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Some notations

L ———— Laplace transform,
§??

L−1 ——— inverse Laplace
transform, §1.58

B ———— Borel transform,
§2.1

LB ———– Borel/BE summa-
tion operator, §??
and §2.2b

p ————- usually, Borel plane
variable

f̃ ———— formal expansion
H(p) ——– Borel transform of

h(x)
∼ ———— asymptotic to, §1.1a
. less than, up to

an unimportant con-
stant, §1.1a

Dr ———— The disk of radius r
centered at 0

∂A ———— The boundary of the
set A

N,Z,Q,R,C
N+,R+——- the nonnegative in-

tegers, integers, ra-
tionals, real num-
bers, complex num-
bers, positive inte-
gers, and positive
real numbers, re-
spectively

H ————- open right half
complex-plane.

Hθ ————- half complex-plane
centered on eiθ.

S ————- closure of the set S.
Ca ————- absolutely continu-

ous functions, [74]
f ∗ g ———– convolution of f and

g, §??
L1
ν , ‖ · ‖ν ,
AK,ν , etc. —- various spaces and

norms defined in
§2.6 and §2.7
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Chapter 1

Introduction

1.1 Expansions and approximations

Classical asymptotic analysis is a set of mathematical results and methods
to find the limiting behavior of functions, near a point, most often a singular
point. It is particularly efficient in the context of differential or difference
equations when the function has no simple representation that immediately
conveys the desired limiting behavior.

Asymptotic analysis may involve several variables; however, in this book,
we will be mostly concerned with limiting behavior in one scalar variable; in
the context of differential or difference equations, this can be the independent
variable or a parameter.

1.1a Notation

Let the special point of analysis be t0 ∈ C.

Some common notations are: f = O(1) if f is bounded near t0 and f = o(1)
if f → 0 as t → t0. More generally f = O(g) if f/g = O(1) and similarly
f = o(g) if f/g = o(1). This requires g(t) 6= 0 near t0. Whenever similar
divisions occur, this condition is tacitly assumed.

We also write f � g if f = o(g). It is understood that g cannot vanish close
to t0. The notation |f | . |g| is used to represent |f | 6 C|g| in the domain of
interest, where C is a constant whose value is immaterial. Clearly |f | . |g|
in a small neighborhood of t0 is the same as f = O(g). We write f = Os(g);
when both f = O(g) and g = O(f) near t0.

The point t0 may be approached only from one direction, along a curve
in C or even along a given sequence of points tending to t0 and when such
further restrictions are needed, they will be specified. For instance if t0 = 0,
then t = o(1) as t→ 0 and e−1/t = o(tm) for any m as t ↓ 0 (t ∈ R+ decreases
towards 0), but the opposite holds, tm = o(e−1/t), as t ↑ 0.

1
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1.1b Asymptotic expansions

A sequence of functions {fk}k∈N such that fn � fm if n > m is called an
asymptotic scale at t = t0. In terms of it we can write the leading order
behavior of a function, f = f0 + o(f0) and also successively higher order
corrections: f = f0 + f1 + · · ·+ fn + o(fn) etc. This process can continue for
finitely many n or for all n ∈ N. In a compact form, we write an asymptotic
expansion as a formal sum,

∞∑
k=0

fk(t) =: f̃ , or

N∑
k=0

fk(t) =: f̃N (1.1)

where no convergence condition is imposed, and define asymptoticity by the
following.

Definition 1.2 A function f is asymptotic to the formal series f̃ as t → t0
(once more, the approach of t0 may have to be restricted to a generally complex
curve) if

f(t)−
M∑
k=0

fk(t) = o(fM (t)) (∀M ∈ N or ∀M 6M0 ∈ N) (1.3)

We shall assume, without any serious loss of generality that fk exist for all
k ∈ N.

Condition (1.3) can be written in a number of equivalent ways, useful in
applications, as the following result shows.

Proposition 1.4 If f̃ =
∑∞
k=0 fk(t) is an asymptotic series as t→ t0 and f

is a function asymptotic to it, then the following characterizations are equiv-
alent to each other and to (1.3).

(i)

f(t)−
N∑
k=0

fk(t) = O(fN+1(t)) (∀N ∈ N) (1.5)

(ii)

f(t)−
N∑
k=0

fk(t) = fN+1(t)(1 + o(1)) (∀N ∈ N) (1.6)

(iii) There is function ν : N 7→ N, such that ν(N) > N and

f(t)−
ν(N)∑
k=0

fk(t) = O(fN+1(t)) (∀N ∈ N) (1.7)

Condition (iii) seems strictly weaker, but it is not. It allows us to use less
accurate estimates of remainders, provided we can do so to all orders.
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PROOF We only show that (iii) implies f is asymptotic to f̃ since the
other statements immediately follow from the definition. We may assume
ν(N) > N , as otherwise there is nothing to prove. Let N ∈ N. We have

f(t) −
N∑
k=0

fk(t) = f(t) −
ν(N)∑
k=0

fk(t) +

ν(N)∑
j=N+1

fj(t) = O (fN+1(t)) (1.8)

since in the sum
∑ν(N)
j=N+1 in (1.8), each term is O(fN+1) while the number of

terms is fixed, and thus the sum remains O (fN+1) as t→ t0.

Of course, in practice the asymptotic scale is chosen to consist of simple
functions, such as powers, logs and exponentials, the behavior of which is man-
ifest. Taylor series are perhaps the simplest nontrivial asymptotic expansions.
The following is a way of restating Taylor’s theorem with remainder.

Proposition 1.9 Assume f is C∞ in an interval containing t0. Then

f(t) ∼
∞∑
k=0

f (k)(t0)

k!
(t− t0)k as t→ t0 (1.10)

Clearly, the asymptotic series of a function f converges to f iff f is analytic
at t0. Otherwise, the series is not convergent, or it converges to a function
other than f (see Example 1.16).

Note 1.11 As mentioned in Definition 1.2 none of the fk is allowed to vanish.
For instance, although the function ϕ = x 7→ e−1/x2

for x 6= 0 and ϕ(0) = 0
is in C∞(R) and we have (∀n) (ϕ(n)(0) = 0), we cannot write ϕ ∼ 0 as x→ 0.
This is a natural restriction since all the derivatives vanish at zero for many

other functions, for instance ψ = x 7→ sin(1/x)e−1/
√
|x| for x 6= 0 and ψ(0) = 0

has the same property; yet ψ has a quite different behavior from ϕ as x→ 0.
We will also define asymptotic power series, a weaker notion in which sense ϕ
and ψ above will be represented by the same series.

Example 1.12 (A divergent asymptotic series) A simple example of a
divergent asymptotic expansion is obtained by calculating the Taylor series of
the function

f(z) = −1

z
e1/zEi

(
−1

z

)
=

∫ ∞
0

e−t

1 + zt
dt; z > 0 (1.13)

where Ei(τ) =
∫ τ
−∞ t−1etdt, (τ < 0) is the exponential integral. The expo-

nential decay of the integrand and elementary analysis show that f is C∞ at
zero from the right (in the sense of right derivatives [73]) and the derivatives
are

f (k)(z) = k!

∫ ∞
0

(−t)ke−t

(1 + zt)k+1
dt ⇒ f (k)(0) = k!(−1)k

∫ ∞
0

tke−tdt = (−1)k(k!)2

(1.14)
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and thus

f(z) ∼
∞∑
k=0

(−1)kk!zk, z ↓ 0 (1.15)

a series with zero radius of convergence, or in short a divergent series.

Example 1.16 (A convergent asymptotic series) Since all derivatives of
e−1/z vanish as z ↓ 0 we have

1

1− z
+ e−1/z ∼

∞∑
k=0

zk =
1

1− z
, z → 0+ (1.17)

Convergence of an asymptotic series does not thus imply that the function
equals the sum of the series. Note also that here, as it is often done in practice,
we have used the same notation

∑∞
k=0 z

k to mean two different things: an
asymptotic series simply displaying the asymptotic scale involved, which is a
formal object, and its sum, an actual function.

Example 1.18 (A convergent but antiasymptotic series) The following
Laurent series converges in C \ {0}:

∞∑
k=0

(−1)k

k!zk
= e−1/z (1.19)

Eq. (1.19) is not an asymptotic expansion as z → 0. In (1.19), the functions
fk := (−1)kz−k/k! satisfy fk � fk+1 as z → 0 the opposite of what is

required from an asymptotic series. We have |e−1/z −
∑M
k=0(−1)k/(k!zk)| &

|z−M−1| as z → 0 which means that keeping the same number of terms, the
approximation deteriorates as z → 0.

In general, for understanding the behavior of a function near a point, an
antiasymptotic series, even if convergent, is not very useful. We can see that
if we try to determine whether

f(z) =

∞∑
k=0

(−1)k

(k! + sin k)zk
(1.20)

tends zero or not, as z → 0 (note that for large k the Laurent coefficients of
f in (1.20) are close to those in (1.19)).

By contrast, although (1.15) is divergent, by the definition of an asymptotic
series, in (1.13) we see that f(z)→ 1 as z ↓ 0, and that f(z)−1 = −z(1+o(1))
and so on.

Stirling’s formula for Γ(x) =
∫∞

0
tx−1e−tdt, which will be derived in §2.4d,

is an example of a divergent asymptotic expansion, where the scales involve
powers of 1/x and logs:

ln(Γ(x)) ∼ (x− 1/2) lnx− x+
1

2
ln(2π) +

∞∑
j=1

cjx
−2j+1, x→ +∞ (1.21)
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where 2j(2j − 1)cj = B2j and {B2j}j>1 = {1/6,−1/30, 1/42...} are Bernoulli
numbers, [1], eq. 6.140. This expansion is asymptotic as x → ∞: successive
terms get smaller and smaller. For x = 6, truncating (1.21) at j = 3 we get
Γ(6) ≈ 120.0000002 (while Γ(6) = 5! = 120). Here, j = 3 was chosen using
summation to the least term, a technique we will later explain (see Note 2.302
in §2.11); rigorous error bounds can be obtained using a form of alternating
series criterion, see §2.11. Stirling’s expansion converges for no x, since Γ(x)
has poles at all x ∈ −N (why is this an obstruction to convergence?).

Remark 1.22 Asymptotic expansions cannot be added (or subtracted), in
general. Indeed, we note that 1/(1 − z) has the same expansion (1.17) as
−e−1/z + 1/(1− z), as z ↓ 0. Subtracting these would give e−1/z ∼ 0, which
is not a valid asymptotic expansion, see Note 1.11. This is one reason for
considering, for restricted expansions, a weaker asymptoticity condition; see
§1.1c.

Remark 1.23 Sometimes we encounter oscillatory expansions such as
sinx(1 + a1x

−1 + a2x
−2 + · · · ) (∗) for large x, which, while very useful, have

to be understood differently. They are not asymptotic expansions, as we saw
in Note 1.11. Furthermore, usually the approximation itself is expected to
fail near zeros of sin. However, if small neighborhoods of the zeros of sin are
excluded, the expansion remains valid in the sense defined. Also, usually there
are ways to present the asymptotics in a way that avoids these exclusions,(see
§??).

1.1c Asymptotic power series

A special role is played by series in powers of a small variable, such as

S̃ =

∞∑
k=0

ckz
k, z → 0+ (1.24)

With the transformation z = t− t0, a series in powers of t− t0 can be trans-
formed into (1.24). With transformation z = 1/x, (1.24) may be transformed
into a 1/x-series or viceversa.

Definition 1.25 (Asymptotic power series) A function is asymptotic to
a series as z → 0, in the sense of power series if

f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N) as z → 0, (1.26)

where, as for general asymptotic expansions, it may be necessary to restrict
the approach z → 0 to a particular set of curves.
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Remark 1.27 If f has an asymptotic expansion ( in the sense of Definition
1.2) that happens to be a power series, it is asymptotic to it in the sense of
power series as well.

However, the converse is not true, unless all ck are nonzero, i.e. it is possible
that f ∼ f̃ ≡

∑∞
k=0 ckz

k in the power series sense, without f̃ being the
asymptotic expansion in the sense of Definition 1.2.

For now, whenever confusions are possible, we will use a different symbol,
∼p , for asymptoticity in the sense of power series.

Remark 1.28 Noninteger asymptotic power series, e.g., series of the form

zα
∞∑
k=0

ckz
kβ , Re (β) > 0 (1.29)

as well as asymptoticity of a function to (1.29) can be defined by easily adapt-
ing Definition 1.25, and replacing O(zN ) by O(zNβ+α) which is the same as
O(zReα+NRe (β)). More generally, in (1.29), instead of zα, we could have other
simple functions such as exponentials or logs.

The asymptotic power series at zero in R of e−1/z2 is the zero series, which
is not its asymptotic expansion in the sense of Definition 1.2, see again Note
1.11. The advantage of asymptotic power series however is the fact that they
form a commutative algebra, with restricted inversion (if the constant term
of g̃ is nonzero, then 1/g̃ is also a power series).

1.1d Operations with asymptotic power series

Addition and multiplication of asymptotic power series are defined as in the
convergent case:

A

∞∑
k=0

ckz
k +B

∞∑
k=0

dkz
k =

∞∑
k=0

(Ack +Bdk)zk

( ∞∑
k=0

ckz
k

)( ∞∑
k=0

dkz
k

)
=

∞∑
k=0

 k∑
j=0

cjdk−j

 zk

Remark 1.30 If the series f̃ is convergent and f is its sum, f =
∑∞
k=0 ckz

k,

(note the ambiguity of the sum notation), then f ∼p f̃ .

The proof follows directly from the definition of convergence.
The proof of the following lemma is immediate:

Lemma 1.31 (Algebraic properties of asymptoticity to a power series)
If f ∼p f̃ =

∑∞
k=0 ckz

k and g ∼p g̃ =
∑∞
k=0 dkz

k, then

(i) Af +Bg ∼p Af̃ +Bg̃

(ii) fg ∼p f̃ g̃

(iii) f/g∼p f̃/g̃ if d0 6= 0
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Corollary 1.32 (Uniqueness of the asymptotic series to a function)
If f(z) ∼p

∑∞
k=0 ckz

k as z → 0, then the ck are unique.

PROOF Indeed, if f ∼p
∑∞
k=0 ckz

k and f ∼p
∑∞
k=0 dkz

k, then, by
Lemma 1.31 we have 0 ∼p

∑∞
k=0(ck − dk)zk which implies, inductively, that

ck = dk for all k.

Of course, the asymptotic behavior of many functions, such as e1/z2 near
z = 0, cannot be described by power series. Also, asymptotic power series
cannot distinguish between functions differing by a quantity which is o(zm)
for all m > 0 as z → 0. Indeed, we have the following result (see also Example
1.16)

Proposition 1.33 Assume f and g have nonzero asymptotic power series as
z → 0 and f − g = h where h = o(zm) for all m > 0 as z → 0. Then the
asymptotic series of f and g coincide.

PROOF This follows straightforwardly from Definition 1.26 and the
assumption on h.

1.1d.1 Integration and differentiation of asymptotic power series

Asymptotic relations can be integrated termwise as Proposition 1.34 below
shows.

Proposition 1.34 Assume that

f(z) ∼
p
f̃(z) =

∞∑
k=0

ckz
k as z → 0+

Then ∫ z

0

f(s)ds ∼
p

∫ z

0

f̃(s)ds :=

∞∑
k=0

ckz
k+1

k + 1
as z → 0+

The direction z → 0+ can be replaced by zeiϕ → 0+, ϕ fixed depending on the
properties of f .

PROOF This follows from the fact that for n > 0,
∫ |z|

0
C|s|nd|s| 6

C|z|n+1.

Differentiation is a different issue. Many simple examples show that asymp-
totic series cannot be unrestrictedly differentiated. For instance
e−1/z2 sin e1/z4 ∼p 0 as z → 0 on R, but the derivative is unbounded and
thus it is not asymptotic to the zero series at zero.
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1.1d.2 Asymptotics in regions in C

Asymptotic power series of analytic functions can be differentiated if they
hold in a region which is not too rapidly shrinking as z → 0. This is so,
since the derivative is expressible as an integral by Cauchy’s formula. Such a
region is often a sector or strip in C, but can be allowed to be thinner. In the
folowing, we formulate this condition in the variable x = 1/z:

Proposition 1.35 Let M > 0, a > 0. Denote

Sa = {x : |x| > R, |x|M |Im (x)| 6 a}

Assume f is continuous in Sa and analytic in its interior, and

f(x) ∼
p

∞∑
k=0

ckx
−k as x→∞ in Sa

Then, for all a′ ∈ (0, a) we have

f ′(x) ∼
p

∞∑
k=0

(−kck)x−k−1 as x→∞ in Sa′

PROOF Here, Proposition 1.4 (iii) will come in handy. Let ν(N) = N+M .
By the asymptoticity assumptions, for any N there is some constant C(N)

such that |f(x)−
∑ν(N)
k=0 ckx

−k| 6 C(N)|x|−ν(N)−1 (*) in Sa.

Let a′ < a, take x large enough, and let ρ = 1
2 (a − a′)|x|−M ; then check

that Dρ = {x′ : |x− x′| 6 ρ} ⊂ Sa. We have, by Cauchy’s formula and (*),

∣∣∣∣∣∣f ′(x)−
ν(N)∑
k=0

(−kck)x−k−1

∣∣∣∣∣∣ =

∣∣∣∣∣∣ 1

2πi

∮
∂Dρ

f(s)−
ν(N)∑
k=0

cks
−k

 ds

(s− x)2

∣∣∣∣∣∣
6

C(N)

(|x| − 1)ν(N)+1

1

2π

∮
∂Dρ

d|s|
|s− x|2

6
2C(N)

|x|ν(N)+1ρ
6

4C(N)

a− a′
|x|−N−1 (1.36)

and the result follows.

Note 1.37 Usually, we can determine from the context whether ∼ or ∼p
should be used. Often in the literature, it is left to the reader to decide which
notion is in use. After we have explained the distinction, we will do the same,
so as not to complicate notation.
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1.2 Asymptotics of integrals

Often when differential equations have closed form solutions, these can be
expressed in terms of elementary functions or integral transforms of elemen-
tary functions. These integral representations allow for asymptotic analysis
and more generally, global analysis of solutions, and, for this reason they are
very important. Most “named” special functions have integral representa-
tions. For σ = ±1, the equation

x2y′′ + xy′ + σ(x2 − σν2)y = 0; σ = ±1 (1.38)

is the Bessel equation [1]; if σ = 1, the solution which is regular at the origin
is Jν(x) – the Bessel function of the first kind and a linearly independent one
is Yν(x) – the Bessel function of the second kind. For σ = −1 (1.38) is the
modified Bessel equation; the solution which is regular at the origin is Iν(x) –
the modified Bessel function of the first kind and a linearly independent one is
Kν(x) – the modified Bessel function of the second kind. The Airy equation

y′′ − xy = 0 (1.39)

has solutions Ai(x) and Bi(x), the Airy functions. The hypergeometric equa-
tion

x(x− 1)y′′ + [(a+ b+ 1)x− c]y′ + aby = 0 (1.40)

has linearly independent solutions 2F1(a, b; c;x) and x1−c
2F1(a−c+1, b−c+

1; 2 − c;x) where 2F1 is a hypergeometric function. All these functions have
integral representations, in fact a good number of representations suitable
for different asymptotic regimes. For instance, see [27] 10.9.17, [8] (Equation
6.6.30, page 298),

Jν(z) =
1

2πi

∫ ∞+πi

∞−πi
exp(z sinh t− νt)dt; Re z > 0 (1.41)

and [27] 9.5.4, and [8] (p. 313, Problem 6.75, with the change of integration
variable t→ −t).

Ai(z) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

exp
(
t3/3− zt

)
dt, (1.42)

Finally, for |z| < 1 we have, [27] 15.1.2 and 15.6.1,

2F1(a, b; c; z) =
Γ(c)

Γ(b) Γ(c− b)

∫ 1

0

tb−1(1−t)c−b−1(1−zt)−a dt Re(c) > Re(b) > 0

(1.43)
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1.2a The Laplace transform and its properties.

The Laplace transform of a function F , denoted by LF , is defined by

f(x) =

∫ ∞
0

e−xpF (p)dp, Re (x) > ν > 0 (1.44)

Here it is assumed that F is locally integrable in [0,∞) and does not grow
faster than exponentially, for instance

‖F‖∞,ν = sup
p>0
|F (p)|e−νp <∞ or ‖F‖L1

ν
=

∫ ∞
0

|F (p)|e−νpdp <∞ (1.45)

(see §2.13a) for some ν ∈ R. Both ensure the existence of Lf if Rex > ν.
As will be seen in the sequel, solutions of linear or nonlinear differential

equations, including (1.42) and (1.41) above, can often be written as Laplace
transforms of simpler functions. It is then important to understand the asymp-
totic behavior of Laplace transforms. A general asymptotic result is the fol-
lowing:

Lemma 1.46 Under the assumption in (1.45), we have∫ ∞
0

e−xpF (p)dp→ 0 as Re (x)→∞ (1.47)

PROOF This follows from the dominated convergence theorem, see §2.13a.
Indeed,

∫∞
0
|e−xpF (p)|dp 6

∫∞
0
|e−x0pF (p)|dp < ∞ for Re (x) > x0 > ν, and

e−xpF (p)→ 0 as Re (x)→∞ for all p ∈ (0,∞).

Furthermore, convergence is exponentially fast iff F is identically zero on
some interval [0, ε), where ε > 0 is independent of x as shown in the following
proposition. For the notation, see §2.13a.

Proposition 1.48 Assume that F is exponentially bounded in the sense of
(1.45); let x1 = Re (x). Then∫ ∞

0

e−xpF (p)dp = o(e−x1ε) as x1 →∞ iff F = 0 a.e.1 on [0, ε] as x1 →∞

(1.49)
Also,

∫∞
0
e−xpF (p)dp = O(e−x1ε) ⇔

∫∞
0
e−xpF (p)dp = o(e−x1ε), implying

F = 0 a.e. on [0, ε].

PROOF (i) Assume that F = 0 a.e. on [0, ε). This implies that∫ ∞
0

e−xpF (p)dp =

∫ ∞
ε

e−xpF (p)dp = e−xε
∫ ∞

0

e−xpF (p+ ε)dp = e−x1εo(1)

(1.50)
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as x1 →∞ by Lemma 1.46.
(ii) For the converse, assume that

∫∞
0
e−xpF (p)dp = O(e−x1ε). We write∫ ∞

0

e−xpF (p)dp =

∫ ε

0

e−xpF (p)dp+

∫ ∞
ε

e−xpF (p)dp. (1.51)

The rightmost integral in (1.51) is shown to be o(e−x1ε) by using the change
variable p→ p+ ε and using Lemma 1.46. Thus

g(x) := exε
∫ ε

0

e−xpF (p)dp = O(1) as x1 = Re x→ +∞ (1.52)

It is easy to see that g is entire. Furthermore, it is bounded for x ∈ R+

by (1.52) and also manifestly bounded for x ∈ iR, and x ∈ R−. Since g is
of exponential order 1, using the Phragmén-Lindelöff theorem in all of the
four quadrants (see [21] pp. 19 and 23 for more details) shows g is bounded.
From Liouville’s theorem, g is a constant. The Riemann-Lebesgue lemma
implies that g goes to zero as x → ∞ along the imaginary line. Thus g = 0,
implying

∫ ε
0
F (p)e−pxdp = 0, ∀x ∈ C implying that the Fourier transform∫∞

−∞ e−itpχ[0,ε](p)F (p)dp = 0 ∀t ∈ R and thus, by inverse Fourier transform,

F (p) = 0 a.e. on (0, ε). Now, (i) implies that
∫∞

0
F (p)e−pxdp = o (e−εx1).

Corollary 1.53 (Injectivity of the Laplace transform) Under the con-
dition (1.45), if LF = 0 for all x > 0, then F = 0 a.e. on R+.

PROOF Since, in particular, LF = O(e−xa) for any a > 0, from Propo-
sition 1.48, F = 0 a.e. on R+.

First inversion formula

Let H denote the space of analytic functions in the right half complex plane.

Proposition 1.54 (i) L : L1(R+) 7→ H and ‖LF‖∞ 6 ‖F‖1.
(ii) L : L1(R+) 7→ L(L1(R+)) ⊂ H is invertible, and the inverse is given by

F = F̂−1{LF (i·)} (1.55)

on R+ where F̂ is the Fourier transform (in distributions if LF /∈ L1(iR)).

In the following, H will denote the open right half plane.

PROOF (i) The fact that LF is analytic in H follows from the exponential
decay of the integrand: by dominated convergence we can differentiate in
x under the integral sign. The estimate follows simply from the fact that
|e−xp| < 1.

(ii) We note that (LF )(it) exists since F ∈ L1, and it is, by definition the
Fourier transform of F extended by F (p) = 0 for p < 0. The rest is just Fourier
inversion, in the in a generalized sense –in distributions–if LF /∈ L1(iR).
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Second inversion formula

Proposition 1.56 (i) Assume f is analytic in an open sector Hδ := {x :
| arg(x)| < π/2 + δ}, δ > 0 and is continuous on ∂Hδ, and that for some
K > 0 and any x ∈ Hδ we have

|f(x)| 6 K(|x|2 + 1)−1 (1.57)

Then L−1f is well defined by

F = L−1f =
1

2πi

∫ +i∞

−i∞
dt eptf(t) (1.58)

and ∫ ∞
0

dp e−pxF (p) = LL−1f = f(x) (1.59)

We have ‖L−1{f}‖∞ 6 K/2 and L−1{f} → 0 as p→∞.
(ii) If δ > 0, then F = L−1f is analytic in the sector Sδ = {p 6= 0 :

| arg(p)| < δ}. In addition, supSδ |F | 6 K/2 and F (p) → 0 as p → ∞ along
rays in Sδ.

(iii) If L− is taken on a vertical line through x = c > 0, then F (p)e−cp → 0
as p→∞ along rays in Sδ.

Note 1.60 We have assumed (1.57) for simplicity; however, it can be replaced
by any bound that would allow for applying Jordan’s lemma to deform the
contour as in the proof below.

Note 1.61 One can easily adapt these results for Laplace/inverse Laplace
transforms along other directions in C. Assume that f(xeiϕ) is analytic in
an open sector of opening π/2 + δ centered along the real line, and that the
bound (1.57) holds in the closure of this sector. Then, check that

F (p′) = (L−1
ϕ )(f)(p′) =

1

2πi

∫
Γ

exp
′
f(x)dx (1.62)

where Γ is a line from (c− i∞)eiϕ to (c+ i∞)eiϕ, exists and satisfies (ii), (iii)
above, if p′ = pe−iϕ.

PROOF Clearly, F in (1.58) is well-defined since f(is) ∈ L1(R). (i) We
have

2πiL
[
L−1f

]
(x) =

∫ ∞
0

dp e−px
∫ ∞
−∞

ids eipsf(is) (1.63)

=

∫ ∞
−∞

ids f(is)

∫ ∞
0

dp e−pxeips =

∫ i∞

−i∞
f(z)(x− z)−1dz = 2πif(x) (1.64)
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where we applied Fubini’s theorem2 and then pushed the contour of integra-
tion past x to infinity. The norm of L−1 is obtained by majorizing |f(x)epx| by
K(|x2|+ 1)−1. The behavior

[
L−1f

]
(p)→ 0 as p→ +∞ follows by applying

Riemann-Lebesgue Lemma to (1.58).

(ii) For any δ′ < δ we have, by (1.57),

∫ i∞

−i∞
ds epsf(s) =

(∫ 0

−i∞
+

∫ i∞

0

)
ds epsf(s)

=

(∫ 0

−i∞e−iδ′
+

∫ i∞eiδ
′

0

)
ds epsf(s) (1.65)

Take any p ∈ Sδ. Choose δ′ < δ so that p ∈ S′δ. Analyticity of (1.65) in p ∈ S′δ
is manifest, given the analyticity and exponential decay of the integrand. For
the estimates on F (p), we note that (i) applies to f(xeiϕ) if |ϕ| < δ.

(iii) This follows simply by changing the integration variable to p′ = p+ c.

Many cases can be reduced to (1.57) after transformations. For instance

if f1 =
∑N
j=1 aj(1 + x)−kj + f(x), **where kj > 0 and f satisfies the as-

sumptions above, then (1.58) and (1.59) apply to f1, since they do apply, by
straightforward verification, to the finite sum.

Proposition 1.66 Let F be analytic in the open sector Sp = {eiϕR+ : ϕ ∈
(−δ, δ)} and such that |F (|p|eiϕ)| 6 g(|p|) ∈ L1[0,∞). Then f = LF is
analytic in the sector Sx = {x : | arg(x)| < π/2 + δ} and f(x) → 0 as
|x| → ∞, arg(x) = θ ∈ (−π/2− δ, π/2 + δ).

PROOF Because of the analyticity of F and the decay conditions for large
p, the path of Laplace integration can be rotated by any angle ϕ in (−δ, δ)
without changing3 (LF )(x). The fact thatg ∈ L1 also implies that The decay
of (LF )(x) in x follows from Lemma 1.46 with x replaced by xe−iϕ and ϕ
chosen arg

(
xe−iϕ

)
∈
(
−π2 ,

π
2

)
Note F need not be analytic at p = 0 for Proposition 1.66 to apply.

2This theorem addresses the permutation of the order of integration; see [74]. Essentially,
if f ∈ L1(A×B), then

∫
A×B f =

∫
A

∫
B f =

∫
B

∫
A f .

3The fact that g ∈ L1 implies that lim infR→∞Rg(R) = 0; thus there is a subsequence Rn
s.t. Rng(Rn) → 0. By straightforward estimates, or by Jordan’s lemma, we see that the
integral of Fe−px along an arc of a circle of radius Rn goes to zero with n.
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1.2b Watson’s Lemma

Heuristics. Consider the following asymptotic problem: what is the be-
havior of ∫ a

−a
exG(p)h(p)dp, x→ +∞

where a > 0, G is real valued, smooth enough, and has a unique maximum
point pm ∈ [−a, a]. Intuitively, it is clear that, as x→∞ most the contribu-
tion to the integral will come from an increasingly narrow region around pm,
since for fixed p 6= pm, as x→∞, exG(p) � exG(pm).

Watson’s lemma is a very useful tool to transform this intuition into proofs,
as well as to deal with the asymptotics of a large class of other integrals arising
in applications, which often can be transformed so that Watson’s Lemma is
applicable.

Before stating the theorem let us look at the following example, the asymp-
totics of the incomplete Gamma function which we will need later.

Lemma 1.67 Let F ∈ L1(R+), x = ρeiϕ, ρ > 0, ϕ ∈ (−π/2, π/2) and
assume

F (p) ∼ pβ as p→ 0+

with Re (β) > −1. Then∫ ∞
0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ→∞)

Proof. By definition F (p) ∼ pβ means p−βF (p)→ 1 as p→ 0. We have∫ ∞
0

e−xpF (p)dp =
1

x
xβ
∫ ∞

0

F (t/x)

(t/x)β
e−ttβdt ∼ Γ(β + 1)

xβ+1
(x→∞) (1.68)

where we used dominated convergence.

Corollary 1.69 If xα
∫∞

0
e−xpF (p)dp has an asymptotic power series in z =

x−β for some β with Reβ > 0 as Rex → ∞, then for any fixed ε > 0,
xα
∫ ε

0
e−xpF (p)dp has an asymptotic power series as well, and the two power

series agree.

PROOF This is an immediate consequence of Propositions 1.48 and 1.33.

Watson’s lemma allows us to integrate power series term by term as stated
below.

Lemma 1.70 (Watson’s lemma) (i) Assume that ‖F‖L1
ν
<∞ (cf. (1.45))

and

F (p) = pα−1
m∑
k=0

ckp
kβ + o(pα−1+mβ) as p→ 0+ for all m 6 m0 ∈ N ∪∞

(1.71)
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for some α and β, with Reα,Reβ > 0. Then as x → ∞ along an arbitrary
ray in H, we have

f(x) := (LF )(x) =

∫ ∞
0

e−xpF (p)dp =

m∑
k=0

ckΓ(kβ+α)x−α−kβ+o
(
x−α−mβ

)
.

(1.72)
for any m 6 m0.

(ii) If F ∈ L1(0, a) and (1.71) holds, then the asymptotic expansion (1.72)
holds for f(x) =

∫ a
0
F (p)e−pxdp (a independent of x).

PROOF The proof is straightforward from Lemma 1.67, Corollary 1.69
applied to (F (p)−pα−1

∑m−1
k=0 ckp

kβ)/cm, and Laplace transforming explicitly

the finite sum of powers.

Note 1.73 (i) Intuitively, we see that, for a fixed F , the larger Rex is, the
more damped is the contribution of any region that is not very close to zero.
The behavior of a Laplace transform is gotten from the immediate neighbor-
hood of zero.

(ii) We see that the power series of F at zero can be Laplace transformed
term by term to obtain the asymptotic expansion of f(x) as x → ∞ along
a ray in H+. From the proof we see that the same conclusion would hold if
instead of pkβ we had other asymptotic representations of F for small p, for
instance in terms of pkβ(log p)m.

Note 1.74 Watson’s lemma holds for
∫ aeiθ

0
F (p)e−pxdp as |x| → ∞ if the

asymptotic behavior (1.71) is valid along a ray arg p = θ, where F ∈ L1(0, aeiθ)
arg(x) satisfies θ + arg x ∈

(
−π2 ,

π
2

)
. The proof is manifest by changing vari-

ables p→ peiθ, x→ xe−iθ and applying Lemma 1.70.

Exercise 1.75 (A generalization of Watson’s Lemma) Assume that for
some ε > 0, we have sup|z|<ε ‖F (·; z)‖L1

ν
= C <∞ and that

F (p; z) = pα−1
∑

06k6m
06l6n

ck,l p
kβ1zlβ2 + o(pα−1+mβ1znβ2)

as (p, z)→ (0+, 0) for all (m,n) 6 (m0, n0) ∈ (N ∪∞)2 (1.76)

where Reα,Reβ1 and Reβ2 are positive. Then, show that∫ ∞
0

e−xpF

(
p,

1

x

)
dp =

∑
06k6m
06l6n

cklΓ(kβ1 + α)

xα+kβ1+lβ2
+ o

(
x−α−mβ1−nβ2

)
. (1.77)
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1.2c Laplace’s method

1.2c.1 Laplace asymptotics, minimum of the exponential at an
endpoint

Corollary 1.78 Assume that F is continuously differentiable on [0, a) (as
usual when we close the interval we mean right derivative) and F ′ > 0 and g
is continuous. Then∫ a

0

e−νF (x)g(x)dx ∼ e−νF (0) g(0)

νF ′(0)
as ν →∞ (1.79)

PROOF By choosing F̃ = F (x) − F (0) we reduce to the case F (0) = 0.
Since F ′ > 0, F is invertible near zero and, with h(x) = F−1(x), we have∫ a

0

e−νF (x)g(x)dx =

∫ F (a)

0

e−νpg(h(p))h′(p)dp (1.80)

By continuity g(h(p))h′(p) = g(0)h′(0) + o(1) as p→ 0+. Noting that h′(0) =
1/F ′(0), the rest follows from Watson’s lemma.

