34.7)
φ(s)

s− tn − iyn
=
φ(s)− φ(tn)

s− tn − iyn
+

φ(tn)

s− tn − iyn
where the first function on the right side is expected to be more regular
in the limit zn → t. Consider thus the auxilliary function

(34.8) Ψn :=
φ(s)− φ(tn)

s− tn − iyn
We first obtain a result about Ψn:

Proposition 34.4. (i) Let zn = t + εn + iyn, εn → 0 and yn ↓ 0. We
have, as zn → t in this way,

(34.9) lim
zn→t

∫ 1

−1

Ψn(s)ds =

∫ 1

−1

φ(s)− φ(t)

s− t
ds

Proof. We write I for the characteristic function of the interval [−1, 1],
i.e. I(x) = 1 if x ∈ [−1, 1] and zero otherwise. Denote

(34.10) Gn(u) =
φ(u+ tn)− φ(u)

u+ iyn
; G(u) =

φ(u+ t)− φ(u)

u

For n large enough s.t. 1 + |tn| < 2 we change variables to s = tn + u,
and

(34.11)∫ 1

−1

Ψn(s)ds =

∫ a

−a
Ψn(s)I(s)ds =

∫ a

−a

φ(u+ tn)− φ(tn)

u+ iyn
I(tn + u)du

=

∫ a

−a
Gn(u)I(tn + u)du

Now we note that for all u we have

(34.12) |φ(u+ tn)− φ(tn)| 6 Λ|u|λ, |u+ iyn| > |u|
⇒ |Gn(u)I(tn + u)| 6 Λ|u|λ−1 ∈ L1([−a, a])

Note also that for any u 6= 0 we have

(34.13) Gn(u)I(u+ tn)→ G(u)I(u+ t) as n→∞
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The conditions of the dominated convergence theorem are met and thus

(34.14)∫ a

−a
Gn(u)I(tn + u)du→

∫ a

−a
G(u)I(t+ u)du =

∫ a

−a
G(t− s)I(s)ds

=

∫ 1

−1

φ(s)− φ(t)

s− t
ds

To deal with the term

φ(tn)

s− tn − iyn
as we will see, we only need to find out what happens when φ = 1.
The limit to evaluate is then

(34.15) lim
zn→z

∫ 1

−1

1

t− tn − iyn
dt

Proposition 34.5.

(34.16) lim
zn→t

∫ 1

−1

1

s− zn
ds = πi+ P

∫ 1

−1

1

s− t
ds

and the last principal part integral exists and equals

(34.17) P

∫ 1

−1

1

s− t
ds = ln

(
1− t
1 + t

)
, (t ∈ (−1, 1))

where the branch of the log is the natural one: positive for positive
arguments.

Proof. We have, by analyticity and homotopic deformation for z to the
left of the curve,

(34.18)

∫ 1

−1

1

s− z
ds =

∫
Cε

1

s− z
ds

where Cε is the contour depicted in Fig. 25, where a line segment of
length 2ε centered at zero is replaced by an semicircle of radius ε in
Hl. The integral around the half circle Cl;ε is easily calculated in the
limit zn → t, by parametrization,

(34.19) lim
zn→t

∫
Cl;εε

1

s− zn
ds = lim

zn→t

∫ 0

−π
i

εeiφ

εeiφ − δn − iyn
dφ = πi
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zn

t+ ε0 1t− ε
t

Figure 25. Contour Cε in Prop. 34.4.

by dominated convergence which also shows that

(34.20) P

∫ 1

−1

1

s− t
ds = lim

ε→0

[∫
Cε

1

s− t
ds−

∫
Cl;ε

1

s− t
ds

]

exists, since the first term on the right side of (34.20) does not depend
on ε whereas for the second limit we have already shown that the limit
is πi.

The existence of the limit can be shown by explicit integration as
well, giving (34.17).

Corollary 34.6. Under the conditions of Theorem 34.2,

(34.21) P

∫ 1

−1

φ(s)

s− t
ds =

∫ 1

−1

φ(s)− φ(t)

s− t
ds− φ(t)P

∫ 1

−1

1

s− t
ds

exists.

Proof. This is immediate from Exercise 10.47 and the results we ob-
tained so far.

34.3. Proof of Plemelj’s formulas.
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Proof. We have

(34.22) lim
zn→t

∫ 1

−1

φ(s)

s− zn
ds

34.4
= lim

zn→t

∫ 1

−1

φ(s)− φ(tn)

s− zn
ds+ lim

zn→t

∫
Cε

φ(tn)

s− zn
ds

34.5
=

∫ 1

−1

φ(s)− φ(t)

s− t
ds+ φ(t) lim

zn→t

∫
Cε

1

s− zn
ds

34.5
=

∫ 1

−1

φ(s)− φ(t)

s− t
ds+ πiφ(t) + φ(t)P

∫ 1

−1

1

s− t
ds

34.6
= P

∫ 1

−1

φ(s)

s− t
ds− φ(t)P

∫ 1

−1

1

s− t
ds+ πiφ(t) + φ(t)P

∫ 1

−1

1

s− t
ds

= P

∫ 1

−1

φ(s)

s− t
ds+ πiφ(t)

where we indicated the propositions and corollary used in the calcula-
tion.

Note 34.7. The function defined by the Cauchy type integral (34.2)
is called sectionally analytic. With the convention about the sides
of the curve mentioned before, functions that are boundary values of
Cauchy type integrals are sometimes denoted ⊕ and 	 functions. re-
spectively.

A straightforward calculation shows that the following result holds.

Theorem 34.8 (Existence). Under the conditions of Theorem 34.2,
the function in (34.2) solves the Riemann-Hilbert problem in §33.1.

34.4. Examples.

34.4.1. A very simple example. As usual S1 is the unit circle. Find a
function Φ analytic in C \ S1 such that along S1 we have

(34.23) Φ+(t)− Φ−(t) = 1

Note that for this problem the set of analyticity is not a domain but a
union of two disjoint domains. There is no reason to think of Φ as one
analytic function, unless the two pieces were analytic continuations of
each other across S1, which they cannot be.

For the problem in this section, Plemelj’s formula reads

(34.24) Φ(z) =
1

2πi

∫
S1

1

s− z
ds
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Clearly, if z is inside the unit disk, which, according to our convention,
is to the left of S1 oriented positively, we have

(34.25) Φin(z) =
1

2πi

∫
S1

1

s− z
ds = 1

Likewise, if z is outside the unit disk we have

(34.26) Φout(z) =
1

2πi

∫
S1

1

s− z
ds = 0

Both Φin and Φout are analytic, but not analytic continuations of each-
other, so in this case our sectionally analytic function is really a pair of
distinct analytic functions. We leave the question of uniqueness to the
next subsection when the contour is open and which leads to a more
interesting discussion.

34.4.2. Another simple example. Find a function Φ analytic in C \
[−1, 1] such that along [−1, 1] we have

(34.27) Φ+(t)− Φ−(t) = 1

34.4.3. A (but not the) solution. According to Plemelj’s formulas this
function is given by

(34.28) Φ(z) =
1

2πi

∫ 1

−1

1

s− z
ds

(It is clear Φ is well defined and analytic in C \ [−1, 1], which is now a
region.)

34.4.4. Formula for the solution in §34.4.3. Can we say more about
this function? For z ∈ (1,∞), for example, we can calculate the integral
explicitly and it gives

(34.29) Φ(z) = − 1

2πi
ln

(
z − 1

z + 1

)
with the usual branch of the log, which makes Φ negative for z > 1.
Since (z − 1)(z + 1)−1 = 1 − 2z−1(1 + z−1)−1, Φ admits a convergent
series representation in powers of 1/z for |z| > 1 and thus it is analytic
in {z : |z| > 1. It coincides by construction with our Φ on (1,∞). They
are therefore identical to each other on C \ [−1, 1].
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34.4.5. A verification. As an exercise of working with branched func-
tions, let’s check that indeed the function in (34.29) solves our problem.
Let

w =
z − 1

z + 1
To see what argument we get for z ∈ (−1, 1) one way is the following.
We remember that z ∈ Hu and we chose the branch with Im ln((z −
1)/(z+ 1)→ 0 as z ↓ (1,∞). Since everything is continuous for |z| > 1
we can simply say that Im ln((z − 1)/(z + 1)) = 0 if z > 1. We then
take z = εeiφ with φ ∈ [0, π] and this clearly corresponds to analytic
continuation in Hu from z > 1 to z < 1. Thus,

(34.30) ln

(
z − 1

z + 1

)
→ ln

(
1− t
1 + t

)
+ iπ

and similarly, as z approaches [−1, 1] from below we get

(34.31) ln

(
z − 1

z + 1

)
→ ln

(
1− t
1 + t

)
− iπ

and indeed Φ+ − Φ− = 1 along [−1, 1]. Note that only the points
{−1, 1} are special, not the whole segment. In any event, we can
define Φ as one analytic function on C \ [−1, 1] or, more globally, on
the universal covering of C \ {−1, 1}.

34.4.6. Calculating principal value integrals. Plemelj’s formulas help us
calculate principal values integrals as well, sometimes in a simpler way.
Let C be a simple smooth closed curve and assume that f(z) is analytic
in Int(C) and Hölder continuous in the closure of Int(C).

Exercise 34.9. Show that

(34.32)
1

2πi
P

∫
C

f(s)

s− t
ds =

1

2
f(t)

a “limiting case” of a Cauchy formula.

34.4.7. Uniqueness issues. Is the solution of our problem unique? Cer-
tainly not. We can add to Φ any analytic function with isolated singu-
larities at ±1. Can we achieve uniqueness in such a problem? Yes, if
we rule out this freedom by providing conditions at infinity and near
the endpoints of the curve.

Theorem 34.10 (Uniqueness). Consider the problem in §33.1 with the
following further conditions:

(1) Φ(z)→ 0 as |z| → ∞;

(2) (1∓ z)Φ(z)→ 0 as z → ±1
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z = −1 z = 1

Figure 26. Contour used for applying Morera’s theorem.

Then the solution is unique, namely (34.2).

Proof. The Φ in (34.2) satisfies this condition, as it is easy to verify.
Assume Φ1 is another solution with the same properties. Then f =
Φ − Φ1 is analytic in C \ [−1, 1] and continuous on (−1, 1), entailing
continuity in C \ {−1, 1}. To apply Morera’s theorem, show as an
exercise that the contour integral of Φ−Φ1 on a circle of radius ε tends
to zero as ε→ 0, thus is zero on any closed contour in C (see Fig. 26).
Since limz→∞(Φ(z)− Φ1(z)) = 0, then Φ− Φ1 = 0.

Exercise 34.11. Show that any simple smooth curve in C is the natu-
ral boundary of many analytic functions, even ones that are in C∞(R2)
(that is, as functions of two real variables, (x, y), and in the sense of
lateral limits of derivatives). What other curves, or, more generally,
boundaries of domains can be natural boundaries?

35. Extensions

35.1. Scalar homogeneous RH problems. This is a problem of the
type

(35.1) Φ+ = gΦ− on C
where C is a smooth simple closed contour, g nonzero on C and satis-
fying a Hölder condition on C. We are looking for solutions of finite
order and assume that the index of g w.r.t. C is k. We now explain
these last two notions.

35.1.1. Index of a function with respect to a curve. We first need to
define the index of a function φ with respect to a closed curve.

Assumption 35.1. C is a smooth closed curve, φ is Hölder continuous
of exponent α and constant A along C and minC |φ| = a > 0.