Exercise 1.81 Assuming F (0) = 0 and g = 1, we could use the fact that

lim
ν→∞

ν

∫ a

0

e−νF (x)g(x)dx =
1

F ′(0)
as ν →∞ (1.82)

as a definition of F ′(0), namely,

F ′(0) :=
1

limν→∞ ν
∫ a

0
e−νF (x)dx

(1.83)

Clearly, when F ∈ C1[0, 1) and F ′(0) 6= 0, the limit exists. Show that the
limit exists and it is zero even when F ′(0) = 0, provided F ∈ C1[0, 1) and
F ′ > 0 on (0, 1).

Challenge: Let F ′ ∈ C(0, a). Does the existence of a nonzero limit in
(1.83) imply that F ′(x) has a limit when x→ 0+?

1.2c.2 Laplace asymptotics, minimum of the exponential at an in-
ner point

Corollary 1.84 Assume that a > 0, F is twice continuously differentiable
on (−a, a) F ′(0) = 0 and F ′′(x) > 0 on (−a, a), and that g is continuous4.
Then, ∫ a

0

e−νF (x)g(x)dx ∼ e−νF (0)g(0)

√
π

2νF ′′(0)
as ν →∞ (1.85)

4The function g may be complex valued.
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and ∫ a

−a
e−νF (x)g(x)dx ∼ e−νF (0)g(0)

√
2π

νF ′′(0)
as ν →∞ (1.86)

PROOF As in Corollary 1.78 without loss of generality we may assume
F (0) = 0. Define h(x) = signum(x)

√
F (x) and denote 1

2F
′′(0) = λ2. Clearly

h is continuously differentiable away from zero. For x close to zero, we have
F (x) = λ2x2 + o(x2) and thus h(x) = λx+ o(x) for small x. It is then easy to
show that h is continuously differentiable on (−a, a) and h′ > 0. We calculate
only the integral from 0 to a and prove the first part of the corollary. Indeed,
the integral from −a to 0 is treated similarly and has an equal contribution
to the final estimate in (1.86) . We make the change of variables h(x) =

√
u

and and note that by continuity g(
√
u)/h′

(
h−1(

√
u)
)
∼ g(0)/h′(0) to obtain

∫ a

0

e−νh
2(x)g(x)dx =

∫ F (a)

0

e−νu
g(h−1(

√
u))

h′(h−1(
√
u))

1

2
√
u
du ∼ g(0)

√
2π

2
√
νF ′′(0)

(1.87)

by Watson’s lemma and the fact that Γ(1/2) =
√
π.

Note: Only the leading order asymptotic calculations are given in Corollar-
ies 1.78 and 1.84. Watson’s Lemma can be used to determine higher order
corrections in the asymptotic expansion if F and g are smooth enough near
0.

Exercise 1.88 Formulate and prove a generalization of Lemma 1.84 for the
case when F ′(0) = · · · = F (2m−1)(0) = 0 and F (2m)(0) > 0.

Example: Asymptotics of the Γ function The Gamma function is defined
by

Γ(x+ 1) ≡ x! =

∫ ∞
0

e−ττxdτ =

∫ ∞
0

ex log τe−τdτ (1.89)

for x > −1. 5 x log τ − τ is maximal when τ = x. This suggests rescaling
τ = x(1 + t). This leads to

Γ(x+ 1) = xx+1e−x
∫ ∞
−1

exp [−x (t− log(1 + t))] dt (1.90)

with a maximum of the integrand at t = 0. In this form, Corollary 1.84 applies
and we get Stirling’s formula,

Γ(x+ 1) ∼
√

2πxx+1/2e−x (1.91)

5This representation is valid for complex x as well in the domain Rex > −1.
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To get more terms in the asymptotic series, we introduce, in the spirit of the
proof of Corollary 1.84,

q =
√
t− log(1 + t) = t

[
t− log(1 + t)

t2

]1/2

(1.92)

We extend the term in square brackets by 1 at the removable singularity t = 0.
It is readily checked that t 7→ q(t) an analytic change of variable near t = 0,
with q′(0) = 1/

√
2. Further, t→ q(t) is monotonic and maps the the real axis

interval (−1,∞) to q ∈ (−∞,∞). We define the unique inverse function to
be t = T (q) and obtain

Γ(x+ 1) = xx+1e−x
∫ ∞
−∞

e−xq
2

T ′(q)dq (1.93)

We decompose the integral in (1.93) as
∫ 0

−∞+
∫∞

0
. We introduce change of

variable q = −√p in the first integral and q =
√
p in the second to obtain

Γ(x+ 1) =
1

2
xx+1e−x

∫ ∞
0

e−px
√
p

(T ′(−√p) + T ′(
√
p)) dp (1.94)

Using Taylor series T (q) =
∑∞
j=1 2j/2bjq

j ,

1

2
√
p

(T ′(−√p) + T ′(
√
p)) =

∞∑
j=1,j=odd

2jbj (2p)j/2−1. (1.95)

It follows from Watson’s Lemma that

Γ(x+ 1) ∼ xx+1e−x
∞∑

j=1,j=odd

2j/2Γ(j/2)jbjx
−j/2 (1.96)

The first few bj are easily computed by substituting a truncation of t =
b1q + b2q

2 + b3q
3 + .. into (1.92) and equating like powers of q and solving

resulting equations. This gives b1 = 1, b3 = 1
36 , b5 = 1

4320 , the even bj ’s being
inconsequential in (1.96). Using Γ(1/2) =

√
π, the first few nonzero terms are

Γ(x+ 1) =
√

2πxx+1/2e−x
(

1 +
1

12x
+

1

288x2
+O(x−3)

)
(1.97)

The three term evaluation at x = 6 gives 720.0088692 versus the exact value
of 720. If the general term in the asymptotic expansion (1.96) is desired, we
can use Lagrange formula for inversion of a series:

bj =
1

2πi

∮
T (q)

qj+1
dq =

1

2πi

∮
t2(1 + t)−1 [2t− 2 log(1 + t)]

−j/2−1
dt

=
2−j/2−1

2πi

∮
(eu − 1)2

(eu − 1− u)j/2+1
du, (1.98)

where the closed loop contour integrals are assumed to circle the origin in the
respective variables in the positive sense.
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1.3 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
look at the case where there is minimal regularity; the following is a version
of the Riemann-Lebesgue lemma.

Proposition 1.99 Assume f ∈ L1[a, b]. Then
∫ b
a
eixtf(t)dt → 0 as x →

±∞. The same is true if
∫∞
−∞ eixtf(t)dt for f ∈ L1(R).

PROOF It is enough to show the result on a set which is dense6 in
L1. Since trigonometric polynomials are dense in the continuous functions
on a compact set7, say in C[a, b] in the sup norm, and thus in L1[a, b], while
continuous functions with compact support are dense in L1(R), it suffices to
look at trigonometric polynomials, thus (by linearity), at eikx for fixed k; for
the latter we just calculate explicitly the integral; we have∫ b

a

eixseiksds = O(x−1) for large x.

For the last statement, we can use the density of compactly supported
functions in L1(R), or a direct argument: for any ε > 0 we can choose T (ε)
large enough so that for all x ∈ R,∣∣∣∣∣

∫ ∞
−∞

eixtf(t)dt−
∫ T (ε)

−T (ε)

eixtf(t)dt

∣∣∣∣∣ < ε/2

and, by the first part of the theorem, we can choose X(ε) so that for all
|x| > X(ε), x ∈ R, we have∣∣∣∣∣

∫ T (ε)

−T (ε)

eixtf(t)dt

∣∣∣∣∣ < ε/2

6A set of functions fn which, collectively, are arbitrarily close to any function in L1. Using
such a set we can write∫ b

a
eixtf(t)dt =

∫ b

a
eixt(f(t)− fn(t))dt+

∫ b

a
eixtfn(t)dt

and the last two integrals can be made arbitrarily small.
7One can associate the density of trigonometric polynomials with approximation of func-
tions by Fourier series.
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No rate of decay of the integral in Proposition 1.99 follows without further
knowledge about the regularity of f . With some regularity we have the char-
acterization in Proposition 1.103 below. But first, we need a technical lemma.

Lemma 1.100 We have the following estimate

∣∣∣∣ex − 1

x

∣∣∣∣ 6 max{eRe x, 1} (1.101)

PROOF Note that

∣∣∣∣ex − 1

x

∣∣∣∣ =

∣∣∣∣∫ 1

0

exsds

∣∣∣∣ 6 ∫ 1

0

esRe xds (1.102)

and the last integral is 6 1 if Re (x) 6 0 and < eRe x if Re (x) > 0.

Proposition 1.103 For η ∈ (0, 1) let the Cη[a, b] be the Hölder continuous
functions of order η on [a, b], i.e., the functions with the property that there
is some constant c > 0 such that for all x, x′ ∈ [a, b] we have |f(x)− f(x′)| 6
c|x− x′|η.

(i) We have

f ∈ Cη[a, b]⇒

∣∣∣∣∣
∫ b

a

f(s)eixsds

∣∣∣∣∣ 6 (b− a)

2
cπηx−η +O(x−1) as x→∞

(1.104)

(ii) If f ∈ L1(R) and |x|ηf(x) ∈ L1(R) with η ∈ (0, 1], then its Fourier

transform f̂ =
∫∞
−∞ f(s)e−ixsds is in Cη(R).

(iii) Let f ∈ L1(R). If xnf ∈ L1(R) with n ∈ N then f̂ is in Cn(R). If

f ∈ Cn−1(R) and ∀j 6 n, f (j) ∈ L1(R), then f̂(x) = o(x−n) as x→∞.

(iv) If for A > 0, eA|x|f ∈ L1(R) then f̂ extends analytically in a strip of
width A centered on R. If |f(ix+t)| 6 g(t) with g ∈ L1(R) for any x ∈ [−A,A]

and all t ∈ R then, for some C > 0, |f̂ | 6 Ce−Ax.

PROOF (i) By rescaling, we can choose [a, b] = [0, 1]. We have as x→∞
(b ·c denotes the integer part)
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∣∣∣∣∫ 1

0

f(s)eixsds

∣∣∣∣ =∣∣∣∣∣∣
b x2π−1c∑
j=0

(∫ (2j+1)πx−1

2jπx−1

f(s)eixsds+

∫ (2j+2)πx−1

(2j+1)πx−1

f(s)eixsds

)∣∣∣∣∣∣+O(x−1)

=

∣∣∣∣∣∣
b x2π−1c∑
j=0

∫ (2j+1)πx−1

2jπx−1

(
f(s)− f(s+ π/x)

)
eixsds

∣∣∣∣∣∣+O(x−1)

6

b x2π−1c∑
j=0

c
(π
x

)η π
x
6

1

2
cπηx−η +O(x−1) (1.105)

Exercise 1.106 Show that if f ∈ L1[a, b] then
∫ b
a
|f(x)−f(x+ε)| → 0 as ε→

0 (where we extend f by zero where undefined). (The Lebesgue differentiation
theorem is one way.) Then, prove the Riemann-Lebesgue Lemma by adapting
the argument above.

(ii) We see that

∣∣∣∣∣ f̂(s)− f̂(s′)

(s− s′)η

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

e−ixs − e−ixs′

xη(s− s′)η
xηf(x)dx

∣∣∣∣∣ 6
∫ ∞
−∞

∣∣∣∣∣e−ixs − e−ixs
′

(xs− xs′)η

∣∣∣∣∣∣∣∣xηf(x)
∣∣∣dx

(1.107)
is bounded. Indeed, for |ϕ1 − ϕ2| < 1 Lemma 1.100 implies

| exp(iϕ1)− exp(iϕ2)| 6 |ϕ1 − ϕ2| 6 |ϕ1 − ϕ2|η (1.108)

while for |ϕ1 − ϕ2| > 1 we see that

| exp(iϕ1)− exp(iϕ2)| 6 2 6 2|ϕ1 − ϕ2|η (1.109)

(iii) Let

[Dhf̂ ](x) :=
f̂(x+ h)− f̂(x)

h
=

∫
R
−isf(s)e−ixs

(
e−ihs − 1

−ihs

)
ds

and, by Lemma 1.100 we have ∣∣∣∣e−ihs − 1

−ihs

∣∣∣∣ 6 1 (1.110)

Since s 7→ −isf(s) ∈ L1, differentiability follows by dominated convergence,
and we have

f̂ ′(x) = −i
∫
R
sf(s)e−ixsds (1.111)
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Again, since s 7→ −isf(s) ∈ L1, the first inequalities in (1.108) and (1.109),
and dominated convergence can be applied to the right side of (1.111) to show
continuity of the derivative. Higher order differentiation is shown inductively
in the same way.

The second part is also shown by induction. We show this for n = 1. If
f ∈ L1 then there exist sequences Pj → ∞ and Nj → −∞ as j → ∞ such
that f(Pj) and f(Nj) → 0 as j →∞. On the other hand∫ ∞

−∞
f(s)e−ixsds = lim

j→∞

∫ Pj

Nj

f(s)e−ixsds = lim
j→∞

f(s)
e−ixs

−ix
∣∣Pj
Nj

+ lim
j→∞

1

ix

∫ Pj

Nj

f ′(s)e−ixsds =
1

ix

∫ ∞
−∞

f ′(s)e−ixsds (1.112)

and, by the Riemann-Lebesgue lemma, the last integral goes to zero as x→∞.
(iv) Take any x ∈ SA := {x ∈ C : |Imx| < A}. Choose A′ < A so that

x ∈ SA′ . Choose h ∈ C so that |h| 6 A−A′
2 . Then

Dhf̂(x) :=
f̂(x+ h)− f̂(x)

h
=

∫
R
f(s)e−ixs

(
e−ihs − 1

h

)
ds

and by Lemma 1.100 and elementary estimates,
∣∣∣e−ixss( e−ihs−1

−ihs

) ∣∣∣ 6 CeA|s|

and by the dominating convergence theorem f̂ ′(x) = limh→0 [Dhf ] (x) =∫
R−isf(s)e−ixsds implying f̂ is analytic in a strip of width A. The last

part is proved similarly. First we choose a set of points Pj , Nj as above but
now for g and estimate away the contribution of the integral outside [Nj , Pj ].
Then we deform the contour of the integral on [Nj , Pj ] into a vertical segment
from Nj to Nj − iA, the horizontal line z = −iA+ t, t ∈ [Nj , Pj ] followed by
the segment from Pj − iA to Pj and take j →∞. We leave the details as an

exercise.

Note 1.113 In Laplace type integrals Watson’s lemma implies that it suffices
for a function to be continuous to ensure an O(x−1) decay of the integral,
whereas in Fourier-like integrals, the considerably weaker decay (1.104) is
optimal as seen in the exercise below.

Proposition 1.114 Assume f ∈ Cn−1[a, b] and f (n) ∈ L1([a, b]). Then we
have∫ b

a

eixtf(t)dt = eixa
n∑
k=1

ckx
−k + eixb

n∑
k=1

dkx
−k + o(x−n)

= eixt
(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)

(ix)n

)∣∣∣∣b
a

+ o(x−n), (1.115)

where ck = −f (k−1)(a)/ik and dk = f (k−1)(b)/ik.
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PROOF This follows by integration by parts and the Riemann-Lebesgue
lemma since

∫ b

a

eixtf(t)dt = eixt
(
f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)

(ix)n

)∣∣∣∣b
a

+
(−1)n

(ix)n

∫ b

a

f (n)(t)eixtdt (1.116)

Corollary 1.117 (1) Assume f ∈ C∞[0, 2π] is periodic with period 2π. Then∫ 2π

0
f(t)eintdt = o(n−m) for any m > 0 as n→ +∞, n ∈ Z.

(2) Assume f ∈ C∞0 [a, b] vanishes at the endpoints together with all deriva-

tives; then f̂(x) =
∫ b
a
f(t)eixt = o(x−m) for any m > 0 as x→ ±∞.

Exercise 1.118 Show that if f is analytic in D1 and continuous in D1, and

for all a, b we have |
∫ b
a
eikxf(eix)dx| > C(a, b)x−η for some η ∈ (0, 1) and

C(a, b) > 0, then ∂D1 is a natural boundary for f .

Exercise 1.119 Show that if f is analytic in a neighborhood of [a, b] but not
entire, then both series multiplying the exponentials in (1.115), i.e.

f(t)

ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)

(ix)n
+ · · · , x ∈ {a, b}

have empty domain of convergence.

Exercise 1.120 In Corollary 1.117 (2) show that lim supx→∞ eε|x||f̂(x)| =∞
for any ε > 0 unless f = 0.

Exercise 1.121 For smooth f , the interior of the interval does not con-
tribute because of cancellations: rework the argument in the proof of Propo-
sition 1.103 under smoothness assumptions. If we write f(s+ π/x) = f(s) +
f ′(s)(π/x) + 1

2f
′′(c)(π/x)2 cancellation is manifest.

Exercise 1.122 (*) (a) Consider the function f given by the lacunary trigono-
metric series f(z) =

∑
k=2n,n∈N k

−ηeikz, η ∈ (0, 1). Show that f ∈ Cη[0, 2π].
We want to estimate f(ϕ1) − f(ϕ2) in terms of |ϕ1 − ϕ2|η, when ϕ1 − ϕ2 is
small. We can take ϕ1 − ϕ2 = 2−pb with |b| < 1. Use the first inequality in
(1.108) to estimate the terms in with n < p and the simple bound 2/kη for

n > p. Then it is seen that
∫ 2π

0
e−ijsf(s)ds = 2πj−η (if j = 2m and zero

otherwise) and the decay of the Fourier transform is exactly given by (1.104).
(b) Use Proposition 1.114 and the result in Exercise 1.122 to show that

the function f(t) =
∑
k=2n,n∈N k

−ηtk, analytic in the open unit disk, has no
analytic continuation across the unit circle, that is, the unit circle is a natural
boundary. For this, note that the lower bounds on the Fourier coefficients’
decay holds if the function is restricted to any interval.
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1.4 Steepest descent method

We seek to determine the asymptotic behavior of I(ν) as ν → +∞, where

I(ν) =

∫
C
g(z)eνf(z)dz (1.123)

for f and g that are analytic in some some region of the complex plane8, and
C is some simple curve that may be finite or infinite. Further, we may assume
f is not a constant, as otherwise the asymptotics is trivial. The problem is to
determine the asymptotics of I as ν → +∞. More generally, if ν →∞ along
some complex ray arg ν = ϕ, we can replace ν by |ν| and f by eiϕf to obtain
asymptotics along complex rays.

The idea of the steepest descent method is to use the analyticity of the
integrand in (1.123) in z to deform C homotopically into one or more paths,
each of which characterized by Im f = C, a constant, and to which Laplace’s
method applies.

Typically, C is homotopic to a finite number of finite or infinite piece-
wise smooth curves of constant imaginary part, each with finitely many non-
differentiability points. As we will see in a moment, non-differentiable points
of the steepest descent decomposition correspond to singularities of f and
zeros9. We write

f(z) = u(x, y) + iv(x, y) (1.124)

and note that f ′ = 0 implies that ∂u
∂x = ∂v

∂y = ∂u
∂y = − ∂v

∂x = 0, and, since u
and v are harmonic, such points are saddle points.

We define special points to be singularities of f , endpoints, saddle points
and the point at infinity. If f ′ 6= 0, the path of constant imaginary part
(v = const) is a smooth curve (since ∇v 6= 0). Let t 7→ γ(t) = α(t) + iβ(t) be
a parameterization one of these smooth pieces. We have

du

dt
=
∂u

∂x
α′(t) +

∂u

∂x
β′(t) (1.125)

and also, since v is constant,

0 = v′ =
∂v

∂x
α′(t) +

∂v

∂y
β′(t) (1.126)

At a point where, say ux := ∂u/∂x 6= 0 and α′ 6= 0 we solve for α′ from
(1.126), and use the Cauchy-Riemann equations to obtain

dγ =
α′

ux
〈ux, uy〉 dt (1.127)

8The region of analyticity will be dictated by the need to deform C into one or more steepest
descent paths and will depend on the specifics of the problem.
9 It is understood that a zero of f is a point where f is analytic and f ′ = 0.
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where uy = ∂u/∂y and thus dγ is tangent at every point to the steepest
variation direction of u. If α′/ux > 0, it is a direction of steepest ascent
of u, and of steepest descent otherwise. Between every two special points
as defined above, we choose to traverse the curve in the steepest descent
direction, reversing the sign of the integral if needed; hence the name “steepest
descent” for the method. Note that the saddle points are of finite order since
(∀n)(f (n)(z0) = 0) implies f ≡ 0.

For simplicity we assume for now that the homotopic deformation of C does
not cross singularities of f . Between each two special points, the integral
becomes

eiνC
∫ 1

0

eνu(α(t),β(t))g(γ(t))γ′(t)dt (1.128)

where C is the constant value of v 〈γ′x, γ′y〉 = γ′x + iγ′y and similarly for g.

The integral (1.128) is one in which the exponent is monotonic and thus
one-to-one. and all conditions of Laplace’s method applies. In particular, we
can take as a new variable u(α(t), β(t)) and reduce the question to a Laplace
transform of the type

∫ a
0
e−uνG(u)du for a ∈ (0,∞] to which Watson’s lemma

applies. Generally, multiple steepest descent paths, each with a different
value of C, are involved in homotopic deformation of

∫
C ; these paths may

also join up at sinks where Re f → −∞ such as ∞ or other singularities of
f . Multiple descent paths will definitely be needed when Im f is different at
the end points of C, as in the example in §1.4a. In such cases, the calculation
of I(ν) generally requires adding up the contributions from each steepest
descent path

∫
Cs in the manner outlined in the last paragraph. Therefore,

the only new element in the steepest descent method is to determine steepest
curves which are homotopically equivalent to the original path C. It should be
further noted that without homotopic deformation into descent paths, (1.123)
will typically be an oscillatory integral; asymptotics obtained through the
stationary phase method often leads to substantially weaker results, see note
1.113. The stationary phase method, however, does not require analyticity of
f and g.

Note 1.129 Also, it is important to note that Watson’s lemma applies in
a half plane, and the resulting asymptotic expansion depends only on the
behavior of the integrand near zero. If the curve of steepest descent starting
at some point z0 is clumsy, it can be replaced with a segment of line in the
same direction, or even in the same open half-plane centered on the direction
of steepest descent at z0

1.4a Simple illustrative example

Consider

I(ν) =

∫ 1

0

eiνz
2

z + 1
dz for ν → +∞ (1.130)



26 Course notes

This first example is taken to be as simple as possible, to the point of being
a bit oversimplified. In particular, the stationary phase method (most often
suboptimal in C) would apply with the same result, and in the deformation of
contour process we do not cross singularities of the integrand, nor do saddle
points interfere with the deformation. Indeed, the steepest descent line at the
saddle z = 0 is vertical, and, since each point on the curve is moved along
a steepest descent path z = 0 simply moves up too. However, for arg ν 6= 0
(more precisely, when Im ν = 0) this situation changes. In the notation of
(1.123), f(z) = iz2, g(z) = 1

z+1 . Steepest descent paths emanating at z = 0
are determined by

Im f = Im f(0) = 0 implying Re z2 = 0, i .e. z = re±iπ/4 for r ∈ (−∞,∞)
(1.131)

However, since Re f → −∞, along the ray z = {eiπ/4 : r ∈ [0,∞)} as r →∞,
it follows that ∞eiπ/4 is a sink that is connected to z = 0 along the steepest
descent path z = reiπ/4. The steepest descent path from the other end point
z = 1 in the integral (1.130) is found by setting

Im f = Im f(1) = 1 implying Re z2 = 1, i .e. x2 − y2 = 1 (1.132)

A simple way to determine the local descent direction at a point z0 is to
analyze the differential df = f ′(z0)dz and determine the direction of dz for
which df ∈ R− (note that df = du since dv = 0). In our example df =
2izdz = 2idz and df < 0 if dx = 0, dy > 0. Since only one branch of the
hyperbola passes through (1, 0) and it asymptotes to y = x, i.e. approaches

the sink ∞eiπ/4, by simple estimates a homotopic deformation of the
∫ 1

0
may

be made to coincide with descent paths z = reiπ/4, 0 6 r < ∞ followed by
integration along steepest descent path C that connects∞eiπ/4 to 1 along the
hyperbola10 x2 − y2 = 1. Therefore,

I(ν) =

∫ ∞eiπ/4
0

eiνz
2

1 + z
dz +

∫
C

eiνz
2

1 + z
dz ≡ I1(ν) + I2(ν) (1.133)

For I1(ν), using z = reiπ/4 for 0 < r <∞, we obtain after change of variable
and application of Watson’s Lemma

I1(ν) = eiπ/4
∫ ∞

0

e−νr
2

1 + reiπ/4
dr = eiπ/4

∫ ∞
0

e−νpdp

2p1/2[1 + p1/2eiπ/4]

∼ 1

2
eiπ/4

∞∑
j=0

(−1)jΓ

(
j + 1

2

)
eijπ/4ν−(j+1)/2 (1.134)

10We do not have the option of going along re−iπ/4 , 0 < r <∞ since Re f → +∞ and so
contribution at ∞e−iπ/4 cannot be ignored as it can be for a sink.
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For I2(ν), we know that −p := f(z) − f(1) = iz2 − i is real valued and
monotonically decreasing on the parabolic path C from z = 1 to z =∞eiπ/4,
since f ′ 6= 0 on this path. Therefore, solving for z, inversion leads to

z = Z(p) = (1 + ip)1/2, (1.135)

where we can readily check that for this branch of square-root, as p → +∞,
z →∞eiπ/4 as required. Therefore,

I2(ν) = −eiν
∫ ∞

0

e−pν

1 + Z(p)
Z ′(p)dp. (1.136)

Taylor expansion gives

Z ′(p)

1 + Z(p)
=
i

2
(1 + ip)−1/2

[
1 + (1 + ip)1/2

]−1

=

∞∑
j=0

ajp
j , (1.137)

where the first few coefficents are: a0 = i
4 , a1 = 3

16 , a2 = − 5i
32 , a3 = − 35

256 .
Applying Watson’s Lemma to (1.136), it follows

I2(ν) ∼ −eiν
∞∑
j=0

ajν
−j−1Γ(j + 1), (1.138)

The full asymptotic expansion of I(ν) = I1(ν) + I2(ν) is then obvious from
(1.134) and (1.138).

Note 1.139 (1) The Taylor expansion in (1.137) can be written explicitly,
and in a simple way, in terms of the binomial series by multiplying the nu-
merator and the denominator by

[
1− (1 + ip)1/2

]
and expanding it out.

(2)If we replace the integrand eiνz
2

z+1 in (1.130), by eiνz
2

z−z0 , where z0 is in

the upper-half plane region between eiπ/4R+ and steepest descent contour
C connecting ∞eiπ/4 to 1, for e.g. z0 = 1+i

2 , then the singulariy at z =
z0 interferes with the homotopic deformation into steepest descent paths.
Nonetheless, since this singularity is a pole, after collecting residue at z = z0,
we can use the same descent paths as in Example 1.4a. Since Im z2

0 > 0, the
residue contribution will be exponentially small in ν relative to (1.138) and
(1.134). If this z0 were a branch point instead, in addition to the steepest
descent paths, the homotopically deformed path will include a contour that
wraps around z0. Nonetheless, as in the case of the pole, the contribution of
the branch point is exponentially small in ν.

Note 1.140 The end result of this procedure, after changes of variables, is
indeed a sum of Laplace transforms on [0, a), a ∈ [0,∞] to which Watson’s
lemma applies.
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1.4b Finding the steepest variation lines

As mentioned, the main challenge in evaluation of asymptotic behavior of∫
C
g(z) exp(νf(z))dz (1.141)

is the determination of steepest descent paths decomposition of C. We now
discuss how steepest descent paths may be found when f(z) is not as simple
as the one in Example 1.4a.
In a nutshell, each point z0 on the initial curve C is moved along the steepest
descent curve γ passing through it, more precisely we look at the function
γ(z0, t) as t→∞. To simplify the discussion, we will assume that both f and
g are entire, and if parts of C extend to infinity, the integral along those parts
converges. If the functions are not entire, then the contours can be deformed
inside the domain of analyticity, and beyond that only in special cases, for
instance when the singularities of g are poles or simple branch points. If
an integral extends to infinity and the integral would not converge, then we
truncate the contour at some large enough z0 (see Note 1.151) at the price of
introducing exponentially small relative errors in the estimates.

When v is very simple, as in 1.4a, one can just plot the curves v(z) = C.
If not, we can use tools from elementary ODE analysis to find the steepest
descent lines.

If along a curve γ(t) = (x(t), y(t)) we have v(z) = C, then

∂v

∂x

dx

dt
+
∂v

∂y

dy

dt
= 0 (1.142)

which happens along the solution curves of the system

dx

dt
= −∂v

∂y
= −∂u

∂x
= −Re (f ′(z)) (1.143)

dy

dt
=
∂v

∂x
= −∂u

∂y
= Im (f ′(z))

where we used v = Im f to write the system in terms of f ′. We also chose the
sign so that the flow of ODEs system is antiparallel to ∇u, thus along curves
of steepest descent.

Note 1.144 The system (1.143) is autonomous, and the task is to draw the
phase portrait. As a side remark, (1.143) is the characteristic system for the
PDE

−Re f ′
∂v

∂x
+ Im f ′

∂v

∂y
= 0 (1.145)

The direction field is antiparallel with ∇u, that is, it points toward steepest
descent directions of u and of eνu. To draw the phase portrait more easily we
note that:
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1. Using the Cauchy-Riemann equations we see that Eq. (1.143) is at the
same time a Hamiltonian system as well as a gradient one.

2. There are no closed trajectories since f , thus v, are not identically
constant. Indeed, v = Im f is harmonic, and a harmonic function in
a domain attains its maximum and minimum value on the boundary;
since we are dealing with a level set of v, call it γ, if γ is closed then
max v = min v in the int(γ) implying that v is constant in an open set,
thus constant everywhere, implying f is a constant.

3. As discussed, all critical points of the field (x′ = y′ = 0) are saddle
points, the points of interest for our analysis. Indeed, v cannot have, by
the maximum modulus principle already used in 2, any interior maxima
or minima. (If f is not entire, then of course singularities of f are also
singularities of the field.)

4. At a critical point z0 we have

f ′(z0) = 0 (1.146)

by (1.143) and (1.146), the local behavior of u near z0 is

u(z)− u(z0) =
1

k!
Re
(
f (k)(z0)(z − z0)k

)
(1 + o(1)) (1.147)

where k, generically k = 2, is the smallest such that f (k)(z0) 6= 0. Eq.
(1.147) provides a simple way to plot the directions of steepest descent
of u at z0. These are the directions

f (k)(z0)(z − z0)k ∈ R− (1.148)

5. Trajectories can only intersect at critical points of the field.

6. The properties above, together with the behavior of f at infinity com-
pletely determine the topology of the direction field.

7. To find the steepest descent line decomposition of a contour C we let
every point z0 = x0+iy0 ∈ C flow along the steepest descent path passing
through z0. We write (x0, y0) 7→ (x(t;x0), y(t; y0)) and we denote the
set of such points by C(t). The connected components of the limiting
set:

{z : lim
t→∞

d(z, C(t)) = 0}

represent the sought-for decomposition.

8. By construction, on each Ci, u is strictly monotonic and v, a constant,
thus f − f(zi), with zi an endpoint of Ci, is one-to-one, and the change
of variable defined by ζ = z 7→ −(f(z) − f(zi)) where Re f attains
a maximum, brings the integrals to a Watson’s lemma form, see Note
1.153.
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9. The asymptotic expansions are collected from the endpoints of the steep-
est descent lines from which u increases, since e−νu decreases rapidly
starting from such a point.

We illustrate this on a simple example: we start with the integral∫ ∞eiπ/4
∞e5iπ/4

eν(z4/4−z)dz (1.149)

where ν → +∞. and the integral is taken along any curve C is starting at +i∞
and ending at −∞ Because of the rapid decay in z, the integral converges.
We want to find a curve homotopic to C that consists of paths of steepest
descent of e−u. In this example, (1.143) becomes

dx

dt
= 1− x3 + 3xy2 (1.150)

dy

dt
= 3x2y − y3

The equilibria of (1.150) are, by (1.146) the solutions of 1−z3 = 0 (z = x+iy).
These are zk = e2kπi/3, k = 0, ..., 2 and near a critical point the directions of
descent are obtained from (1.147), 3z2

k(z − zk)2 ∈ R−.
For large t = |t|eiϕ, we have f = −|t|4e4iϕ(1+o(1)), and thus asymptotically

there are, four curves of steepest descent, cos(4ϕ) = −1 + o(1) and four of
steepest ascent, cos(4ϕ) = 1 + o(1). All needed qualitative features of the
phase portrait, sketched in Fig. 1.1, follow from this information and the
fact that trajectories do not intersect except at critical points. In the phase
portrait, the arrows point towards steepest descent. We illustrate the detailed
arguments that leads one to Fig. 1.1 by showing how we can argue where
each of the two steepest descent and ascent lines emanating at the saddle
z2 = ei4π/3 must end up. First, note that each of the descent paths must end
up at sinks ∞e−iπ/4 or ∞e−3iπ/4 since the paths cannot cross the real axis
since y = 0 is an invariant set of the dynamical system (1.150). Each of the
two ascent paths at z2 must end up at −∞ or −i∞, since they cannot cross
the real axis or approach +∞ without crossing the lower-half plane descent
path emanating at the sadde z0 = 1. Further, noting that the two ascent or
the two descent paths cannot approach the same sink or source at ∞ without
crossing each other, we are qualitatively led to Fig. 1.1.

Note 1.151 Note that if a path of integration starts at ∞ in some direction
and ends at ∞ in some other direction, then for large t on the curve the
arrows should point towards infinity to ensure convergence of the integral.
This is indeed the case for (1.149). The steepest descent line decomposition
for (1.149) consists of the curve L1 joining∞eiπ/4 to∞e−iπ/4 passing through
the saddle z0 = 1 together with the curve L2 connecting ∞e−iπ/4 to ∞ei5π/4
passing through the saddle z2 = e4iπ/3, as shown in Fig 1.1.
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L2

L1

C0

FIGURE 1.1: Phase portrait of (1.150). The dotted line C0 is the initial
contour of integration, and the two curves L1 and L2 through the saddle
points 1 and e4πi/3 are its steepest descent decomposition. The light vectors
point in steepest descent directions and the black curves are some trajectories
of the system (1.150). See also Fig. 1.2.

Note 1.152 If the example above were modified to
∫∞eiπ/4
∞e5iπ/4 g(z)eν(z−z4/4)dz,

where g(z) grows too fast along∞e−iπ/4 to allow meaningful homotopic defor-
mation as shown in Fig 1.1, for e.g. g(z) = exp

[
e−iπ/6z6

]
, then g participates

in shaping the steepest descent lines for large z, and the saddle points for large
z are calculated using νf + log g instead11 of νf . This is similar to a steepest
descent problem in which singularities are present, such as the one outlined in
the next section. If only leading order asymptotics is needed, one can simply
the paths L1 and L2 at some large enough zL1 , zL2 independent of ν. With
such a choice, it is easily seen that the straight line path connecting the two
points is exponentially small relative to the saddle point contributions.

Note 1.153 (Connection with Watson’s Lemma) For a general entire
f , the set of saddle points through which the steepest variation curve passes
cannot have accumulation points, because of the assumed analyticity of f .
Then along any steepest descent line, the equation u(x(t), y(t)) = T has a
unique solution, and T (u) is smooth except at the saddle points where it has
algebraic singularities. Furthermore, by construction, exp(iv(x(t), y(t)) =

11Sometimes, it is possible to rewrite νf + log g in the form νf̃ by rescaling z.
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L1

L2

C0

FIGURE 1.2: The original integration path in (1.149) is C0. The light
arrows represent the vector field of steepest descent. Trajectories of the points
of C0 are shown in black. The four curves emanating from the saddle points
in quadrants I and IV are the limiting curves, which are lines of steepest
descent. Note that the partition of C0 occurs along the unstable manifolds at
the saddles. The lower picture shows the flow of the curve y = x at various
time intervals, as each point on the curve is moved along the steepest descent
line through that point.

const along such a curve. The change of variables f(z) = f(z0) + t brings the
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problem to the Laplace form to which Watson’s lemma applies.

Exercise 1.154 Complete the analysis of the example (1.149). Transform
the final contour integrals into Laplace transforms (the integrand might be an
implicitly defined function). Find the asymptotic behavior of (1.149) as ν →
∞, keeping only the two leading consecutive terms in the series expansions.

1.4b.1 A singular example

Consider the problem of finding the asymptotic behavior of the Taylor co-
efficients ck for large k in the expansion

e
1

1−z =

∞∑
k=0

ckz
k, |z| < 1 (1.155)

We have

ck−1 =
1

2πi

∮
|s|=r<1

e
1

1−s

sk
ds =

1

2πi

∮
|s|=r<1

e
1

1−s−k ln sds (1.156)

The rightmost integral is of the general form (1.141). What distinguishes this

case from the case we considered throughout this section is that g(z) = e
1

1−z

has an essential singularity at z = 1.

The steepest descent lines of f = −k ln s are simply rays towards ∞, but it
is not possible to deform the |s| = r path along these lines of steepest descent,
since the singularity at z = 1 is not integrable. The function g contributes
nontrivially to the geometry of the curves of interest. We instead plot the
steepest descent lines of h(s; k) = 1

1−s − k ln s for fixed k and let k →∞; we

see that h(s; k) has two saddle points, at s = 1± k−1/2(1 + o(1)).

Both saddles are on R+, where (1 − s)−1 − k ln s is real; two arcs connect
the saddle points –above R+ and below it– as the imaginary part of h is zero
at both saddle points, see Fig. 1.3; each arc is a heteroclinic connection 12

(how do you prove this?).

An initial circle of radius r < 1 moved by the steepest descent flow becomes,
as t → ∞ simply the union of the two arcs connecting the saddle points, see
Fig. 1.3. To arrive at this conclusion we also used the fact that the integrals
along R+ to the right of the saddle point s = 1+k−1/2(1+o(1)) are traversed
in opposite directions and cancel each-other; also the integrand decays rapidly
on a circle of radius R: the contribution of the latter circle vanishes in the
limit R→∞.

The behavior of ck for large k stems from the behavior of h on a scale of
order k−1/2 near s = 1. The change of variables s = 1 + u/ν, ν = k1/2 results

12A curve connecting two critical points of the field.
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C1

C2

FIGURE 1.3: Steepest descent paths of 1
1−s − k ln s for large k and the

saddle points at s = 1±k−1/2(1+o(1)). The original contour of integration is
the circle centered at 0. Its deformation along steepest descent paths consists
of the union of the heteroclinic connections C1 and its reflection along R+,
C2 (k = 7 in this picture; as k → ∞, C1,2 shrink, and if rescaled, their shape
approaches a half-circle).
.

in

ck−1 = ν−1 1

2πi

∫
C1∪C2

exp
[
−ν(u+ u−1)− ν2[ln(1 + u/ν)− u/ν]

]
du

(1.157)

where we added and subtracted −νu in preparation for expanding the log for
large ν. We note that the function

z−2[ln(1 + zu)− zu] = − 1
2u

2 + 1
3zu

3 + · · · (1.158)

is analytic at z = 0 and we can expand convergently in z = 1/k, as k →∞

exp
[
−ν2[ln(1 + u/ν)− u/ν]

]
= eu

2/2

[
1 +

u3

3ν
− u4

4ν2
+

u6

18ν2
+ · · ·

]
(1.159)

We get

ck−1 = − 1

2πiν

∫
T
e−ν(u+1/u)+u2/2

[
1 + 1

νF1(
1

ν
, u)

]
du (1.160)
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where T is the unit circle, traversed anticlockwise and F1(z, u) is analytic in
(z, u) ∈ D 1

2
×T where D 1

2
is the disk of radius 1/2 centered at zero and T is a

neighborhood of the circle T. The steepest descent lines are slightly changed
into two half circles, as we expanded out a small term. Now the substitution
u+ 1/u = −2 + v brings the integral to a form to which Exercise 1.75 applies.
Indeed, to the leading order,

ck−1 ∼ −
1

2πiν

∮
|u|=1

exp
[
−ν(u+ 1/u) + u2/2

]
du

= − 1

2πν

{∫ π/2

−π/2
+

∫ 3π/2

π/2

}
exp [−2ν cos θ] exp

[
iθ + e2iθ/2

]
dθ (1.161)

The second integral gives exponentially large contribution relative to the first
since −2ν cos θ is maximal at ν = π. Using Laplace’s method on this second
integral gives, to leading order,

ck−1 =
e2
√
k

2
√
πek3/4

(1 + o(1)) (1.162)

It is to be noted that the contribution from the saddle u = +1, corresponding
to θ = 0, is exponentially small in k relative to the contribution from u = −1
(θ = π).

Higher order corrections are obtained more simply as follows. We note that
f(z) = exp(1/(1− z)) satisfies the ODE

(1− z)2f ′(z)− f(z) = 0 (1.163)

The general analytic theory of ODEs implies that there is a on-parameter
family of solutions analytic at zero of the form f(z) = C

∑∞
k=0 ckz

k. Inserting
the power series into (1.163) and collecting the like powers of z, we obtain
recurrence relation for ck

ck = (2− 1/k)ck−1 − (1− 2/k)ck−2, k > 2 (1.164)

with c0 = 1 since we set C = f(0) = e. It follows that c1 = 1
2c0 = 1

2 . As
we will see in the sequel, the asymptotic behavior of ck to all orders in 1/k
for large k can be obtained by WKB from this relation up to a multiplicative
constant, determined by comparing the WKB expansion to (1.164).

1.5 Regular versus singular perturbations

1.5a A simple model

Consider first two elementary problems: finding the roots of the polynomials
P1(x; ε) = x5 − x− ε and P2(x; ε) = εx5 − x− ε for small ε.
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We see that P1(x; 0) has five roots, ρ = 0,±1,±i. We choose one of them,
say ρ = 1 and look for roots of P1(x; ε) in the form ρ(ε) = 1 +

∑
k>1 ckε

k.

Substituting in the equation P1 = 0 we get (4c1−1)ε+(4c2 +10c21)ε2 +(4c3 +
20c1c2 + 10c31)ε3 = 0, and solving for the coefficients c1, . . . , c3, . . . we get

c1 =
1

4
, c2 = − 5

32
, c3 =

5

32
, . . . (1.165)

The series of ρ(ε) is actually convergent. It would not be very convenient to
prove this directly from the recurrence relation, though this is possible. In-
stead, the (analytic) implicit function theorem applies at all 5 roots of P1(x, 0);
for instance, at x = 1, P ′(1, 0) = 4 and analytic solutions extend analytically
since at x = 1 or at any other root of P1(x, 0) = 0 satisfies 5x4 − 1 6= 0. One
can also apply the contractive mapping principle by substituting ρ = 1 + δ
into the equation, placing the largest term containing δ on the left side, and
showing that the equation for δ is contractive for small δ, in a space of func-
tions analytic in ε at ε = 0. We leave the details as an exercise. In this case
the implicit function theorem is simple. For general nonlinear differential or
difference systems, the difficulty lies elsewhere, and the contractive mapping
theorem may be more convenient.

This is a typical behavior in regularly perturbed problems: the roots of the
leading order equation P1(x; 0) give the leading behavior of the actual roots
of P1(x, ε) as ε→ 0.

By contrast, P2(x; 0) has only one root, x = 0. Four solutions of the quintic
polynomial P2(x, ε) are lost by setting ε = 0 in the equation; this is an example
of singular perturtbation since P2(x; 0) does not capture all the behavior of
the five roots of P2(x, ε) as ε→ 0. In this simple problem, we can transform
it into a regular perturbation one in ε5/4 by using scaled variable y = ε−1/4x.
However, in anticipation of more complicated problems, it is useful to employ a
more intuitive argument. As ε→ 0 some polynomial terms become relatively
small compared to others. Evidently, one cannot have a single nonzero term�
all others in the limit. The method of dominant balance is a way to determine
which terms (at least two, per the above) contribute to the leading order (or
dominant) balance. We can take this example and illustrate the method,
though the example is a bit too easy. Balancing −x with ε is consistent since
the result x ∼ ε is compatible with ignoring εx5. However, this can only
lead to the approximate determination of one root of the quintic polynomial.
Clearly, other balances need to be investigated. Balancing εx5 with ε leads
to an inconsistency, since the ignored term −x would turn out to be much
larger. We must then have εx5 ∼ x or equivalently εx4 ∼ 1. To obtain the
higher order corrections, we substitute the scaling obtained from the leading
order balance: x = ε−1/4y and we get

y5 = y + η; (η = ε5/4) (1.166)

Now the limiting (η → 0) equation, y5 = y, has five roots as expected of
a quintic polynomial. Note that the approximation x ∼ ε is recovered as
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y ∼ η and there is no need for a separate argument for that case. In fact, the
equation (1.166) is P1(y; η) = 0, now the implicit function theorem applies at
each root. The roots are thus analytic in η, implying they have convergent
expansion in powers of ε5/4. For instance, the convergent expansion in η near
y = 1 which can be obtained by substitution or by iteration, δ = 1

4η−
5
32η

2 +
5
32η

3 + . . ..

1.6 Regular and singular perturbation equations in dif-
ferential equations

By contrast, we will find that in singular perturbation of differential equa-
tions, where a small parameter typically multiples the highest derivative, the
asymptotic expansions are generally divergent.

An equation can be regularly perturbed in some regimes and singularly
perturbed in some others.

1.6a Formal and actual solutions

Consider the differential equation

df

dz
= f + f2 + zf3; f(0) = 1 (1.167)

which we analyze in a neighborhood of z = 0. The general analytic theory
of ODEs ensures existence, uniqueness and analyticity of the solution in a
neighborhood of z = 0. We can calculate the power series solution in a
number of ways, for instance by substituting f(z) =

∑∞
k=0 ckz

k into (1.167)
and identifying the coefficients ck. We get

f(z) = 1 + 2z +
7z2

2
+

41z3

6
+

57z4

4
+ · · · (1.168)

If we write the equation in integral form

f(z) = 1 +

∫ z

0

[
f(s) + f2(s) + sf3(s)

]
ds

and iterate,

fn+1(z) = 1 +

∫ z

0

(fn(s) + f2
n(s) + sf3

n(s))ds; f0(z) ≡ 1 (1.169)

we can check that, for small z the sequence {fk}k is uniformly Cauchy, and
thus convergent. This can be seen using the fact that if a function h is bounded
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and integrable, then ∣∣∣∣∫ z

0

h(s)ds

∣∣∣∣ 6 |z| max
|s|<|z|

|h(s)| (1.170)

The recurrence (1.169) can be used to generate the power series at zero, by
inductively replacing fn by its Maclaurin series truncated to O(zn) and in-
tegrating the resulting series term by term. We will not go over the details
here, as we will develop more general tools shortly.

1.6b Perturbed Hamiltonian systems

An interesting example is the pendulum of slowly variable length. A model
equation is

q̈ +
g

l0 + εt
q = 0 (1.171)

where q is the generalized position, g is the gravitational acceleration and l0 is
the initial length. A proper treatment of this problem will have to wait until
we study adiabatic invariants.

By changing units and ε we can assume without loss of generality l0 = g = 1
(and denote the rescaled time still by t):

ÿ +
1

1 + εt
y = 0 (1.172)

The limiting equation ÿ + y = 0 has a two dimensional family of solutions,
y = A sin t + B cos t. Assuming that y(0) = 0 and ẏ(0) = 1 we choose
q0(t) = sin t. We look for solutions y in the form of power series in powers of
ε,

y(t) = sin t+

∞∑
k=1

εkyk(t) (1.173)

Solving order by order in ε and using the initial condition y(0) = 0 and
ẏ(0) = 1, translating to yk(0) = 0, y′k(0) = 0 for k > 1, we get

q(t) = sin t+

(
1

4
t sin t− 1

4
t2 cos t

)
ε

+

[(
3

32
− 3

32
t2 − 1

32
t4
)

sin t−
(

3

32
t− 1

16
t3
)

cos t

]
ε2 + · · · (1.174)

By induction, εk is multiplied by a polynomial in t, cos t, sin t of degree 2k in
t. We see that for the expansion to be convergent, or even useful, we need
t2kεk → 0 that is t2ε < δ, where δ needs to be relatively small.

In a region where t < δε−1/2 with δ small enough, we can set up a con-
tractive mapping argument to justify the expansion, which will turn out to
be convergent indeed. We leave this as an exercise as well.
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Note also that in the time interval 0 < t�
√
ε we have l = l0 +O(

√
ε, that

is, the length does not change much; this region is not very interesting. A
proper treatment of this problem will have to wait until we study adiabatic
invariants.

The problem can be viewed as a regular perturbation problem, in the original
scaling, but the interval of time over which this regime is relevant is too short.

Now, when t ∼ ε−1/2 it is natural to take t
√
ε = τ as a new variable,

q(t) = Q(τ) that will not be necessarily small. The equation for Q reads.

εQ̈+
Q

1 +
√
ετ

= 0 (1.175)

Now the limit ε→ 0 is singular: in this limit equation (1.175) would become
Q

1+
√
ετ

= 0; here, as in the case of P2(x; ε) we lose most solutions. Further-

more, the surviving solution Q = 0 is not very interesting, and it does not
satisfy the initial condition. We need to do something else, in this case WKB,
which we introduce in §1.6h.1 below.

1.6c More about regular and irregular singularities of ODEs.
Some simple examples.

Consider instead the equation

dg

dz
− z−2g(z) + z−1 = 0 (1.176)

The point z = 0 is a singular point of (1.176), in fact an irregular singular
point; there are no analytic solutions near zero. Again, by dominant balance
as z → 0+, we find that the only consistent leading order terms are −z−2g
and z−1. By this balance, the iteration supposed to give the solution is

g[n+1] = z + z2(g[n])′; g[0] = z (1.177)

The iteration (1.177) is well defined, and it is solved by the sequence of poly-

nomials (gn)n∈N, where gn(z) = z +
∑n+1
k=2 (k − 1)!zk. The sequence of poly-

nomials has no limit, and we generate the “solution”

g(z) “ = ” z +

∞∑
k=2

(k − 1)!zk, (1.178)

As we will see, this series with zero radius of convergent is the asymptotic
expansion of some solution (in fact, of all of them!) as z → 0+. In fact, it
carries much more information than this. This differential equation is singu-
larly perturbed in essentially the same sense of our polynomial toy models:
the equation satisfied by the dominant terms, here z−2g = z−1 has only one
solution, whereas a first order ODE has a one-parameter family of them. The
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“dominant equation” has fewer solutions than the full equation. Let us com-
pare the two ODEs:

(A)
dg

dz
− g(z) = z; and (B)

dg

dz
− z−2g(z) = −z−1 (1.179)

The iteration obtained by dominant balance in (A) is

(g′)[n+1] = g[n] + z ⇔ (g)[n+1] =

∫ z

0

g[n](s)ds+ z2/2 + C (1.180)

and we are iterating on the integral, a regularizing operator, instead of the
derivative. Substituting a power series in z in (1.179), and equating the
coefficients of zk for k > 2, we get (k + 1)ck+1 = ck in (A), and ck+2 =
(k + 1)ck+1 in (B). We see that the contribution of the derivative to terms of
the expansion is essentially multiplication by k while the singular term, when
present, shifts the index affected by the k multiplication. From the recurrence
relations we obtain that the coefficients ck in (A) are proportional to 1/k!
while in (B), they are proportional to (k − 1)!.

Finally, let’s see how the expansion (1.178) relate to the solutions of (1.176).
In this example, we can write down the exact solution of the equation as

g(z) = Ce−1/z − e−1/z

∫ z

1

s−1e1/sds (1.181)

The change of variables s = 1/t, z = 1/x brings (1.181) to the form

g(1/x) = Ce−x + e−x
∫ x

1

t−1etdt = e−x
(
C +

∫ 1

−∞
t−1et

)
+ e−x

∫ x

−∞
t−1etdt =: C2e

−x + e−x
∫ x

−∞
t−1etdt =

∫ ∞
0

e−xu

1− u
du+ C2e

−x,

(1.182)

where we used the change of variable t → x(1 − u) and the contour of in-
tegration avoids t = 0 (i.e. u = 1). Watson’s lemma shows that g(z) ∼
z +

∑∞
k=2 Γ(k)zk. What we see is that the formal power series solution is, in

this case as well as in (1.167), the Maclaurin series as z → 0+ of some solu-
tion (all of them in (1.176)). The fact that formal solutions are asymptotic
to actual ones is true in much wider generality, as we will see in the sequel.

To get actual solutions, for now we remember not to place the highest
derivative on the right side in an iteration scheme.
Note 1.183 Singularly perturbed linear ODEs cannot be expected to have
a complete set of solutions with asymptotic behavior described by powers or
combination of powers and logs. Consider for instance

y′′ +A(z)y′ +B(z)y = 0 (1.184)
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with A and B having poles at z = 0. Assume two independent solutions have
asymptotic behavior y = za(1+o(1)) and y = zb(1+o(1)) near z = 0. Solving
for A and B, the leading order asymptotic behavior13 is found to be

A =
1− a− b

z
(1 + o(1)) ; B(z) =

ab

z2
(1 + o(1)) (1.185)

This implies that z = 0 is a regular singular point, which constitute only
special cases. Indeed, for a general linear homogeneous ODE of any order with
meromorphic coefficients, it may be proved that at an irregular singular point,
the asymptotic behavior of some (or all solutions) will involve exponentials
(cf. [20] eq. (2.4) p.143) possibly multiplied by power series; when this is the
case, the series are generically divergent.

Exercise 1.186 Prove that an n-th order linear homogeneous ODE with
meromorphic coefficients can have a full set of independent solutions behaving
like zpj to leading order, then the singular point is regular and the solutions
are given by convergent series in (possibly noninteger powers) of z.

1.6d Choice of the norm

The choice of a norm is sometimes crucially important in proving asymptotic
results. Consider another very simple model,

y′ − y − y/x2 − 1/x = 0 (x ∈ R+) (1.187)

where we want understand the behavior of solutions for large x > 0. Of course,
(1.187) can be easily solved in closed form. We will not use the explicit solution
since we plan to understand some qualitative features about the behavior of
solutions of ODEs and, in general, closed form solutions do not exist.

The dominant balances for (1.187) are easy to determine, since, as x→∞
the third term is always dominated by the second one and cannot influence
the leading order balance. Thus y ∼ 1/x is one consistent balance, as one
can check, and the other one is y′ ∼ y. We look at the latter one. With the
intent of estimating away the small term y/x2 through a contractive mapping
argument, we place it on the right hand side of the equation. Written in an
integral form, (1.187) reads

y = y(x0)ex−x0 + ex
∫ x

x0

e−sds

s
+ ex

∫ x

x0

y(s)e−s

s2
=: Cex+ ex

∫ x

x0

e−sds

s
+A[y]

(1.188)
In principle, the value of x0 > 0 is immaterial, since a change in x0 can be
compensated by a change in C. However, the smaller x0 is, the larger will the

13The differentiability of the asymptotics can be assured using the differential equation
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kernel of the integral (s−2e−s) be, so we’ll choose a large enough x0 its size
to be determined later.

What norm should we choose? In general, the best norm is one that reflects
the actual behavior of the solution. Of course we do not know it exactly at
this stage, but we can rely roughly on the dominant balance equation, which
suggests y ∼ Cex.

Based on this we construct a Banach space based on the norm

‖f‖ = sup
x>x0

|e−xf(x)| (1.189)

and choose a ball in this space where we plan to apply the contractive mapping
principle:

B = {f : ‖f‖ < M} (1.190)

for some M > 0. To show contractivity of the map, the norm of the linear
operator A (see §2.15) in expression of L should be < 1:

sup ‖Ay‖ 6 ‖y‖ sup
x>x0

|e−xA[ex]| 6 x−1
0 ‖y‖ (1.191)

and contractivity is ensured, with a small contractivity factor, if x0 is large.
The value of M cannot be arbitrarily small: since the norm of A is small,

the leading behavior of y comes from the terms independent of y on the right
side of the equation, that is the first two terms, thus certainly M > |C|. By
direct calculation it is seen that any M > |C| + 1 suffices when x0 is chosen
sufficiently large.

Let us now try more generally a norm of the form

‖f‖ = sup
x>x0

|e−νxf(x)| (1.192)

Simple estimates show that for the contractivity of L we need ν > 1. This
is to be expected, since if L were contractive for ν < 1 there would exist
solutions that grow slower than ex, and this is inconsistent with (1.188). We
also see that, for large ν and x0, the norm of A is O(ν−1x−2

0 ). The contrac-
tivity factor depends on the norm chosen. Generally, speaking, relaxing the
conditions imposed through the norm makes the operator more contractive,
at the expense of course of having poorer control on the solution.

Exercise 1.193 Estimate the norms of Cex, A[y] and A1[y] in the norm
(1.192) for ν in the range (−∞,∞).

1.6e Choice of limits of integration

In view of the fact that y(x) ∼ Cex for large x, one can write the general
integral form of the equation as

y = Cex +

∫ x

∞

ex−sds

s
+ ex

∫ x

∞
s−2y(s)e−sds =: Cex +

∫ x

∞

ex−sds

s
+A1[y]

(1.194)
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The choice x0 = ∞ in (1.194) ensures that the maximum of the integrand
is reached at the variable point of integration (think at the connection with
Watson’s lemma). Such a choice is especially important in problems in which
the solution decreases instead of increasing. See also Exercise 1.193.

Changing the sign in (1.187) and adding a nonlinearity,

y′ + y − y/x2 − 1/x+ y2 = 0 (x ∈ R+) (1.195)

we now see that only the balance y = 1/x is consistent. Writing the integral
equation in a for similar to that for (1.187),

y = y(x0)e−(x−x0) + e−x
∫ x

x0

esds

s
+ e−x

∫ x

x0

y(s)es

s2
+ e−x

∫ x

x0

y(s)2esds

=: Ce−x + e−x
∫ x

x0

esds

s
+A[y] (1.196)

we see that the behavior 1/x in the region x > x0 cannot be enforced by a
norm, in any easy way (try!). Instead, this is possible by choosing one limit
of integration to be +∞eiϕ, ϕ = π/2 + ε, as indicated before:

y = Ce−x + e−x
∫ x

∞eiϕ

esds

s
+ e−x

∫ x

∞eiϕ

y(s)es

s2
+ e−x

∫ x

∞eiϕ
y(s)2esds

=: Ce−x + e−x
∫ x

∞eiϕ

esds

s
+A[y] (1.197)

1.6f An irregular singular point of a nonlinear equation

Consider Abel’s equation
y′ = y3 + x (1.198)

in the limit x → +∞. We first find the asymptotic behavior of solutions
formally, and then justify the argument. We use again dominant balance. As
x becomes large, y, y′, or both need to become large if the equation (1.198) is
to hold. Assume first that the balance is between y′ and x and that y3 � x.
If y′ ∼ x then we have y ∼ x2/2 and y3 ∼ x6/8, and this is inconsistent since
it would imply x8/8 = O(x). Now, if we assume x � y3 then the balance
would be y′ ≈ y3, implying y ∼ ± 1√

2(x0−x)
but this is small for x − x0 � 1

except when there is a sequence of singularities x0 →∞ and it is not possible
to assume x − x0 to be uniformly large; this situation is analyzed in a later
chapter (§??). Therefore, with those exceptions, we are led to a contradiction
in assuming x� y3. We have one possibility left: y = αx1/3(1 + o(1)), where
α3 = −1, which assuming differentiability implies y′ = O(x−2/3) which is now
consistent. We substitute

y = αx1/3(1 + v(x)) (1.199)
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with the expectation that v will be small. This part of the analysis does not
have to be rigorous. If the balance is mistaken, the final integral reformulation
of the problem would simply fail to be contractive. For definiteness, we choose
α = eiπ/3, the analysis being similar for other cubic roots of −1. We get

αx1/3v′ + 3xv + 3xv2 + xv3 +
α

3
x−2/3 +

α

3
x−2/3v = 0 (1.200)

To find the dominant balance, we first eliminate the terms that cannot par-
ticipate in the leading order balance: 3xv2 + xv3 + α

3 x
−2/3v are dominated

by 3xv if indeed v is small. We are again left with three terms that can par-
ticipate to the leading order balance. We note two things: it is often the case
that, after a substitution based on the leading behavior and smaller correc-
tions, of the form (1.199), the new equation is of course more involved, but
many terms are easily excluded from the dominant balance. Also, the size of
the nonlinear terms relative to the linear ones decreases. By elimination we
see that to leading order only two terms can be of comparable size, 3xv and
α
3 x
−2/3 giving

v ∼ −α
9
x−5/3 (1.201)

Based on the discussion in the previous section, we know that although v′

does not participate in the leading order balance, for a rigorous analysis, we
have to we keep it on the left side and try to rewrite (1.200) in a suitable
integral form. We hence place the formally largest term(s) containing v and
v′ on the left side and the smaller terms as well as the terms not depending
on v on the right side:

αx1/3v′ + 3xv = h(x, v(x)); −h(x, v(x)) := 3xv2 + xv3 +
α

3
x−2/3 +

α

3
x−2/3v

(1.202)
We treat (1.202) as a linear inhomogeneous equation, and solve it thinking
for the moment that h is given.

This leads to

v = N (v);

N (v) := Ce−
9
5αx

5/3

+
1

α
e−

9
5αx

5/3

∫ x

x0

e
9
5α s

5/3

s−1/3h(s, v(s))ds (1.203)

Since the domain of interest in this problem is x > x0 we chose the limits
of integration in such a way that the integrand is maximal when s = x: if

x→ +∞, then x−1/3e
9
5αx

5/3 →∞, and our choice corresponds indeed to this
prescription.

We note that h(s, 0) = α
3 x
−2/3 and by integration by parts, we conclude

that its contribution to the integral in (2.49) to the leading order is −α9 x
−5/3

(consistent with (1.201)). The asymptotic behavior of the contribution of
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h(s, 0) for large x can be also determined simply from L’Hospital:∫ x
a
ebs

m

/snds

ebxm/xM
∼

x→+∞

1

bm
if M = m+ n− 1 (1.204)

or by using Watson’s lemma after suitable changes of variables. Thus, it
is natural to choose x0 large enough and introduce the the Banach space
B = {f : ‖f‖ <∞} where

‖f‖ := sup

{
|x5/3f(x)| : |x| > x0,

5

3
arg x− argα ∈

(
−π

2
,
π

2

)}
(1.205)

Since the arguments apply more generally to a complex sector, we have ex-
tended our domain accordingly, instead of restricting the analysis to the real
positive line. Within B, we consider a ball

B1 :=
{
f ∈ B : ‖f‖ 6 2

3

}
(1.206)

whose size is large enough to include inhomogeneous terms resulting from
integration of h(s, 0) in (2.49) since∥∥∥∥ 1

α
e−

9
5αx

5/3

∫ x

x0

e
9
5α s

5/3

s−1/3h(s, 0)ds

∥∥∥∥ 6
∥∥∥α

9
x−5/3

∥∥∥+ o(x−5/3) <
2

3
(1.207)

for large enough x0.

Lemma 1.208 For given C, if x0 is large enough, then the operator N is
contractive in B1 and thus (2.49) (as well as (1.202)) has a unique solution
there.

PROOF We leave this as an exercise.

Exercise 1.209 Find an asymptotic power series solution as z → ∞ of the
Painlevé equation P1,

y′′ = y2 + z (1.210)

and prove that there are actual solutions asymptotic to it as z →∞.

1.6g Integral reformulations in PDEs: an example

The free w equation is utt − c2uxx = 0; c can be scaled out, by changing
variables to x̃ = x/c; without loss of generality we can then assume c = 1.
Usually, the equation comes with initial conditions (at, say, t = 0):

utt − uxx = 0; u(x, 0) = f(x), ut(x, 0) = g(x) (1.211)
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When f ∈ C2(R) and g ∈ C1(R), the change of variable ξ = x− t, η = x+ t
leads to the well-known D’Alembert solution

u(x, t) = 1
2f(x+ t) + 1

2f(x− t) + 1
2

∫ x+t

x−t
g(s)ds (1.212)

Without smoothness of f and g, (1.212) is interpreted as a weak solution, one
which satisfies the equation in the sense of distributions. For simplicity, in
the sequel we will assume that there is enough smoothness to work in a space
of functions. In the same way we can solve the wave equation with a source,

utt − uxx = S(x, t); u(x, 0) = f(x), ut(x, 0) = g(x) (1.213)

to obtain

u(x, t) = 1
2f(x+ t) + 1

2f(x− t)

+ 1
2

∫ x+t

x−t
g(s)ds+

1

2

∫ t

0

∫ x+t−s

x−t+s
S(y, s)dyds (1.214)

The wave equation with potential arises naturally in a number of physical
problems, ranging from electrodynamics to the wave evolution in the presence
of a black hole. It reads

utt − uxx + V (x)u(x, t) = 0; u(x, u) = f(x), ut(x, 0) = g(x) (1.215)

Clearly, at least for general V we cannot expect to solve (1.215) in closed
form.

Here we assume that V ∈ L∞(R) and f, g are in L1(R) and show that
(1.215) has a global solution u(·, t) ∈ L1(R) and ‖u(·, t)‖L1 grows at most
exponentially in t. That exponential growth is possible for some potentials
can be seen in the following way. Looking for a solution of the PDE in (1.215)
of the form u(x, t) = eλtU(x) we obtain

−U ′′+V (x)U = −λ2U with initial condition u(x, 0) = U(x), ut(x, 0) = λU(x)
(1.216)

Eq. (1.216) is the time-independent Schrödinger equation; in that setting it
is natural to assume that V decays as x → ∞. An L2 solution of (1.216)

for λ 6= 0 is called a bound state of the quantum Hamiltonian − d2

dx2 + V (x),
and for many potentials of interest these do exist (for instance for any large
enough square well).

We can use (1.217) to rewrite (1.215) in integral form,

u(x, t) = 1
2f(x+ t) + 1

2f(x− t)

+ 1
2

∫ x+t

x−t
g(s)ds− 1

2

∫ t

0

∫ x+t−s

x−t+s
V (y)u(y, s)dyds =: A[u](x, t) (1.217)
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Proposition 1.218 Assume the initial conditions f(x) = u(t, 0) and g(x) =

ut(x, 0) are in L1(R) and V ∈ L∞(R). Then, if ν >
√

2‖V ‖
1
2∞ we have

supt>0 e
−νt‖u(t, ·)‖L1

<∞.

PROOF We write the Duhamel formula as

u = Au; Au :=
f(x− t) + f(x+ t)

2

+ 1
2

∫ ∞
−∞

It(y − x)g(y)dy − 1

2

∫ t

0

∫ ∞
−∞

u(y, s)V (y)It−s(y − x))dyds (1.219)

where Ia = χ
[−a,a], the characteristic function of the interval [−a, a]. Con-

sider the Banach space

B = {u : |‖u‖ν := sup
t∈R+

e−νt‖u(t, ·)‖1 <∞}; (ν >
√

2‖V ‖
1
2∞) (1.220)

Applying Fubini to integrate first in x, we see that ‖
∫∞
−∞ χt(y−x)g(y)dy‖1 6

2t‖g‖1 and (since by definition ‖u(·, s)‖1 6 ‖u‖νeνs)

sup
t>0

e−νt
∥∥∥∥∫ t

0

∫ ∞
−∞

u(y, s)V (y)χt−s(y − x)dydt

∥∥∥∥
1

6 ‖V ‖∞‖u‖ν sup
t>0

e−νt
∫ t

0

2(t− s)eνsds 6 2‖V ‖∞ν−2‖u‖ν (1.221)

Using (1.221) we see that A : B → B is contractive. Also, assuming f, g and
V are smooth, the solution is seen to be smooth too: since u ∈ L1, Duhamel’s
formula shows that it is continuous; then, as usual, using continuity we derive
differentiability, and inductively, we see that u is smooth.

Note 1.222 This is one of the cases mentioned before in which exponential
growth is possible, but the rate of growth cannot be determined “in closed
form” for an arbitrary V , and we settle for an overestimate.

Exercise 1.223 Complete the details by showing that this result implies
global existence of a solution of (1.215).

Exercise 1.224 (i) Assume V ∈ L2(R). Prove a similar result with ‖u‖ given

by supt>0 e
−νt

(∫∞
−∞ |u(x, t)|2dx

)1/2

. Use this result to estimate the largest

possible eigenvalue of V .
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1.6h Singularly perturbed differential equations with respect
to a parameter

1.6h.1 Heuristics and formal expansions approach

Consider first the very simple equation

ε2 d
2y

dx2
+ y = 0; ε� 1 (1.225)

which can be of course solved in closed form, which we will do after we explore
some qualitative features. The limit ε → 0 is singular: taking ε = 0 in
(1.225) leaves us with y = 0. Most solutions of (1.225) are lost by formally
setting ε = 0. This is one of the indications that an equation is singularly
perturbed. Also, if by rescaling variables the parameter can be scaled out (for
(1.225) x = tε achieves this), then as ε → 0, any fixed x 6= 0, t approaches
∞, an irregular singular point of the equation. Further, we note that the
ε dependence at zero is not analytic: this is seen of course by solving the
equation, or, having more general equations in mind, by attempting to find
solutions as convergent series in ε: there are no nonzero ones.