If φ is in fact differentiable, the definition of the index is simply

(35.2) indCφ :=
1

2πi

∫
C

φ′(s)

φ(s)
ds
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(If φ is meromorphic inside of C, then clearly indCφ = N − P , the
number of zeros minus the number of poles inside C.) If φ is not differ-
entiable, we can still define the index by noting that in the differentiable
case φ′/φ = (lnφ)′ and then

(35.3) indCφ :=
1

2πi
[log φ]C

the total variation of the argument of φ when C is traversed once.
Because of the nonvanishing of φ, a branch of the log can be consistently
chosen and followed along C. Let Γ = maxt∈[−1,1] |γ′(t)|. We choose ε
such that AΓεα < a/2 and then we have φ(γ(t+ε)) = φ(γ(t))+δ where
|δ| < a/2. If we partition [0, 1] in intervals of size ε and choose a branch
of log(φ(γ(0))) we can calculate inductively the log in any interval of
size ε by taking 0 < ε′ < ε and writing φ(γ(kε+ ε′))) = φ(γ(kε)) + δ′,
noting that |δ′| < |φ(γ(kε))| and thus

(35.4) log
(
φ(γ(kε+ ε′))

)
= log

(
φ(γ(kε))

)
+ log

(
1 + δ′/φ(γ(kε))

)
can be calculated by Taylor expanding the last log. Since the log and
φ are well defined, and the condition exp(log φ(z)) = φ(z) is preserved
in the process, the index of φ must be an integer.

35.1.2. Degree of a function at infinity. By definition Φ has degree k
at infinity if for some C 6= 0 we have

(35.5) Φ(z) = Czk +O(zk−1) as z →∞
The function Φ has finite degree at infinity if Φ = o(zm) for some m.

35.1.3. Solution to the homogeneous RH problem. First we note that if
Φ is a solution and P is a polynomial of order m, then by homogeneity
ΦP is also a solution.

Let us assume C is a simple smooth closed curve. Without loss of
generality we assume 0 ∈Int(C). We can rewrite the problem as

(35.6) Φ+(t) = (t−kg(t))(tkΦ−) on C
or

(35.7) ln Φ+(t) = ln(t−kg(t)) + ln(tkΦ−) on C
or finally, with obvious notation,

(35.8) Γ+(t) = f(t) + Γ−(t) on C
The reason we form the combination t−kg(t), where we choose k to
be the index of φ w.r.t C, is to ensure Hölder continuity of f . Oth-
erwise, since arg φ changes by 2kπ upon traversing C f would have a
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jump discontinuity. But we already know a solution to (35.8), given by
Plemelj’s formulas

(35.9) Γ(z) =
1

2πi

∫
C

f(s)

s− z
ds

We recall that Γ− = O(z−1) for large z, and thus log(zkΦ−) = O(z−1)
too. This means that zkΦ− → 1 as z → ∞, or, which is the same,
Φ− = z−k + o(z−k) for large z. We finally get the solution of degree m
at infinity,

(35.10) Φ(z) = X(z)Pm+k(z)

where

(35.11) X =

{
eΓ(z), z inside C
z−keΓ(z), z outside C

where

(35.12) Γ(z) =
1

2πi

∫
C

log(s−kg(s))

s− z
ds

The polynomial P is appended to ensure, if possible, the desired be-
havior at infinity. We will not, for reasons of space, discuss uniqueness
issues here.

35.1.4. Ingomogeneous RH problems. These are equations of the form

(35.13) Φ+ = gΦ− + f

again under suitable assumptions on g and f . These can be brought to
Plemelj’s formulas in the following way. We first solve the homogeneous
problem

(35.14) Ψ+ = gΨ−

and look for a solution of (35.13) in the form Φ = UΨ. We get
(35.15)

U+Ψ+ = gU−Ψ− + f ⇒ U+gΨ− = U−gΨ− + f ⇒ U+ − U− =
f

gΨ−

which is of the form we already solved.

Exercise 35.2. * Check that f/Ψ+ is Hölder continuous.

35.2. Applications.
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35.2.1. Ingomogeneous singular integral equations. These are equations
of the form

(35.16) a(t)φ(t) + b(t)P

∫
C

φ(s)

s− z
ds = c(t)

with a, b, c Hölder continuous and the further condition iπa(t)± b(t) 6=
0. We attempt to write, guided by Plemelj’s formulas

(35.17) φ(t) = Φ+(t)− Φ−(t)

and

(35.18) Φ(z) =
1

2πi

∫
φ(s)

s− z
ds

and then

(35.19) P

∫
C

φ(s)

s− t
ds = iπ

[
Φ+(t) + Φ−(t)

]
where, of course φ is still unknown. The equation becomes

(35.20) a(t)
[
Φ+(t)− Φ−(t)

]
+ b(t)iπ

[
Φ+(t) + Φ−(t)

]
= c(t)

or

(35.21) Φ+(t)(a(t) + b(t)iπ) + Φ−(t)(b(t)iπ − a(t)) = c(t)

or, finally,

(35.22) Φ+(t) =
a(t)− b(t)iπ
a(t) + b(t)iπ

Φ−(t) +
c(t)

a(t) + b(t)iπ

which is of the form (35.13) which we addressed already. Care must be
taken that the chosen solution Φ is such that Φ+ +Φ− has the behavior
(34.3) at infinity. Then the substitution is a posteriory justified. We did
not discuss whether there are other solutions of the integral equation.
A complete discussion of this and related equations can be found in [7].

The number of applications of RH techniques is impressive. Many
interesting examples are given in [1]. The inversion formula for the
Fourier transform can be easily obtained after reformulating the ques-
tion as an RH problem. The inverse Radon transform can be solved
similarly. The (more complicated) matrix RH problems allow for many
more problems to be solved: integrable ODEs and PDEs, inverse scat-
tering and so on.

We choose one of the applications in [1], the solution of the Dirichlet
problem for the Laplacian in the upper half plane, with condition f
on the boundary, R. The problem can be reformulated as a Riemann-
Hilbert problem of the form (35.22), see [1], but in this case, the solu-
tion is obtained easily from Plemelj’s formulas.
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For this purpose we look for an analytic function in Hu generated by
u. As we know, this is

(35.23) Φ+ = u+ iv

where v is the harmonic conjugate of u, unique up to a constant. Now
note that the function

(35.24) Φ(z) =
1

πi

∫
R

f(s)

s− z
ds

is analytic in the upper half plane and, if f is Hölder continuous, then
by Plemelj’s formulas we have

(35.25) lim
z↓t∈R

Φ(z) = f(t) +
1

πi
P

∫
R

f(s)

s− t
ds

In particular u = Re Φ is harmonic and has the limit f(x, y) as (x, y)→
(t, 0). Now, simply writing z = x+ iy and taking the real part we get
the solution in the Poisson kernel form,

(35.26) u(x, y) =
y

π

∫ ∞
−∞

f(τ)dτ

(τ − x)2 + y2

The condition that f is Hölder can be relaxed to mere continuity as
follows. To better adapt to the limit y → 0 we change variable to
t = x+ βy and obtain

(35.27) u(x, y) =
1

π

∫ ∞
−∞

f(x+ βy)

β2 + 1
dβ

which, by dominated convergence, has f(x) as the limit when y → 0.

36. Entire and Meromorphic functions

Analytic and meromorphic functions share with polynomials and ra-
tional functions a number of very useful properties, such as decompo-
sition by partial fractions and factorization. These notions have to be
carefully analyzed though, since questions of convergence arise.

36.1. A historical context. Finding the exact value of the sum

(36.1) S :=
∞∑
n=1

1

n2

known as the “Basel problem” had been open for almost a century,
in spite of efforts by great mathematicians of the time (the Bernoulli
brothers, Leibniz, Goldbach, Stirling, Moivre and others) before Euler
solved it in 1735 whe he was 28; because the problem stumped so many
brilliant minds, this attracted a lot of attention. Euler’s solution, well
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before there was any systematic theory of complex functions, proceeds
as follows. Take the function

(36.2) f(x) =
sinx

x

This has a Taylor series which converges for all x ∈ C. If f were a
polynomial with roots at z = ai , then we would be able to write

(36.3) f(x) = A
∏

(x− ai)

Assuming the same were true for an “infinite order polynomial” and
noting that the roots of sin(x)/x are at nπ, n ∈ Z \ {0} we get

(36.4)
sinx

x
=
∏
n>1

(
1− x

nπ

)(
1 +

x

nπ

)
=
∏
n>1

(
1− x2

(nπ)2

)
Expanding out and collecting the coefficient of x2 we get

(36.5)
sinx

x
= −

(
1

π2
+

1

4π2
+ · · ·

)
= − 1

π2
S

On the other hand from the Maclaurin expansion of f(x) this coefficient
must also equal − 1

3!
. Thus

(36.6) S =
π2

6

In fact, Euler went further and calculated
∑

1
n2k for k > 1, in principle

for all even k. This was fine by the standards of the day, though it
led to some criticisms that prompted more rigorous proofs later by
Euler. Weierstrass was apparently inspired by this solution when he
developed the theory of decomposition of entire functions as products.
For a rigorous proof of (36.5) see §37.2

36.2. Partial fraction decompositions. First let R = P0/Q = P1 +
P/Q be a rational function. where Pi and Q are polynomials and
deg(P ) < deg(Q). We aim at a partial fraction decomposition of R;
if deg(Q) = 0 there is nothing further to do. Otherwise let z1, ..., zn,
n > 1, be the zeros of Q, where we don’t count the multiplicities, and
let nj be the multiplicities of these roots. Let’s look at the singular
part of the Laurent expansion of P/Q at zj:

(36.7)
P

Q
=

nj∑
k=1

cjk
(z − zj)k

+ analytic at zj
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We claim that

(36.8)
P

Q
=

n∑
j=1

nj∑
k=1

cjk
(z − zj)k

Indeed,

(36.9) E(z) :=
P

Q
−

n∑
j=1

nj∑
k=1

cjk
(z − zj)k

is an entire function. By assumption, P/Q → 0 as z → ∞ and the
rhs of (36.8) also, clearly, goes to zero as z → ∞. Thus E(z) → 0 as
z → ∞ and therefore E ≡ 0. Let’s try a less trivial example. The
function

(36.10)
π2

sin2 πz
has zeros for zi = N, N ∈ Z, and the singular part of the Laurent series
at z = N is, as it can be quickly checked

(36.11)
1

(z −N)2

We claim that in fact

(36.12)
π2

sin2 πz
=
∑
k∈Z

1

(z − k)2

and in fact the proof is similar to that for rational functions. We first
note that the series on the rhs of (36.12) converges in C \Z, uniformly
on compact sets; it thus defines an analytic f function in C \ Z. Let
E(z) be the difference between the lhs and rhs of (36.12).

(i) If z = x + iy, x ∈ [0, 1] and |y| > 1 large, the terms of the series
are bounded by

1

1 + (k − x)2

as can be seen by rearranging the terms in the denominators, and in
particular, by dominated convergence, for fixed x, f → 0 as y →∞.

(ii) With z = x+ iy we have

| sin(x+ iy)2| = 1

2

(
cosh(2y)− cos(2x)

)
>

1

2
(cosh(2y)− 1)

(iii) Clearly E(z) is periodic with period 1 and it is, by construction
and the form of f , an entire function.

(iv) By analyticity, E(z) is bounded in the rectangle {(x, y) : |x| 6
1, |y| 6 1} and by (i) and (ii) it is also bounded in the strip {(x, y) :
|x| 6 1, |y| > 1 and since it is periodic, it is bounded in C. Thus E is a
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constant. It can only be zero, since by (i) and (ii) E → 0 as x is fixed
and y →∞.

36.3. The Mittag-Leffler theorem. How generally is it possible to
decompose meromorphic functions by partial fractions? Completely
general, as we’ll see in a moment, provided we are careful with the
issues of convergence. We can’t naively just write, in the same spirit,

(36.13)
π

sin πz
??
=
∑
n∈Z

(−1)n

z − n

because clearly the series in (36.13) diverges for all z. But provided
we add and subtract terms so as to ensure convergence, the partial
fraction decomposition is general. The theorem below shows that for
any sequence of one-sided Laurent series centered at the points bn ∈ C
with no accumulation point, there is a meromorphic function having
exactly that singular behavior and analytic elsewhere. Conversely, any
meromorphic function can be decomposed as a sum of its negative
powers-part of its Laurent series at the poles and an entire function.
More precisely,

Note 36.1. The condition that {bn}n∈N has no accumulation point in
C automatically implies that |bn| → ∞ as n→∞.

Theorem 36.2 (Mittag-Leffler). (i) Let {bn}n∈N be a sequence of com-
plex numbers with no accumulation point (cf. Note 36.1) in C and let
{Pn}n∈N be a sequence of polynomials without constant term. Then
there are meromorphic functions f in C such that the only poles are
at z = bn and let the singular part of f at z = bn is Pn((z − bn)−1).

(ii) Conversely let f be meromorphic in C with poles only at z = bn
and with the singular part of the Laurent expansion at bn Pn((z−bn)−1).
Then there exists a sequence of polynomials {pn}n∈N and an entire
function g such that

(36.14) f =
∑
n∈N

[
Pn

(
1

z − bn

)
− pn(z)

]
+ g(z) := S(z) + g(z)

where the series converges uniformly on compact sets in C \ {bn}n∈N.

Proof. We start by proving (ii). We can assume without loss of gener-
ality that bn 6= 0 for if say b1 = 0 then we can prove the theorem for
f̃ = f − P1(1/z).

The possible of divergence of the infinite series
∑

n∈N Pn((z − bn)−1)
is due to the behavior for large n of the terms of the series.

To ensure convergence, it is then natural to subtract from each Pn,
n ∈ N, a sufficient number of terms of the convergent series in 1/bn
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(thought of as a variable, for the moment; note that we have analyticity
at infinity in bn). It is easy to see that the terms in the expansion in
1/bn are the same as the Taylor series terms in z for small z.

For each bn we take a disk of radius R = |bn/2| and denote by pn
the Taylor polynomial of order mn at zero of Pn((z − bn)−1). We take
|z| < R/2 and use integration on the circle of radius R to obtain from
(6.7)

(36.15)
∣∣Pn((z − bn)−1)− pn(z)

∣∣ 6 Cn2−mn−1

where Cn only depends on the maximum of |Pn| on the circle of radius
R. Thus, we can choose mn so that

(36.16)
∣∣Pn((z − bn)−1)− pn(z)

∣∣ 6 2−n; ∀z s.t. |z| < |bn/4|
Now we look at the series

(36.17) f1 =
∞∑
n=1

[
Pn((z − bn)−1)− pn(z)

]
and fix an R and analyze the series for z ∈ DR. We split the sum
(36.16) into two parts:
(36.18)

f1 =
∑

n:|bn|64R

[
Pn((z−bn)−1)−pn(z)

]
+

∑
n:|bn|>4R

[
Pn((z−bn)−1)−pn(z)

]
The first sum is finite, while for the second one we have |z| < |bn/4|
and the estimate (36.16) applies. Thus (36.17) is convergent away from
the poles uniformly on compact sets. Clearly, f − f1 is entire.

(i) We note that, by the same arguments, the function

(36.19) h(z) =
∑
n∈N

Pn((z − bn)−1)− pn(z)

constructed in (ii) is analytic in C \ {bn}n∈N and has the required sin-
gular Laurent part.

36.4. Further examples. Lets’ look at f(z) = π cot(πz). This func-
tion has simple poles with residue 1 in Z and is analytic in C − Z. If
to each term the series of Laurent polynomials,∑ 1

z − n
we add 1/n we get a convergent expansion, and thus
(36.20)

π cot(πz) =
1

z
+

∑
n∈Z\{0}

(
1

z − n
+

1

n

)
=

1

z
+

∑
n∈Z\{0}

1

n(z − n)
+ E(z)
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with E entire. We could estimate the behavior at infinity as we did
for π2/ sin2(πz), but we an also find E by relating the two expansions:
Note that

(36.21) π(cotπz)′ = − π2

sin2 πz

On the other hand, the series in (36.20) converges uniformly in C \ Z
and, by Weierstrass’s theorem can be differentiated termwise.

We get, using (36.12),

(36.22) S ′(z) = −
∑

n∈Z\{0}

1

(z − n)2
= π(cotπz)′ +

1

z2

and thus

(36.23) π cotπz = C +
1

z
+

∑
n∈Z\{0}

(
1

z − n
+

1

n

)
Combining pairwise the term with n with the term with −n we get

(36.24) π cot πz = C +
1

z
+

∑
n∈N\{0}

2z

z2 − n2

since the left side is odd, we must have C = 0 and thus

(36.25) π cot πz =
1

z
+

∑
n∈N\{0}

2z

z2 − n2

We can now use this identity to calculate easily some familiar sums.
Note that the lhs of (36.25) has the Laurent expansion at z = 0

(36.26) π cotπz =
1

z
− π2z

3
− π4z3

45
− 2π6z5

945
− · · ·

Since the series on the rhs of (36.25) converges uniformly near z = 0,
by Weierstrass’s theorem it converges together with all derivatives. On
the other hand we have

(36.27)
2z

z2 − n2
= −2

(
z

n2
+
z3

n4
+
z5

n6
+ · · ·

)
and we get immediately,

(36.28)
∑
n>1

1

n2
=
π2

6
,
∑
n>1

1

n4
=
π4

90
,
∑
n>1

1

n6
=

π6

945
· · ·

Exercise 36.3. * The definition of the Bernoulli numbers Bk is

(36.29)
1

ez − 1
=

1

z
− 1

2
+
∞∑
k=1

(−1)k−1 Bk

(2k)!
z2k−1
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Show that

(36.30)
∞∑
n=1

1

n2k
= 22k−1 Bk

(2k)!
π2k

Also based on (36.25), or using the same approach as for (36.26), it is
not difficult to show that

(36.31)
π

sin πz
= lim

m→∞

m∑
n=−m

(−1)n

z − n
=

1

z
+
∞∑
m=1

(−1)m
2z

z2 −m2

giving a precise meaning to (36.13).

37. Infinite products

An infinite product is the limit

(37.1)
∞∏
n=1

pn := lim
k→∞

k∏
n=1

pn = lim
k→∞

Πk

We adopt here the convention of existence of a nontrivial limit used in
[3]. Evidently, if one of the factors is zero, the infinite product would be
zero regardless of the behavior of the other terms. On the other hand,
we will be able to express analytic functions as infinite products, and
we should allow them to vanish. Then (37.1) is said to converge iff only
finitely many terms pn are zero, and the rest of the product has a finite
nonzero limit. Omitting the zero factors and writing pn = Pn/Pn−1,
P0 = 1 we see that the limit of Πk is the same as the limit of the Pk,
and thus pn → 1 is a necessary condition of convergence of the infinite
product. We should then better write the products as

(37.2)
∞∏
n=1

(1 + an)

and then a necessary condition of convergence is an → 0.

Theorem 37.1. The infinite product (37.2) converges iff

(37.3)
∞∑
n=1

ln(1 + an)

converges. We use the principal branch of the log, extended by conti-
nuity when arg(z) ↑ π and omit, as before, the terms with an = −1.

Proof. If the sum (37.3) converges, then Pn converges, since the expo-
nential of a finite sum is a finite product.

In the opposite direction, a word of caution. We know that in the
complex domain, ln ab is not always ln a+ln b. The limit of the sum will
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not, in general, be the log of the infinite product. So the reasonning is
not that obvious.

Let now n0 be large enough so that for all n > n0, |an| < ε and |Pn−
1| < 1/4. We first eliminate from the sum (and from the product) the
first n0 terms, since they do not contribute to convergence. Then, by
crude estimates, we see that arg(1+an), arg(Pn) and arg((1+an)Pn) are
all< π/2, and thus for all n > n0 we have ln(Pn+1) = ln(Pn)+ln(1+an).
The rest is immediate.

Absolute convergence is easier to control in terms of series. An infi-
nite product is absolutely convergent, by definition, iff

(37.4)
∞∑
n=1

| ln(1 + an)|

is convergent.

Theorem 37.2. The sum (37.4) is absolutely convergent iff
∑
ak is

absolutely convergent.

Proof. Assume
∑
ak converges absolutely. Then in particular an → 0.

Also, if
∑∞

n=1 ln(1 + an) converges absolutely then ln(1 + an)→ 0 and
an → 0. But (eliminating all the irrelevant zero terms which are zero)
we have, as n→∞ limn→∞ |an|−1 ln(1 + |an|) = 1, and the rest follows
from the limit ratio theorem.

Note 37.3. Conditional (not absolute) convergence of
∑
an and of∏

(1 + an) are unrelated notions. (Consider, e.g., the product
∏

(1 −
(−1)nn−1/2). Is the associated series

∑
(−1)nn−1/2 convergent? Is the

product convergent?)

37.1. Uniform convergence of products.

Exercise 37.4. ** Assume that pn(z) are analytic in the region Ω
and f(z) =

∏
n>1 pn(z) converges absolutely and uniformly on every

compact set in the region Ω. Show that f is analytic in Ω. Show that

(37.5) f ′(z) =
∞∑
k=1

∞∏
n=1

p′k
pk
pn

where the sum is also uniformly convergent. Hint: Use Weierstrass’s
theorem.
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37.2. Example: the sin function. We note that the zeros of sin πz
are at the integers and we would like to write sin in terms of the prod-
ucts of these roots. We can start with (36.25) and note that

(37.6) ln(Cπ sinπz)′ = π cotπz =
1

z
+

∑
n∈N\{0}

2z

z2 − n2

= (ln z)′ +
∑

n∈N\{0}

ln(z2 − n2)′

so we end up with the formal identity

(37.7) Cπ sin πz
?
= z

∏
n>0

Cn(z2 − n2)

(it is formal because, in principle, we are not allowed to combine the
logs the way we did) where the constants Cn need to be chosen so that
the product is convergent. Except for ensuring convergence the Cn are
immaterial, since we already have one on the left side a free constant.
A good choice is Cn = −n−2 which gives us the tentative identity

(37.8) Cπ sin πz
?
= z

∏
n>0

(
1− z2

n2

)
The constant C can only be 1/π2 if we look at the behavior near z = 0.
Thus,

(37.9)
sin πz

π
?
= z

∏
n>0

(
1− z2

n2

)
This equality of course needs to be proved, but this is not difficult; the
proof can be done in the same way as we proved equalities stemming
from partial fractions decompositions.

First we note that the product on the rhs of (37.9) is absolutely
and uniformly convergent on any compact z set; this can be easily
checked. It thus defines an entire function g(z). Motivated by the
way we obtained this possible identity, let us look at the expression
f ′/f − g′/g where πf(z) = sin πz. We get, using Exercise 37.4,

(37.10) f ′/f − g′/g = π cotπz − 1

z
+

∑
n∈N\{0}

2z

z2 − n2
= 0

This means that

(37.11)
f ′g − fg′

fg
= 0
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in C \ Z or, equivalently,

(37.12)
f ′g − fg′

g2
= 0 =

(
f

g

)′
or f/g = const; we already calculated the constant based on the be-
havior at zero, it is one. Thus indeed,

(37.13)
sinπz

πz
=
∏
n>0

(
1− z2

n2

)
proving (36.5).