Similarly, the equation
d2y

dx2
− a2y = 0 (1.226)

is singularly perturbed fixed for any fixed a 6= 0 as x → ∞, since the change
of variable x = 1/z brings it to

z4 d
2y

dz2
+ 2z3 dy

dz
− a2y(z) = 0 (1.227)

and we see that for small z the coefficients of the derivatives on the left side
of the equation vanish at z = 0, and if we ignored these terms we would be
once more left with a scalar equation, y = 0.

The eigenvalue problem for the one-dimensional Schrödinger equation

−~2ψ′′ + V (x)ψ = Eψ (1.228)

is singularly perturbed when the Planck constant ~→ 0 (its physical value is≈
6.626068×10−34m2kg/s), if x→∞ or both. Here ψ is the wave function and
it has the physical interpretation that |ψ(x)|2 is probability density function
for a particle and the total probability is one: ‖ψ‖2 =

∫∞
−∞ |ψ(x)|2dx = 1. For

a typical potential V going to zero as x → ∞, Eq. (1.228) is also singularly
perturbed when x→∞ for fixed ~. Indeed, taking x = 1/z we get

−~2

(
z4 d

2ψ

dz2
+ 2z3 dψ

dz

)
+ V (1/z)ψ = Eψ (1.229)

and for z = 0 we are left with the scalar equation Eψ = 0. The solution ψ = 0
is not physically acceptable, as it violates ‖ψ‖2 = 1. The limit ~ → 0 is also
singular, for the same reason.
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Let us look first at x→∞. We can analyze (1.229) using dominant balance,
but the form (1.228) is algebraically simpler. It is clear that V (x)ψ cannot be
part of the dominant balance for large x, since it is necessarily much smaller
than Eψ. We are left with the equation −~2ψ′′ ∼ Eϕ which can be solved
exactly. Pretending for a moment that we did not have a closed form solution
for the dominant equation and we tried a leading behavior of the solution as
x→∞ in the form ψ ∼ xa, we would get

V (x)− E +
~2a(1− a)

x2
= 0 (1.230)

in which case no balance is possible. Therefore behavior cannot be power like.
The exact solution of the leading order equation is

ψ ∼ Ce±~
−1x
√
−E (1.231)

We will see that (1.231) is not quite right unless V (x) decays faster than
1
x . Corrections to the exponent ~−1

√
−Ex may be in the form o(x) and

eo(x) 6= O(1). Indeed if V (x) ∼ a
x , this correction is proportional to lnx, say

α lnx, which on exponentiating results in xαe±~
−1x
√
−E 6∼ Ce±~−1x

√
−E . This

is another feature characteristic for singularly perturbed equations: more than
one term may be needed in the initial ansatz for the exponent to correctly
represent the leading order behavior of the solution. This and other reasons
will make the WKB approach below almost necessary.

For now we note that for E < 0 the leading order formal solution is either
exponentially large or exponentially small when x → ∞. Given that ψ must
be in L2, any solution with exponentially large behavior either at x = ±∞
has to be ruled out. The solution that behaves like xαe−~

−1x
√
−E as x→ +∞

does not necessarily have the same behavior as x → −∞ since in the the
intermediate regime x = O(1), the asymptotics is invalid. Determining the
asymptotic behavior of a solution at +∞ in terms of its behavior at −∞
is referred to as a connection problem. Requiring that the solution decays
exponentially both for x → ±∞ selects special values of E, the eigenvalues
of the problem. While solutions ψ do not have power-like behavior for large
x, logψ does. An exponential substitution, y = ew(x) is suggested, and this
WKB ansatz is very helpful in singularly perturbed equations.

We will proceed formally first, and then prove a result for (1.228). So,
consider again (1.228) and substitute ψ(x) = ew(x). After dividing by ew(x)

we get

−~2(w′′ + w′
2
) = E − V (x) (1.232)

or, with w′ = f , we get the first order nonlinear ODE

−~2(f ′ + f2) = E − V (x) (1.233)

We analyze (2.338) by dominant balance. We first assume for simplicity that
E > V (x) for all x; a similar argument works if E < V (x) for all x, with
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V (x)− E replacing i

√
E − V (x). Near points xt where E = V (xt), called

turning points, the dominant ballance changes and we will study these points
separately.

Note 1.234 In a WKB ansatz, we have w′′ � w′
2
. Later we will prove a

more general result on this. In the present example, it is easy to see that
the only consistent dominant balance, say for fixed x and small ε, is between
−~2f2 and E − V (x), and with this balance w′′ is much smaller than the
other terms (unless V (x) is very close to E; points where V (x) = E are called
turning points and will be discussed separately). For now we simply remark
that

w′′

(w′)2
= − 1

α
(1 + o(1))⇒ w = α log(x)(1 + o(1))

on exponentiating would give ψ ∼ xαeo(ln x) for large x, a power-like balance
that we ruled out.

According to Note 1.234 we place w′′ on the right side of the equation, treated
as being relatively small. With f = w′, (1.233) implies

f = ± i
~
√
E − V (x) + ~2f ′ (1.235)

where we choose one sign at a time, say plus for now, and we expand (1.235),
by the usual Picard-like asymptotic iterations,

f [n+1] =
i

~

√
E − V (x) + ~2f [n]′ (1.236)

with f [−1] = 0.
The fact that the highest order derivative is on the right side of the iteration

strongly indicates that the expansion thus obtained is divergent.
To get the first few terms in the expansion, it is more convenient to expand

the rhs of (1.236) to a few orders in ~. To three orders we get

f [n+1] = i
~

√
E − V (x) +

i~f [n]′

2
√
E − V (x)

− i(f [n]′)2~3

8(E − V (x))3/2
+ · · · (1.237)

In this way we get (assuming V is twice differentiable) the following results
when expanded out in powers of ~ to the order presented.

f [0] = i
~

√
E − V (x)

f [1] = i
~

√
E − V (x) +

1

4

V ′

E − V
+O(~)

f [2] = i
~

√
E − V (x) +

1

4

V ′

E − V
+ ~

5i
32V

′2 + i
8V
′′(E − V ))

(E − V (x))5/2
+O(~2)

f [3] = f [2] − ~2

(
15

64

V ′
3

(V − E)4
− 9

32

V ′V ′′

(V − E)3
+

1

16

V ′′′

(V − E)2

)
+O(~3)

(1.238)
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In terms of w this gives

w[0] = i
~

∫ x

x0

√
E − V (s)ds+ C (1.239)

w[1] = i
~

∫ x

x0

√
E − V (s)ds− 1

4
ln(E − V (x)) + C +O(~) (1.240)

and indeed we see that a log term is present in the exponent. Finally, returning
to ψ we get the (formal for now) solution

ψ = C1(E − V (x))−1/4e
i
~
∫ x
x0

√
E−V (s)ds

(1 + o(1)) (1.241)

If V − E has a zero, the expansion (1.238) makes no sense in a small neigh-
borhood of the zero since terms that appear latter in the iteration become
progressively more singular near the zero. A question that arises naturally is
how close can we get to the zero with the expansion in ~?

We notice that ~(E − V )−3/2 � 1 ensures that f [0] − f [1] � f [0] and
f [1] − f [2] � f [1]. This can be shown to be the case for all orders of the
expansion, and stems from the simple fact that, to obtain this expansion we
assumed that ~2f ′ � E − V . If this is indeed the case, if we approach a zero
of E − V where V ′ 6= 0, then f ′ is expected to be of order (E − V )−1/2/~ as
seen by differentiating (1.238). The procedure has a chance to be legitimate
if

~2 1

~
√
V − E

� (E − V )⇒ E − V � ~2/3 , (1.242)

which is the same condition ~(E − V (x))−3/2 � 1 that ensures that the
iteration (1.238) is properly ordered. This shows that the region where E −
V 6� ~2/3 has to be dealt with in a different way. This is the turning point
region and we will analyze separately. We also note the coefficients of higher
order powers of ~ contain, as V − E → 0 a leading term and corrections of
order (V −E) as compared to the leading term. This shows the formation of
a new type of expansion, to carry through the region where V − E is small.

1.6h.2 PDEs and formal WKB

In the context of PDEs, the Cauchy-Kowalewski theorem14 guarantees local
existence of solutions of initial value problems of the form

∂kt h = F
(
x, t, ∂jt ∂

α
xh
)
, where j < k and |α|+ j 6 k (1.243)

where x ∈ Rn and the multi-index α = (α1, α1, ..αn) is in (N ∪ {0})n, |α| =∑n
j=1 αj and ∂αx = ∂α1

x1
∂α2
x2
· ∂αnxn . We use initial conditions

∂jt h(x, 0) = fj(x), 0 6 j < k (1.244)

14In our context, we look for solutions as power series in t with functions of x as coefficients
rather than expanding in both x and t.
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where all the functions involved except for h itself are assumed to be analytic.
Note that the allowed order of the spatial derivatives is at most the same
as that of the time derivative. This is the case, for instance, of the one-
dimensional wave equation

utt = uxx; u(t, 0) = u0(x); ut(t, 0) = v0(x)

where x ∈ R. Assuming analyticity of u0, v0, and pretending, once more, we
did not have a closed form solution, a power series ansatz

u(t, x) =

∞∑
k=0

fk(x)tk (1.245)

yields

fk+2 =
f ′′k

(k + 1)(k + 2)
⇒ fk =

u
(2k)
0

(2k)!
(k even) and fk =

v
(2k)
0

(2k)!
(k odd)

(1.246)

Analyticity implies that
∣∣∣u(2k)

0

∣∣∣ . (2k)!Ck; similar bounds hold for v0. and

thus
∑∞
k=0 uk(x)tk converges. In this case, substituting these fk in the series,

we get the exact solution (no surprise)

1
2

(
u0(x+ t) + u0(x− t) + V0(x+ y)− V0(x− t)

)
;
dV0

dt
= v0 (1.247)

By contrast, in the heat equation

ht = hxx (1.248)

the highest derivative in t is of lower order than the highest derivative in x
(the principal symbol is parabolic), and not of the form (1.243). The same
power series ansatz yields

hk+1 =
h′′k
k + 1

⇒ hk =
h

(2k)
0

k!
∼ k! as k →∞ (1.249)

and, by the same estimate as above, we see that for analytic initial which are
not entire, the now formal series solution (1.245) is factorially divergent. The
effect of parabolicity is very similar to that of a singular perturbation: the
derivatives on the right side of the recurrence are of too high order for the
formal series to converge. Much as in the case of ODEs (cf. Note 1.183) fac-
torial behavior is associated with the potential presence of solutions behaving
exponentially, and this suggests a WKB substitution:

u = eW (1.250)
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leading to

Wxx +W 2
x = Wt (1.251)

Under the ansatz that we used before, |Wxx| � W 2
x , we obtain the leading

order equation

W 2
x = Wt (1.252)

which can be made quasi-linear by taking an x derivative. With V (x, t) =
Wx(x, t) we get

2V Vx = Vt (1.253)

with the general solution gotten by characteristics is

F (V ) + 2tV + x = 0 (F general) (1.254)

For example, with F = 0 we get V (x, t) = − x
2t ⇒ W = −x

2

4t . Substituting

W (x, t) = −x
2

4t + δ(x, t) in (1.250) into (1.251) we get

δ2
x − δt + δxx −

x

t
δx −

1

2t
= 0 (1.255)

with one of the consistent balances, between the second and the last term
giving

δ(x, t) = −1

2
ln t (1.256)

The δ in (1.256) solves the full equation (1.255) and we fortuitously don’t

need further correction terms because exp
[
−x

2

4t −
1
2 log t

]
is an exact solution

to heat equation. Such cancellation cannot be expected for more general
equations. In terms of h, this exact solution is simply the heat kernel,

h = t−
1
2 e−

x2

4t (1.257)

We can try WKB on the wave equation also, since the growth of solutions
of PDEs depends on the initial conditions, and could be exponential. With
u = eW we get

Wxx +W 2
x = W 2

t +Wtt (1.258)

With the ansatz |Wxx| �W 2
x , |Wtt| �W 2

t we get

Wx = ±Wt, W± = F (x± t) (1.259)

Both W+ and W− solve the full equation (1.258) (again, this cannot be ex-
pected in general).

We will return to asymptotics of PDEs after we have developed adequate
tools.
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1.6h.3 Proof of existence of a solution of (1.228) in the form (1.241)

One way of proving the expansion is to return to (1.233) where we substitute
for f(x) = f [j](x) + δ(x), j > 1 15. Here we choose j = 1; assuming that the
regularity of V allows for calculating higher order terms which involve higher
derivatives of V as seen in (1.238) taking j = j1 > 1 would allow for proving
asymptoticity of the expansion with j1 + 1 terms.

f(x) = i
~

√
E − V (x) +

1

4

V ′

E − V
+ δ(x) (1.260)

The equation for δ(x) is

~δ′ + 2i
√
E − V (x)δ +

~V ′

2(E − V (x)
δ = −~g − ~δ2

where g(x) :=
5

16

(
V ′

E − V (x)

)2

+
V ′′

4[E − V (x)]
(1.261)

(as discussed earlier, the highest derivative cannot be treated as a perturbation
in a rigorous argument).

We then write the equation in integral form. Let J = 2i
~
∫ x
x0

√
E − V (s)ds

and µ(x) = (E − V (x))
−1/2

. Using the integrating factor for the left side of
1.261, we get

δ(x) = −e
−J(x)

µ(x)

∫ x

∞
µ(s)eJ(s)g(s)ds− e−J(x)

µ(x)

∫ x

∞
eJ(s)µ(s)δ2(s)ds

:= δ0 +N δ (1.262)

To prove a rigorous result we need some assumptions.

Assumption 1.263 For simplicity we let V : R → R, V ∈ C2(R), assume
that V is O(1/x1+ε) for large x and that this estimate can be differentiated:
V ′ = O(1/x2+ε) and V ′′ = O(1/x3+ε). We work on an interval, say [x0,∞),
where E − V (x) > a > 0. We note that under these assumptions we have
g(x) = O(x−3−ε) for large x.

We introduce the Banach space

B = {δ : [x0,∞)→ C | ‖δ‖ := sup
x>x0

|x1+εδ(x)| <∞} (1.264)

We first prove that the term

δ0 :=
e−J(x)

µ(x)

∫ ∞
x

µ(s)eJ(s)g(s)ds (1.265)

15The minimum j needed depends on the problem; in some settings, j = 0 suffices. As a
rule, the more terms we pull out, the more contractive the operator becomes, at the expense
of the algebra getting more involved .
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in (1.262) decays as ~→ 0 or as x0 → +∞.

Lemma 1.266 Under Assumption 1.263, we have lim~→0 ‖δ0‖ = 0. Further-
more, for any ~ 6= 0, limx0→∞ ‖δ0‖ → 0.

PROOF Let

F (x) := x1+ε

∫ ∞
x

µ(s)eJ(s)g(s)ds (1.267)

Since |x1+εeJ(s)g(s)µ(s)| 6 s1+εµ(s)|g(s)| ∈ L1, (1.267) implies

lim
x→∞

F (x) = 0 (1.268)

Using the fact that 1
µ(x)e

−J(x) is bounded, (1.264), (1.262) and (1.268) imply

limx0→∞ ‖δ0‖ = 0 for any ~ 6= 0. Now, consider the case of ~→ 0 with x0 > 0
fixed.

We claim that for any ε > 0, there exists ~0 such that |f(x)| 6 ε for any x
if |~| 6 ~0.

First, from (1.268), it follows that for large enough M and x > M we have
|F (x)| 6 ε.

Let now t = t(x) =: ~J/(2i). Note that t : [x0,∞] → [0,∞] is increasing
since t′(x) =

√
E − V (x) = 1/µ(x). We change to the variable t in (1.267).

Since

F (x) = x1+ε

∫ ∞
t

e2it/~g(s(t))µ2(s(t))dt

the Riemann-Lebesgue lemma implies that for x ∈ [x0,M ] we have lim~→0 f(x) =
0. Since f is uniformly continuous on [x0,M ], convergence is uniform in x,
i.e. there exists ~0 so that |~| 6 ~0 implies |F (x)| 6 ε for any x. Therefore,
lim~→0 ‖δ0‖ = 0 since e−J(x)/µ(x) is bounded.

Theorem 1.269 Under Assumption 1.263, if x0 is large enough or ~ is small
enough, then two linearly independent solutions of (1.228) for x ∈ (x0,∞),
ψ = ψ1 and ψ = ψ2, satisfy

ψ1(x) = [E − V (x)]
−1/4

exp

[
i

~

∫ x

x0

[E − V (t)]
1/2

dt

]
{1 + o(1)} (1.270)

ψ2(x) = [E − V (x)]
−1/4

exp

[
− i
~

∫ x

x0

[E − V (t)]
1/2

dt

]
{1 + o(1)} (1.271)

PROOF We only prove the result for ψ1 since the proof for ψ2 is the same
after changing the sign of i. Since ψ1 = eW , W ′ = f [1] + δ with f [1] defined in
(1.238). it is enough to show that (1.262) has a solution in a ball where ‖δ‖
is small:

Bε = {δ ∈ B|‖δ‖ 6 ε} (1.272)
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Using Lemma 1.266, we see that for any ε > 0, if x0 is large enough or ~ is
small enough, then ‖δ0‖ 6 1

2ε. Now, for any δ ∈ Bε, we have

|x1+εN [δ]| 6 ‖δ‖2x1+ε

∫ ∞
x

µ(s)

µ(x)
s−2−2εds 6 C‖δ‖2 6 Cε2,

where C is independent of ε. Choosing ε < 1
2C , this implies that ‖δ0+N [δ]‖ <

ε and ‖N [δ1]−N [δ2]‖ 6 2Cε‖δ1−δ2‖ < ‖δ1−δ2‖. Therefore, the contraction
mapping theorem implies that there exists a unique solution in Bε.

If, as mentioned at the beginning of the section we took j = j1 > 1 instead,
then the remainder g in the map (1.283) will be of higher order in ~. With
this change, contractivity is proved in the same way, to obtain an asymptotic
expansion with j1 + 1 terms.

Remark 1.273 (i) No decay assumption on V is necessary for Theorem 1.269
to apply for x in a fixed (~−independent interval [a, b]. (ii) The assumption
x0 > 0 in Theorem 1.269 is not needed. To allow for x0 < 0 the proof is largely
the same. Assuming V (x) = O(|x|−1−ε) as x → −∞, we would instead use
the norm ‖δ‖ = supx∈(x0,∞) |1 + |x|)1+ε|δ(x)|.

1.6i The case V (x)− E > a > 0

Assumption. V (x) − E > a > 0, V ∈ C2 for x ∈ [x0, x1) where x1 can be
+∞
Repeating the WKB procedure in §1.6h.1 we obtain

f [2] = ±~−1
√
V − E− 1

4

V ′

V − E
±~
[

V ′′

8(V − E)3/2
− 5

32

(V ′)2

(V − E)5/2

]
(1.274)

which formally leads to

ψ± = C1 [V (x)− E]
−1/4

exp

[
±1

~

∫ x

x0

√
V (t)− Edt

]
[1 + o(1)] for x ∈ [x0, x1)

(1.275)
either for ~→ 0 or x→ +∞ (if x1 = +∞). The precise result is given below:

Theorem 1.276 For V ∈ C2(x0,∞), and V (x) − E > a > 0, as x → +∞
(assuming x1 = ∞) or as ~ → 0+, two independent solutions of (1.228) are
given by ψ = ψ1 and ψ = ψ2, where

ψ1(x) = [V (x)− E]
−1/4

exp

{
1

~

∫ x

x0

[V (t)− E]
1/2

dt

}
{1 + o(1)} (1.277)

ψ2(x) = [V (x)− E]
−1/4

exp

{
−1

~

∫ x

x0

[V (t)− E]
1/2

dt

}
{1 + o(1)} (1.278)
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PROOF We carry out the proof first for ψ1. Substituting

W ′ =
1

~
√
V (x)− E − V ′

4[V (x)− E]
+ δ

where ψ = eW , and inverting the linear part of the first order ODE for δ, we
obtain the integral equation

δ = −e
−J(x)

µ(x)

∫ x

x0

g(s)µ(s)eJ(s)ds− e−J(x)

µ(x)

∫ x

x0

eJ(s)µ(s)δ2(s)ds =: δ0 +N δ ,

(1.279)
where g as before is given by (1.261), but now J(x) = 2

~
∫ x
x0

√
V (t)− Edt and

µ = (V (x) − E)−1/2. The contraction mapping theorem shows existence of
a unique solution to (1.279) in a ball of size 2‖δ0‖∞. We note that δ0 can
be made arbitrarily small by choosing a small enough ~, as it is seen using
Laplace’s method. In the proof for ψ2, we substitute W ′ = −

√
V (x)− E −

V ′

4[V (x)−E] + δ, where ψ = ψ2 = eW . We obtain the same form of integral

equation (1.279) except that the sign of J(x) is switched and the limits of
integration are x1 and x. In both cases it is crucial to choose the limits of
integration so that e−J(x)+J(s) 6 1 throughout the interval of integration and
is maximal at s = x. By Laplace’s method, these conditions and the presence
of 1/~ in the exponent ensure that the integrals go to zero as ~→ 0 ensuring
contractivity for small ~.

Exercise 1.280 Complete the details of the proof of Theorem 1.276.

1.6i.1 Turning points

In the previous subsection we assumed that E − V is bounded below. This
assumption is in fact necessary, otherwise the asymptotic behavior of the
solutions is different. If we examine the procedure used to derive (1.237)

from (1.236), we see that the expansion is only valid if ~2f [n]′ � E − V (x),
that is, to have f ≈ f [0] we need ~(E − V (x))−1/2 � E − V (x), that is,
E − V (x) � ~2/3. Something else must be done when the latter condition
fails.

In our assumption V is smooth. Generically, near a zero of V (x)−E, also
referred to as a turning point, V (x) = α(x − xt) + O(x − xt)2, where α 6= 0.
Without loss of generality we can take xt = 0 and α = −1 through translation
and scaling. The region where our WKB does not hold is given by |x| . ~2/3.
It is natural to change variables to t = x/~2/3 in (1.228); we get, after dividing
by ~2/3,

−ψ′′(t)− tψ(t) = ~2/3t2ϕ1(x(t))ψ(t) (1.281)

where ϕ1(x) = x−2[E − V (x) − x]. To leading order in small ~, ψ satisfies
−ψ′′0 (t)− tψ0(t) = 0 with the general solution

ψ0(t) = C1Ai(−t) + C2Bi(−t) (1.282)
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Since the right hand side of (1.282) is a regular perturbation in ~2/3 for t in
any finite interval, we can obtain higher order corrections in ~ as usual.

1.7 Borderline region: x� ~2/3

Assume a turning point at x = 0, i.e. , E = V (0) and that E − V (x) > 0
for x > 0. Then, for x > x0 > 0, independent of ~, Theorem 1.269 applies.
We now write a mapping for an interval (a, x0) where a is allowed to depend
on ~:

δ(x) = −e
−J(x)

µ(x)

∫ x

a

eJ(s)µ(s)g(s)ds− e−J(x)

µ(x)

∫ x

a

eJ(s)µ(s)δ(s)2ds := δ0 +N δ

(1.283)
The reasoning is similar to that in §1.6h.3. We choose a as small as possible,
while still allowing the right side of (1.283) to be contractive. For this to be
the case, a so that δ2 � g; when this is possible, as shown at the end of
the argument, the results of Theorem 1.269 extend to the interval (a, x0). To
determine what this condition entails, we use dominant balance in (1.261):
δ � ~|gx−1/2| � ~|x|−5/2, and thus δ2 � g implies ~2|x|−5 � ~|x|−2, that is
|x| � ~2/3. For contractivity we need, as in §1.6h.3, |δ1 + δ1| � 1 which for
δ1, δ2 = O

(
~x−5/2

)
holds if x � ~2/5. This condition is more stringent than

|x| � ~2/3 . We then choose a = ν~2/3 with ν sufficiently large, and with
this, the map is contractive on (a, x0). We leave the details as an exercise.

1.7a Inner region: Rigorous analysis

−ψ′′ − tψ = −~2/3t2ϕ1(~2/3t)ψ := f(t) (1.284)

which can be transformed into an integral equation in the usual way,

ψ(t) = πAi(−t)
∫ t

f(s)Bi(−s)ψ(s)ds− πBi(−t)
∫ t

f(s)Ai(−s)ψ(s)ds

+ C1Ai(−t) + C2Bi(−t) (1.285)

where Ai, Bi are the Airy functions, with the integral representations:

Ai(z) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

e
1
3 t

3−ztdt (1.286)

Bi(z) =
1

2π

∫ ∞eπi/3
−∞

e
1
3 t

3−ztdt+
1

2π

∫ ∞e−πi/3
−∞

e
1
3 t

3−ztdt (1.287)
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The integral representations allow us to derive the global behavior at ∞, that
is, the asymptotic expansion in any direction towards infinity, with explicit
constants. With ζ = 2

3 |t|
3
2 we have

Ai(−t) ∼ 1

2
√
π
|t|−1/4e−ζ ; Bi(−t) ∼ 1√

π
|t|−1/4eζ ; t→ −∞ (1.288)

[1] and

Ai(−t) ∼ 1

π1/2t1/4
sin(ζ+ π

4 ), Bi(−t) ∼ 1

π1/2t1/4
cos(ζ+ π

4 ) (t→∞) (1.289)

as t→ −∞. As usual, we have to choose the limits of integration in (1.285) so
that the maximum point of the integrand is at the variable point of integration.
We note that we cannot quite choose infinity as an upper limit since the Airy-
type behavior was derived in the inner region |x| � ~2/3 and in general is
not expected to be the same outside. We will choose as large a t-interval
(−M1,M2), possibly depending on ~ for which the leading order behavior
ψ ∼ C1Ai(−t) + C2Bi(−t) can be shown. We rewrite (1.284) in the integral
form

ψ(t) = πAi(−t)
∫ t

0

f(s)Bi(−s)ψ(s)ds− πBi(−t)
∫ t

−M1

f(s)Ai(−s)ψ(s)ds

+ C1Ai(−t) + C2Bi(−t) = Jψ + ψ0 (1.290)

Next, to control the norm of J , for large M1 the estimate

|t|−1/4e−
2
3 |t|

3/2

~2/3

∫ |t|
0

s2s−1/4e
2
3 s

3/2

ds . ~2/3M1, (t→ −∞) (1.291)

follows from Watson’s Lemma after the change of variable p = 1− s3/2/|t|3/2,
and similarly

|t|−1/4e
2
3 |t|

3/2

~3/2

∫ M1

|t|
s2s−1/4e−

2
3 s

3/2

ds . ~2/3|t| . ~2/3M1 (1.292)

The right sides of (1.293) and (1.292) are small if M1 � ~−2/3. For t→ +∞,
estimating crudely | sin |, | cos | by one, we get

t−1/4~2/3

∫ t

0

|s2s−1/4|ds . ~2/3t5/2 . ~2/3M
5/2
2 , (1.293)

which is small for M2 � ~−4/15. We now work in the sup norm on [−M1,M2]
and obtain, in the usual way, the following result

Proposition 1.294 If ~ is small enough, then J defined in Eq. (1.290) is
contractive in L∞(−M1,M2) when ~2/3M1 and ~4/15M2 are small enough.
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We leave the details as an exercise. We see that the region of contractivity
for t < 0 simply requires |x| � 1. On the other hand, the same is true for
t > 0, with the price of making the argument quite a bit more involved.

Note 1.295 The contractivity of the map for x < 0 only requires |x| � 1.
However, the norm used, L∞ does not allow for controlling the asymptotic
behavior of solutions as t becomes large. In particular, we would like to un-
derstand for what range of (large, negative) t does the solution of (1.284) have
the behavior described by Airy function asymptotics, (1.288). The behavior
(1.288) does not follow from our arguments, and in fact it is not even correct
if |t| � ~−4/15 as we will see in §1.7b.

1.7b Matching region

Let’s analyze the behavior of solutions in the region 1� |t| � ~−4/15. We
will only analyze t < 0, as for t > 0 the analysis is similar (in fact, slightly
simpler).

We first write t = −u to make the analysis clearer. We get

−ψ′′ + uψ = −~2/3u2ϕ1(−~2/3u)ψ (1.296)

We next bring (1.284) to a form that is best suited for looking at large t,
a process called normalization. In the region where solutions have Airy-like

asymptotic behavior, roughly u−1/4e±
2
3u

3/2

, we change variables so that the
leading behavior is of the form es. A way to do this is simply by rescaling the
dependent and independent variables, ψ(u) = u−1/4g( 2

3u
3/2).

With s = 2
3u

3/2, this leads to the equation

g′′ − g = − 5

36
s−2g(s) +

181/3

2
~ϕ1(s)s2/3g(s) = F (s)g(s) (1.297)

where ϕ1 is bounded. Choosing s0 large enough, we write (2.47) in the integral
form:

g = Aes+Be−s+
1

2

(
es
∫ s

M

F (v)e−vg(v)dv − e−s
∫ s

s0

F (v)evg(v)dv

)
(1.298)

where M will be “large but not too large” so that two solutions with asymp-
totic behavior es and e−s respectively exist for s ∈ [s0,M ].

We now look for a solution with the behavior g(s) = e−s for large s. The
adapted norm to measure this type of behavior is ‖g‖ = sups>s0 |g(s)es|. We
should take A = 0 in (1.298), since the norm of es is very large, of order e2M .
To check for the contractivity of the map in this norm, we use the fact that,
by the definition of the norm, |g(v)| 6 ‖g‖e−v. For the first integral we have

es
∣∣∣∣es ∫ s

M

F (v)e−vg(v)dv

∣∣∣∣ . ‖g‖e2s

∫ s

M

(~2/3v2/3 + v−2)e−2vdv

. ‖g‖(~2/3s2/3 + s−2) . ‖g‖(~2/3M2/3 + s−2
0 ) (1.299)
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where we used Watson’s lemma. In order for the norm of this part of the
operator to be less than one, we need s0 to be large, which we assumed
already, and, once more, |x| . 1.

For the second integral, we see that the exponential in the definition of the
norm cancels the exponential which was already in the integrand and we get

es
∣∣∣∣e−s ∫ s

s0

F (v)evg(v)dv

∣∣∣∣ . ‖g‖ ∫ s

s0

(~2/3v2/3 + v−2)ds . ‖g‖~2/3s5/3 + s−1
0

. x~−1|x|5/2 + s−1
0 (1.300)

which can be made small if s0 is large, as before, and if |x| . ~2/5. The
mapping is now contractive in a smaller region– the one that we have obtained
before in the oscillatory regime.

Exercise 1.301 Complete the details of the analysis, and do a similar anal-
ysis for the behavior es (where now the norm would be ‖g‖ = sups |e−sg(s)|).
Show the existence of solutions of (1.284) with the behavior of the Airy func-
tions Ai and Bi, cf. (1.288) in the region |x| . ~2/5.

Note now that, when approaching x = 0 from the outer region, we have E−
V (x) = ax+o(x2) where, by scaling we chose a = 1; then i~−1

∫ √
E − V (x) =

i~−1 2
3 (x3/2 +O(x5/2)) and

(E − V (x))−1/4ei~
−1

∫ √
E−V (x) = x−1/4ei~

−1 2
3 (x3/2+O(x5/2)) (1.302)

and by switching to the variable t = ~−2/3x we get the behavior of a linear
combination of Ai and Bi in the oscillatory region. Similarly, changing i to −i
in the analysis above we get a linearly independent solution, with the behavior
given by a different combination of Ai and Bi. This was to be expected since
we are, after all, dealing with the same equation in the inner and outer region,
up to these changes of variables, and the behaviors should correspond to each
other.

Matching means simply finding the concrete values of the constants so that
an outer solution equals an inner one.

We note that there is a difference between the oscillatory outer region and
the one with growing/decaying exponential behavior. If only the decaying
exponential is present in the outer solution, the matching is straightforward: it
corresponds simply to the solution with the behavior Ai in the inner region (Bi
should not be present since it grows exponentially). But if the outer solution
has both growing and decaying components, matching becomes more delicate
since the small exponential is masked by the larger one to all orders of an
asymptotic expansion in ~ and finding the correspondence between constants
cannot be done by classical asymptotic means. One has to go to the complex
domain if the potential is analytic or use exponential asymptotic tools.
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1.8 Recovering actual solutions from formal ones

Consider the simple ODE

y′ = y + 1/x (1.303)

(1.303) has an irregular singularity at infinity. If we look for formal asymptotic
series solutions ỹ =

∑
k>0 ckx

−k we get c0 = 0, ck = (−1)k(k − 1)!, that is

ỹ =

∞∑
k=0

(−1)k+1k!

xk+1
(1.304)

This series has empty domain of convergence. Nonetheless, we can do the
following. Writing

k! =

∫ ∞
0

e−ttkdt⇒ (−1)k+1k!

xk+1
=

∫ ∞
0

e−px(−1)k+1pkdp (1.305)

and inserting (1.305) into (1.306), we get

ỹ =

∞∑
k=0

∫ ∞
0

(−1)k+1pke−pxdp (1.306)

This following step requires serious justification, but for now we formally
interchange summation and integration,

ỹ =

∫ ∞
0

e−px
∞∑
k=0

(−1)k+1pkdp
formally

= −
∫ ∞

0

e−px

1 + p
dp = exEi(−x) (1.307)

where

Ei(x) = PV

∫ x

−∞

et

t
dt

and PV stands for the Cauchy principal part: if the path of integration crosses
zero, then the integral is defined as the limit as ε→ 0 of

∫ −ε
−∞+

∫ x
ε

. The use
of PV in the definition of Ei is perhaps one of the oldest and simplest forms
of more general forms of regularization, the “medianizations” of Écalle.

If our sole purpose was to solve (1.303) we could bypass the intermediate
steps and any need for justification, and simply check that the function we
obtained at the end, exEi(−x), satisfies the ODE. For the general solution of
(1.303), we just add Cex, the solution of the associated homogeneous equation,
to exEi(−x).

Of course however, (1.303) is very simple and we could have solved it by
variation of constants or other elementary means. The questions are (1) Can
we extend this to a much more general procedure, applicable to generic ODEs
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near irregular singularities? (the answer is yes) and (2) Can we justify the
formal steps that led from (1.306) to the function in (1.307)? (the answer is
yes again). We leave these issues for later, now we simply note that there is
another way to interpret the operations that led to “summing” the divergent
series: (1) we took the formal inverse Laplace transform of the series, that
is, term-by-term; (indeed L−1x−k−1 = pk/k!, (2) we summed the geometric
series

∑∞
k=0(−p)k = (1 + p)−1, and, since the radius of convergence of this

geometric series is one, we extended (1 + p)−1 analytically (1 + p)−1 on R+,
and (3) we took the Laplace transform of L the result. Since LL−1 = I the
identity, and at a formal level what we did is just that, LL−1, we expect that
if ỹ satisfied an ODE, so will the LL−1ỹ. This is the route we will take in
justifying this procedure.