How general is this decomposition possible? Again, if we are careful
about convergence issues it is perfectly general. This is what we are
going to study in the next subsection.

37.3. Canonical products. The simplest possible case is that in which
we have a function with no zeros.

Theorem 37.5. Assume f is entire and f 6= 0 in C Then f is of the
form

(37.14) f = eg

where g is also entire.

Proof. Since f ′/f is entire and C is simply connected, h(z) =
∫ z

0
f ′(s)/f(s)ds

is well defined and also entire. Now we note that (fe−g)′ = 0 in C and
thus f = exp(h+C) proving the result. Another proof is by using the
monodromy theorem and the fact that log f has no singularities in C.

Assume now that f has finitely many zeros, a zero of order m > 0
at the origin, and the nonzero ones, possibly repeated are a1, ...an.

Then

f = zm
n∏
k=1

(
1− z

an

)
eg(z)

where g is entire.
This is clear, since if we divide f by the prefactor of eg we get an

entire function with no zeros.
We cannot expect, in general, such a simple formula to hold if there

are infinitely many zeros. Again we have to take care of convergence
problems. This is done in a manner similar to that used in the Mittag-
Leffler construction.
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Theorem 37.6 (Weierstrass). (i) If (an)n∈S⊂N is a sequence with no
accumulation point, then there exists an entire function with zeros at
an and no other zeros.

(ii) Assume f is an entire function with zeros at an. Then there exist
integers m, mn and an entire function g(z) such that

(37.15) f(z) = eg(z)zm
∏[(

1− z

an

)
e
z
an

+ 1
2( z

an
)
2
+···+ 1

mn
( z
an

)
mn
]

Proof. This is a consequence of Mittag-Leffler. Indeed, note that if f is
entire, then f ′/f is meromorphic, with simple poles at every zero bn of
f , and the residue is the order of the zero. Then in the representation
(36.14), Pn((z − bn)−1) = mn(z − bn)−1) where mn ∈ N, giving

(37.16)
f ′

f
=
∑
n∈N

[
mn

z − bn
− pn(z)

]
+ g(z) := S(z) + g(z)

The fact that (37.15) holds is a simple exercise in integrating (37.16).
Note that we can always take here (but not in Theorem 36.2) mn = n if
we order the roots according to size, since the multiplicity of an cannot
exceed n.

Corollary 37.7. Any meromorphic function is a ratio of entire func-
tions.

Proof. Let F be meromorphic with poles at bn of order mn. Let G be
any entire function with zeros at bn of order mn. Then FG has only
removable singularities.

37.4. Counting zeros of analytic functions. Jensen’s formula.
The rate of growth of an analytic function is closely related to the
density of zeros. We have a quite effective counting theorem, due to
Jensen.

Theorem 37.8 (Jensen). Assume f 6≡ 0 is analytic in the closed disk
Dr and f(z) = czmg(z) with m > 0 and g(0) = 1. Let ai be the nonzero
roots of f in Dr, repeated according to their multiplicity. Then

(37.17) ln |c| = −m ln r −
n∑
i=1

ln

(
r

|ai|

)
+

1

2π

∫ 2π

0

ln |f(reiθ)|dθ

Proof. The proof essentially boils down to the case where f(0) 6= 0
and it has no zeros inside the disk of radius r. In this simple case, a
consistent branch of ln f can be defined inside Dr (see also the second
proof of Theorem 37.5), and Re ln f = ln |f | is harmonic in Dr. For
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r′ < r we have be the mean value theorem for harmonic functions we
have,

(37.18) ln |f(0)| = 1

2π

∫ 2π

0

ln |f(r′eiθ)|dθ

Since f is analytic in the closed disk and ln |x| is in L1(R), it is easy to
see by dominated convergence (check) that (37.18) holds in the limit
r = r′ too, even if there are zeros on the circle of radius r:

(37.19) ln |f(0)| = 1

2π

∫ 2π

0

ln |f(reiθ)|dθ

Assume now f has zeros, with the convention in the statement of the
theorem. We then build a function which has no zeros inside Dr and
has the same absolute value for |z| = r. Such a function is

(37.20) h(z) =
rm

zm
f(z)

n∏
i=1

r2 − aiz
r(z − ai)

Then

(37.21) ln |h(0)| = 1

2π

∫ 2π

0

ln |h(reiθ)|dθ =
1

2π

∫ 2π

0

ln |f(reiθ)|dθ

The formula now follows by expanding out ln |h(0)|.

Corollary 37.9. Assume f is analytic in the closed disk of radius R
and f(0) 6= 0. Let ν(r) denote the number of zeros of f in the disk of
radius r 6 R. Then

(37.22)

∫ R

0

ν(x)

x
dx 6 ln max

|z|=R
|f(z)| − ln |f(0)|

Of course, ν(x) is an increasing discontinuous function of x.

Proof. Note that

ln(R/|ai|) =

∫ R

|ai|

dx

x
=

∫ R

0

χ[|ai|,R](x)
dx

x

Thus
n∑
i=1

ln

(
r

|ai|

)
=

∫ R

0

n∑
i=1

χ[|ai|,R](x)
dx

x
=

∫ R

0

ν(x)

x
dx

The rest follows immediately from (37.17).
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37.5. Entire functions of finite order. Let f be an entire function.
We denote by ‖f‖R the maximum value of |f(z)| for |z| 6 R, or which
is the same, ‖f‖R is the maximum value of |f(z)| for |z| = R. A
function is of order 6 ρ if for any ε > 0 there is some c > 0 such that
for all R large enough we have

(37.23) ‖f‖R 6 ecR
ρ+ε

or equivalently

(37.24) ln ‖f‖R = O(Rρ+ε)

Note 37.10. We can always check the condition for R ∈ N large
enough since (N + 1)ρ = O(Nρ).

The function f has strict order 6 ρ if there is some c > 0 such that
for all R large enough we have

(37.25) ‖f‖R 6 ecR
ρ

A function has order equal ρ if ρ is the inf of ρ′ s.t. (37.23) holds.
A function has strict order equal ρ if ρ is the inf of ρ′ s.t. (37.25)
holds.

Example 37.11. Assume f(z) is entire, and for large |z| there are
positive constants C, c and ρ such that |f(z)| 6 Cec|z|

ρ
. R > 0 there is

a c2 > 0 such that we have

(37.26) ν(R) 6 c2R
ρ

Indeed, the zeros at zero do not change the shape of the identity, and
we can thus assume f(0) 6=. Then,

(37.27) c|R|ρ >
∫ R

0

ν(x)

x
dx >

∫ R

R/2

ν(x)

x
dx >

ν(R/2)

R

R

2

and the rest is immediate. The constants in the inequality can be
optimized by choosing R/τ , τ > 1 instead of R/2 and finding the best
τ .

Theorem 37.12. Let f be entire of strict order 6 ρ and let {zn} be
its nonzero zeros, repeated according to their multiplicity and ordered
increasingly by their absolute value. Then for any ε > 0, the series

(37.28)
∞∑
n=1

1

|zn|ρ+ε

is convergent.
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Proof. We can obviously discard the roots with |zi| 6 1 which are in
finite number. Without loss of generality we assume there are none.
We have, with N ∈ N and estimating the sum by annuli,

(37.29)
∑
|zn|6N

1

|z|ρ+ε
6

N∑
k=1

ν(k + 1)− ν(k)

kρ+ε

we can now use the method of Abel summation by parts. We write

(37.30)
ν(k + 1)− ν(k)

kρ+ε
= ν(k+1)

(
1

kρ+ε
− 1

(k + 1)ρ+ε

)
+

(
ν(k + 1)

(k + 1)ρ+ε
− ν(k)

kρ+ε

)

and note that by summation, the terms in the last parenthesis cancel
out to

ν(N + 1)

(N + 1)ρ+ε
− ν(1)

Note that by usual calculus we have for some γ = γ(k)

(37.31)
ν(k + 1)

kρ+ε
− ν(k + 1)

(k + 1)ρ+ε
=

(ρ+ ε)ν(k + 1)

(k + γ)ρ+ε+1
6

Ckρ(ρ+ ε)

kρ+ε+1

and the sum converges.

37.6. Estimating analytic functions by their real part.

Theorem 37.13 (Borel-Carathéodory). Let f = u+ iv be analytic in
a closed disk of radius R. Let AR = max|z|=R u(z). Then for r < R we
have

(37.32) max
|z|6r
|f(z)| 6 2rAR

R− r
+
R + r

R− r
|f(0)|

Note that if f is entire, say, as z →∞ we have |f | → ∞ then, since
|u| 6 |f |, the theorem above shows that max |f |/maxu in a disk of
radius R is 6 2 as R→∞.

Proof. Assume first that f(0) = 0. Then u(0) = 0 and by the mean
value theorem AR > 0. If AR = 0 then by the same argument u ≡ 0
on ∂DR and by Poisson’s formula u ≡ 0 in DR. Then v ≡ const = 0
since f(0) = 0, thus f ≡ 0 and the formula holds trivially.

We now take AR > 0. Since the maximum of a harmonic function is
reached on the boundary, we have 2AR−u > u in DR and the inequality
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is strict in the interior. Also note that if at some point u < 0, then
again 2AR − u = 2AR + |u| > |u|. The function

(37.33) g(z) =
1

2AR − f(z)

f(z)

z

is holomorphic in DR and on the disk of radius R we have

(37.34) |2AR − f | =
√

(2AR − u)2 + v2 >
√
u2 + v2 = |f |

and thus in DR we have

(37.35) |g(z)| =
∣∣∣∣ 1

2AR − f(z)

f(z)

z

∣∣∣∣ 6 1

R

hence

(37.36)

∣∣∣∣f(z)

z

∣∣∣∣ 6 1

R
|2AR − f(z)| 6 1

R
(2AR + |f(z)|)

Solving for |f(z)| we get

(37.37) |f(z)| 6 2|z|AR
R− |z|

as claimed. The general case is obtained by applying this inequality to
f(z)− f(0) (exercise).

Corollary 37.14. Assume ρ > 0, f = u+ iv is entire and as |z| → ∞
we have

(37.38) |u(z)| 6 C|z|ρ

Then f is a polynomial of degree at most ρ.

Proof. Let R = 2|z|. We have, from Theorem 37.13 for large r = |z|,

(37.39) |f(z)| 6 2Crrρ

r
+ 3|f(0)| 6 C ′rρ

The rest is standard.

38. Hadamard’s theorem

Let ρ > 0 and let kρ be the smallest integer strictly greater than ρ,
kρ = bρc+1. We consider again the truncates of the series of− ln(1−z),
namely, with k = kρ,

(38.1) Pk(z) = z +
z2

2
+ · · ·+ zk−1

k − 1
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Theorem 38.1 (Hadamard). Let f be entire of order ρ, let zn be its
nonzero zeros and let k = kρ. Then, with m > 0 the order of the zero
of f at zero, there is a polynomial h of degree 6 ρ such that

(38.2) f(z) = eh(z)zm
∞∏
n=1

(
1− z

zn

)
ePk(z/zn) = eh(z)E(z)

The proof of this important theorem requires a number of interme-
diate results, notably the minimum modulus principle proved in the
following section, a very useful result in its own right.