We also note that the formal series ỹ is divergent since it is obtained by re-
peatedly differentiating a function which is not entire: the iterative asymptotic
process leading to ỹ is y[n+1] = −1/x+∂xy

[n]. The inverse Laplace transform
is a Fourier transform in the imaginary direction, and the Fourier transform is
the unitary operator that diagonalizes differentiation. After a form of Fourier
transform, repeated differentiation becomes repeated multiplication by the
“symbol” of the differential operator, denoted by p here. This can only lead
to geometric behavior of the terms of the formal series, something we know
much more about: this is dealt with by analytic function theory.

Finally, and this is another important point, in this and many problems,
applying the inverse Laplace transform has a regularizing effect. Indeed, the
formal solution

∑∞
k=0(−1)kk!x−k−1 becomes, after applying L−1,

∑∞
k=0(−p)k

which is convergent. Whatever problem the new series is a solution of, that
new problem is expected to have at mot a regular singularity, given this con-
vergence. Indeed, assuming first that y has an inverse Laplace transform, to
be confirmed later and takingL−1 in (1.303) we get, with L−1y = Y ,

(p+ 1)Y = 1 (1.308)

an ordinary equation with meromorphic solutions. We now note that y = LY
is inverse Laplace transformable indeed and L−1y = Y , and that LY solves
the equation. A more general rigorous approach will based, in broad lines, on
this approach.

The same can be dome in the context of PDEs. Let’s take the heat equation,

ht = hxx; with h(0, x) =
1

1 + x2
(1.309)

Since the equation if parabolic, the Cauchy-Kowalesky does not apply. In fat,
looking for power series solutions

h =

∞∑
k=0

Hk(x)tk (1.310)
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we obtain the recurrence

Hk+1(x) =
H ′′k (x)

k + 1
; H0(x) =

1

1 + x2
= Re

(
1

1 + ix

)
(1.311)

where we wrote the initial condition in a way that facilitates taking high order
derivatives. We get for Hk,

Hk+1 =
H ′′k
k + 1

⇒ Hk =
H

(2k)
0 (x)

k!
= (−1)k

(2k)!

k!
Re
(
(1 + ix)−2k−1

)
(1.312)

and (1.312) shows that, with the given initial condition, (1.313) is divergent.
Denoting t = 1/T we write

h̃ = T

∞∑
k=0

Hk(x)T−k−1 = T

∞∑
k=0

(−1)k
(2k)!

k!
Re
(
(1 + ix)−2k−1

)
T−k−1

(1.313)
and we apply to the sum in (1.313) the procedure we used in (1.307), (1.306),
(1.305), with x = T . We get

T

∞∑
k=0

(−1)k
(2k)!

k!
Re
(
(1 + ix)−2k−1

)
T−k−1

= t−1

∫ ∞
0

e−
p
t Re

{ ∞∑
k=0

(−1)k(2k)!(1 + ix)−2k−1pk

k!2
dp

}

= t−1

∫ ∞
0

e−
p
t F (p, x)dp :

F (p, x)) = Re

√
1

ξ2 + 4p
where ξ = (1 + ix) (1.314)

where we used the binomial series representation of (1 + 4z)−1/2.



Chapter 2

Borel summation: an introduction

2.1 The Borel transform B

The Borel transform is defined on formal power series in the reciprocal of
a variable, say x, with values in the space of formal power series in a dual
variable, that we will often denote by p. By definition,

Bx−s =
ps−1

Γ(s)
, Re s > 0 (2.1)

defined for p in C (or, if s is not an integer, on the universal covering of C \
{0})1. The Borel transform is similar to a (formal) inverse Laplace transform
L−1, except that L−1 vanishes in the left half plane:

L−1x−s =

{
ps−1/Γ(s) for Re p > 0

0 otherwise
Re (s) > 0 (2.2)

For a power series f̃ =
∑∞
k=0 ckx

−k−1, the Borel transform is applied, by
definition, term-by-term:

B
∞∑
k=0

ck
xk+1

=

∞∑
k=1

ck
k!
pk (2.3)

More generally, we can allow for noninteger power series. If for instance
0 < Re (sk) < Re (sk+1) for all k ∈ N, then we define

B
∞∑
k=1

ck
xsk

=

∞∑
k=1

ck
Γ(sk)

psk−1 (2.4)

Because the k-th coefficient of B{f̃} is smaller by a factor k! than the corre-
sponding coefficient of f̃ , B{f̃} may converge even if f̃ does not. Note also
that LB is formally LL−1, the identity operator. These two facts account for
the central role played by LB in summability of factorially divergent series.

1This consists of classes of curves in C \ {0}, where two curves are equivalent if they can be
continuously deformed into each other without crossing 0.

65
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If B{f̃} converges to a functionf which is Laplace transformable, and we
apply L to f , we effectively get an identity-like operator from series to func-
tions.

2.2 Definition of Borel summation and basic properties

We define Borel summation of integer power series, but the definition extends
to more general series, see Note 2.9 below.

Borel summation is relative to a direction; see §2.2a. The same formal series
f̃ may yield different functions by Borel summation in different directions.

Borel summation along R+ consists of three operations, assuming (2)
and (3) are possible:

1. Borel transform, f̃ 7→ B{f̃}.
2. Convergent summation of the series B{f̃} and analytic continuation

along R+ (denote the continuation by F and by D an open set in C containing
R+ ∪ {0} where F is analytic).

3. Laplace transform, F 7→
∫∞

0
F (p)e−pxdp =: LB{f̃}, which requires

exponential bounds on F , defined in some half-plane Re (x) > x0.

Note 2.5 If AC denotes analytic continuation and S applied to a formal
series is its sum, wherever the sum converges, then Borel summation is the
composition L◦AC◦S◦B. Whenever AC◦S exists, it is clearly an isomorphism
between formal series and analytic functions.

Definition 2.6 The domain of Borel summation along R+ is the subspace
SB of series for which the conditions for 2. and 3. above are met. For step 3
we can require that for some constants CF , νF we have |F (p)| 6 CF e

νF p. Or
we can require that ‖F‖ν <∞ where, for ν > 0 we define

‖F‖ν :=

∫ ∞
0

e−νp|F (p)|dp (2.7)

If f̃ is Borel summable, then the Borel sum of f̃ , denoted by LBf̃ , is defined
to be LF .

2.2.1 Extensions

Remark 2.8 Borel summation of series starting with finitely many powers
of x with positive real part is defined by

LB
∑
k∈N

ckx
−sk =

∑
k:Re sk60

ckx
−sk + LB

∞∑
k:Re sk>0

ckx
−sk
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assuming Re (sk) < Re (sk+1) for all k ∈ N. In case some of the sj are
noninteger, the definition of LB is essentially the same, replacing analyticity
at zero with ramified analyticity. (This is needed since

∫∞
0
pse−xpdp exists,

as a classical integral, only if Re s > −1.)

Note 2.9 Series of the form

f̃ =
∑
ki>0

ck1k2...kmx
−β1k1−...−βmkm−1 =:

∑
k>0

ckx
−k·β−1

with Re (βj) > 0 frequently arise as formal solutions of differential systems.
Here β = (β1, ..., βm) and ck = ck1k2...km . We define

B
∑
k>0

ckx
−k·β−1 =

∑
k>0

ckp
k·β/Γ(k · β + 1) (2.10)

*

2.2a Borel summation along other directions

Borel summation along other directions in C is most easily defined by
changes of variables. We say that a power series in inverse powers of x, f̃ =
f̃(x), is Borel summable as x→∞eiθ or Borel summable along the ray eiθ if
f̃(yeiθ) is Borel summable for y along R+. We write LBθ[f̃(x)] = LB[f̃(yeiθ)].

In general, LBθ depends nontrivially on θ. We can take as an illustration
the formal series

f̃1 =

∞∑
k=0

k!

xk+1
(2.11)

that we have examined before. A straightforward calculation shows that the
Borel sum of f̃1 in the direction θ is

LBθf̃1 = LB
∞∑
k=0

k!

(yeiθ)k+1
=

∫ ∞
0

e−ypdp

eiθ − p
=

∫ ∞e−iθ
0

e−xpdp

1− p
(2.12)

This is well defined if θ 6= 0 (mod 2π).
Taking a θ ∈ (0, 2π) we note that by the residue theorem (and Jordan’s

lemma, allowing us to deform the contour of the improper integral in (2.12))
we have

[LBθ − LB−θ] f̃1 = 2πie−x (2.13)

that is, the Borel sums of f̃1 on the two sides of R+ differ by an exponentially
small term. This is a manifestation of the Stokes phenomenon. Divergent
expansions are generally associated with different behaviors as the singular
point (here the point at infinity) is approached from different directions. Note
that the contour in LBθ can be rotated to −π/2 (and beyond) and Watson’s
Lemma applies to it as x → i∞. Thus LBθ has an asymptotic series along
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iR+, but, from (2.13), LB−θ does not (because of the presence of the oscilla-
tory term 2πie−x. The classical asymptotic behavior of LB−θ changes as the
antistokes line iR is crossed. The exponential is born at π/2 before that, but
is hidden beyond all orders in a whole quadrant.

We also have the following simple general result.

Proposition 2.14 (Divergence implies Stokes phenomena) Assume f
is analytic in D = {x : |x| > R and f ∼ f̃ =

∑∞
k=0 ckz

k, z = x−1 as x→∞eiθ
for some θ, where f̃ has zero radius of convergence. Then, for any m ∈ Z+,
x−mf is unbounded in a neighborhood of infinity. In particular, f ∼ f̃ only
holds when ∞ is approached along some, but not all, curves.

PROOF Let g(z) = f(1/z). Then g is analytic in a punctured neighbor-
hood of 0. By standard complex analysis, if gzm is bounded for some m > 0
then 0 is a pole, and the meromorphic Taylor expansion at zero converges
(recall that asymptotic series are unique, and a meromorphic expansion is
also an asymptotic expansion).

Exercise 2.15 The function

g(x) = e−x
2

∫ x

0

et
2

dt (2.16)

is entire. Use the saddle point method or reduction to Watson’s lemma to
study the behavior of g as x → ∞eiθ for θ ∈ [0, 2π) and study the change in
the asymptotic expansion as θ changes.

Note 2.17 A function f is sometimes called Borel summable (by slight abuse
of language), if it is analytic and suitably decaying in a half-plane (say H),
and its inverse Laplace transform F is analytic in a neighborhood of R+ ∪
{0}. Such functions are clearly into a one-to-one correspondence with their
asymptotic series. Indeed, if the asymptotic series of f and g coincide, then∫∞

0
e−xpH(p)dp = h = f−g → 0 in the sense of power series, and by Watson’s

lemma H is zero with all derivatives at zero, and by analyticity it vanishes
identically.

2.2b Limitations of classical Borel summation; BE summa-
tion

The need of extending Borel summation arises because the domain of def-
inition of Borel summation is not wide enough. We see that f̃1 in (2.11) is
not summable along R+. Yet there is nothing singular in the behavior of
f1 := LBθf̃1, for any θ 6= 0 and then analytically continued to θ = 0. In view
of (2.13), no particular direction can be naturally chosen for summation along
R+.
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While in applications it is usually possible to deform the contour of integra-
tion of L in the complex plane to avoid going through singularities, of course
there is no single ray of integration that would allow for summation of general
series f̃ when Bf̃ has singularities in C (this is the more interesting case).

If the ray of integration were chosen in an f̃–dependent fashion, then the
resulting operator would not have good algebraic properties, in particular it
would fail to commute with complex conjugation and even be linear.

To overcome the limitations of classical Borel summation, Écalle has found
general weights which do not depend on the origin of the formal series, such
that, replacing the Laplace transform along a singular rays with weighted
averages of Laplace transforms of these continuations, all the algebraic prop-
erties of Borel summation are preserved, and its domain is vastly widened.
The fact that such averages exist is nontrivial, though the expression of the
averaging weights is relatively simple.

Multiplicativity of the summation operator is the main difficulty that is
overcome by these special averages. Perhaps surprisingly, convolution does not
commute in general with analytic continuation along curves passing between
singularities! As we shall see, convolution is the Borel image of multiplication.
Naive averaging would not allow for addressing complicated problems such as
nonlinear equations.

A simplified form of medianization, the balanced average, which works for
generic ODEs (but not in the generality of Écalle’s averages) is discussed in
§??.

Another difficulty is the possibility of super-exponential growth of the Borel
transform.

Example 2.18 If we substitute x = t2 in f̃1 and take the Borel transform
from t to p we get

B
∞∑
k=0

k!

t2k+2
=

∞∑
k=0

k!p2k+1

Γ(2k + 2)
=
√
πep

2/4erf(p/2) (2.19)

where

erf(p) = 2π−1/2

∫ p

0

e−s
2

ds ∼ 1− e−p
2

p−1π−1/2(1 + o(1)) as p→ +∞ (2.20)

(a way to calculate the second sum in (2.19) is to note that it satisfies the ODE
y′ = 1 + 1

2py). Whereas in (2.12) we can deform the contour of integration to
give a meaning to the integral when θ = 0, there is nothing obvious we can
do to Laplace transform ep

2/4erf(p/2) which grows like ep
2/4 when p→∞.

Super-exponential growth, as it turns out, can be generically dealt with by
changes of variable, here essentially by undoing the x 7→ t transformation.
Though non-generic in the case of ODEs, there are cases however when mix-
tures of different factorial rates of divergence in the same series, preclude this
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simple fix (an artificial example is, say, f̃(t)[f̃(t2) − f̃(t3)]2). It is clear that
we cannot hope to disentangle all such combinations of series with different
rates of divergence.

Acceleration and multisummation (the latter considered independently, from
a cohomological point of view by Ramis; see also §??), universal processes too,
were introduced by Écalle to deal with this problem in many contexts. Es-
sentially BE summation is Borel summation, supplemented by averaging and
acceleration when needed.

More generally we can allow for expansions containing exponentials by
defining LB exp(ax) = exp(ax).

These generalizations of Borel summation which allow for the analysis of
quite complicated functions are known as Borel-Écalle summation, or BE sum-
mation.

Definition 2.21 (Inverse Laplace space convolution) If F,G ∈ L1
loc, then

(F ∗G)(p) :=

∫ p

0

F (s)G(p− s)ds (2.22)

If F and G are exponentially bounded, then so is F ∗ G. Indeed, if |F1| 6
C1e

ν1p and |F2| 6 C2e
ν2p, then

|F1 ∗ F2| 6 C1C2e
ν3p

where ν3 = max{ν1, ν2}+ 1. The norm ‖f‖ν in (2.7) is particularly useful.

Lemma 2.23 1. L1
ν := {f : ‖f‖ν <∞} forms a Banach space.

2. Convolution is continuous in ‖ · ‖ν , namely

‖F ∗G‖ν 6 ‖F‖ν‖G‖ν

3. We have L1
ν ⊂ L1

ν′ if ν′ > ν, and L(F ∗G) = L(F )L(G).

4.
‖F‖ν → 0 as ν →∞ (2.24)

PROOF
1. Since L1

ν = {eνpf : f ∈ L1}, the conclusion is obvious.
2. Note that∫ ∞

0

e−νp
∣∣∣∣∫ p

0

F (s)G(p− s)ds
∣∣∣∣ dp 6 ∫ ∞

0

e−νse−ν(p−s)
∫ p

0

|F (s)||G(p−s)|dsdp

=

∫ ∞
0

∫ ∞
0

e−νs|F (s)|e−ντ |G(τ)|dτds = ‖F‖ν‖G‖ν (2.25)

by Fubini.
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3. This follows by monotonicity:∫ ∞
0

e−ν
′p|F (p)|dp =

∫ ∞
0

e−(ν′−ν)pe−νp|F (p)|dp 6
∫ ∞

0

e−νp|F (p)|dp (2.26)

4. This follows from the middle representation above: by dominated conver-
gence, the integral goes to zero as ν′ − ν →∞.

Lemma 2.27 The space of functions which are in L1([0, a)) for any a > 0
and real-analytic on [0,∞) is closed under convolution.

PROOF This simply follows from the rewriting∫ p

0

f(s)g(p− s)ds = p

∫ 1

0

f(pt)g(p(1− t))dt (2.28)

The previous lemma implies that LB(f̃ g̃) = LB(f̃)LB(g̃).

2.3 Borel summation as an isomorphism

We start with a discussion about the relation between convergent power se-
ries and their sums. Rarely does one make a distinction between a convergent
series as a formal object and its sum as an actual function. Some mention of
this distinction is made when we need to be careful about the radius of con-
vergence, such as in writing (1− p)−1 =

∑∞
k=0 p

k if |p| < 1. The right side of
this equality is already interpreted as the sum of the underling formal series.
We can understand this if we look at the properties of S, the operator that
associates to a formal convergent series its sum. If we restrict series to one
sided Taylor series (such as expansions of meromorphic functions at zero), S is
a differential algebra isomorphism, that is, it commutes with multiplication,
division, differentiation, etc. For instance S(f̃ ′g̃′) = S(f̃)′S(g̃)′. If a linear or
nonlinear ODE N (y, y′, ..., y(n), z) = 0 with analytic coefficients is solved by
a formal series f̃ whose coefficients grow at most geometrically, then, by the
isomorphism, SN (f̃ , f̃ ′, ..., f̃ (n), z) = 0 iff N (Sf̃ ,Sf̃ ′, ...,Sf̃ (n), z) = 0, that is,
iff Sf̃ is an actual solution. This is true in several variables as well, in solving
PDEs for instance.

Borel summable series are in a similar relation with their associated func-
tions obtained by Borel summation.

Let SB be the set of Borel summable series along some direction, say along
R+.
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Proposition 2.29 (i) LB{SB} is linear and commutes with multiplication,
division (when it exists) and differentiation.2

(ii) Let Sc be the space of convergent series. Then Sc ⊂ SB and LB|Sc = S,
the usual summation.

(iii) In addition, for f̃ ∈ SB , LB{f̃} ∼ f̃ as |x| → ∞, Re (x) > 0.

Note 2.30 (ii) above implies that SB and LB are proper extensions of Sc and
S: Borel summable series have the same algebraic properties as convergent
series and their sums have properties similar to those of analytic functions.

PROOF of Proposition 2.29 Some of the properties such as linearity
of LB and commutation with differentiation are straightforward and we leave
them as an exercise; so is commutation with multiplication: it stems from the
fact that L(F ∗ G) = L(F )L(G) following by a calculation similar to (2.25).
For multiplication and division, we need to look more closely at convolutions.
The only nontrivial part is to show that if f̃ is a Borel summable series, then
so is 1/f̃ . We have f = Cxm(1 + s) for some m where s is a small series,
that is a series only involving negative powers of x. We naturally define
1/f̃ = xm/(1 + s) and

1

1 + s
= 1− s+ s2 − s3 · · · . (2.31)

First, note that this infinite series is well defined formally. Indeed, assuming
for simplicity that s =

∑∞
k=0 ckx

−k−1, the coefficient of x−k for any fixed k
is collected only from the terms sm with j > k. This is because the highest
power of x in sk+j is −k − j. Straightforward algebra shows that

(1 + s)(1− s+ s2 · · · ) = 1

We want to show that
1− s+ s2 − s3 + · · · (2.32)

is Borel summable, or that

s1 = −s+ s2 − s3 + · · · (2.33)

is Borel summable.
Now,

s1 = −s+ s2 − s3 + · · · =
∑
k>1

Ckx
−k (2.34)

where Ck is the coefficients of x−k in the finite sum −s+s2−s3 +...+(−1)ksk.
Let Bs = H. We examine Bs1, or, in fact the function series

S = −H +H ∗H −H∗3 + · · · (2.35)

2LB{SB} is in fact a differential algebra isomorphism.
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where H∗n is the self-convolution of H n times. Each term of the series is
analytic, by Lemma 2.27. Let K be an arbitrary compact subset of D (cf. the
definition of Borel summation). If maxp∈K |H(p)| = m, then it is easy to see
that

|H∗n| 6 mn1∗n = mn pn−1

(n− 1)!
(2.36)

Thus the function series in (2.35) is absolutely and uniformly convergent in
K and the limit is analytic. Let now ν be large enough so that ‖H‖ν < 1
(see Lemma 2.23, 4.). Then the series in (2.35) is norm convergent, thus an
element of L1

ν .

Exercise 2.37 Check that (1 + LH)(1 + LS) = 1.

It remains to show that the asymptotic expansion of L(F ∗ G) is indeed the
product of the asymptotic series of LF and LG. This is, up to a change of
variable, a consequence of Lemma 1.31.

(ii) Since f̃1 = f̃ =
∑∞
k=0 ckx

−k−1 is convergent, then |ck| 6 CRk for some
C,R and F (p) =

∑∞
k=0 ckp

k/k! is entire, |F (p)| 6
∑∞
k=0 CR

kpk/k! = CeRp

and thus F is Laplace transformable for |x| > R. By dominated convergence
we have for |x| > R,

L
{ ∞∑
k=0

ckp
k/k!

}
= lim
N→∞

L
{ N∑
k=0

ckp
k/k!

}
=

∞∑
k=0

ckx
−k−1 = f(x)

(iii) This part follows simply from Watson’s lemma.

Note 2.38 The domain of manifest analyticity of LBf̃ where f̃ is convergent
may exceed the domain of convergence of f̃ . For instance, if

LB
∞∑
k=1

(−1)k+1x−k =

∫ ∞
0

e−xpe−pdp (2.39)

clearly analytic for Re (x) > −1.

2.3.1 Analytic functions of Borel summable series

Proposition 2.40 Assume A is an analytic function in the disk of radius ρ
centered at the origin, ak = A(k)(0)/k!, and s̃ =

∑
skx
−k is a small series

which is Borel summable along R+. Then the formal power series obtained by
reexpanding ∑

aks̃
k

in powers of x is Borel summable along R+.
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PROOF Let S = Bs and choose ν to be large enough so that ‖S‖ν < ρ
in L1

ν . Then

‖F‖ν := ‖A(∗S)‖ν := ‖
∞∑
k=0

akS
∗k‖ν 6

∞∑
k=0

ak‖S‖kν 6
∞∑
k=0

akρ
k <∞ (2.41)

thus A(∗S) ∈ L1
ν . Similarly, A(∗S) is in L1

ν([0, a)) and in AK,ν([0, a)) for any

a.

Note 2.42 (i) To ensure Borel summability of a series, the rule of thumb
is that we first change the independent variable so that the new series has
factorial divergence, with power of factorial one. In generic applications, this
ensures that the Borel transform will be convergent, but will not ensure that
the growth is at most like eν|p| for some ν, the maximal growth allowed for
Laplace transformability, see Example 2.18.

(ii) If Borel summability succeeds, then, by deforming the contour of in-
tegration past a singularity of the Borel transform, we collect exponentially
small terms, as in (2.13). Those exponentially small terms, since they come
from residues or from contours surrounding branch points are of the form
Ce−p0x where p0 is the position of the singularity.

(iii) When we are dealing with linear equations (e.g., linear ODEs), we note
that the sum of two solutions is a solution. Assume that we get one solution
by Borel summation in the direction θ, y = LBθY and that LBθY 6= LB−θY .
Then, by linearity, the function

y2 = LBθY − LB−θY (2.43)

is also a solution of the equation. Thus, by the discussion in (ii), y2 ∼
e−p0x(1+o(1) for some p0. A similar estimate holds in the nonlinear case as we
will see though in this case the sum of solutions is not a solution.

(iv) In view of (iii), if we are solving linear ODEs using Borel summation
tools, we first need to normalize the equation, by changes of dependent and
independent variables, so that the behavior of solutions as x → ∞ of the
associated homogeneous equation is of the form eAx+O(1) (the exponent is to
leading order linear in x). For instance, for the Airy equation discussed next,

solutions behave like e±2/3x3/2

; for Borel summation, we should switch to the
variable t = x3/2. Normalization through (iv) ensures (i) while being usually
much simpler to find.

(v) Still when solving equations, instead of finding a formal series first
and then summing it is more convenient to take the Borel transform (formal
inverse Laplace) of (2.49). Now: if we obtain a solution of the transformed
equation in the form of a function which is ramified analytic near the origin
and analytic and bounded along R+ (or along some other direction θ), we will
have proved Borel summability (in the direction −θ).
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Note 2.44 (On regularization) Since the Borel transform maps factorially
divergent expansions into convergent ones, it is natural that the equations
satisfied by the transformed series have milder singularities, and are, in gen-
eral, simpler than the original ones. For example, our prototypical equation
y′ + y = 1/x is transformed by B to the trivial equation (1 − p)Y = 1 while
the Bessel equation becomes the first order ODE (2.56). Sometimes we end
up with explicit representations of the solutions and most often with integral
representations which, even if not explicit, allow for a detailed study of the
asymptotic behavior of solutions.

2.4 Some examples

In the following we will derive convenient representations for a number of
special functions. As discussed in §1.2, special functions are distinguished by
the existence of integral representations allowing for detailed global descrip-
tion, in particular for calculating explicitly connection constants, giving the
precise relation between the behavior of a given function in various directions
towards infinity. From the point of view of a Borel summation approach, the
fact that irregular singularities become regular ones and the fact that these
special functions solve typically second order differential equations implies
that the Borel transform satisfies first or second order equations with simpler
singularities, allowing for explicit solutions.

2.4.2 The Airy equation

Let us look again at the Airy equation,

y′′ − xy = 0 (2.45)

Here, the behavior of solutions at infinity, that we have already obtained by
WKB is

y ∼ Cx− 1
4 e−

2
3x

3/2

(2.46)

We use the transformation y(x) = g( 2
3 x

3
2 ) to achieve the normalization de-

scribed in Note 2.42 (iv), and get

g′′ +
1

3t
g′ − g = 0 (2.47)

In view of (2.46) we have

g(t) ∼ Ct− 1
6 e±t (2.48)

To eliminate the exponential behavior of one solution, say of the decaying
one, we substitute g = he−t, and get

h′′ −
(

2− 1

3t

)
h′ − 1

3t
h = 0 (2.49)
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To obtain a second solution, we can resort to the substitution g = het, or we
can rely on the Stokes phenomenon to obtain it from the one above, as we will
do in §2.5. Now h behaves like a small power series, which we would Borel
sum. We apply the strategy outlined in Note 2.42 (v), and apply B to (2.49).
We get

p(2 + p)H ′ +
5

3
(1 + p)H = 0 (2.50)

with the solution

H = Cp−
5
6 (2 + p)−

5
6 (2.51)

and thus

h(t) = L
(
Cp−

5
6 (2 + p)−

5
6

)
(2.52)

and, comparing the asymptotic expansion obtained from (2.52) with that of
Airy functions (1.289) to identify the solution we h we get

Ai(x) =
3−

1
6 exp(− 2

3x
3/2)

π
1
2 Γ( 1

6 )

∫ ∞
0

e−
2
3x

3
2 pp−

5
6 (2 + p)−

5
6 dp (2.53)

from which it is easy to derive the global behavior of Airy functions. We note
that Ai(x) is entire, yet the fact that the integrand in (2.53) has a singularity
at p = −2 entails a change of asymptotic behavior similar to that discussed
after (2.13) (Stokes phenomenon) when the contour of integration crosses R−.
We return to this in §2.5.

2.4.3 Modified Bessel functions

The equation for modified Bessel functions is

t2y′′ + ty′ − (ν2 + t2)y = 0 (2.54)

By WKB, we obtain y ∼ Ce−tt−1/2.
The substitution y(t) = tνe−th(t) into (2.54) (we chose the power tν to

eliminate the quadratic terms in t in the equation and simplify the Borel
transform) leads to

h′′ −
(

2− 2ν + 1

t

)
h′ − 2ν + 1

t
h = 0 (2.55)

with inverse Laplace transform

p(p+ 2)H ′ + (1− 2ν + p(1− 2ν))H = 0⇒ H = Cpν−
1
2 (2 + p)ν−

1
2 (2.56)

If ν = −1/2, (2.55) becomes elementary, with solutions e±x. Also, in the
original form (2.54) the sign of ν does not matter. So it is enough to consider
the case where Re ν > −1/2 or ν = −1/2 + ai, a 6= 0.
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If Re ν > −1/2 we can take the Laplace transform ofH; if ν = −1/2+ai, a 6=
0, the integral is a convergent improper integral. Using Watson’s lemma, we
see that

h = LH ∼ C2ν−
1
2 Γ(ν + 1

2 )t−ν−
1
2 ; (t→∞) (2.57)

while

Kν(t) ∼
√
π

2t
e−t (t→∞) (2.58)

Comparing (2.57) to (2.58), we see that

Kν(t) = e−t
tν
√
π

2νΓ(ν + 1
2 )

∫ ∞
0

pν−
1
2 (2 + p)ν−

1
2 e−tpdp; Re (ν) > −1/2 (2.59)

2.4a Note on using equivalent normalizations to obtain iden-
tities

2.4a.1 A simple hypergeometric function

We know, by Corollary 1.53 that the Laplace transform is injective. If we
obtain the representation of a function as a Laplace transform

∫∞
0
e−xpF (p)dp,

and F is analytic at zero, then this F is unique. Uniqueness also easily
follows if F has a prescribed form of Puiseux series at zero (such as, say,
paA1(p)+A2(p) with A1, A2 analytic). On the other hand, one can make some
changes of variables first, that do not change the factorial rate of divergence
of the formal solution , find the Laplace transform and undo the changes of
variables. Comparing the two representations and using the aforementioned
uniqueness is a rich source of identities.

Had we chosen the substitution g = t · t−1/6e−th1(t) in (2.47) (t−1/6 corre-
sponds to the prefactor x−1/4 in (2.48) while a positive power of t is required
for h1 to decay and have an inverse Laplace transform) we would have ob-
tained instead an equation for h1(t) whose Borel transform is

(p2 − 1)H ′′1 + 4pH ′1 +
77

36
H1 = 0 (2.60)

clearly this equation is more complicated, and the substitution without t−1/6

is better in this regard. However, (2.60) has a general solution in terms of hy-
pergeometric functions. Indeed, the substitution H1(p) = G(−p/2) in (2.60)
leads to

q(1− q)G′′ + (1− 2q)G− 5

36
G = 0 (2.61)

Substituting G(q) = qa
∑∞
j=0 bjq

j into (2.61) we see that the indicial equation

is simply a2 = 0, a degenerate case in Frobenius theory, which implies that
there is an analytic solution at zero and a second one behaving like ln q for
small q. On the other hand (2.61) is a hypergeometric equation; in its most
general form the hypergeometric equation is:

x(1− x)y′′ + [c− (a+ b+ 1)x]y′ − aby = 0 (2.62)
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Comparing the two equations, we see that they coincide up to the change of
variables (x, y) → (q,G) if c = 1, a + b + 1 = 2, ab = 5/36; solving, either
a = 5/6, b = 1/6, c = 1 or b = 5/6, a = 1/6, c = 1. However, as it is obvious
from the equation, a and b are interchangeable, so in reality we only obtain
one independent solution in this way:

G1(q) =2F1( 1
6 ,

5
6 ; 1; q) (2.63)

which is analytic at zero, as is seen from the definition of the hypergeometric
function as a series. This is the solution we are looking for, since applying
Watson’s Lemma to the follwing representation

g(t) = t5/6e−th1(t) = t5/6e−t
∫ ∞

0

e−ptG1(−p/2)dp (2.64)

we obtain the expected large t asymptotic behavior g(t) ∼ Ct−1/6e−t (recall
that Ai(x) = g(x3/2)). If we added to G1 any multiple of a second, linearly
independent solution of (2.61) in (2.64), it would contribute with a logarithmic
behavior at q = 0 which would result in a different large t asymptotics for
g(t). The hypergeometric series also gives

2F1( 1
6 ,

5
6 ; 1; q) = 1 +

5

36
q + ... (2.65)

Thus, returning to H1 in (2.60), we have

H1(p) =2F1( 1
6 ,

5
6 ; 1;−p/2) (2.66)

Now we compare with (2.52). Using Γ(5/6)t−5/6 = Lp−1/6, Γ(1/6)t−1/6 =
Lp−5/6, LfLg = L(f ∗ g) and Γ(1/6)Γ(1− 1/6) = 2π we get, after changes of
variables, the identity

2F1( 1
6 ,

5
6 ; 1; q) =

1

2π

∫ 1

0

u−5/6(1− u)−1/6(1− qu)−5/6du (2.67)

We will return to this procedure to obtain a representation for the general
hypergeometric function in§2.4c. Next however we look at another simple
example.

2.4a.2 The quintic equation τ5

5 + τ = p

This equation, as is well known, is not solvable by radicals, but the solution
can be expressed in terms of generalized hypergeometric functions; this fact
is known, but a relatively simple derivation of this is possible through Borel
transform (The reader is assumed to have familiarity with hypergeometric
functions 4F3).

Consider the “higher order Airy” integrals

A5(x) :=

∫ ∞e2π(k+1)i/5

∞e2πki/5
e−t

5/5−xtdt (2.68)
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for k = 0, · · · , 4. Direct verification shows that each of these five integrals
satisfy satisfies the following differential equation

y(4) + xy = 0 (2.69)

and that they form a basis in the space of solutions. After changing variables

t = x1/4τ, τ +
τ5

5
= p (2.70)

in (2.68), we obtain

A5(x) = x1/4

∫
Ck

e−pz
dτ

dp
dp , where z = x5/4 (2.71)

τ = τ(p) is the inversion of the relation (2.70) and Ck is a path parallel to
the real p axis that circles around the branch point singularity pk = ik 4

5e
iπ/4

of τ(p) in the positive sense. With the change of variables y(x) = x1/5v(z),
z = x5/4, and taking the Borel transform of the resulting ODE from in z, one
obtains a fourth order linear ODE solvable by generalized hypergeometric
functions we obtain an alternative representation

A5(x) = x1/4

∫
Ck

e−pzV (p)dp (2.72)

where V has four free constants. This gives rise to the identity τ ′(p) = V (p).
Integrating and choosing the constants so that the series for A5 in p for small
p matches τ(p) = p− p5/5 +O(p9) obtained from (2.68) we obtain

τ1(p) = p 4F3

([
1

5
,

2

5
,

3

5
,

4

5

]
,

[
1

2
,

3

4
,

5

4

]
,−
(

25

16

)2

p4

)
(2.73)

Similar expressions can be obtained for the other four roots of the quintic as
discussed in the Appendix.

2.4b Whittaker functions

The equation

y′′ −
(

1

4
− κ

z
−

1
4 − µ

2

z2

)
y = 0 (2.74)

has as solutions the Whittaker functions Mκ,µ(z) and Wκ,µ(z), [1], eq.13.1.31;
for large positive z, Mκ,µ(z) ∼ ez/2(1+o(1)) and Wκ,µ(z) ∼ e−z/2(1+o(1)). To
analyze W , we make the substitution y(z) = zµ+1/2e−z/2g(z) in (2.74). The
power is chosen to eliminate the term in z−2 and simplify the Borel transform.
For M we would substitute y(z) = zµ+1/2ez/2g(z). We obtain

g′′ −
(

1− 2µ+ 1

z

)
g′ +

κ− µ− 1
2

z
g = 0 (2.75)
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The Borel transform of (2.75) is

p(p+ 1)G′ +
[
(1− 2µ)p+ κ− µ+ 1

2

]
G = 0 (2.76)

with general solution

G = Cp−κ+µ−1/2(p+ 1)µ−1/2+κ (2.77)

giving

Wκ,µ(z) = Czµ+1/2e−z/2
∫ ∞

0

pµ−κ−1/2(p+ 1)µ−1/2+κe−zpdp (2.78)

which holds for Re (µ − κ − 1/2) > −1; otherwise W can be defined by
using the substitution y(z) = z−µ+1/2ez/2g(z) or, more generally by analytic
continuation in µ. Using Watson’s lemma in (2.78) we get

Wκ,µ(z) ∼ CΓ(µ+ 1
2 − κ)zκe−z/2(1 + o(1)); Re z →∞ (2.79)

Since, by the definition of Whittaker functions, Wκ,µ(z)zκez/2 → 1 as z →
+∞,[1], we get C = 1/Γ(µ− κ+ 1

2 ), or

Wκ,µ(z) =
zµ+1/2e−z/2

Γ(µ− κ+ 1
2 )

∫ ∞
0

pµ−κ−1/2(p+ 1)µ−1/2+κe−zpdp (2.80)

(for Re (µ− κ− 1/2) > −1).
Parabolic cylinder functions, occurring naturally in double nondegenerate

turning point asymptotics solve the equation

y′′ −
(

1
4x

2 + a
)
y = 0 (2.81)

whose general solution is

x−1/2
(
C1M− a2 ,

1
4
(x2/2) + C2W− a2 ,

1
4
(x2/2)

)
(2.82)

from which we can obtain an integral representation for the solutions of (2.81).

2.4c Hypergeometric functions

Hypergeomtric functions solve Fuchsian equations, with only regular singu-
lar points on the Riemann sphere. Thus all series expansions are convergent.
Nonetheless, we can obtain integral representations for them by relating them
to other functions, such as Whittaker, in the following way.

The general hypergeometric equation has the form

p(p− 1)F ′′ + [(a+ b+ 1)p− c]F ′ + abF = 0; F =2 F1(a, b; c, p) (2.83)



Borel summation: an introduction 81

Taking the Laplace transform of (2.83) we get

x2f ′′ + x(x− a− b+ 3)f ′ + [(2− c)z + (1− a)(1− b)]f = 0 (2.84)

to obtain a simpler, close form solution in Borel plane we try to eliminate the
quadratic terms in x by a substitution of the form f = xdg. Trying a general
d we see that this works if d ∈ {a− 1, b− 1}. With f = xa−1g we get

zg′′ + (z + a− b+ 1)g′ + (a− c+ 1)g = 0 (2.85)

with Borel transform

p(p− 1)G′ + [(b− a+ 1)p+ a− c]G = 0 (2.86)

with solution
G = Cpa−c(p− 1)c−b−1 (2.87)

The more general substitution y(z) = zβ+3/2e−z/2g2 in (2.74) and inverse
Laplace transform leads to the equation

p(p+ 1)G′′2 + [(1− 2β)p+ 1
2 + κ− β]G′2 + (β2 − µ2)G2 = 0 (2.88)

Noting that

Bxa−1 =
p−a

Γ(1− a)
(2.89)

and that

f = xa−1g ⇒ F = C
p−a

∗
pc−aG (2.90)

we get that

F = Cp−a ∗pa−c(p−1)−b−1−c =

∫ p

0

(p− s)−asa−c(1− s)−b−1+cds = p−a+a−c

(2.91)
with one solution 2F1(a, b; c; p + 1) where a = −µ − β, b = µ − β and c =
1
2 −β−κ. These equations are nondegenerate and µ, κ, β can be expressed as

a function of a, b, c. Comparing with the substitution y(z) = zµ+1/2e−z/2g(z)
in §2.4b we see that g2 = zµ−1−βg; inverse Laplace transforming this relation
we get, with C = 1/Γ(µ− κ+ 1/2),

Γ(1− b)G2(p) = Γ(β − µ+ 1)G2(p) = pβ−µ ∗G(p) =

C

∫ p

0

(p− s)β−µs−κ+µ− 1
2 (s+ 1)µ−

1
2 +κds

= Cpβ−κ+
1
2

∫ 1

0

t−κ+µ−1/2(1− t)β−µ(1 + pt)µ−1/2+κdt

=
pc−a−b

Γ(c− a)

∫ 1

0

tc−a−1(1− t)−b(1 + pt)b−cdt, (2.92)
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from which we get an integral representation

2F1(a, b; c, p+1) =
pc−a−b

Γ(1− b)Γ(c− a)

∫ 1

0

tc−a−1(1− t)−b(1+pt)b−cdt , (2.93)

valid for Re b < 1, Re c > Re a.

2.4d The Gamma function

The function f(x) = log Γ(x) satisfies the recurrence f(x+1)−f(x) = log x.
To get a recurrence for which the formal solution decreases in the right half
plane to be able to take the Borel transform, we first subtract out the large
terms in the asymptotic expansion of f(x) for x → ∞. A simple way to do
that is to resort to the Euler-Maclaurin summation formula, see [8, 21] and
§2.17, a systematic method of obtaining a sequence of approximations of sums
by integrals. Let g(x) = f(x)− (x log x− x− 1

2 log x).
The recurrence satisfied by g is

g(x+ 1)− g(x) = q(x) = 1−
(1

2
+ x
)

ln
(

1 +
1

x

)
= − 1

12x2
+

1

12x3
+ ...

First notice that p2Q(p) = L−1[q′′](x), where Q(p) = L−1[q](p). Therefore,
L−1q = p−2L−1q′′ with

q′′ =
1

x
− 1

x+ 1
− 1

2

( 1

(x+ 1)2
+

1

x2

)
⇒ L−1q′′ = 1− p

2
−
(p

2
+ 1
)
e−p

Thus, with L−1[g](p) := G(p) = Q(p)/(e−p − 1) we obtain

(e−p − 1)G(p) =
1− p

2
−
(p

2
+ 1
)
e−p

p2

g(x) =

∫ ∞
0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−xpdp

(It is easy to check that the integrand is analytic at zero; its Taylor series is
1
12 −

1
720p

2 +O(p3).)
The integral is well defined, and it follows that

f(x) = C + x(log x− 1)− 1

2
log x+

∫ ∞
0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−xpdp

solves our recurrence. The constant C = 1
2 ln(2π) is most easily obtained

by comparing with Stirling’s formula (1.91) for large x and we thus get the
identity
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log Γ(x) = x(log x−1)− 1

2
log x+

1

2
log(2π)+

∫ ∞
0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−xpdp

(2.94)
which holds with x replaced by z ∈ C as well.

This represents, as it will be clear from the definitions, the Borel summed
version of Stirling’s formula.

2.5 Stokes phenomena

Near an essential singularity, the behavior of an analytic function depends
on the direction of approach of the singularity. For instance, ex is decreasing in
the left half plane and growing in the right half plane, and a transition occurs
as iR is crossed. The Stokes phenomenon describes more subtle phenomena.
The Stokes phenomenon relates to the fact that the solution that is asymptotic
to one fixed formal solution is generally different in different sectors at infinity.
One of the simplest examples, that we have already explored is provided by∫ ∞

0

e−pxdx

p+ 1
(2.95)

We illustrate the Stokes phenomenon in the following analysis of the solutions
of the Airy equation; their change in behavior at +∞ versus −∞ is very
important in turning point problems, as we saw.

2.5a The Airy equation

To leading order, we see from (2.53) that

Ai(z) ∼ e−
2
3 z

3
2

2
√
π z

1
4

z → +∞ (2.96)

We work for now with the variable t = 2
3x

3
2 , and write f(t) = π

1
2 3

1
6 Γ( 1

6 )etAi(x(t)).
Then, using (2.53), we obtain

f(t) =

∫ ∞
0

e−tpp−
5
6 (2 + p)−

5
6 dp (2.97)

If we analytically continue t anticlockwise, the p contour is rotated homotopi-
cally clockwise by the same angle, to keep tp real and positive and have in
the process the integral presented in a form suitable for Watson’s lemma.
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A rotation in the p-plane by more than −π requires crossing the negative
real line where the integrand has a branch point. With J− the integral along
a ray of angle −π + 0 and J+ the same integral along a ray of angle −π − 0,
we have

J− = J+− (J+−J−) = J+ +f2(t); f2(t) := −
∮
C
e−tpp−

5
6 (2+p)−

5
6 dp (2.98)

where C is a curve starting at ∞e−(π−0)i, goes around p = −2 and then to
∞e−(π+0)i, see Fig. 2.1.

J

J

−

+

p=−2

FIGURE 2.1: Deformation of contour for (2.53).

Reasoning as in Note 2.42 (iii), the function

f2(t) = −
∮
C
e−tpp−

5
6 (2 + p)−

5
6 dp (2.99)

provides, after multiplying it by e−t and changing variable back to x, a linearly
independent solution of the Airy equation. R− is a Stokes line, and the fact
that by crossing it we collected this new term is the Stokes phenomenon.

We note that the contour in f2 can be deformed all the way to p = −2,
where we have an integrable singularity.

In the part of the integral f2 which is above R− and to the left of Re (p) =
−2 we have by construction arg p = −π − 0, arg(2 + p) = π + 0, and thus

p−
5
6 (2+p)−

5
6 = |p|− 5

6 |p+2|− 5
6 . In the part below R− we have arg p = −π+0,



Borel summation: an introduction 85

arg(2 + p) = −π + 0 and thus p−
5
6 (2 + p)−

5
6 = eπi/3|p|− 5

6 |p + 2|− 5
6 . Noting

that 1− e5πi/3 = eπi/3, and changing variables to s = eiπp, we get

f2(t) = eπi/3
∫ ∞

2

s−
5
6 (s− 2)−

5
6 etsds = eπi/3e2t

∫ ∞
0

s−
5
6 (s+ 2)−

5
6 etsds

(2.100)
with arg(s) = 0. In J+, thought of an integral along the upper side of R−,

p−
5
6 (2 + p)−

5
6 equals e5πi/6|p|− 5

6 |p + 2|− 5
6 from Re p = 0 to Re p = −2 and,

as before, |p|− 5
6 |p + 2|− 5

6 to the left of Re (p) = −2. Changing variables to
s = eiπp, this is the same as the integral below R−

J+ = −e5πi/6

∫ ∞−i0
0

s−
5
6 (2− s)− 5

6 epsds (2.101)

with the natural choice of the argument, that is starting with arg s = 0,
arg(2− s) = 0 for small s > 0. With this choice, we note that arg(2− s) = π
for s > 2 in the integrand in (2.101). Thus,

f(t) = −e5πi/6

∫ ∞e−0i

0

s−
5
6 (2− s)− 5

6 etsds+ eπi/3e2t

∫ ∞
0

s−
5
6 (s+ 2)−

5
6 etsds

(2.102)
for arg(t) > π. By the change of variables, if p rotates clockwise, so does s.

To reach arg x = π, i.e. arg t = 3π
2 , we rotate further s by −π/2. Then, for

x ∈ R−, after the change of variable s = e−iπ/2u, we get

π
1
2 3

1
6 Γ( 1

6 )Ai(−|x|)

= e−
πi
4 ei|t|

∫ ∞
0

u−
5
6 (2 + iu)−

5
6 e−u|t|du

+ e
πi
4 e−i|t|

∫ ∞
0

u−
5
6 (2− iu)−

5
6 e−u|t|du; t = 2

3x
3
2 (2.103)

which is real-valued as expected.
For large |x|, applying Watson’s Lemma to (2.103), one obtains the asymp-

totic behavior

Ai(−|x|) =
1

2
√
π
|x|−1/4ei

2
3 |x|

2/3−iπ4
[
1 +O

(
|x|−3/2

)]
+

1

2
√
π
|x|−1/4e−i

2
3 |x|

2/3+iπ4

[
1 +O

(
|x|−3/2

)]
(2.104)

Equation (2.104) gives the connection formula for Ai: It provides the behavior
at −∞, given the behavior at +∞, with explicit constants. We see that the
behavior at −∞ differs even formally from (2.96). It is usually not possible to
obtain in closed form the connection constants for more complicated ODEs,
even linear ones. The asymptotic behavior of one solution in various sectors
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can be obtained, up to the value of some constants, in quite general linear
ODEs. The possibility of finding the constants explicitly problems distin-
guishes special functions from mere solutions of linear ODEs, and is almost
always linked to the existence of underlying integral representations. More
generally, for nonlinear integrable systems, solving connection problems can
be linked to the existence of Riemann-Hilbert reformulations.

Note 2.105 When we will study more general equations, we will see that
the fact that the Borel transform of the normalized Airy equation has two
singularities in the Borel plane results in the existence of two linearly inde-
pendent solutions of any equation with coefficients analytic at infinity having
Ai as a solution. Thus, there can be no “simpler” equation with these analytic
properties which as Ai as a solution.

2.5b Nonlinear Stokes phenomena

When a differential equation is nonlinear, typically, there are infinitely many
singularities in the p plane, as we will see in more detail later.

For now let us take a reverse-engineered example. The function y(x) =
e−xEi(x) satisfies the model equation y′ + y = 1/x that we studied before,
and thus v = y/(1− y) satisfies the nonlinear equation

v′ +

(
1− 2

x

)
v + v2 =

v2

x
+

1

x
(2.106)

We know that the asymptotic series of y(x) is Borel summable in any direction
other that R+, and thus, by the proof of Proposition 2.29 so is v. On the other
hand with v = LV, y = LY we have

v = y + y2 + y3 + · · · ⇒ V = Y + Y ∗ Y + · · · (2.107)

where Y (p) = 1/(1− p). Then

(Y ∗ Y ) (p) =

∫ p

0

ds

(1− s)[1− (p− s)]
= −2 ln(1− p)

2− p

which is singular at p = 1 and p = 2. Likewise, Y ∗3 introduces a singularity
at p = 3 and so on, and without going through a rigorous proof for now, we
claim that the last term in (2.107) is singular (on a Riemann surface) exactly
at p ∈ N. To illustrate this on an even more simplified model, note that

δa(p) ∗ δb(p) = δa+b(p)

where δa(p) is the Dirac delta distribution concentrated at p = a; the equality
is very checked seen by Laplace transforming both sides above.
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What would be the Stokes phenomenon for v? If J+ (J−) is the Borel sum
of the asymptotic series of y for arg x = 0+ (arg x = 0−, resp.), then

1+v+ =
1

1− J+
=

1

1− J− + 2πie−x
=

1

1− J−
− 2πie−x

(1− J−)2
+

(2πi)2e−2x

(1− J−)3
−· · ·

(2.108)
since, by Watson’s lemma J+ and J− are of order 1/x � exp(−x). On the
other hand, in the proof of Proposition 2.29 we showed that, if S is a Borel
summable small series then so is the series (of series) 1+S+S2+... = 1/(1−S).
Summarizing,

v+ = −1 +

∞∑
k=0

Ckyke
−kx, C = −2πi (2.109)

where yk are Borel summable. We can check that in fact (2.109) is a solution
of (2.106) for any C, for instance by recalling that v = y/(1− y) and noting
that e−xEi(x)+Ce−x is a solution of y′+y = 1/x. The infinite sum in (2.109)
is a Borel summed transseries and is the prototypical form of a solution of a
nonlinear first order ODE, after normalization (meaning bringing the equation
to a canonical form by changes of dependent and independent variables).
A similar form, except in vector presentation describes solutions of generic
systems of normalized nonlinear ODEs.

Exercise 2.110 Show that 1− J+ has infinitely many zeros in any sector of
the form arg x ∈ [π2 − ε,

π
2 + ε] using the integral representation of J+, cf.

(2.95).

The phenomenon of formation of arrays of singularities is quite general, and
is the effect of pile-up of exponentials near antistokes lines, the lines where
the exponentials become oscillatory. To the right of the poles, the leading
behavior of v is 1/x and to the left it is 1.

2.5c The Gamma function

Difference equations also produce infinitely many singularities in p plane.
Let us look at (2.94). Consider the part

g(x) =

∫ ∞
0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−xpdp (2.111)

We analytically continue (2.111) to complex x by choosing the integration
path to be the ray arg p = θ = − arg x (except when x ∈ iR when we would
take arg p = θ = − arg x+i0 instead) thus ensuring px to be real and positive.
When x crosses the negative imaginary axis and moves to the third quadrant,
arg p crosses π

2 and in the process residues at poles p = 2inπ for n ∈ N have
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to be collected; this gives

g(x) =

∫ ∞eiθ
0

G(p)e−xpdp+ 2πi

∞∑
j=1

ResG(p)e−xp|p=2jπi

=

∫ ∞eiθ
0

G(p)e−xpdp+

∞∑
j=1

1

je2xjπi

=

∫ ∞eiθ
0

G(p)e−xpdp− ln(1− exp(−2xπi)), (2.112)

We note that both the integral and the sum are convergent when arg x =
−θ = −π/2− ε for ε ∈

(
0, π2

]
if x is not an integer. Then from (2.94) we get

Γ(x) =
1

1− exp(−2xπi)

√
2πxx−

1
2 e−x exp

(∫ ∞eiθ
0

G(p)e−xpdp

)
(2.113)

Since ε ∈
(
0, π2

]
, it is manifest from (2.113) that Γ(x) is analytic for arg x ∈(

−π,−π2
)

while analyticity for arg x ∈
(
−π2 ,

π
2

)
is manifest in (2.111). When

arg x = −π2 , we skirt the singularities of the integrand on arg p = π
2 by

choosing instead integration along arg p = π
2 − ε to conclude analyticity of

Γ(x) on the negative imaginary axis. Setting θ = π in (2.113), it is clear that
Γ(x) is real valued and meromorphic on e−iπR+, with simple poles at negative
integers. Since Γ(x) is real valued on R, by the Schwartz reflection principle,
Γ(x) is analytic in the lower half plane and Γ(x) is singular only at simple
poles at negative integers. The poles may be seen to originate in the infinite
sum on the second line of (2.112), in a way similar to the one mentioned in the

preceding section. Since Watson’s Lemma may be applied to
∫∞eiθ

0
G(p)e−px,

Stirling’s formula holds for large |x| when arg x ∈ (−π, 0] since e−2xπi � 1
in this regime. Using again the Schwartz reflection principle, the same is true
for arg x ∈ [0, π), and the only exception is R−.

Furthermore, taking x = −y with y /∈ N and then setting θ = π in
the expression for Γ(−x), we get, by straightforward algebra from (2.113)

Γ(−x)Γ(x) = − π

x sin(πx)
from which it follows that

Γ(1− x)Γ(x) =
π

sin(πx)
(2.114)

We can, especially by analogy with the ODE case, think of the reflection
formula (2.114) as the connection formula for the Gamma function.



Borel summation: an introduction 89

2.6 Analysis of convolution equations

2.6a Properties of the p plane convolution, Definition 2.21

We will study convolution equations along R+, in spaces of functions which
are locally integrable and exponentially bounded at infinity, or in sectorial
domains in C, typically containing a neighborhood of the origin or in compact
subsets of such sectorial domains. In all these cases, convolution is well-
defined; see also cf. Lemma 2.27 for analyticity properties.

Lemma 2.115 In the settings above, functions form a commutative algebra
with respect to convolution and addition.

PROOF The needed properties can be checked directly, but it is conve-
nient to use injectivity of the Laplace transform, see Corollary 1.53 and the
fact that L [f ∗ g] = (Lf)(Lg). For function defined in (pre)compact subsets
of C we can extend them with zero to take the Laplace transform.

For instance convolution is associative since

L [f ∗ (g ∗ h)] = L[f ]L [g ∗ h] = L[f ]L[g]L[h] = L [(f ∗ g) ∗ h] (2.116)

and by injectivity of L, we get

f ∗ (g ∗ h) = (f ∗ g) ∗ h (2.117)

Similarly, it is commutative and distributive.

2.6b Banach convolution algebras

We now define a family of suitable norms so that the Banach spaces induced
by these norms are Banach algebras 3. without a unit element with respect
to addition and convolution (defined to be the multiplication in this algebra).

Some spaces arise naturally and are well suited for the study of convolution
equations.

1. Let ν ∈ R and define L1
ν := {f : R+ → C : f(p)e−νp ∈ L1(R+)}; then

the norm ‖f‖ν is defined as ‖f(p)e−νp‖1 where ‖ · ‖1 denotes the L1

norm; equivalently, ‖f‖ν = [L(|f |)](ν) . Lemma 2.23 shows that L1
ν is

a Banach algebra with respect to convolution without a unit element.

3A Banach algebra is a Banach space of functions endowed with multiplication (*) which is
distributive, associative and continuous in the Banach norm, continuity meaning ‖F ∗G‖ 6
‖F‖‖G‖. A unit ”1” is an element s.t. 1 ∗ x = x ∗ 1 = x.
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Exercise 2.118 Show that there is indeed no L1
ν unit with respect to

convolution, that is no u s.t. u ∗ f = f for all f ∈ L1
ν .

We see that the norm ‖ · ‖ν is the Laplace transform of |f | evaluated at
large argument ν, and it is, in this sense, a Borel dual of the sup norm
in the original space— since for Rex > ν, |L[f ](x)| 6

∫∞
0
e−νp|f(p)|dp.

2. The space L1
ν(R+eiϕ). By definition f ∈ L1

ν(R+eiϕ) if fϕ(t) := f(teiϕ) ∈
L1
ν . Convolution along R+eiϕ can be expressed directly as

(f ∗ g)(|p|eiϕ) =

∫ |p|eiϕ
0

f(s)g(|p|eiϕ − s)ds =

eiϕ
∫ |p|

0

f(teiϕ)g(eiϕ(|p| − t))dt = eiϕ(fϕ ∗ gϕ)(|p|) (2.119)

It is clear that L1
ν(R+eiϕ) is also a Banach algebra.

3. Similarly, we say that f ∈ L1
ν(S) where S = {teiϕ : t ∈ R+, ϕ ∈ (a, b)} if

f ∈ L1
ν(R+eiϕ) for all ϕ ∈ (a, b). We define ‖f‖ν,S = supϕ∈(a,b) ‖f‖L1

ν(R+eiϕ).

The space L1
ν(S) = {f : ‖f‖ν,S <∞} is also a Banach algebra.

4. The L1
ν spaces can be restricted to an initial interval along a ray, or a

compact subset of S, restricting the norm to an appropriate set. For
instance,

L1
ν([0, 1]) =

{
f :

∫ 1

0

e−νs|f(s)|ds <∞
}

(2.120)

These spaces are Banach algebras as well. Obviously, if A ⊂ B, L1
ν(B)

is naturally embedded (cf. footnote 5 on p. 94) in L1
ν(A). Note also that

f ∈ L1
ν([0, 1] if f extended by zero on [1,∞) is in L1

ν(R+), and through
this mapping many properties of L1

ν(R+) carry over to L1
ν([0, 1].

5. Another important space is Aν(E), the space of analytic functions in a
star-shaped4 neighborhood E of a disk {p : |p| 6 a} in the norm (ν ∈ R+;
R = 1

2diam(E))

‖f‖ = R sup
p∈E

∣∣∣e−ν|p|f(p)
∣∣∣

Note. This norm is topologically equivalent with the sup norm (conver-
gent sequences are the same), but better behaved for finding exponential
bounds.

4Containing every point p together with the segment linking it to 0.
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6. We can allow the star-shaped domain E to be non-compact by taking
the following norm:

‖f‖ =
π

2
sup
E

∣∣∣(|p2 + 1|e−ν|p|f(p)
∣∣∣

Indeed, if |f | 6 ‖f‖ (
2/π)e−ν|p|(|p|2+1)−1 and |g| 6 ‖g‖ (

2/π)e−ν|p|(|p|2+
1)−1, then f ∗ g is bounded by

‖f‖‖g‖
π2

∫ |p|
0

22eν|p|π−2ds

[(|p| − s)2 + 1](s2 + 1)
6
‖f‖‖g‖eν|p|22

π2

arctan |p|
|p|2 + 1

6 ‖f‖‖g‖ (2.121)

7. The subspace of functions A0ν(E) which vanish at zero.

Proposition 2.122 (Deformation of contour) Assume that f ∈ L1
ν(S),

‖f‖ν < M where S is a sector {p : arg(p) ∈ [a, b] ⊂ (−π/2, π/2)} and that f

is analytic in S. Then
∫∞eiθ

0
f(p)e−νpdp does not depend on θ ∈ [a, b].

PROOF Let ε > 0. We have

∫ ∞eiθ
0

e−(ν+ε)pf(p)dp =

∫ ∞eiθ
0

e−εp
d

dp

∫ p

0

e−νtf(t)dt

= ε

∫ ∞eiθ
0

e−εp
∫ p

0

e−νtf(t)dtdp = ε

∫ ∞eiθ′
0

e−εp
∫ p

0

e−νtf(t)dtdp

=

∫ ∞eiθ′
0

e−(ν+ε)pf(p)dp (2.123)

for all θ, θ′ ∈ [a, b] by Jordan’s Lemma, where we use the fact that
∫ p

0
e−νtf(t)dt

is analytic and uniformly bounded by M . Taking ε → 0 and applying domi-
nated convergence, the result follows.

Alternatively, the result above follows from the following

Proposition 2.124 Assume F ∈ L1
ν and is analytic in a sector S = {p :

arg p ∈ (a, b)}. Then e−ν|p||F (p)| is bounded as p → ∞ in any subsector
S′ = {p : arg p ∈ (a′, b′)}, [a′, b′] ⊂ (a, b).

PROOF Indeed,

e−|p|ν

∣∣∣∣∣
∫ |p|

0

|Y |(|t|)d|t|

∣∣∣∣∣ 6
∣∣∣∣∣
∫ |p|

0

e−|t|ν |Y |(|t|)d|t|

∣∣∣∣∣ 6 ‖Y ‖ν
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Thus, the antiderivative of Y is uniformly exponentially bounded in S by
‖Y ‖ν . It is easy to see using Cauchy’s integral formula that Y is bounded in
S′ by ν′‖Y ‖νeν|p| for some ν′ > ν (which can be chosen arbitrarily close to ν
if p is large).

Proposition 2.125 The space AR;ν is a Banach algebra with respect to con-
volution.

PROOF For analyticity, see Lemma 2.27 ++Add exercise++. To estimate
the norm of convolution we write, with P = |p|,∣∣∣∣Re−νP ∫ p

0

f(s)g(p− s)ds
∣∣∣∣ =

∣∣∣∣∣Re−νP
∫ P

0

f(teiϕ)g((P − t)eiϕ)dt

∣∣∣∣∣
=

∣∣∣∣∣R−1

∫ P

0

Rf(teiϕ)e−νtRg((P − t)eiϕ)e−ν(P−t)dt

∣∣∣∣∣
6 R−1‖f‖‖g‖

∫ R

0

dt = ‖f‖‖g‖ (2.126)

Note that AR;ν ⊂ L1
ν(E).

(6) Finally, we note that the space AR,ν;0(E) = {f ∈ AR,ν(E) : f(0) = 0} is a
closed subalgebra of AR,ν .

Remark 2.127 If f is a bounded function, then

‖fg‖ 6 ‖g‖‖f‖∞ (2.128)

in L1
ν . The same holds if f is holomorphic in E, with sup now over E, for the

spaces AR;ν and AR,ν;0.

2.6c Spaces of sequences of functions

In Borel summing more general expansions (transseries), it is convenient to
look at sequences of vector-valued functions belonging to one or more of the
spaces introduced before. For instance, in the scalar case, when the transseries
is given by ỹ =

∑∞
j=0 ỹjz

j with z = e−λx, we have

ym =

∞∑
j=0

zj
∑

k1+k2+···+km=j

yk1yk2 · · · ykm (2.129)

It is convenient to represent y as a vector

y = {yj}j>0 (yj := yj) (2.130)
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and introduce the product of sequences fg by

(fg)j =
∑

j1+j2=j

fj1gj2 (2.131)

To Borel transform a transseries we look at the sequence of Borel transforms
of each yj =: yj above. Thus the Borel dual of y is the sequence

Y = {Yk}k>0 ; (2.132)

where Yj = Byj . For µ > 0 we define

L1
ν,µ = {Y ∈ (L1

ν)N∪{0} :
∑
k>0

µ−k‖Yk‖ν <∞} (2.133)

and introduce the following convolution on L1
ν,µ

(F*G)k =

k∑
j=0

Fj ∗ Gk−j (2.134)

which, as we see, is a double convolution: in p through ∗ and a discrete one
in the index.

Exercise 2.135 Show that

‖F*G‖ν,µ 6 ‖F‖ν,µ‖G‖ν,µ (2.136)

and (L1
ν,µ,+,*, ‖ ‖ν,µ) is a Banach algebra. Show that the subspace L1

ν,µ;n :=
{y ∈ L1

ν,µ : y0 = · · · = yn−1 = 0} is closed, and thus a Banach algebra too.

In the vectorial case we have, in general, m exponentials e−λ1x, · · · , e−λmx
and the solution is vector valued, with values in say Cn. We then define
sequences {y}k∈(N∪{0})m where yk ∈ Cn. When writing the Borel transform
of the transseries solution, once more we do so componentwise, for each k
separately. Furthermore, the nonlinear terms in the differential equation are
of the form gl = gl11 · · · glnn which are scalar. See also [44], §2.1.3.

2.7 Focusing spaces and algebras

An important property of the norms (1)–(4) and (6) in §2.6 is that for any f
we have ‖f‖ν → 0 as ν → ∞. This is used to control nonlinear terms: for
large enough ν they become negligibly small.

A family of norms ‖‖ν depending on a parameter ν ∈ R+ is focusing if for
any f with ‖f‖ν0 <∞ for some ν0 we have
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‖f‖ν ↓ 0 as ν ↑ ∞ (2.137)

(↓ means monotonically decreasing to the limit, ↑ means increasing).
Let V be a linear space of functions and {‖‖ν} a family of norms satisfying

(2.137) and (2.128) for any uniformly continuous f ∈ V . For each ν we define
a Banach space Bν as the completion of {f ∈ V : ‖f‖ν < ∞}. For α < β,
(2.137) shows Bα is naturally embedded in Bβ .5 Let F ⊂ V be the inductive
limit of the Bν . That is to say

F :=
⋃
ν>0

Bν (2.138)

where a sequence is convergent if it converges in some Bν . We call F a
focusing space.

Consider now the case when (Bν ,+, ∗, ‖‖ν) are commutative Banach alge-
bras. Then F inherits a structure of a commutative algebra, in which ∗ is
continuous. We say that (F , ∗, ‖‖ν) is a focusing algebra.

Examples. The spaces
⋃
ν>0 L

1
ν and

⋃
ν>0AR;ν;0 and L1

ν,µ are focusing al-
gebras. The last space is focusing as ν →∞ and µ→∞.

An extension to distributions, very useful in studying singular convolution
equations, is the space of staircase distributions D′m,ν ; see [44].

Remark 2.139 The following simple observation is useful when we want
to show that one solution has a number of different properties: analyticity,
boundedness, etc. Let f be defined on S1 ∪S2, and assume that the equation
f(x) = 0 has a unique solution x1 in S1, a unique solution x2 in S2 and a
unique solution x3 in S1 ∩ S2. Then x1 = x2 = x3 ∈ S1 ∩ S2. Of course,
we can equivalently analyze the equation f in S1 ∩ S2 to start with but when
we are dealing with more sets when only various combinations of Si intersect
non-emptily, the first approach is more economical.

2.8 Borel summation analysis of nonlinear ODEs

We select a number of relatively simple yet illustrative examples and send
for the general theory to [44].

Consider first the ODE

y′ = x−2 − y + y3 (2.140)

5That is, we can naturally identify Bα with a subset of Bβ which is isomorphic to it.
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This equation was chosen so that it is already in normalized form (more
about this later) and it is not solvable by any known methods (in fact, it is
nonintegrable in the sense of Painlevé, see §2.10); yet the analysis of this rel-
atively simple problem illustrates the main aspects of the transseries analysis
for a generic system of nonlinear ODEs [44]. The extension of focusing alge-
bras techniques to transseries and contour integral representations (as will be
seen later) simplifies the proofs in [44] and avoids using special distributions.
Here, to avoid notational complications we just illustrate the approach on this
particular nonlinear ODE, but the extension to general nonlinear systems of
ODEs is relatively straightforward. We will point out where the differences oc-
cur, and defer to the appendix the necessary adaptations. Appendix needed.
Saleh, please do not remove this comment until we have the appendix

We can look for formal power series solutions in the usual way, by inserting
a series with unknown coefficients and identifying them, or by iteration. Esti-
mating the coefficients, one would see that the series is divergent, and in this
sense, the point at infinity is an irregular singular point. Since we will not
base the analysis on the formal series but rather on the Borel transform of the
equation, and, furthermore, the formal series and its asymptotic properties
will emerge as a byproduct, we skip this step now.

As in the linear cases, the logic will be that we apply formally the inverse
Laplace transform (Borel transform) to the equation, find a solution of the
transformed (Borel plane) equation and then show that the solution of this
new equation, when Laplace transformed, results in a solution of the ODE.

Since we have a Banach algebra structure in Borel plane, differential equa-
tions become effectively algebraic equations (with convolution ∗ acting as
multiplication), which is much easier to deal with. In our case, the formal
inverse Laplace of (2.140) is

−pY + Y = p+ Y ∗3; ⇔ Y =
p

1− p
+

1

1− p
Y ∗3 := N (Y ) (2.141)

where L−1y = Y and Y ∗3 = Y ∗ Y ∗ Y .

Definition 2.142 Let [a, b] ⊂ (0, 2π), and S+ = {p : arg(p) ∈ (a, b)}, S+
K =

{p ∈ S+ : |p| < K}, Dα = {p : |p| < α < 1}. Similarly for [a, b] ⊂ (−2π, 0),
and S− = {p : arg(p) ∈ (a, b)}, S−K = {p ∈ S− : |p| < K}.

Proposition 2.143 Let S be a star-shaped subset of a closed set s.t. the
distance to [1,∞] is a > 0 and F a focusing algebra of functions in S closed
under convolution, containing p

1−p . For large enough ν, (2.141) has a unique

solution Y +
0 in S.6

6S could be, for instance, any of the spaces in Definition 2.142, and the proof would go
through for large enough ν.
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PROOF By the focusing property, for large enough ν we have∥∥∥∥ p

1− p

∥∥∥∥
ν

< ε/2 (2.144)

Let B be the ball of radius ε in the norm ν and F be a function in B. Then,

‖N (F )‖ν 6

∥∥∥∥ p

1− p

∥∥∥∥
ν

+ max
p∈S

∣∣∣∣ 1

p− 1

∣∣∣∣ ‖F‖3ν = ε/2 + cε3 6 ε (2.145)

if ε is small enough (that is, if ν is large). Furthermore, for large ν, N is
contractive in B for we have, for small ε,

‖N (F1)−N (F2)‖ν . ‖F ∗31 −F ∗32 ‖ν = ‖(F1−F2) ∗ (F ∗21 +F1 ∗F2 +F ∗22 )‖ν
. 3ε2‖(F1 − F2)‖ν (2.146)

Corollary 2.147 There is a unique solution to the convolution equation
(2.141) in each of following spaces Aν,0(S+

K ∪ Dε), L1
ν(S+), Aν,0(S+

K ∪ Dε),
(for large enough ν) and the solution belongs to their intersection.