Lemma 38.2. Let ε be such that λ := ρ + ε < kρ := k. There is a
c > 0 such that

(38.3) |(1− ζ) expPk(ζ)| 6 exp(c|ζ|λ)

Proof. For |ζ| 6 1/2 we have

ln(1− ζ) + Pk(ζ) =
∞∑
n=k

ζn

n
= ζkCk; |Ck| 6

∞∑
n=k

2−n 6 2(38.4)

⇒ (1− ζ)ePk(ζ) 6 e2|ζ|k 6 e2|ζ|λ(38.5)

For |ζ| ∈ [1/2, 1] we have

(38.6) |(1− ζ) expPk(ζ)| 6 1

2
exp

[
|ζ|k

(
1

|ζ|k−1
+ · · ·+ 1

|ζ|(k − 1)

)]
6

1

2
exp(2k|ζ|k) 6 1

2
exp(2k|ζ|λ)

For |ζ| > 1 we have

(38.7)

|(1− ζ) expPk(ζ)| 6 |(1− ζ)| exp

[
|ζ|k−1

(
1

k − 1
+ · · ·+ 1

|ζ|k−2

)]
6 exp

(
k|ζ|k−1 + ln |1 + |ζ||

)
6 exp

(
k|ζ|λ + ln |1 + |ζ||

)
6 exp

(
C2|ζ|λ

)
for some C2 independent of ζ, |ζ| > 1. This is because t−λ ln(1 + t) is
continuous on [1,∞) and goes to zero at infinity (fill in the details).

38.1. Canonical products. Take any sequence {zn}n where the terms
are ordered by absolute value, with the property that for some ρ > 0
and any ε > 0 we have

(38.8)
∞∑
n=1

1

|zn|ρ+ε
<∞
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Definition 38.3. The canonical product determined by the sequence
{zn}, denoted by E(k)(z, {zn}) or simply E(z) is defined by

(38.9) E(z) =
∞∏
n=1

(
1− z

zn

)
exp[Pk(z/zn)]

Theorem 38.4. E(z) is an entire function of order 6 ρ.

Proof. Take again any ε be such that λ := ρ + ε < kρ. Then, by
Lemma 38.2 we have
(38.10)

|E(z)| 6
∞∏
n=1

exp(c|z/zn|λ) = exp

(
c|z|λ

∞∑
k=1

|zn|−λ
)
6 exp

(
c1|z|λ

)
proving, in the process, uniform convergence of the product.

39. The minimum modulus principle; end of proof of
Theorem 38.1

This important theorem tells us, roughly, that if a function does not
grow too fast it cannot decrease too quickly either, aside from zeros.
More precisely we have

Theorem 39.1 (Minimum modulus theorem). Let f be an entire func-
tion of order 6 ρ. As before, let {zn} be its zeros with |zi| > 1, repeated
according to their multiplicity and let ε > 0. At every root, take out a
disk D(zn, rn) with rn = |zn|−ρ−ε and consider the complement U in C
of these disks. Then in U , for large r there is a constant c such that

(39.1) |f(z)| > exp(−c|z|ρ+ε) or
1

|f(z)|
= O(exp(|z|ρ+ε))

Proof. We start with the case when the entire function is a canonical
product. We take |z| = r and write

(39.2) E(z) =
∏
|zn|<2r

Ek(z, zn)
∏
|zn|>2r

Ek(z, zn)

and estimate the two terms separately. We note that in the second
product, all ratios ζ =: ζn = z/zn have the property |ζ| 6 1/2. Taking
one term of the product, we have to estimate below

(39.3) E(ζ) = (1− ζ)eP (ζ)
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Since |ζ| 6 1/2, ln(1−ζ) exists; we take the principal branch and write

(39.4)
∣∣(1− ζ)eP (ζ)

∣∣ =
∣∣eln(1−ζ)+P (ζ)

∣∣ =

∣∣∣∣∣exp

(
−
∞∑
n=k

ζn

n

)∣∣∣∣∣
= exp

(
−Re

∞∑
n=k

ζn

n

)
> exp

(
−

∣∣∣∣∣
∞∑
n=k

ζn

n

∣∣∣∣∣
)
> exp

(
−
∞∑
n=k

|ζ|n

n

)

> exp

(
−|ζ|k

∞∑
n=0

(1/2)n

n+ k

)
> e−2|ζ|k > e−2|ζ|ρ+ε

Thus for the second product in (39.2) we have

(39.5)
∏
|zn|>2r

Ek(z, zn) > exp

−2|z|ρ+ε
∑
|zn|>2r

1

|zn|ρ+ε

 > e−c|z|
ρ+ε

since the infinite sum converges by Theorem 37.12.
We split the remaining region into zk ∈ [1, r] and zk ∈ (r, 2r). Here

the factors (1 − z/zk) have to be bounded from below, and it is here
that we use the conditions on the removed disks. We have, on [1, r],

(39.6)∏
|zn|6r

|1− z/zn| =
|z − zn|
|zn|

>
∏
|zn|6r

|zn|−ρ−ε−1 >
∏
|zn|6r

r−ρ−ε−1 =

(
r−ρ−ε−1

)ν(r)
& e−r

ρ+ε ln r(ρ+ε+1) > e−c1r
ρ+ε′

for some C1 and ε′ > ε, since (rε−ε
′
ln r → 0 as r →∞.

On (r, 2r) we have

(39.7) |1− z/zn| =
|z − zn|
|zn|

> |zn|−ρ−ε−1 > (2r)−ρ−ε−1

and thus
(39.8)∏
|zn|<2r

|1− z/zn| > [(2r)−ρ−ε−1]ν(2r) = e−ν(2r)(ρ+ε+1) ln(2r) > e−c6r
ρ+ε′

for any ε′ > ε if r is large enough.
We now examine the convergence improving factors, for |zn| < 2r.

(39.9)

∣∣∣∣∣∣
∑
|zn|<2r

Pk(z/zn)

∣∣∣∣∣∣ 6
∣∣∣∣∣∣
∑

r<|zn|<2r

Pk(z/zn)

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑
|zn|6r

Pk(z/zn)

∣∣∣∣∣∣
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For the first term on the right we note that when |z/zn| = |ζn| =: |ζ| <
1 and we have

(39.10)

∣∣∣∣∣
k−1∑
n=1

ζn

n

∣∣∣∣∣ 6
k−1∑
n=1

1

n
=: c1

and thus

(39.11)
∑

r<|zn|<2r

|Pk(z/zn)| 6 ν(2r)c1 6 c2r
ρ+ε

For the second term on the right of (39.9) we note that |z/zn| > 1 and
thus, with ζ = z/zn we have

(39.12)

∣∣∣∣∣
k−1∑
n=1

ζn

n

∣∣∣∣∣ 6 |ζ|k−1

k−1∑
n=1

1

n
=: c1|ζ|k−1 = c1r

k−1|zn|−k+1

We use Abel summation by parts (we are careful that r is not neces-
sarily an integer)

(39.13)
∑
|zn|6r

|zn|−k+1 6
∑
m6r

ν(m+ 1)− ν(m)

mk−1

=
∑
m6r

ν(m+ 1)

(
1

mk−1
− 1

(m+ 1)k−1

)
+
ν(r + 1)

rk−1
− ν(1)

6
∑
m6r

ν(m+ 1)

(
1

mk−1
− 1

(m+ 1)k−1

)
+
ν(r + 1)

rk−1

6
∑
m6r

kCmρ+ε

mk
+ c3r

ρ+ε−k+1

6 C1

∑
m6r

mρ+ε−k + c3r
ρ+ε−k+1 6 C3r

ρ+ε−k+1

where we majorized the sum by an integral in the usual way. Multi-
plying by c1r

k−1 we get that the second term on the right of (39.9) is
bounded by

(39.14) C4r
ρ+ε

We now finish the proof of Theorem 38.1.

Proof. We take ε > 0 and s = ρ+ε. We order the roots nondecreasingly
by |zn|. For each root zn we consider the annulus An = {z : |z| ∈
[|zn| − 2|zn|−s, |zn|+ 2|zn|−s] (for the purpose of this argument, we can
as well assume that all roots are on R+, since the angular position
is irrelevant). Consider J c := R+ \ J where J is the union of all
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intersections of the An with R+. Since the Lebesgue measure of J does
not exceed 4

∑
n |zn|−s < ∞, there exist arbitrarily large numbers in

the complement J c. Take r be any number in J c and consider the
circle ∂Dr. Consider the function g = f/E. g is clearly an entire
function with no zeros. Then, by Theorem 37.5, g = eh with h entire.
Since Reh 6 (Cf + CE)rρ+ε for some Cf + CE independent of r in
Dr for arbitrarily large r (check), we have by Corollary 37.14 that h
is a polynomial of degree at most ρ + ε. Since ε is arbitrary, h is a
polynomial of degree at most ρ.

To finish the proof of the minimum modulus principle, we use Hadamard’s
theorem and the fact that e−h satisfies the required bounds. (Exercise:
fill in the details.)

Example 39.2. Let us show that f(z) = ez − z has infinitely many
roots in C. Indeed, first note that f(z) has order 1 since |z| 6 e|z| for
all z. Suppose f had finitely many zeros. Then

(39.15) ez − z = P (z)eh(z)

where P (z) is a polynomial and h(z) is a polynomial of degree one,
and without loss of generality we can take h(z) = cz, c = α + iβ. As
z = t→ +∞ we have

(39.16) P (t)e(c−1)t = 1− te−t → 1

In particular |P (t)|e(α−1)t → 1 which is only possible if α = 1. But
then |P (t)| → 1 which is only possible if P (t) = const = eiφ. We are
then left with

(39.17) ei(φ+tβ) = cos(tβ + φ) + i sin(tβ + φ)→ 1 as t→ +∞
which clearly implies β = 0. Then eiφ = 1. We are left with the identity

(39.18) ez − z = ez ∀z
which is obviously false.

Exercise 39.3. * Let P 6≡ 0 be a polynomial. Show that the equation
ez = P (z) has infinitely many roots in C.

Exercise 39.4. ** (i) Rederive formula (37.13) using Hadamard’s the-
orem.

(ii) Write down a product formula of the function

f(z) = sin z + 3 sin(3z) + 5 sin(5z) + 7 sin(7z)

The final formula should be explicit except for arcsins of roots of a cubic
polynomial.
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39.1. Some applications.

Corollary 39.5 (Borel). Assume that ρ is not an integer and f has
order strictly ρ. Then f takes every value in C infinitely many times.

Proof. It suffices to show that such a function has infinitely many zeros,
since f and f − z0 have the same strict order. Assume to get a con-
tradiction f had finitely many zeros. Then g(z) = f(z)

∏n
i=1(z − zi)−1

would be entire, with no zeros, and as it is easy to check, of order
strictly ρ. Then g = eh with h a polynomial whose degree can only be
an integer.

Let exp(n) be the exponential composed with itself n times.

Corollary 39.6 (A weak form of Picard’s theorem). A nonconstant
entire function which is bounded by exp(n)(C|z|) for some n and large
z takes every value with at most one exception.

Proof. We prove this by induction on n. We first show that a non-
constant entire function of finite order takes every value with at most
one exception. Assume a is an exceptional (lacunary) value. Then
f(z) − a is entire with no zeros, thus of the form eh with h a poly-
nomial, f = eh − a. If the degree of h is zero, then f is a constant.
Otherwise, we must show that eh− a takes all values with at most one
exception (−a of course), or, which is the same, eh takes all values with
at most one exception. The equation eh = b, b 6= 0 is solved if h− ln b
has roots, which is true by the fundamental theorem of algebra.

Assume now the property holds for n 6 k−1 and we wish to prove it
for n = k. Let f be an entire function bounded by exp(n)(C|z|) which
avoids the value a. Then f − a is entire with no zeros, f − a = eh with
h entire. It is easy to show that h is bounded by exp(n−1)(C|z|). Thus
it avoids at most one value, by the induction hypothesis. The equation
eh− a = b, for b 6= −a always has a solution. Indeed, if ln(b− a) is not
an avoided value of h this is obvious. On the other hand, if ln(b − a)
is avoided by h, then again by the induction hypothesis ln(b− a) + 2πi
is not avoided.