PROOF

In the following, the subscript 0 means the functions in the set vanish at
zero.

We have the following embeddings: Aν,0(S+
K ∪ Dε) ⊂ L1

ν(S+) (extending
the elements of Aν,0 by zero) and Aν,0(S+

K ∪ Dε) ⊂ Aν,0(Dε) . Thus, there

exists a unique solution Y0 of (2.141), the same for all these spaces.

Thus Y is analytic in S+ and belongs to L1
ν(S+), in particular it is Laplace

transformable. The Laplace transform is a solution of (2.140) as it is easy to
check.

It also follows that the formal power series solution ỹ of (2.140) is Borel
summable in any sector not containing R+, which is a Stokes ray. We have,
indeed, Bỹ = Y (check!).

2.8a Borel summation of the transseries solution

Let ỹ0 the asymptotic series of LY0. Looking for a transseries solution,

ỹ = ỹ0 +

∞∑
k=1

Cke−kxỹk (2.148)
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we insert (2.148) in (2.140) and equate the coefficients of e−kx; this results in
the system of equations

ỹ′0 = −ỹ0 + x−2 + ỹ3
0 (2.149)

ỹ′k + (1− k − 3ỹ2
0)ỹk = 3ỹ0

k−1∑
j=1

ỹj ỹk−j +
∑

|j|=k;ji>1

ỹj1 ỹj2 ỹj3 ; k > 1 (2.150)

where, as usual, |j| = j1 + j2 + j3 and
∑
∅ = 0. The equation for ỹ1 is linear

and homogeneous:
ỹ′1 = 3ỹ2

0 ỹ1 (2.151)

For a general nonlinear system, instead of (2.151) one obtains a system of
linear equations. Thus

ỹ1 = Ces̃; s̃ :=

∫ x

∞
3ỹ0

2(t)dt (2.152)

Since s̃ = O(x−3), by Proposition 2.29 and Proposition 2.40, es̃ is Borel
summable in C \ R+. We note that ỹ1 = C(1 + o(1)) and we cannot take
the inverse Laplace transform of ỹ1 directly. But the series x−1ỹ1 is Borel
summable (say to Φ̌1) see Proposition 2.40. It is convenient7 to make the
substitution ỹk = xkϕ̃k We get

ϕ̃′k+(1−k−3ϕ̃2
0+kx−1)ϕ̃k = 3ϕ̃0

k−1∑
j=1

ϕ̃jϕ̃k−j+
∑

j1+j2+j3=k;ji>1

ϕ̃j1 ϕ̃j2 ϕ̃j3 (2.153)

where clearly ϕ̃0 = ỹ0, ϕ̃1 = x−1ỹ1, with ỹ1 given in (2.152). We choose
Φ1 = CBx−1es̃, define for a choice of sign,

Y 0 = (Y ±0 , 0, ..., 0, ...); Y 1 = (0,Φ±1 , ..., 0, ...), 1 = (1, 0, ...);

Φ = (0, 0,Φ2,Φ3, ...); k̂Φ = (0, 0, 2Φ2, 3Φ3, 4Φ4, · · · ) (2.154)

and, after Borel transform, we get

−pΦ + (1− k̂)Φ = G0 + (−k̂1 + G1)*Φ + G2*Φ∗2 + Φ∗3 (2.155)

where

G0 = 3Y 0*Y
∗2
1 +Y ∗3

1 ; G1 = 3(Y ∗2
0 +2Y 0*Y 1+Y ∗2

1 ); G2 = 3(Y 0+Y 1)
(2.156)

We treat (2.156) as an equation in L1
µ,ν;02 ⊂ L1

µ,ν , the subspace of sequences

{Φj}j∈N, Φ0 = Φ1 = 0 (and similar subspaces of other focusing algebras).

7In this problem, ỹ1 = 1 + ṽ1 would suffice to ensure O(x−2) decay of (ṽ1, ỹ2, ...).
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Note 2.157 (i) It is important to subtract out Y1, as we have, since its
equation allows for a free constant and no contractive mapping argument
would work unless the constant C is specified.

(ii) One can show check inductively that

ϕ̃2k+1 = O(x−2k−1); ϕ̃2k = O(x−2k−2); ∀N 3 k > 1 (2.158)

or
ỹ2k+1 = O(1); ỹ2k = O(x−2); ∀N 3 k > 1 (2.159)

where the constants implicit in (2.161) and (2.159) can be calculated in closed
form for any given k.

Proposition 2.160 (i) For µ, ν large enough, eq. (2.156) is contractive in
L1
ν,µ;02(S+), Aν,µ,0,02(S+

K ∪ Dε) and Aν,µ,02(Dε). Thus (2.156) has a unique

solution Φ+ in this space. Similarly, it has a unique solution in these spaces.
Likewise, there is a unique solution Φ− in the corresponding spaces in the
lower half-plane8.

(ii) Thus there is a ν large enough so that for all k

ϕ−k (x) =

∫ ∞e−i arg(x)
0

e−xpΦ+
k (p)dp (2.161)

exist for |x| > ν. The functions ϕ−k (x) are analytic in x for arg(x) ∈ (−2π −
π/2, π/2). The similarly obtained ϕ+

k (x) by Laplace transforming Φ−k along
a ray in the fourth quadrant are analytic in x, arg(x) ∈ (−π/2, 2π + π/2).

(iii) The function series

y+(x;C+) =

∞∑
k=0

Ck+e
−kxxkϕ+

k (x) (2.162)

and

y−(x;C−) =

∞∑
k=0

Ck−e
−kxxkϕ−k (x) (2.163)

converge for sufficiently large Rex, arg(x) ∈ (−π/2, π/2) and solve (2.140).
(See also Proposition 2.165 below.). In fact, |ϕ−k (x)| 6 µke−(Re (x)−ν) if Re (x)
is large enough.

Note. The solution cannot be written in the form (2.162) or (2.163) in a
sector of opening more than π centered on R+ because the exponentials would
become large and convergence is not ensured anymore. Growing exponentials
implies, generically, blow-up of the actual solutions. All the ϕk however are
well behaved.

8Like Y0, the functions Φk are analytic for |p| < 1, but generally have branch points at
1, 2, ...
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Exercise 2.164 (*) Prove Proposition 2.160.

Proposition 2.165 Any solution of (2.140) which is o(1) as x → +∞ can
be written in the form (2.162) or, equally well, in the form (2.163).

Note 2.166 The proof of uniqueness of small solutions in other directions in
the right half plane is very similar; in the left half plane, the fixed limit of
integration x0 in the integral form of the equation (see (2.168)) in the proof
would need to be taken −∞.

PROOF The method we use here can be extended relatively straightfor-
wardly to general systems, see [44].

The idea is the following: we show that for any o(1) solution y there exists a
yC s.t. y−yC = o(e−x), and this is incompatible with the differential equation
unless y − yC = 0.

Let y0 := y+ be the solution of (2.140) of the form (2.162) with C = 0. Let
y be another solution which is o(1) as x→ +∞ and let δ = y − y+. We have

δ′ = −δ + 3y2
0δ + 3y0δ

2 + δ3 (2.167)

We first choose x0 s.t. sup{|δ(x)|, e−x, |y0| : x > x0} 6 ε < 1
4 and then write

the equation in integral form (δ =: δC):

δC = Ce−x + e−x
∫ x

x0

es
(
3y0(s)2δC(s) + 3y0δC(s)2 + δC(s)3

)
ds (2.168)

where |Ce−x0 | = |δC(x0)| 6 ε by assumption. Then, with x0 large enough,
eq. (2.168) is contractive on [x0,∞) in a ball of radius 2ε in the norm
supx>x0

|δ(x)|. This is shown in the usual way.
Let

M(x) := sup
s∈[x0,x)

|δC(s)es|

By direct estimates, using (2.168) and |δ| 6 2ε for x > x0, we get for large x

M(s) 6 |C|+O(ε)M

Solving for M we get
M(x) 6 2|C| (2.169)

for large x. Thus we can write
∫ x
x0

=
∫∞
x0

+
∫ x
∞ and the integral equation

becomes

δC = C1e
−x + e−x

∫ x

∞
es
(
3y0(s)2δC(s) + 3y0δC(s)2 + δC(s)3

)
ds (2.170)

for some C1. Define now the norm supx>x1
|δ(x)|ex and the Banach space

{δ : ‖δ‖ < ∞} and finally the ball B = {δ : ‖δ‖ < 2C1}. Then, eq. (2.168)
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is contractive on [x1,∞) in B, if x1 > x0 is large enough. In particular, if
C1 = 0 then this unique solution is zero.

Since the exponentially weighted spaces are contained in the L∞ ones, it
follows that there is a unique solution to (2.168) and exδC = C1(1 + o(1)) for
large x. On the other hand, the solution yC1 given by (2.162) with C+ = C1

also satisfies yC1−y+ = C1e
−x(1+o(1)). It follows that δ1 = y−yC1 = o(e−x)

and satisfies (2.168), with C1 replaced by some c ∈ R.
By the same arguments as above, δ1 = ce−x(1+o(1)). But ce−x(1+o(1)) =

o(e−x) implies c = 0 and thus δ1 ≡ 0.

2.8a.1 Finding the asymptotics of δC by linearization[21]

We could also reason as follows. Choose again x0 as for (2.168). Note that
the sought-for δ (which we will still denote δC) is also the unique solution
of the linear equation (with δC = y − y0, where y is the fixed o(1) solution
treated as “known”)

δ′ = −δ + 3y2
0δ + 3y0δCδ + δ2

Cδ; δ(x0) = δC(x0) (2.171)

We have

(ln δ)′ = −1 + 3y2
0 + 3y0δC + δ2

C = −1 + r(x) = −1 + o(1) (2.172)

implying by integration

δ = δC(x0)e−(x−x0)+o(1)(x−x0) ⇒ δC = δC(x0)e−(x−x0)+o(1)(x−x0) (2.173)

since we know δ = δC . Using the estimate (2.173) to bound r(x) (instead of
o(1)) we get

ln δ = −x+O(1/x3) + C1 (2.174)

that is,
δ = C1e

−x(1 +O(1/x3))

Now we estimate as above δ1 = yC1
− y, which should be by construction

o(e−x), the proof is finished as before (by redoing the calculation above with
yC1 replacing y0).

2.8b Analytic structure of Y0 along R+

The approach sketched in this section is simple, but relies substantially on
the ODE origin of the convolution equations; it would not necessarily extend,
say to PDEs.

A different, complete proof, that uses the differential equation only min-
imally is given in [44]; for extensions to PDEs see, e.g. [42] and references
therein.
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*

By Proposition 2.143, Y = Y +
0 is analytic in any region of the form D∪S+

K .
We now sketch a proof that Y0 has analytic continuation along curves that do
not pass through the positive integers.

For this purpose we use (2.162) and (2.163) in order to derive the behavior
of Y . It is a way of exploiting what Écalle has discovered in more generality,
bridge equations. We start with exploring a non-generic possibility (which
does not happen for our sample equation).

2.8b.1 Case I y+
0 = y−0 =: y0

Since y+
0 = y−0 = y we have

y =

∫ ∞eia′
0

Y +(p)e−pxdp =

∫ ∞e−ia′
0

Y −(p)e−pxdp (2.175)

where we take a′ ∈ (a, π/2) with a defined in Proposition 2.143.

We first show Y is analytic in a sector or opening a centered on R+. From
(2.175) it follows that y is analytic and O(x−2) in

Sx := {x : |x| > x0 := νm, arg(x) ∈ (−π/2− a′, π/2 + a′)};
m−1 := min{sin(a′/2), cos(a′/2)} (2.176)

Now, by Proposition 1.56 (ii), Note 1.61 and (2.176) Y = L−1
α (y), the

inverse Laplace transform of y with integration path along a line orthogonal
on Re−iα exists for any α ∈ (−a′, a′) and does not depend on α, and is analytic
in a sector Sa′ of opening a′ centered on R+e−iα. At the same time, from
(2.175) L−1

α (y) equals Y + in a small sector just above the real line and equals
L−1
−α(y) = Y − in a small sector just below the real line, then Y = Y + = Y −

in any domain in the union of the domains of analyticity of Y, Y +, Y −, which
is C. The monodromy theorem implies that Y is entire. By Proposition 1.56
(iii) |Y (p)| is bounded by ec|p| for some c in Sa′ . Thus Y is entire and, by
Propositions 2.147 and 2.124 uniformly bounded by Ceν

′|p| for large ν, for
some ν′ > max{c, ν|} and all p ∈ C.

It is an easy Cauchy formula exercise to show that, if |Y | < Ceν|p| then
|Y k(0)| < C

√
kνk/k! (see the appendix §2.18). Applying Laplace transform

to the Taylor series of Y (p) term by term, which is justified by the dominated
convergence theorem, it follows that the series ỹ0 is convergent, and by basic
ODE theory, or by the isomorphism of usual summation, it converges to a
solution y.

We arrived at the following result:

Proposition 2.177 The formal series ỹ0 is convergent iff (nongenerically)
y+ = y− and factorially divergent otherwise.
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PROOF The proof is contained in the analysis preceding the Proposition,
except for the factorial divergence, which follows from the fact that Y+ 6= Y−
implies that the Taylor series of Y at p = 0 has finite radius of convergence

and applying Watson’s lemma to
∫∞eiθ

0
Y (p)e−pxdp, one obtains a divergent

series ỹ0.

2.8c The analytic continuations of Y0

By Proposition 2.165, y+ can be represented in the form (2.163). Thus,
there exists a constant S (called Stokes multiplier) such that

y+ = y− +

∞∑
k=1

Ske−kxxkϕ−k (x) (2.178)

implying
y+ − y− = Se−xxϕ−1 (x) +O(x2e−2x) (2.179)

If S = 0 the analysis in §2.8b.1 applies, Y0 is entire and y0 is analytic at
infinity. So we assume S 6= 0. More generally than (2.178), for any C+ there
is C− such that we have

y+ +

∞∑
k=1

Ck+e
−kxxkϕ+

k (x) = y− +

∞∑
k=1

Ck−e
−kxxkϕ−k (x) (2.180)

from which we obtain

y+ − y− = (C− − C+)e−xxϕ−1 (x) +O(x2e−2x) (2.181)

Comparing with (2.179) we get, after multiplication with ex,

(C− − C+ − S)xϕ−1 (x) = O(x2e−x) (2.182)

implying
C− − C+ = S (2.183)

since xϕ−(x)→ 1 as x→∞.
Recalling that ϕ±0 = y±0 , and denoting C = C+ (2.180) we get the identity

∞∑
k=0

Cke−kxxkϕ+
k (x) =

∞∑
k=0

(C + S)ke−kxxkϕ−k (x) (2.184)

which holds for any C ! From the convergence of Φ in the space Lµ,ν for large
µ, ν, it follows that the expansions (2.184) are analytic in C if x is chosen large
enough. This means we get a series of identities by taking the derivatives of
(2.184) at C = 0. We get

ϕ+
k − ϕ

−
k =

∞∑
j=1

(
k + j

j

)
Sjxje−jxϕ−k+j (2.185)
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2.8d Local analytic structure of Y0,Φk along R+

Definition 2.186 We introduce the notation
∮∞
a;c

to denote an integral along

a contour encircling a + R+ in a counter-clockwise manner, with a minimal

distance 0 < c < 1 from this set;
∮∞e±iϕ
a;c

denote a similar integral, except

that it approaches ∞eiϕ on the upper side of R+ and ∞e−iϕ on the lower-

side. Finally, for ϕ 6= 0,
∮∞eiϕ
a;c

denotes an integral encircling a + eiϕR+

in a positive direction, such that the points a + l for all l ∈ Z+ are in the
exterior of the curve, and the curve is at least 0 < c < 1 away from the set
{a+ eiϕR+, a+ l : l ∈ Z+}.

∮∞eiϕ
a;c

∮∞e±iϕ
a;c

∮∞
a;c

a a+ 1

arg p = −ϕ

arg p = ϕ

branch cut

FIGURE 2.2: Various curves around a; the notation for the integrals, taken
along the positive direction of each curve.

We take ν′ > ν, and define

H0 = e−ν
′pY0 and u = x− ν′ (we take Re (u) > 0) (2.187)

Noting that y− = LY + and y+ = LY − and that in D we have Y + = Y − = Y0

and Y0 is analytic there, we may write (2.178) as∮ ∞e±iα
1;c

H0e
−updp =

N∑
k=1

Ske−kxxkϕ−k (x) + aN (u), (2.188)

where

aN (u) =

∞∑
k=N+1

Ske−kν
′
e−ku(ν′ + u)kϕ−k (ν′ + u) = O

(
uN+1e−(N+1)u

)
(2.189)
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Now, we will introduce an artificial singularity at zero of the integrand, to
get a simple expression for the terms of the sum in (2.188) by integration by
parts, as follows. Branch cut along ray For α ∈ (a, π/2) we have

Skxke−kxϕ−k (x) = Skxke−kx
∫ ∞eiα

0

Φ+
k (p)e−pxdp

=
Sk

2πi
xke−kx

∮ ∞eiα
0;c

Φ+
k (p)e−px ln pdp =

Ske−kx

2πi

∮ ∞eiα
0;c

[
Φ+
k (p) ln p

](k)
e−pxdp

=
Ske−ku−kν

′

2πi

∮ ∞eiα
0;c

[
Φ+
k (p) ln p

](k)
e−ν

′pe−pudp (2.190)

Now, since for large ν′,
[
Φ+
k (p) ln p

](k)
e−ν

′p and H0 are in L1 along the given

contour of integration, we can take the Laplace transform f 7→
∫∞

0
f(u)ezudu,

where Re z < 0, (note the choice of sign) on both sides of (2.188), using (2.190)
and interchanging the (u, p) order of variables by Fubini we get

∮ ∞e±iα
1;c

H0(p)

p− z
dp =

N∑
k=1

Ske−kν
′

2πi

∮ ∞eiα
0;c

[
Φ+
k (p) ln p

](k)

p− z + k
e−ν

′pdp− AN (z)

(2.191)

We note that aN (u) is analytic for u > 0, and it is O(uN+1e−(N+1)u).
Therefore, AN (z) =

∫∞
0
ezyaN (u)du is analytic for Re z < N + 1.

We start with large negative Im z. The right side of (2.191) is analytic for
Re (z) < N + 1, except at the points z = k: this is clear since Φ+

k (p) ln p
are analytic inside the contour except for a possibly branched singularity at
zero, and the contour of integration can be deformed to accommodate for the
variation of z, except if z approaches k, for some k = 1, 2, ..., N .

To see what happens in a neighborhood of z = k, let

Gk(z) := G(z) =

∮ ∞eiα
0;c

[
Φ+
k (p) ln p

](k)

p− z + k
e−ν

′pdp (2.192)

Lemma 2.193 The function G is analytic on the first sheet of the Riemann
surface of ln(z − k).

PROOF G is manifestly analytic when z is in the exterior of the contour
in (2.192). The analytic continuation of G(z) for z inside the loop can be
found through contour deformation, crossing z and in the process collecting
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a residue at p = z − k, see Fig. 2.3, implying

Ske−kν
′

2πi
G(z) = Ske−ν

′z
[
Φ+
k (z − k) ln(z − k)

](k)

+
Ske−kν

′

2πi

∮ ∞eiα
0;c

[
Φ+
k (p) ln p

](k)

p− z + k
e−ν

′pdp (2.194)

where the last integral is along the deformed contour in Fig. 2.3, where part of
the curve is replaced by an arccircle having z inside the new contour, in the
process collecting a residue (from the small circle in the figure) The integral
along the deformed contour is manifestly analytic for z near k.

a a+ 1

z

FIGURE 2.3: Deformation of contour
∫∞eiϕ
a;c

to bring z in the interior of

the (new) curve. The contour integral around z is replaced by its value in
terms of the residue at z. The integral on the deformed contour is manifestly
analytic when z is in its interior even at points where the integrand is
singular in the interior of the curve.

We can likewise find the analytic continuation of
∮∞eiα

1;c
H0(p)dp
p−z to z inside the

contour by contour deformation and collecting a residue,∮ ∞eiα
1;c

H0(p)dp

p− z
=

∮ ∞eiα
1;c′

H0(p)dp

p− z
+ 2πiH0(z) (2.195)

where on the right side z is now in the interior of the curve, and the right
side integral is manifestly analytic near z = k. Equating the two sides of
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(2.191) after analytic continuation inside the loop, we obtain9 in a (ramified)
neighborhood of z = k, as z ↑ R+. We obtain

Proposition 2.196

H−0 (z) = Y −0 (z) =
Sk

2πi

[
Φ+
k (z − k) ln(z − k)

](k)

+ Ãk(z) near z = k (2.197)

where Ãk(z) is analytic in a neighborhood of z = k and along the ray {z =
k + teiα : t ∈ R+}, see Fig. 2.3, manifestly so, because of the analyticity of
all Φ+

k .

Thus, the only singularities of Y0 on the first Riemann sheet are at p = k,
and the singular structure is given in (2.199) below. It follows from (2.161)
and the fact that ϕk(x) = O(x−k−2) for even k and ϕk(x) = O(x−k) for odd
k for large x that Φ+

k (p) = pk−σBk(p) with σ = 1 if k is odd and σ = −1 if k
is even. Thus,

Y −0 (z) =
Sk

2πi

[
(z − k)k−σBk(z − k) ln(z − k)

](k)

+Ak;1(z) (2.198)

where Bk and Ak;1 are analytic near z = k, or, finally,

Y −0 (z) =
Sk

2πi

[
(z − k)1−σBk;2(z − k) ln(z − k)

]′
+Ak;2(z) (2.199)

Bk;2 and Ak;2 are analytic near z = k. In particular, Y +
0 is analytic on the

Riemann surface of a punctured neighborhood of p = k.
Similarly, from (2.185) we get, near z = k,

Φ−j (z) =
Sk

2πi

(
j + k

j

)[
Φ+
j+k(z − k) ln(z − k)

](k)

+Ak;j(z) (2.200)

with Ak;j(z) some functions analytic for |z − k| < 1. They are also analytic
when z − k is inside the whole contour of integration of Φk.

Note 2.201 In fact by rotating further z and crossing the other side of the
integration contour, the new residue collected cancels the old one. Thus, we
have the following proposition:

Proposition 2.202 Y0 is analytic on the universal covering of C \ Z+.

Saleh: we need to mention the case where there is a noninteger xkβ in the
transseries. This is easier, since by Laplace it generates a power-like ramifica-
tion at zero already, and there is no need for the log. No time to do it before
class. How about the following:

9We quote here results for Y −0 (z) since we approach z = R+ from Im z < 0. Obviously

similar results can be found for Y +
0 (z) by approaching R+ from above.
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Remark 2.203 In the model differential equation, the transseries involved
powers of xβe−x for integer β. This is generally not the case. When β is
not an integer, we can get similar results without the introduction of log in
(2.190) in the following way. Assume Re kβ < 0 (if not, then Re a > 0 where
a = −N + kβ for some N ∈ N and we write xkβLF = xNconst.xNL[p−a−1 ∗
F ]). Then,

∮∞eiϕ
0;c

(p−a−1 ∗ F (p))e−pxdp is a a constant nonzero multiple of∫∞eiα
0

F (p)dp.

Note 2.204 We see that the formal series ỹ0 generates, at least in principle,
the full transseries and the one-parameter family of small solutions of (2.140).
Indeed

e−kxxkϕ−k (x) = xke−kx
∮ ∞eiα

0;c

Φ+
k (p)e−px ln p dp

=
1

2πi

∮ ∞eiα
k;c

[
Φ+
k (p− k) ln(p− k)

](k)
e−pxdp = S−k

∮ ∞eiα
k;c

Y −k+
0 (p)e−pxdp

(2.205)

since the analytic part of Y −k+ does not contribute, obviously, to a loop
integral such as the one on the right side of (2.205). Therefore,

y−+

∞∑
k=1

Ck−e
−kxxkϕ−k (x) =

∫ ∞eiα
0

Y +
0 (p)e−pxdp+

∞∑
k=1

ck
∮ ∞eiα
k;c

Y −k+
0 (p)e−pxdp

(2.206)
where c = C−/S.

Note 2.207 It would not be hard to show for (2.140) that a solution that
behaves like ỹ0 as x→ i∞ will have the asymptotic behavior Se−x(1 + o(1))
close to the negative imaginary line, in a narrow region where x−1 � e−x �
1. The value of the Stokes multiplier S is crucial to completely solving the
connection problem, here: given the behavior at i∞ find the behavior at −i∞.
There are several very efficient ways to determine this important parameter
numerically, but a closed form expression for it essentially is only known in
integrable systems to be discussed in the next section.

Note 2.208 Thus, the whole information about the small solutions of (2.140)
is contained in ỹ0. The singularities of Y0 are determined also by formal
analysis of ỹk, which in turn can be determined from ỹ0 up to the same
constant S.
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2.9 Spontaneous singularities near antistokes lines: a
preview

Let us return to the toy model y′ = y2 + 1. We pretend of course that
we do not know the exact solution. If we are looking for solutions having an
asymptotic expansion at ∞, we can try dominant balance. Discarding y′ we
get to leading order y = ±i, then as usual, write y = ±i+ s(x) and expect s
to be small for the asymptotic iteration to work. In this case though we get
s(x) = C±e

±2ix which is of the same order of magnitude as the leading term,
i, so this balance fails. It is easy to see that other balances don’t work either.
But we also see that one choice of sign in y = ±i + s(x) would work in any
direction of x other than arg(x) = 0, as then one of the two exponentials would
be decaying. So let us first analyze the solutions in a different direction, one for
which indeed arg x 6= 0, say x = it with t ∈ R. The substitution y(x) = ig(it)
leads to

g′ = g2 − 1 (2.209)

and with g(t) = −1 + s(t) we get

s′ = −2s+ s2 (2.210)

and the balance is meaningful as to leading order s = Ce−2t and s2 � s. We
calculate the transseries by successive iterations as usual,

s′
[n]

= −2s[n] + s[n−1]2 (2.211)

starting with s[0] = 0, and get

s = −2

∞∑
k=0

(−ξ)k+1; ξ = Ce−2t (2.212)

which is a meaningful transseries as long as ξ is small (|ξ| < 1, the maximal
disk of analyticity of the series above). By Abel’s theorem, there must exist
singular points on |ξ| = 1, and in this case ξ = −1 is a singularity (the only
one here).

Remark 2.213 Note that one singularity in ξ translates into infinitely many
singularity of g. Indeed, ξ = −1 means t = (2k + 1)πi, k ∈ Z, and singular-
ities occur on the antistokes line, the line along which the exponential in the
transseries is purely oscillatory.

Of course, summing the series (2.212) explicitly

g =
1− ξ
1 + ξ

(2.214)
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and reverting the changes of variables, we recover the familiar tan solution of
the toy problem.

This singularity formation mechanism is very general. Take a typical transseries
(say, for simplicity in one dimension):

ỹ = ỹ0 +

∞∑
k=1

Ckxkβe−kxỹ+
k (2.215)

We remember that the ỹk are Borel summable in any direction other than R+,
that LBỹ+

k = y+
k are analytic in x in S = (−π/2, 2π + π/2) for large enough

|x|, and that |yk| . µk, in the Borel summed transseries representation

y = y0 +

∞∑
k=1

Ckxkβe−kxy+
k (2.216)

For a linear equation, the transseries consists of y0 and the term with k = 1
only, and (2.216) solves the the associated ODE equation throughout S. For a
linear system of order n there would be at most n terms involving exponentials,
and the conclusion would be similar.

In the nonlinear case, the convergence of the series in (2.216) is contingent
on ξ = Cxβe−x being small enough, which is the case roughly in the right
half plane for large enough |x|.

Note also and that, after expanding each series ỹk in powers of 1/x, the
transseries is a formal function

ỹ =
∑
k,j

ckjξ
kx−j (2.217)

that is, ỹ is a formal expansion in two variables, 1/x and ξ. If we are interested
in what happens when ξ is not small enough relative to powers of 1/x; then
it is natural not to expand in ξ anymore, and write

ỹ =
∑
j

Fj(ξ)x
−j (2.218)

where, since ξ is of order one and is rapidly oscillating (because of the presence
of e−x in ξ, periodic with period 2πi) the variables ξ and x are practically
independent. We then write

ỹ′ = ξx
∑
j

F ′j(ξ)x
−j −

∑
j

jFj(ξ)x
−j−1 (2.219)

insert in the differential equation and collect the like powers of x (since Fj do
not go to zero), solving, order by order for Fj . We illustrate this on PI in the
next section.
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2.9.1 The Painlevé equations PI

We analyze now a nonlinear problem– PI , (2.247)– in the region where
solutions have poles [22]. For the analysis of forst order equations, see [23]

We use a different normalization of PI so that instead of (1.210), the equa-
tion is in the form

y′′ = 6y2 + z (2.220)

For an equation allowing for formal, factorially divergent, power series so-
lutions, the normalized form is the one in which the series are Gevrey-1, see
Note 2.42 on p.74. This normalization often works best in studying the general
solution as well, see Note 2.400 below.

Looking for a power behavior for large z, we substitute y = Azb in (2.220),
and this gives A = ±

√
−1/6 and b = 1

2 . This balance is consistent and leads

to formal power series solutions y ∼ ±
√
−z
6 for large z.

We will study the family of solutions with y ∼ +
√
−z
6 as the opposite sign

can be treated similarly. Their transseries can be obtained by determining

first the asymptotic power series ỹ0 with leading order +
√
−z
6 . Then by linear

perturbation theory around it one finds the form of the small exponential, and
notices that the exponential is determined up to one multiplicative parameter.
We get the transseries solution

ỹ =

√
−z
6

∞∑
k=0

ξkỹk (2.221)

where

ξ = ξ(z) = Cx−1/2e−x; with x = x(z) =
(−24z)5/4

30
(2.222)

and ỹk are power series, in particular

ỹ0 = 1− 1

8
√

6(−z)5/2
+

72

28 · 3
1

z5
+ ...+

ỹ0;k

(−z)5k/2
+ ...

To normalize the equation, cf. again Note 2.42, the new independent variable
x is chosen to be such that the linearized equation around ỹ0 admits expo-
nentially small correction with exponents linear in x. It is also convenient to

pull out
√
−z
6 from the dependent variable. We take

x =
(−24z)5/4

30
; y(z) =

√
−z
6
Y (x)

and PI becomes

Y ′′(x) − 1

2
Y 2(x) +

1

2
= − 1

x
Y ′(x) +

4

25

1

x2
Y (x) (2.223)
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which, in fact, coincides with Boutroux’s form (cf. [61]). To apply the results
in [46] and [44], (2.223) needs to be further normalized and to this end we
subtract the O(1) and O(x−1) terms of the asymptotic behavior of Y (x) for
large x. It is convenient to subtract also the O(x−2) term (since the resulting
equation becomes simpler). Then the substitution

Y (x) = 1− 4

25x2
+ h(x)

transforms (2.223) to

h′′ +
1

x
h′ − h− 1

2
h2 − 392

625x4
= 0 (2.224)

Finally, the results in [44] and in [46] apply to first order systems of the form

y′ +

(
Λ̂ +

1

x
B̂

)
y = g(x−1,y); Λ̂ = diag(λi), B̂ = diag(βi) (2.225)

(eq. (1.1) [46]) in where g = O(x−2, y2), rather than to n−th order equations.
We then write(

h
h′

)′
=

(
0

392
625x

−4

)
+

(
0 1
1 0

)(
h
h′

)
+

(
0 0
0 − 1

x

)(
h
h′

)
+

(
0

1
2h

2

)
(2.226)

Simple algebra shows that the transformation(
h
h′

)
=

1

2

(
1− 1

2x 1 + 1
2x

−1− 1
2x 1− 1

2x

)(
y1

y2

)
(2.227)

brings (2.226) to the normal form (2.225). (++Ovidiu: Note changes above
from the original transformation++)

Note 2.228 (Results from [46] and [45]) (i) By Theorem (ii) in [46] if y
is a solution of the system (2.225) with y = o(x−3)10 for x→∞, x ∈ e−iϕR
(for some ϕ) then y has a unique Borel summed transseries: for some C

y(x;C) =

∞∑
k=0

Cke−kx(LϕYk)(x) for x ∈ e−iϕR, |x| large (2.229)

where Y0 = p3A0(p) Yk(p) = pk/2−1Ak(p), with Ak(p) independent of C
and analytic in C \ {±1,±2, . . .}. With Fk(p) =

∫ p
0

Yk(s)ds, all Fk(|p|eiϕ)
are left and right continuous in ϕ at ϕ = 0 and ϕ = π. There exist ν and M
independent of k such that supp∈C\R |Fk(p)e−|p|ν | 6Mk. The singularities of

Yk(p) for Painlevé are of the form (p− 1)−1/2, ln(p− 2), (p− 3)1/2, etc.

10This is the case for (2.224), where h = O(x−4)
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(ii) The constant C in (2.229) depends on the direction ϕ: C = C(arg x) is
piecewise constant; it can only change at the Stokes rays.

(iii) We have

LϕYk := yk ∼ ckx
− k2 ; k > 1; y0 = O(x−4) for x→∞, x ∈ e−iϕR (2.230)

where, if C 6= 0, c1 is chosen to be 1 by convention, thus fixing C.
(iv) For any δ > 0 there is b > 0 so that for all k > 0 and ϕ in (−π, 0)∪(0, π)

we have
∫∞

0
|Yk(pe−iϕ)|e−bpdp < δk (Proposition 20 in [46]).

Note 2.231 (i) Algebraically, the equation is simpler in variables (h, h′) than
in y, and it is more convenient to work directly with the second order equation
(1.210); the results in [46], [44] and [45] translate easily through the linear sub-
stitution (2.227) into results about h and H := L−1h. In particular, (2.233)
below holds for solutions h = o(x−3), where Hk satisfy all the analyticity
properties and, up to constants, bounds satisfied by Yk.

The following result follows from [45]:

Lemma 2.232 (i) Assume h solves (2.224) and satisfies h(x) = o(x−3) as
x → ∞ with arg x ∈ (−π2 ,

π
2 ). Then h(x) ∼ C+x

−1/2e−x as x → +i∞ for
some C+.