Exercise 39.7. ** Show that the equation

(39.19) cos(z) = z4 + 5z2 + 13

has infinitely many roots in C.

Exercise 39.8. ** (Bonus) Show that the error function

(39.20) erf(x) =
2√
π

∫ x

0

e−t
2

dt
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takes every complex value infinitely many times. (Hint: using L’Hospital

show that erf(is)/(es
2
/s)→ const. as s→ +∞.)

We will return to the error function later and use asymptotic methods
to locate, for large x, these special points.

40. The Phragmén-Lindelöf Theorem

Theorem 40.1 (Phragmén-Lindelöf). Let U be the open sector between
two rays from the origin, forming an angle π/β, β > 1

2
. Assume f is

analytic in U , and continuous on its closure, and for some C1, C2,M >
0 and α ∈ (0, β) it satisfies the estimates

(40.1) |f(z)| 6 C1e
C2|z|α ; z ∈ U ; |f(z)| 6M ; z ∈ ∂U

Then

(40.2) |f(z)| 6M ; z ∈ U

Proof. By a rotation we can make U = {z : 2| arg z| < π/β}. Making
a cut in the complement of U we can define an analytic branch of the
log in U and, with it, an analytic branch of zβ. By taking g = f(z1/β),
we can assume without loss of generality that β = 1 and α ∈ (0, 1) and
then U = {z : | arg z| < π/2}. Let α′ ∈ (α, 1) and consider the analytic
function

(40.3) e−C2zα
′

f(z)

Since |e−C2zα
′
| < 1 in U (check) and |e−C2zα

′
+C2zα| → 0 as |z| → ∞ on

the half circle |z| = R,Re z > 0 (check), the usual maximum modulus
principle completes the proof.

40.1. An application to Laplace transforms. We will study Laplace
and inverse Laplace transforms in more detail later. For now let F ∈
L1(R). Then it by Fubini and dominated convergence, the Laplace
transform

(40.4) LF :=

∫ ∞
0

e−pxF (p)dp

is well defined and continuous in x in the closed H+ and analytic in
the open RHP (the open H+). (Obviously, we could allow Fe−|α|p ∈ L1

and then LF would be defined for Re x > |α|.) F is uniquely defined
by its Laplace transform, as seen below.

Lemma 40.2 (Uniqueness). Assume F ∈ L1(R+) and LF = 0 for a
set of x with an accumulation point. Then F = 0 a.e.
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We will from now on write F = 0 on a set to mean F = 0 a.e. on
that set.

Proof. By analyticity, LF = 0 in the open RHP and by continuity,
for s ∈ R, LF (is) = 0 = F̂F where F̂F is the Fourier transform
of F (extended by zero for negative values of p). Since F ∈ L1 and

0 = F̂F ∈ L1, by the known Fourier inversion formula [?], F = 0.

More however can be said. We can draw interesting conclusions
about F just from the rate of decay of LF .

Proposition 40.3 (Lower bound on decay rates of Laplace trans-
forms). Assume F ∈ L1(R+) and for some ε > 0 we have

(40.5) LF (x) = O(e−εx) as x→ +∞
Then F = 0 on [0, ε].

Proof. We write

(40.6)

∫ ∞
0

e−pxF (p)dp =

∫ ε

0

e−pxF (p)dp+

∫ ∞
ε

e−pxF (p)dp

we note that

(40.7)
∣∣∣ ∫ ∞

ε

e−pxF (p)dp
∣∣∣ 6 e−εx

∫ ∞
ε

|F (p)|dp 6 e−pε‖F‖1 = O(e−εx)

Therefore

(40.8) g(x) =

∫ ε

0

e−pxF (p)dp = O(e−εx) as x→ +∞

The function g is entire (prove this!) Let h(x) = eεxg(x). Then by
assumption h is entire and uniformly bounded for x ∈ R (since by as-
sumption, for some x0 and all x > x0 we have h 6 C and by continuity
max |h| < ∞ on [0, x0]). The function is also manifestly bounded for
x ∈ iR (by ‖F‖1). By Phragmén-Lindelöf (first applied in the first
quadrant and then in the fourth quadrant, with β = 2, α = 1) h is
bounded in the closed RHP. Now, for x = −s < 0 we have

(40.9) e−sε
∫ ε

0

espF (p)dp 6
∫ ε

0

|F (p)| 6 ‖F‖1

Again by Phragmén-Lindelöf (again applied twice) h is bounded in the
closed Hl thus bounded in C, and it is therefore a constant. But, by
the Riemann-Lebesgue lemma, h→ 0 for x = is when s→ +∞. Thus
h ≡ 0. But then, with χA the characteristic function of A,

(40.10)

∫ ε

0

F (p)e−ispdp = F̂(χ[0,ε]F ) = 0
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for all s ∈ R entailing the conclusion.

Corollary 40.4. Assume F ∈ L1 and LF = O(e−AX) as x→ +∞ for
all A > 0. Then F = 0.

Proof. This is straightforward.

As we see, uniqueness of the Laplace transform can be reduced to
estimates. Also, no two different L1(R+) functions, real–analytic on
(0,∞), can have Laplace transforms within exponentially small correc-
tions of each–other. This will play an important role later on.

40.2. A Laplace inversion formula.

Theorem 40.5. Assume c > 0, f(z) is analytic in the closed half plane
Hc := {z : Re z > c}. Assume further that supc′>c |f(c′ + it)| 6 g(t)
with g(t) ∈ L1(R). Let

(40.11) F (p) =
1

2πi

∫ c+i∞

c−i∞
epxf(x)dx =: (L−1F )(p)

Then for any x ∈ {z : Re z > c} we have

(40.12) LF =

∫ ∞
0

e−pxF (p)dp = f(x)

Proof. Note that for any x′ = x′1 + iy′1 ∈ {z : Re z > c}

(40.13)∫ ∞
0

dp

∫ c+i∞

c−i∞

∣∣∣ep(s−x′)f(s)
∣∣∣ d|s| 6 ∫ ∞

0

dpep(c−x
′
1)‖g‖1 6

‖g‖1

x′1 − c

and thus, by Fubini we can interchange the orders of integration:

(40.14) U(x′) =

∫ ∞
0

e−px
′ 1

2πi

∫ c+i∞

c−i∞
epxf(x)dx

=
1

2πi

∫ c+i∞

c−i∞
dxf(x)

∫ ∞
0

dpe−px
′+px =

1

2πi

∫ c+i∞

c−i∞

f(x)

x′ − x
dx

Since g ∈ L1 there must exist subsequences τn,−τ ′n tending to ∞ such
that |g(τn)| → 0. Let x′ > Rex = x1 and consider the box Bn = {z :
Re z ∈ [x1, x

′], Im z ∈ [−τ ′n, τn]} with positive orientation. We have

(40.15)

∫
Bn

f(s)

x′ − s
ds = −f(x′)
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while, by construction,

(40.16) lim
n→∞

∫
Bn

f(s)

x′ − s
ds =

∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds−

∫ c+i∞

c−i∞

f(s)

x′ − s
dx

On the other hand, by dominated convergence, we have

(40.17)

∫ x′+i∞

x′−i∞

f(s)

x′ − s
ds→ 0 as x′ →∞

40.3. Abstract Stokes phenomena. This theorem shows that if an
analytic function decays rapidly along some direction, then it increases
“correspondingly” rapidly along a complementary direction. The fol-
lowing is reminiscent of a theorem by Carlson [9].

Theorem 40.6. Assume f 6≡ 0 is analytic in the closed H+ and that
for all a > 0 we have f(t) = O(e−at) for t ∈ R+, t→∞. Then, for all
b > 0 the function

(40.18) e−bzf(z)

is unbounded in the closed H+.

Proof. Assume that for some b > 0 we had |e−bzf(z)| < M in the closed
RHP. Then, the function

(40.19) ψ(z) =
e−bzf(z)

(z + 1)2

satisfies the assumptions of Theorem 40.5. But then ψ(z) = LL−1ψ(z)
satisfies the assumptions of Corollary (40.4) and ψ ≡ 0.

Let α > 2.

Corollary 40.7. Assume f 6≡ 0 is analytic in the closed sector S =
{z : 2| arg z| 6 π/α}, α > 1

2
and that f(t) 6 Ce−t

β
with β > α for

t ∈ R+. Then for any β′ < β there exists a subsequence zn ∈ S such
that

(40.20)
∣∣∣f(zn)e−z

β′
n

∣∣∣→∞ as n→∞

Proof. This follows from Theorem 40.6 by simple changes of variables.

Exercise 40.8. * Carry out the details of the preceding proof.
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41. Asymptotic series

We have seen in the Schwarz-Christoffel section that the behavior of
analytic functions near a point of nonanalyticity can be given by a series
in noninteger powers of the distance to the singularity. The behavior
can be more complicated, containing exponentially small corrections,
logarithmic terms and so on. The series themselves may have zero
radius of convergence. It is not the purpose of this part of the course
to classify these behaviors, but it can be done for a fairly large class of
functions. Here we look how simple behaviors can be determined for
relatively simple functions.

Example 41.1. Consider the following integral related to the so–called
error function

F (z) = ez
−2

∫ z

0

s−2e−s
−2

ds

It is clear that the integral converges at the origin, if the origin is
approached through real values (see also the change of variable below).
Definition of F (z). We define the integral to z ∈ C as being taken
on a curve γ with γ′(0) > 0, and define F (0) = 0.

Check that this is a consistent definition and the resulting function is
analytic except at z = 0 (this is essentially the contents of Exercise 41.3
below.

What about the behavior at z = 0? It depends on the direction in
which 0 is approached! Let’s look more carefully. Replace z by 1/x,
make a corresponding change of variable in the integral and you are
led to

(41.1) E(x) = ex
2

∫ ∞
x

e−s
2

ds =:

√
π

2
ex

2

erfc(x)

Let us take x (and thus z) real and integrate by parts m times

(41.2)

E(x) =
1

2x
− ex

2

2

∫ ∞
x

e−s
2

s2
ds =

1

2x
− 1

4x3
+

3ex
2

4

∫ ∞
x

e−s
2

s4
ds = ...

=
m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1
+

(−1)mex
2
Γ(m+ 1

2
)

√
π

∫ ∞
x

e−s
2

s2m
ds

On the other hand, we have, by L’Hospital

(41.3)

(∫ ∞
x

e−s
2

s2m
ds

)(
e−x

2

x2m+1

)−1

→ 1

2
as x→∞
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and the last term in (41.2) is O(x−2m−1) as well. On the other hand it
is also clear that the series in (41.2) is alternating and thus

(41.4)
m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1
6 E(x) 6

m∑
k=0

(−1)k

2
√
π

Γ(k + 1
2
)

x2k+1

if m is even.

Remark 41.2. Using (41.3) and Exercise 41.13 below we conclude that
F (z) has a Taylor series at zero,

(41.5) F̃ (z) =
∞∑
k=0

(−1)k

2
√
π

Γ(k +
1

2
)z2m+1

that F (z) is C∞ on R and analytic away from zero.

Exercise 41.3. ** Show that z = 0 is an isolated singularity of F (z).
Using Remark 41.2, show that F is unbounded as 0 is approached along
some directions in the complex plane.

Notes (1) It is not the Laurent series of f at 0 that we calculated!
Laurent series converge. Think carefully about this distinction and
why the positive index coefficients do not coincide.

(2) The rate of convergence of the Laurent series is slower as 0 is
approached, quickly becoming numerically useless. By contrast, the
precision gotten from (41.4) near zero is such that for z = 0.1 the error
in calculating f is of order 10−45 ! However, of course (41.4) is divergent
and it cannot be used to calculate exactly for any nontrivial value of z.

(3) We have illustrated here a simple method of evaluating the be-
havior of integrals, the method of integration by parts.

41.1. More general asymptotic series. Classical asymptotic anal-
ysis typically deals with the qualitative and quantitative description of
the behavior of a function close to a point, usually a singular point of
the function. This description is provided in the form of an asymp-
totic expansion. The expansion certainly depends on the point studied
and, as we have noted, often on the direction along which the point
is approached (in the case of several variables, it also depends on the
relation between the variables as the point is approached). If the di-
rection matters, it is often convenient to change variables to place the
special point at infinity.
Asymptotic expansions are formal series13 of simpler functions fk,

13That is, there are no convergence requirements. More precisely, they are de-
fined as sequences {fk}k∈N∪{0}, the operations being defined in the same way as if

they represented convergent series; see also §41.2.
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f̃ =
∞∑
k=0

fk(t)(41.6)

in which each successive term is much smaller than its predecessors (one
variable is assumed for clarity). For instance if the limiting point is t0
approached from above along the real line this requirement is written

(41.7) fk+1(t) = o(fk(t)) or fk+1(t)� fk(t) as t ↓ t0
denoting

lim
t→t+0

fk+1(t)/fk(t) = 0(41.8)

We will often use the variable x when the limiting point is +∞ and z
when the limiting point is zero. Simple examples are the Taylor series,
e.g.

sin z + e−
1
z ∼ z − z3

6
+ ... (z → 0+)

and the expansion in the Stirling formula

ln Γ(x) ∼ x lnx−x− 1

2
lnx+

1

2
ln(2π)+

∞∑
n=1

B2n

2n(2n− 1)x2n−1
, x→ +∞

where Bk are the Bernoulli numbers.
(The asymptotic expansions in the examples above are the formal

sums following the “∼” sign, the meaning of which will be explained
shortly.)

Examples of expansions that are not asymptotic expansions are

∞∑
k=0

xk

k!
(x→ +∞)

which converges to exp(x), but it is not an asymptotic series for large
x since it fails (41.7); another example is the series

(41.9)
∞∑
k=0

x−k

k!
+ e−x (x→ +∞)

(because of the exponential terms, this is not an ordered simple series
satisfying (41.7)). Note however expansion (41.9), does satisfies all
requirements in the left half plane, if we write e−x in the first position.
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We also note that in this particular case the first series is convergent,
and if we replace (41.9) by

(41.10) e1/x + e−x

then (41.10) is a valid asymptotic expansion, of a very simple kind,
with two nonzero terms. Since convergence is relative to a topology,
this elementary remark will play a crucial role when we will speak of
Borel summation.
Functions asymptotic to a series, in the sense of Poincaré. The
relation f ∼∼∼ f̃ between an actual function and a formal expansion is
defined as a sequence of limits:

Definition 41.4. A function f is asymptotic to the formal series f̃ as
t→ t+0 if

(41.11) f(t)−
N∑
k=0

f̃k(t) =: f(t)− f̃ [N ](t) = o(f̃N(t)) (∀N ∈ N)

We note that condition (41.11) can then be also written as

f(t)−
N∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N)(41.12)

where g(t) = O(h(t)) means lim supt→t+0 |g(t)/h(t)| < ∞. Indeed, this

follows from (41.11) and the fact that f(t)−
∑N+1

k=0 f̃k(t) = o(f̃N+1(t)).

41.2. Asymptotic power series. In many instances the functions fk
are exponentials, powers and logarithms. This is not simply a matter
of choice or an accident, but reflects some important fact about the
relation between asymptotic expansions and functions which will be
clarified later.

A special role is played by power series which are series of the form

(41.13) S̃ =
∞∑
k=0

ckz
k, z → 0+

With the transformation z = t − t0 (or z = x−1) the series can be
centered at t0 (or +∞, respectively).
Remark. If a ck is zero then Definition 41.4 fails trivially in which
case (41.13) is not an asymptotic series. This motivates the following
definition.
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Definition 41.5 (Asymptotic power series). A function possesses an
asymptotic power series if

(41.14) f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N)

We use the boldface notation ∼∼∼ for the stronger asymptoticity con-
dition in (41.11) when confusion is possible.
Example Check that the Taylor series of an analytic function at zero
is its asymptotic series there.

In the sense of (41.14), the asymptotic power series at zero of e−1/x2

is the zero series. It is however surely not the case that e−1/x2 behaves
like zero as x→ 0 on R. Rather, in this case, the asymptotic behavior
of e−1/x2 is e−1/x2 itself (only exponentials and powers involved).

Asymptotic power series form an algebra; addition of asymptotic
power series is defined in the usual way:

A
∞∑
k=0

ckz
k +B

∞∑
k=0

c′kz
k =

∞∑
k=0

(Ack +Bc′k)z
k

while multiplication is defined as in the convergent case(
∞∑
k=0

ckz
k

)(
∞∑
k=0

c′kz
k

)
=
∞∑
k=0

(
k∑
j=0

cjc
′
k−j

)
zk

Remark 41.6. If the series f̃ is convergent and f is its sum (note the

ambiguity of the “sum” notation) f =
∑∞

k=0 ckz
k then f ∼ f̃ .

The proof of this remark follows directly from the definition of con-
vergence.

Lemma 41.7. (Uniqueness of the asymptotic series to a function) If

f(z) ∼ f̃ =
∑∞

k=0 f̃kz
k as z → 0 then the f̃k are unique.

Proof. Assume that we also have f(z) ∼ F̃ =
∑∞

k=0 F̃kz
k. We then

have (cf. (41.11))

F̃ [N ](z)− f̃ [N ](z) = o(zN)

which is impossible unless gN(z) = F̃ [N ](z)− f̃ [N ](z) = 0, since gN is a
polynomial of degree N in z.

Corollary 41.8. The asymptotic series at the origin of an analytic
function is its Taylor series at zero. More generally, if F has a Taylor
series at 0 then that series is its asymptotic series as well.
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The proof of the following lemma is immediate:

Lemma 41.9. (Algebraic properties of asymptoticity to a power series)

If f ∼ f̃ =
∑∞

k=0 ckz
k and g ∼ g̃ =

∑∞
k=0 dkz

k then

(i) Af +Bg ∼ Af̃ +Bg̃

(ii) fg ∼ f̃ g̃

Sometimes it is convenient to check a formally weaker condition of
asymptoticity:

Lemma 41.10. Let f̃ =
∑∞

n=0 anz
n. If f is such that there exists a

sequence pn →∞ such that(
∀n∃pn

)
s.t. f(z)− f̃ [pn](z) = o(zn) as z → 0

then f ∼ f̃ .

Proof. We let m be arbitrary and choose n > m such that pn > m. We
have

f(z)− f̃ [m] = (f(z)− f̃ [pn]) + (f̃ [pn] − f̃ [m]) = o(zm) (z → 0)

by assumption and since f̃ [pn] − f̃ [m] is a polynomial for which the
smallest power is zm+1 (we are dealing with truncates of the same
series).

41.3. Integration and differentiation of asymptotic power se-
ries. While asymptotic power series can be safely integrated term by
term as the next proposition shows, differentiation is more delicate. In
suitable spaces of functions and expansions, we will see the asymmetry
largely disappears if we are dealing with analytic functions in suitable
regions.

Anyway, for the moment note that the function e−1/z sin(e1/z2) is
asymptotic to the zero power series as z → 0+ although the derivative
is unbounded and thus not asymptotic to the zero series.

Proposition 41.11. Assume f is integrable near z = 0 and that

f(z) ∼ f̃(z) =
∞∑
k=0

f̃kz
k

Then ∫ z

0

f(s)ds ∼
∫
f̃ :=

∞∑
k=0

f̃k
k + 1

zk+1
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Proof. This follows from the fact that
∫ z

0
o(sn)ds = o(zn+1) as can be

seen by immediate estimates.

Asymptotic power series of analytic function, if they are valid in wide
enough regions can be differentiated.
Asymptotics in a strip. Assume f(x) is analytic in the strip Sa =
{x : |x| > R, |Im (x)| < a}. Let α < a and and Sα = {x : |x| >
R, |Im (x)| < α} and assume that

(41.15) f(x) ∼ f̃(x) =
∞∑
k=0

ckx
−k (|x| → ∞, x ∈ Sα)

It is assumed that that the limits implied in (41.15) hold uniformly in
the given strip.

Proposition 41.12. If (41.15) holds, then, for α′ < α we have

f ′(x) ∼ f̃ ′(x) :=
∞∑
k=0

− kck
xk+1

(|x| → ∞, x ∈ Sα′)

Proof. We have f(x) = f̃ [N ](x) + gN(x) where clearly g is analytic in
Sa and |gN(x)| 6 Const.|x|−N−1 in Sα. But then, for x ∈ Sα′ and
δ = 1

2
(α− α′) we get

|g′N(x)| = 1

2π

∣∣∣∣∮
|x−s|=δ

gN(s)ds

(s− x)2

∣∣∣∣ 6 1

δ

Const.

(|x| − |δ|)N+1

= O(x−N−1) (|x| → ∞, x ∈ Sα′)

By Lemma 41.10, the proof follows.

Exercise 41.13. ** Show that if f(x) is continuous on [0, 1] and dif-
ferentiable on (0, 1) and f ′(x) → L as x ↓ 0, then f is differentiable
to the right at zero and this derivative equals L. Use this fact, Propo-
sition 41.12 and induction to show that the Taylor series at the origin
of F (z) is indeed given by (41.5).

41.4. Watson’s Lemma. In many instances integral representations
of functions are amenable to Laplace transforms

(41.16) (LF ) (x) :=

∫ ∞
0

e−xpF (p)dp

The behavior of LF for large x relates to the behavior for small p of
F .
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It is shown in the later parts of this book that solutions of generic
analytic differential equations, under mild assumptions can be conve-
niently expressed in terms of Laplace transforms.

For the error function note that

∫ ∞
N

e−s
2

ds = N

∫ ∞
1

e−N
2u2du =

√
xe−x

2

∫ ∞
0

e−xp√
p+ 1

dp; x = N2

For the Gamma function, writing
∫∞

0
=
∫ 1

0
+
∫∞

1
in

(41.17) n! =

∫ ∞
0

e−ttndt = nn+1

∫ ∞
0

en(−s+ln s)ds

we can make the substitution t− ln t = p in each integral and obtain

n! = nn+1e−n
∫ ∞

0

e−npG(p)dp

Watson’s Lemma
This important tool states that the asymptotic series at infinity of
(LF )(x) is obtained by formal term-by-term integration of the asymp-
totic series of F (p) for small p, provided F has such a series.

Lemma 41.14. Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckp
kβ1+β2−1

as p→ 0+ for some constants βi with Re (βi) > 0, i = 1, 2. Then

LF ∼
∞∑
k=0

ckΓ(kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H.

Proof. Induction, using the simpler version, Lemma 41.15, proved be-
low. �

Lemma 41.15. Let F ∈ L1(R+), x = ρeiφ, ρ > 0, φ ∈ (−π/2, π/2)
and assume

F (p) ∼ pβ as p→ 0+

with Re (β) > −1. Then∫ ∞
0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ→∞)

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the
characteristic function of the set A and φ = arg(x). We choose C and
a positive so that |F (p)| < C|pβ| on [0, a]. Since
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∣∣∣∣∫ ∞
a

F (p)e−pxdp

∣∣∣∣ 6 e−|x|a cosφ‖F‖1(41.18)

we have by dominated convergence, and after the change of variable
s = p|x|,

(41.19)

xβ+1

∫ ∞
0

F (p)e−pxdp = eiφ(β+1)

∫ ∞
0

sβU(s/|x|)χ[0,a](s/|x|)e−se
iφ

ds

+O(|x|β+1e−|x|a cosφ)→ Γ(β + 1) (|x| → ∞)

41.5. Example: the Gamma function. We start from the repre-
sentation

(41.20) n! =

∫ ∞
0

tne−tdt = nn+1

∫ ∞
0

e−n(s−ln s)ds

= nn+1

∫ 1

0

e−n(s−ln s)ds+ nn+1

∫ ∞
1

e−n(s−ln s)ds

On (0, 1) and (1,∞) separately, the function s− ln(s) is monotonic and
we may write, after inverting s− ln(s) = t on the two intervals to get
s1,2 = s1,2(t),

(41.21) n! = nn+1

∫ ∞
1

e−nt(s′2(t)−s′1(t))dt = nn+1e−n
∫ ∞

0

e−npG(p)dp

where G(p) = s′2(1+p)−s′1(1+p). In order to determine the asymptotic
behavior of n! we need to determine the small p behavior of the function
G′(p)

Remark 41.16. The function G(p) is an analytic function in
√
p and

thus G′(p) has a convergent Puiseux series

∞∑
k=−1

ckp
k/2 =

√
2p−1/2 +

√
2

6
p1/2 +

√
2

216
p3/2 − 139

√
2

97200
p5/2 + ...

Thus, by Watson’s Lemma, for large n we have

(41.22) n! ∼
√

2πnnne−n
(

1 +
1

12n
+

1

288n2
− 139

51840n3
+ ...

)



137

Proof. We write s = 1 +S and t = 1 + p and the equation s− ln(s) = t
becomes S− ln(1+S) = p. Note that S− ln(1+S) = S2U(S)/2 where
U(0) = 1 and U(S) is analytic for small S; with the natural branch

of the square root,
√
U(S) = H(S) is also analytic. We rewrite S −

ln(1+S) = p as SH(S) = ±
√

2σ where σ2 = p. Since (SH(S))′|S=0 = 1
the implicit function theorem ensures the existence of two functions
S1,2(σ) (corresponding to the two choices of sign) which are analytic in
σ. The concrete expansion may be gotten by implicit differentiation in
SH(S) = ±

√
2σ, for instance.

42. Appendix

42.1. Appendix to Chapter 7.

42.2. Some facts about the topology of C. From a topological
point of view, C is identical to R2. A region of C is called open if it
contains together with any point z0 all sufficiently close points, that is,
it also contains a nonempty disk centered at z0; intuitively, an open set
is a region without its boundary. For example an open disk

(42.23) D(z0, r) = {z ∈ C| |z − z0| < r}
a punctured disk

Dp(z0, r) = {z ∈ C| 0 < |z − z0| < r}
the upper half plane Hu := {z : Im (z) > 0} and C are open, as is,
trivially, the empty set ∅, but a closed disk

D(z0, r) = {z ∈ C| |z − z0| 6 r}
is not open. The exterior of a closed disk, {z ∈ C| |z − z0| > r}, is
open. A finite intersection of open sets is open. Clearly a set in C is
open iff it is a (finite or infinite) union of open disks.

More generally, a topology on a space X consists of a family O of
sets defined as open, which should have the following properties: (1)
X, ∅ ∈ O, (2) O1, O2 ∈ O ⇒ O1 ∩ O2 ∈ O and (3) any union, finite or
infinite of open sets Oα ∈ O is open: ∪αOα ∈ O. Complements of open
sets are called closed sets. The whole X is both open and closed; so is
its complement, ∅. The family O in the case of C can be taken to be the
collection of all unions of open disks (42.23), for all z0 ∈ C, r ∈ [0,∞].

The boundary of the set S in C, denoted ∂S, consists of all points z
in C for which there are sequences contained in S which converge to z,
as well as sequences in the exterior of S convergent to z. For example,
the boundary of a disk is the circle surrounding it:

∂D(z0, r) = C(z0, r) := {z ∈ C| |z − z0| = r}
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Also ∂D(z0, r) = C(z0, r), but ∂Dp(z0, r) = C(z0, r) ∪ {0}.
A point z in C is an accumulation point of the set S if there is a

sequence of points in S converging to z.
Note that a set O is open iff it contains no points in ∂O. At the

opposite end, if a set contains all of its boundary points then it is
closed.

If a set is defined by (finitely many) inequalities involving continuous
functions, then the set is open only if all the inequalities are strict
(<, >, or 6=), and it is closed if all are 6,> or =; the boundary is
obtained by replacing all inequalities by equalities.

If X is a topological space and X1 ⊂ X the induced topology in X1

is {X1 ∩O|O ∈ O}.

42.2.1. Connected sets. An open set O is connected if it is not the union
of two disjoint nonempty open sets. More generally, a subset X1 ∈ X
is connected if it is not the disjoint union of two nonempty sets that are
open in the induced topology on X1. Equivalently, there is no subset
of X1 which is both open and closed in the induced topology (other
than X1 and the empty set). For example any disk in C is connected,
and so is a punctured disk. See also Proposition 42.18 below.

A domain in C is by definition an open connected set.

Exercise 42.17. Is the annulus {z ∈ C| r ≤ |z| < R} open? closed?
connected? What is its boundary?

A curve in R2 is often given using a parametrization, as the image of
a pair of continuous real functions: {(x(t), y(t)) : t ∈ [a, b]}. The same
curve can obviously be the image many different maps. If at least
one of these is differentiable, then the curve is called differentiable;
{x(t) + iy(t) : t ∈ [a, b]} is the corresponding curve in C.

A set S with the property that any two points is S can be connected
by a curve in S is called path connected; it can be shown that a path
connected set is necessarily connected. But the converse is not true,
for example S = {(x, sin 1

x
) |x > 0} ∪ {(0, 0)} is connected, but not

path connected. But:

Proposition 42.18. Domains D ⊂ C are path connected. The path
can be chosen to be a polygonal line.

Proof. Indeed, let z, w ∈ D be two arbitrary points. Collect the
points which are path connected to z:

Dz =
{
u ∈ D

∣∣∃γ : [a, b]→ D continuous, with γ(a) = z, γ(b) = u
}

Then Dz is open since for any u ∈ Dz, there is a disk Dε(z) included
in D (since D is open), and then z can be path connected to any point
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in this disk (the path connecting z to u followed by the segment form
u to any point in the disk), hence Dz contains a disk centered at u.
By the same argument also Dw is open, and since D is connected then
there must be a point u ∈ Dz ∩ Dw. But then the path going from z
to u followed by the path from u to w connects z to w.

The path connecting two points can be chosen to be a polygonal line:
Indeed, let γ : [a, b] → D continuous, so that γ(a) = z and γ(b) = w.
Since D is open, every point along the path is contained in a disk
included in D: for all t ∈ [a, b] there is εt > 0 so that D(γ(t), εt) ⊂ D.
Since the image of γ is compact, and is included in the union of all these
disk, then it is included in a finite number of them: there are t1, . . . , tn
so that γ([a, b]) ⊂ ∪nk=1D(γ(tk), εtk) ⊂ D and now γ can be replaced
by segments in each disk. To be more precise in this construction, let
t0 = a, tn+1 = b and let ε0, εn+1 > 0 so that D(γ(tk), εtk) ⊂ D for
k = 0 and k = n + 1. Then γ([a, b]) ⊂ ∪n+1

k=0D(γ(tk), εtk) ⊂ D. We can
remove any disk of the covering that is completed include in another
disk, and we number the tk in increasing order. Then the segments
[γ(tk−1), γ(tk)] are included in D(γ(tk−1), εtk−1

)∪D(γ(tk), εtk) ⊂ D and
form a polygonal line joining z and w. �

A rectifiable curve is a continuous curve t 7→ γ(t) (defined for t ∈
[a, b]) with finite length, meaning that the sup of the length of polygonal
lines joining points of γ is finite. In C this means:

sup
{ n∑

i=0

|γ(ti)−γ(ti+1)| : 0 = t0 < ti < ti+1 < tn = b∀i ∈ 1..n−1, ∀n ∈ N
}
<∞

A piecewise differentiable curve with integrable γ′ is easily checked
to be rectifiable, and the length, defined by the sup above, also equals

l(γ) =

∫ b

a

|γ′(t)|dt

DEFINE winding number

42.3. Proof of the Ascoli-Arzelà theorem. Necessity (i) Suppose
F is not equicontinuous on some compact K. Then on K
(42.24)
∃(ε > 0, {zn}, {z′n}, {fn}) s.t.(|zn − z′n| → 0 & d(fn(zn), fn(z′n) > ε)

Since K is compact and F is normal from any sequence we can ex-
tract a convergent subsequence, which w.l.o.g. we can assume to be
{zn}, {z′n}, {fn} themselves. Let zn → z, fn → f (z′n → z too). The
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limit f is continuous, thus uniformly continuous. We have

lim
n→∞

sup
x∈K

d′(f(x), fn(x)) = 0

thus for n large enough,

(42.25) d′(fn(z′n), f(z′n)) <
ε

4
, d′(f(z′n), f(z)) <

ε

4
,

d′(f(z), f(zn)) <
ε

4
and d′(f(zn), fn(zn)) <

ε

4

implying by the triangle inequality,

d′(fn(z′n), fn(zn)) < ε

a contradiction.
(ii) Fix z and take K = {f(z) : f ∈ F}. Take a sequence {wn} ⊂ K

By the definition of K, if wn ∈ K ∃fn ∈ F such that d(fn(z), wn) <
1/n. By the normality of F , there exists a subsequence of functions,
w.l.o.g. {fn} themselves, fn → f . But then wn → f(z) �.
Sufficiency. The sufficiency of the two conditions is shown by Can-
tor’s famous diagonal argument. Let {fn} ⊂ F . We take a countable
everywhere dense set Q = {zk} of points in Ω, e.g., those with ratio-
nal coordinates and we let K be any compact in Ω. Take z1 ∈ Q.
By (ii), there is a convergent subsequence {fnj1(z1)}j∈N. Take now
z2 ∈ Q. From {fnj1(z2)}we can extract a subsequence {fnj2(z2)}j∈N
which converges as well. So {fnj2(z)}j∈N converges both at z1 and z2.
Inductively we find a subsequence {fnjm(z)}j∈N such that it converges
at the points z1, ..., zm. But then, the subsequence {gj} := {fnjj} con-
verges at all points in Q. We aim to show that gj converges uniformly
in any compact set K ∈ Ω. By equicontinuity,
(42.26)

∀ε > 0∃δ s.t. ∀(a, b, f) ∈ K2 ×F(|a− b| < δ ⇒ d(f(a), f(b)) <
ε

3
)

Consider a finite covering of K by balls of radius δ/2. Since Q is
everywhere dense, there is a zk in each of these balls. They are finitely
many, so that for l,m > n0,

(42.27) d(gl(zk), gm(zk)) <
ε

3

On the other hand, any a ∈ K is, by construction, at distance at most
δ from some zk and thus by (42.26) (for any f ∈ F , in particular) for
gni, gnj we have

(42.28) d(gl(a), gl(zk)) <
ε

3
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(42.29) d(gm(a), gm(zk)) <
ε

3
We thus see by the triangle inequality that

(42.30) d(gl(a), gm(a)) < ε

Thus gn(a) converges. Convergence is uniform since the pair ε, δ is
independent of a. �

43. Dominated convergence theorem

We state this theorem only for the real line
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