Furthermore, for such h there is C− such that h ∼ C−x
−1/2e−x as x →

−i∞, and there exists a unique sequence {ck}k such that h ∼ 392
625x4 +

∑∞
k=5 ckx

−k

as x→ +∞ where the asymptotic expansion is differentiable.
A solution h as above has the Borel summed transseries representations:

h(x) =

∞∑
k=0

Ck±e
−kx(LϕHk)(x) for ± ϕ ∈ (0, π/2] (2.233)

where Hk(p) = p
k
2−1Ak(p) and Ak are analytic in Cr := C \ {±1,±2, . . .}.

The functions Hk satisfy bounds of the type in Notes 2.231 and 2.228(iv).

For ϕ ∈ (0, π), the functions (LϕHk)(x) are analytic in a sector (−π/2, 3π/2).
However, the exponentials e−kx blow up in the left half plane. The transseries
expansion (2.233) cannot hold in the left half plane, and close to the direction
where its asymptoticity fails we need to match it to a different expansion. As
usual, we first identify the critical quantity, call it ξ, responsible for loss of
asymptoticity. In this case, it is ξ = Ce−xx−1/2, where we took into account
the dominant behavior of Y, (2.230) or equivalently the behavior of LϕHk.

We then re-expand Y as a function series in powers of 1/x and coefficients
depending on ξ. This is similar to a two scale expansion, except that there is
no “external” small parameter ε, its role being played by x−1.

Given h as in (2.229), there is a unique constant C+ with the following
properties. The leading behavior of h for large |x| with arg x close to π/2 is

h ∼ H0(ξ) +
H1(ξ)

x
+
H2(ξ)

x2
+ · · · (x→ i∞ with |ξ − 12| > ε, |ξ| < M)

(2.234)
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Formally, these functions are simply obtained as in a two scale expansion,
thinking of x and ξ as being practically independent variables. Substituting
(2.234) in (2.224) the equation for H0 is the leading order one, the coefficient
of 1/x0,

ξ2H ′′0 + ξH ′0 −H0 −
1

2
H2

0 = 0; H0(ξ) ∼ ξ as ξ → 0

(2.235)

The solution to (2.235) for which (2.234) matches to (2.229) in a complex

x-region near x = iR+ where ξj
(
Cx−1/2e−x

)j � 1
x for j ∈ N, corresponds

to H0(ξ)→ ξ. After introducing η = log ξ as a variable in (2.235)), multiply-
ing the resulting equation by d

dηH0, and integrating in η, using asymptotic
condition as ξ → 0, the resulting separable first order equation can be solved
explicitly:

H0(ξ) =
144ξ

(ξ − 12)2
(2.236)

Similarly, the coefficient of 1/x gives rise to

ξ2H ′′1 + ξH ′1 − (1 +H0)H1 = ξH ′0 −
1

2
H2

0 −H0 (2.237)

Since the transseries for h(x) is in the form

h(x) = h̃0(x) +Cx−1/2e−x
(

1− 1

8x
+ ..

)
+
(
Cx−1/2e−x

)2
[

1

6
+O

(
1

x

])
+ ..

(2.238)
where

h̃0(x) = − 392

625x4
− 6272

625x6
+ .., (2.239)

it follows that matching requires that as ξ → 0, H1(ξ) ∼ − ξ8 + O(ξ2). Gen-
erally for n > 4, Hn(ξ) = O(1) as ξ → 0 sinec matching involves appropriate
terms from h̃0(x) as well, which is not present for n < 4. With the matching
condition, solution to (2.237) is given by

H1(ξ) =
210ξ(ξ + 12)

(ξ − 12)3
− ξ(138240− 180ξ2 + ξ3)

60(ξ − 12)3
(2.240)

and generally one can conclude from induction that

Hn(ξ) =
Pn(ξ)

(ξ − 12)n+2
(2.241)

with Pn polynomials of degree 2n+ 2. (Ovidiu: The following does not make
sense; if I think what you are saying, it does not appear correct either).
There is an equivalent of the non-secularity condition: each Hn contains a



114 Course notes

free constant which is determined from the equation of Hn+1 by requiring
that Hn+1 = O(1) for large x (++Ovidiu: This is confusing, Hn are functions
of ξ++) for general constants, one would get Hn+1 = O(x), Hn+1 = O(x2)
etc. undermining the asymptoticity of the series). In [45], the validity of
(2.234) is proved in a general setting.

The first array of poles beyond iR+ is located at points x = pn near the
solutions p̃n of the equation ξ(x) = 12 where H0 has a pole:

pn = p̃n+o(1) = 2nπi− 1

2
ln(2nπi)+lnC+−ln 12+o(1), (n→∞) (2.242)

Rotating x further into the second quadrant, h develops successive arrays
of poles separated by distances O(lnx) of each other as long as arg(x) =
π/2 + o(1) [45].

Note 2.243 The array of poles developed near the other edge of the sec-
tor of analyticity, for arg(x) = −π/2 + o(1), is obtained by the conjugation
symmetry.

2.10 Spontaneous singularities and the Painlevé prop-
erty

In nonlinear differential equations, the solutions may be singular at points x
where the equation is regular. For example, the equation

y′ = y2 + 1 (2.244)

has a one parameter family of solutions y(x) = tan(x+C); each solution has
infinitely many poles. Since the location of these poles depends on C, thus
on the solution itself, these singularities are called movable or spontaneous.
Whether these spontaneous singularities are poles or essential singularities,
particularly branch points, is crucial for the integrability of the equation.
Written in an implicit form, we have, with y = y(x),

arctan y − x = C (2.245)

or, after converting arctan to logs, multiplying by i and exponentiating,

Φ(x, y) =
1 + iy

1− iy
e−2ix = c′ (2.246)

The function Φ is called a conserved quantity. It has the property that for
any solution y(x) of the equation there is a constant c s.t. Φ(x, y(x)) = c.
More generally, for an ODE of order n, conserved quantities are functions
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Φi(x, {y(j)}j=0,...,n−1) s.t. for each solution Φi is constant along the solution.
The existence of n independent regular enough –C∞, meromorphic etc., de-
pending on the problem– conserved quantities for general ODEs (n/2 suffice
for Hamiltonian systems), distinguishes integrable from non-integrable sys-
tems. In the simple system above Φ is simply rational in y and entire in x.
Note that Φ is real-analytic along R whereas the solutions are not (if C is
real); of course, on R, the form (2.245) has similar properties.

Let us analyze formally for now the isolated singularities of the Painlevé
equation PI ,

y′′ = y2 + z (2.247)

A rigorous analysis of the behavior of solutions of PI near an isolated singu-
larity is done in §2.10c.

We look at the local behavior of a solution that blows up, and will find
solutions that are meromorphic but not analytic. In a neighborhood of a point
where y is large, keeping only the largest terms in the equation (dominant
balance) we get y′′ = y2 which can be integrated explicitly in terms of elliptic
functions and its solutions have double poles. Alternatively, we may search
for a power-like behavior

y ∼ A(z − z0)p

where p < 0 obtaining, to leading order, the equation Ap(p− 1)(z− z0)p−2 =
A2(z−z0)2p which gives p = −2 and A = 6 (the solution A = 0 is inconsistent
with our assumption). Let’s look for a power series solution, starting with
6(z − z0)−2 : y = 6(z − z0)−2 + c−1(z − z0)−1 + c0 + · · · . We get: c−1 =
0, c0 = 0, c1 = 0, c2 = −z0/10, c3 = −1/6 and c4 is undetermined, thus free.
Note that we have two free constants now: the position of the pole, z0, and
c4, consistent with the fact that the equation is second order. We expect no
further free constants in the Taylor series, and this, indeed, can be checked
without difficulty.

2.10a The Painlevé property

To address the question whether nonlinear equations can define new func-
tions, Fuchs had the idea that a crucial criterion now known as the Painlevé
property (PP), is the absence of movable (meaning their position is solution-
dependent) essential singularities, primarily branch-points, see [32]. First or-
der equations were classified with respect to the PP by Fuchs, Briot and
Bouquet, and Painlevé by 1888, and it was concluded that they give rise to
no new functions. Painlevé took this analysis to second order, looking for all
equations of the form u′′ = F (t, u, u′), with F rational in u′, algebraic in u,
and analytic in t, having the PP [39, 40]. His analysis, revised and completed
by Gambier and Fuchs, found some fifty types (types since some have free
parameters) with this property and succeeded to solve all but six of them in
terms of previously known functions. The remaining six types are now known
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as the Painlevé equations, and their solutions, the Painlevé transcendents,
play a fundamental role in many areas of pure and applied mathematics.

2.10b Analysis of a modified PI equation

The Painlevé property is very demanding. It is of course beyond the scope
of this course to analyze a general second order equation. We can however
experiment with a general analytic function A(z) =

∑∞
k=0 akz

k instead of z:

y′′ = y2 +A(z) (2.248)

We can see that A(0) can be eliminated by a shift of the independent variable,
and A′(0), if nonzero, can be normalized to 1. Looking for singular solutions,
the dominant balance is the same as in the beginning of §2.10 and thus the
local expansion starts with the same term, 6(z − z0)−2. Substituting y =∑
k>−2 ck(z − z0)k in (2.248) and identifying the coefficients, the ck with

k < 4 can be determined order by order. The coefficient of (z − z0)2 however
does not involve ck at all; it is

−
∞∑
k=2

k(k − 1)

2
akz

k
0 (2.249)

Since (2.249) must vanish, the possibilities, up to linear changes of variables
are A(z) = 0, A(z) = 1 and A(z) = z. The first two give the equation of
elliptic functions and the third is PI itself .

2.10b.1 The Painlevé test, further discussion

S. Kovalewsky searched for cases of the spinning top having the PP. She
found a previously unknown integrable case and solved it in terms of hyper-
elliptic functions. Her work [36], [37], [38] was so outstanding that not only
did she receive the 1886 Bordin Prize of the Paris Academy of Sciences, but
the associated financial award was almost doubled.

The method pioneered by Kovalevskaya to identify integrable equations
using the Painlevé property is now known as the Painlevé test, which she
combined with Liouville’s results on integrability of Hamiltonian systems.
As mentioned , the Painlevé equations, as well as others with the PP were
subsequently rederived from linear problems. Why this is so often the case is
not completely understood.

However, at an informal level, we note that the Painlevé property guaran-
tees some form of integrability of the equation, in the following sense. Consider
for simplicity a system of equations,

y′ = F(y) (2.250)

(which we can always assume autonomous by adding the equation t′ = 1 if
needed) with F is say, meromorphic in Cn. Take a neighborhood N of a point
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(t0,y0) (say, t0 = 0) where F is analytic and consider the unique analytic
solution of the ODE (2.250) with the initial condition y(0) = y0. We can
think of it as a flow y0 7→ y = Ψt(y0) where Ψ0(y0) = y0, the identity map,
I. By the ODE itself, y0 = Ψ−t(y(t)), the solution of the same ODE. Of
course, y(0) is a constant, and we have thus found n conserved quantities.
This local property is essentially what the flowbox theorem provides. The
word local is crucial. A system is integrable if global conserved quantities
exist. Note again that C is obtained by solving, with t 7→ −t, the same
ODE. What prevents C to extend to a global conserved quantity? It is the
possibility of spontaneous singularities.

Since the solutions of PI however are meromorphic, with y = (y, y′), it is
always possible, in principle, to extend C0 and C1 by solving the equation
along a path avoiding the poles. If an equation with movable poles has also
some fixed singularities, the solutions still have a common Riemann surface of
meromorphicity, and the fixed singularities can be avoided in a way common
to all solutions.

On the contrary, movable branch-points have the potential to prevent the
existence of well-behaved constants of motions for the following reason. Sup-
pose y0 satisfies a meromorphic (second order, for concreteness) ODE and
K(t; y, y′) is a constant of motion. If t0 is a branch point for y0, then y0 can
be continued past t0 by avoiding the singular point, or by going around t0
any number of times before moving away. This leads to different branches
(y0)n of y0, all of them, by simple analytic continuation arguments, solutions
of the same ODE. By the definition of K(t; y, y′) however, we should have
K(t; (y0)n, (y0)′n) = K(t; y0, y

′
0) for all n, so K assumes the same value on

this infinite set of solutions. We can proceed in the same way around other
branch points t1, t2, ... possibly returning to t0 from time to time. Generi-
cally, we expect to generate a family of (y0)n1,...,nj , (y0)′n1,...,nj which is dense
in the phase space. This is an expectation, to be proven in specific cases. To
see whether an equation falls in this generic class M. Kruskal introduced a
test of nonintegrability, the poly-Painlevé test which measures indeed whether
branching is “dense”, meaning in a precise way that the analytic continuations
described above are indeed dense in the space of all solutions. See, e.g., [18].

Exercise 2.251 **Show that the solution of y′ = y5− 1 has no single-valued
conserved quantity in K(t, y) in C2: solve the differential equation implicitly
and show that by winding around the five logarithmic singularities of t(y) in
suitable ways, K(t, yj(t)) takes the same value on a family of yj(t) which is
dense in C.**
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2.10b.2 The list of Painlevé equations

The six classes of Painlevé transcendents, identified by Painlevé (P), Gam-
bier (G) and R. Fuchs (F) are

d2y

dt2
= 6y2 + t (I;P ) (2.252)

d2y

dt2
= 2y3 + ty + α (II;P ) (2.253)

ty
d2y

dt2
= t

(
dy

dt

)2

− y dy
dt

+ δt+ βy + αy3 + γty4 (III;P ) (2.254)

y
d2y

dt2
= 1

2

(
dy

dt

)2

+ β + 2(t2 − α)y2 + 4ty3 + 3
2y

4 (IV ;G) (2.255)

d2y

dt2
=

(
1

2y
+

1

y − 1

)(
dy

dt

)2

− 1

t

dy

dt
(2.256)

+
(y − 1)2

t

(
αy +

β

y

)
+ γ

y

t
+ δ

y(y + 1)

y − 1
(V ;G)

d2y

dt2
= 1

2

(
1

y
+

1

y − 1
+

1

y − t

)(
dy

dt

)2

−
(

1

t
+

1

t− 1
+

1

y − t

)
dy

dt
(2.257)

+
y(y − 1)(y − t)
t2(t− 1)2

(
α+ β

t

y2
+ γ

t− 1

(y − 1)2
+ δ

t(t− 1)

(y − t)2

)
(V I;F )

In these equations, α, β, γ, δ are arbitrary parameters in C.

Beginning in the 1980’s, almost a century after their discovery, these prob-
lems were solved, using their striking relation to linear problems11, by various
methods including the powerful techniques of isomonodromic deformation and
reduction to Riemann-Hilbert problems [28], [29], [34].

2.10b.3 Linearization of the Painlevé equations

The Painlevé equations are related to linear problems in a number of ways,
in some broad sense equivalent: isomonodromic deformations, Lax Pairs,
Riemann-Hilbert problems and others, and in view of the connection to solv-
able linear problems are considered themselves to be solvable. The following
is one of the simplest to explain such links [27]. Consider the system of equa-

11Some linear problems conducive to Painlevé equations were known already at the be-
ginning of last century. In 1905 Fuchs found a linear isomonodromic problem leading to
PVI.
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tions:

∂Ψ

∂λ
= A(t, λ)Ψ (2.258)

∂Ψ

∂t
= B(t, λ)Ψ (2.259)

where in which A and B are matrices and (t, λ) are independent variables.
Then we have a compatibility equation

∂2Ψ

∂t∂λ
=
∂2Ψ

∂λ∂t
(2.260)

or
∂A

∂t
− ∂B

∂λ
+ AB−BA = 0 (2.261)

The equation PI is the compatibility condition for

A(t, λ) = (4λ4 + 2y2 + t)

(
1 0
0 −1

)
− i(4λ2y + 2y2 + t)

(
0 −i
i 0

)
−
(

2λy′ +
1

2λ

)(
0 1
1 0

)
B(t, λ) =

(
λ+

y

λ

)(1 0
0 −1

)
− iy

λ

(
0 −i
i 0

)
(2.262)

while for PII, we have

A(t, λ) = −i(4λ2 + 2y2 + t)

(
1 0
0 −1

)
− 2y′

(
0 −i
i 0

)
+
(

4λy − α

λ

)(
0 1
1 0

)
B(t, λ) =

(
−iλ y
y iλ

)
(2.263)

2.10c Rigorous analysis of the meromorphic expansion for
PI

Substituting y(x) = 6(x − x0)−2 + δ(x), with δ(x) = o((x − x0)−2) and
taking x = x0 + z we obtain

δ′′ =
12

z2
δ + z + x0 + δ2 (2.264)

To find the dominant balance we note that our assumption δ = o(z−2) makes
δ2/(δ/z2) = z2δ = o(1) and thus the nonlinear term in (2.264) is relatively
small. Thus, to leading order, the new equation is linear. This is a general
phenomenon: taking out more and more terms out of the local expansion, the
correction becomes less and less important, and the equation is better and
better approximated by a linear equation. We then rewrite (2.264) as

δ′′ − 12

z2
δ = z + x0 + δ2 (2.265)
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which we convert into an integral equation. The indicial equation for the
Euler equation corresponding to the left side of (2.265) is r2− r−12 = 0 with
solutions 4,−3. We get

δ =
D

z3
− 1

10
x0z

2 − 1

6
z3 + Cz4 − 1

7z3

∫ z

0

s4δ2(s)ds+
z4

7

∫ z

0

s−3δ2(s)ds

= − 1

10
x0z

2 − 1

6
z3 + Cz4 + J(δ) (2.266)

the assumption that δ = o(z−2) forces D = 0. The occurrence of a “dis-
allowed” freedom, D/z3 � δ in this case is related to the phenomenon
of negative resonances, quite common in Painlevé analysis; see [31] for a
discussion. Now, C is arbitrary. To find δ formally, we would simply it-
erate (2.266) as usual: we first take δ = 0 on the right side and obtain
δ0 = − 1

10x0z
2 − 1

6z
3 + Cz4. Then we take δ2 = δ2

0 and compute δ1 from
(2.266) and so on. This yields:

δ = − 1

10
x0z

2 − 1

6
z3 + Cz4 +

x2
0

1800
z6 +

x0

900
z7 + ... (2.267)

To prove convergence of the expansion, we scale out the leading power of z in
δ, z2 and write δ = z2u. The equation for u is

u = −x0

10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0

10
− z

6
+ Cz2 + J(u) (2.268)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ε such that this is a contractive equation for u in the ball
‖u‖∞ < C1 in the space of analytic functions in the disk |z| < ε. We conclude
that δ is analytic and that y is meromorphic near x = x0.
Note. The Painlevé property discussed in requires that y is globally mero-
morphic, and we did not prove this. That indeed y is globally meromorphic
is in fact true, but the proof is delicate (see e.g. [1]). Generic equations fail
even the local Painlevé property. For instance, for the simpler, autonomous,
equation

f ′′ + f ′ − f2 = 0 (2.269)

the same analysis yields a local behavior starting with a double pole, f ∼
−6z−2. Further terms in a local power series expansion are:

f =
6

z2
− 6

5z
− 1

50
− z

250
− 7z2

5000
− 79

75000
z3 + undefined (2.270)

that is, no coefficient of z−4 works. More terms have to be pulled out for a
contractive mapping approach to work. We take

f =
6

z2
− 6

5z
− 1

50
− z

250
− 7z2

5000
− 79z3

75000
+ δ(z)
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proceeding as above and integrating by parts the δ′ term we get, after some
work,

δ =
18z4 ln z

21875
+ Cz4 + z5P (z) +N (z, δ(z), δ(z)2) (2.271)

where P (z) is a polynomial of third degree and N is a contractive operator in
the space of functions which are O(z4 ln z). If we pull out fewer terms from f
a contraction mapping argument may not work (at least not in a naive way).
We see that a log term is generated in the process.

Note 2.272 Eq. (2.269) does not have the Painlevé property. The log terms
generate infinitely many solutions by analytic continuation around one singu-
lar point, and suggests the equation is not integrable.

2.10d The Painlevé property for PDEs

We briefly discuss the Weiss-Tabor-Carnevale (WTC) method [83] which
adapts Painlevé analysis to PDEs. Remarkably, when applied to Burgers’
equation and to KdV, their method leads naturally to the solution of these
equations, through the Cole-Hopf transformation and Lax pairs respectively.
We base the presentation on their aforementioned paper.

Meromorphic functions of several variables are locally ratios P/Q of analytic
functions, and singularities occur when the denominator vanishes,

Q(z1, ..., zn) = 0 (2.273)

which is a manifold of complex dimension N − 1 (in particular, singularities
are not isolated anymore). The WTC test requires that in a neighborhood the
manifold described by (2.273) the solution u of the given PDE be single-valued
as well, that is, for some analytic functions uj(z1, ..., zn) we have

u = Q−m
∞∑
j=0

ujQ
j ; for some m ∈ N (2.274)

Direct substitution of (2.274) into the PDE determines the compatible values
of α and defines recursively the uj , j > 0. In the resulting expression, we
assume that Qj+1 � Qj and therefore treat it like an asymptotic series in
powers of Q.

The first example is Burgers’ equation

ut + uux = σuxx (2.275)

As in the case of the Painlevé test, the analysis has to be done carefully,
but there is no need for rigor, as we are simply dealing with a practical crite-
rion. Substituting (2.274) into (2.275) and using the assumption of analyticity
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suggests m = 1, since otherwise the most negative power of Q would be unbal-
anced. With m = 1, after the aforementioned substitution, the most negative
power of Q is −3; the equation for its coefficient to vanish is

u0 = −2σQx (2.276)

We now take u = u0Q
−1 + u1 where u0 is given by (2.276) and require that

the coefficient of Q−2. This gives

Qt + u1Qx = σQxx (2.277)

For the coefficient of Q−1 we get

u1Qxx + u1xQx +Qxt − σQxxx = 0 (2.278)

We note that this equation does not contain u2; this is similar to the equation
for c4 in the case of Painlevé. The equation is either satisfied, or the expansion
fails. Thus, the third order term is resonant and if (2.278) holds, then u2 is
free. On the other hand, we see that the left side of (2.278) is just the x
derivative of (2.277), and thus (2.278) indeed holds:

∂x(u1Qx +Qt − σQxx) = 0 (2.279)

The general recurrence for uj is of the form

(j + 1)(j − 2)σϕ2
xuj = F

(
{uk}k<j ;Qt, {∂kxQ}

)
(2.280)

where we see two resonances, the negative one corresponding to the freedom
in choosing Q and at j = 2 we get the identity (2.279). If we modify Burgers’
equation by adding, say, au(t, x) to its left side, we get instead of (2.279)

∂x(u1Qx +Qt − σQxx + aQ) = 0 (2.281)

and this, for a 6= 0, combined with (2.278) implies Qx = 0, and (2.276) would
give u0 = 0, and then (2.277) gives Qt = 0 and since Q has a zero, we
would have Q ≡ 0, a contradiction. For this modified Burgers’ equation, a
meromorphic expansion (2.274) and the formal Painlevé property fail.

Let’s return to a = 0; as mentioned, the equation (2.279) for u2 is auto-
matically satisfied, u2 is free, and (2.280) implies that all uj for j > 3 are
uniquely determined. There is a meromorphic local expansion in a neigh-
borhood of the singular manifold, and we could check that under suitable
analyticity assumptions on Q it actually converges.

If we set u1 = u2 = 0 we can check that the uj = 0 for j > 3 is consistent.
With this choice, (2.277) implies

Qt = σQxx; u(t, x) = −2σQx/Q (2.282)

which is the Cole-Hopf transform, see [17], [33], [84], mapping (2.275) to the
heat equation and providing the closed form solution of Burgers’ equation!

Choosing instead u1 = Q we get

Qt +QQx = σQxx and u = −2σQx/Q+Q imply ut + uux = σuxx (2.283)

which is the Bäcklund transformation for Burgers’, discovered by Fokas [30].
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2.10d.1 KdV

The KdV equation reads

ut + uux + σuxxx = 0 (2.284)

the consistent power of Q is −2. Inserting u = Q−2
∑∞
k=0Q

kuk, the most
negative power of Q is Q−5; setting the coefficients of Q−5 and Q−4 to zero,
we get

u0 = −12σQ2
x; u1 = 12σQxx (2.285)

Setting the coefficient of Q−3 to zero gives

QxQt +Q2
xu2 + 4σQxQxxx − 3σQ2

xx = 0 (2.286)

while the similar equation for the coefficient of Q−2 can be rewritten as

Qtx + u2Qxx − u3Q
2
x + σQxxxx = 0 (2.287)

while the equation for the coefficient of Q−1 is equivalent to

∂x(Qtx + u2Qxx − u3Q
2
x + σQxxxx) = 0 (2.288)

The equation above corresponds to a resonance, as u4 does not participate;
we see that for KdV it is automatically satisfied. The resonances for the uj
are at j = −1, 4, 6, and the resonant equation at j = 6 is longer and we omit
it.

Looking again for truncated series, in this case

uj = 0 for all j > 2 (2.289)

it can be checked that u given by

u = −12σQ2
x/Q

2 + 12σQxx/Q+ u2 = 12σ(lnQ)xx + u2 (2.290)

satisfies (2.284) if u2 satisfies KdV:

u2t + u2u2x + σu2xxx (2.291)

which is a Bäcklund transformation for (2.284).
With u3 = 0, (2.287) becomes

Qtx + u2Qxx + σQxxxx = 0 (2.292)

Solving (2.286) for Qt and differentiating with respect to t we get

Qxt = 2V Vt = −2V Vxu2 − V 2u2x − 8σV Vxxx (2.293)

where we substituted Qx = V 2. Taking the ansatz

6σVxx + u2V = λV (2.294)

in (2.293) KdV is linearized, in a Lax pair form, to

6σVxx + u2V = λV

2Vt + u2Vx + λVx + 2σVxxx (2.295)

and now, if u2 and V satisfy (2.295), then u defined in (2.290) satisfies (2.284).
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2.11 Gevrey classes, least term truncation and Borel
summation

Let f̃ =
∑∞
k=0 ckx

−k be a formal power series, with power-one of factorial
divergence, and let f be a function asymptotic to it. The definition (1.3)
provides estimates of the value of f(x) for large x, within o(x−N ), N ∈ N,
which are, as we have seen, insufficient to determine a unique f associated to
f̃ . Simply widening the sector in which (1.3) is required cannot change this
situation since, for instance, exp(−x1/m) is beyond all orders of f̃ in a sector
of angle almost mπ.

If, however, by truncating the power series at some suitable N(x) instead
of a fixed N , we can sometimes achieve exponentially good approximations
in a sector of width more than π, then uniqueness is ensured, as this exercise
shows:

Exercise 2.296 Assume f is analytic for |z| > z0 in a sector S of opening
more than π and that |f(z)| 6 Ce−a|z| (a > 0) in S. Show that f is identically

zero. Does the conclusion hold if e−a|z| is replaced by e−a
√
|z|?

(This can be shown using Phragmèn-Lindelöf’s principle. Without it, take
a suitable inverse Laplace transform F of f , show that F is analytic near zero
and F (n)(0) = 0 and use Proposition 1.56).

This leads us to the notion of Gevrey asymptotics.
Gevrey asymptotics.

f̃(x) =

∞∑
k=0

ckx
−k, x→∞

is by definition Gevrey of order 1/m, or Gevrey-(1/m) if

|ck| 6 C1C
k
2 (k!)m

for some C1, C2 [7]. There is an immediate generalization to noninteger power
series.

Remark 2.297 The Gevrey order of the series
∑
k(k!)rx−k, where r > 0, is

the same as that of
∑
k(rk)!x−k. Indeed, we have, by Stirling’s formula,

const−k 6 (rk)!/(k!)r 6 constk

Taking x = ym and g̃(y) = f̃(x), then g̃ is Gevrey-1 and we will focus on this
case. Also, the corresponding classification for series in z, z → 0 is obtained
by taking z = 1/x.

*
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Definition 2.298 Let f̃ be Gevrey-one. A function f is Gevrey-one asymp-
totic to f̃ as x → ∞ in a sector S if for some C1, C2, C5, all x ∈ S with
|x| > C5 and all N we have

|f(x)− f̃ [N ]| 6 C1C
N+1
2 |x|−N−1(N + 1)! (2.299)

i.e., if the error f − f̃ [N ] is, up to powers of a constant, of the same size as
the first omitted term in f̃ .

Note the uniformity requirement in N and x; this plays a crucial role.

Remark 2.300 (Exponential accuracy) If f̃ is Gevrey-one and the func-
tion f is Gevrey-one asymptotic to f̃ , then f can be approximated by f̃ with
exponential precision in the following way. Let N = b |x/C2| c (b·c is the
integer part); then for any C > C2 we have

f(x)− f̃ [N ](x) = O(x1/2e−|x|/C), (|x| large) (2.301)

Indeed, letting |x| = NC2 + ε with ε ∈ [0, 1) and applying Stirling’s formula
we have

N !(N + 1)CN2 |NC2 + ε|−N−1 = O(x1/2e−|x|/C2)

Note 2.302 Optimal truncation, or least term truncation, see e.g., [26], is in
a sense a refined version of Gevrey asymptotics. It requires optimal constants
in addition to an improved form of Rel. (2.299). In this way the imprecision
of approximation of f by f̃ turns out to be smaller than the largest of the
exponentially small corrections allowed by the problem where the series orig-
inated. Thus the cases in which uniqueness is ensured are more numerous.
Often, optimal truncation means stopping near the least term of the series,
and this is why this procedure is also known as summation to the least term.

2.11a Connection between Gevrey asymptotics and Borel
summation

The following theorem goes back to Watson [59].

Theorem 2.303 Let f̃ =
∑∞
k=2 ckx

−k be a Gevrey-one series and assume
the function f is analytic for large x in Sπ+ = {x : | arg(x)| < π/2 + δ} for
some δ > 0 and Gevrey-one asymptotic to f̃ in Sπ+ as in (2.299). Then

(i) f is unique.
(ii) B(f̃) is analytic (at p = 0 and) in the sector Sδ = {p : arg(p) ∈ (−δ, δ)},

and Laplace transformable in any closed subsector.
(iii) f̃ is Borel summable in any direction eiθR+ with |θ| < δ and f = LBθf̃ .
(iv) Conversely, if f̃ is Borel summable along any ray in the sector Sδ

given by | arg(x)| < δ, and if Bf̃ is uniformly bounded by eν|p| in any closed
subsector of Sδ, then f is Gevrey-1 with respect to its asymptotic series f̃ in
the sector | arg(x)| 6 π/2 + δ.



126 Course notes

Note. In particular, when the assumptions of the theorem are met, Borel
summability follows using only asymptotic estimates.

The Nevanlinna-Sokal theorem [77] weakens the conditions sufficient for
Borel summability, requiring essentially estimates in a half-plane only. It was
originally formulated for expansions at zero, essentially as follows:

Theorem 2.304 (Nevanlinna-Sokal) Let f be analytic in CR = {z :
Re (1/z) > R−1} and satisfy the estimates

f(z) =

N−1∑
k=0

akz
k +RN (z) (2.305)

with
|RN (z)| 6 AσNN !|z|N (2.306)

uniformly in N and in z ∈ CR. Then B(t) =
∑∞
n=0 ant

n/n! converges for
|t| < 1/σ and has analytic continuation to the strip-like region Sσ = {t :
dist(t,R+) < 1/σ}, satisfying the bound

|B(t)| 6 K exp(|t|/R) (2.307)

uniformly in every Sσ′ with σ′ > σ. Furthermore, f can be represented by
the absolutely convergent integral

f(z) = z−1

∫ ∞
0

e−t/zB(t)dt (2.308)

for any z ∈ CR. Conversely, if B(t) is a function analytic in Sσ′′ (σ′′ < σ)
and there satisfying (2.307), then the function f defined by (2.308) is analytic
in CR, and satisfies (2.305) and (2.306) [with an = B(n)(t)|t=0] uniformly in
every CR′ with R′ < R.

Note 2.309 Let us point out first a possible pitfall in proving Theorem 2.303.
Inverse Laplace transformability of f and analyticity away from zero in some
sector follow immediately from the assumptions. What does not follow imme-
diately is analyticity of L−1f at zero. On the other hand, Bf̃ clearly converges
to an analytic function near p = 0. But there is no guarantee that Bf̃ has
anything to do with L−1f ! This is where Gevrey estimates enter.

PROOF of Theorem 2.303
(i) Uniqueness clearly follows once we prove (ii) and (iii).
(ii) and (iii) By a simple change of variables we arrange C1 = C2 = 1.

The series F̃1 = Bf̃ is convergent for |p| < 1 and defines an analytic func-
tion, F1. By Proposition 1.56, the function F = L−1f is analytic for |p| >
0, | arg(p)| < δ, and F (p) is analytic and uniformly bounded by eν|p| if ν > C5
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and | arg(p)| < δ1 < δ. We now show that F is analytic for |p| < 1. (A
different proof is seen in §2.11a.1.) Taking p real, p ∈ [0, 1) we obtain in view
of (2.299) that

|F (p)− F̃ [N−1](p)| 6
∫ i∞+N

−i∞+N

d|s|
∣∣∣f(s)− f̃ [N−1](s)

∣∣∣ eRe (ps)

6 N !epN
∫ ∞
−∞

dx

|x+ iN |N
= N !epN

∫ ∞
−∞

dx

(x2 +N2)N/2

=
N !epN

NN−1

∫ ∞
−∞

dξ

(ξ2 + 1)N/2
6 CN3/2e(p−1)N → 0 as N →∞ (2.310)

for 0 6 p < 1. Thus F̃ [N−1](p) converges. Furthermore, the limit, which by
definition is F1, is seen in (2.310) to equal F , the inverse Laplace transform of
f on [0, 1). Since F and F1 are analytic in a neighborhood of (0, 1), F = F1

wherever either of them is analytic12. The domain of analyticity of F is thus,
by (ii), {p : |p| < 1} ∪ {p : |p| > 0, | arg(p)| < δ}.

(iv) Let |ϕ| < δ. We have, by integration by parts,

f(x)− f̃ [N−1](x) = x−NL d
N

dpN
F (2.311)

On the other hand, F is analytic in Sa, some a = a(ϕ)−neighborhood of the
sector {p : | arg(p)| < |ϕ|}. Estimating Cauchy’s formula on a radius-a(ϕ)
circle around the point p with | arg(p)| < |ϕ| we get, for some ν,

|F (N)(p)| 6 N !a(ϕ)−N‖F (p)e−νRe p‖∞,SaeνRe p

Thus, by (2.311), with θ, |θ| 6 |ϕ|, chosen so that γ = cos(θ − arg(x)) is
maximal we have

∣∣∣f(x)− f̃ [N ]
∣∣∣ =

∣∣∣∣∣x−N
∫ ∞ exp(−iθ)

0

F (N)(p)e−pxdp

∣∣∣∣∣
6 constN !a−N |x|−N‖Fe−ν|p|‖∞;Sa

∫ ∞
0

e−p|x|γ+ν|p|+νadp

= const.N !a−Nγ−1|x|−N−1‖Fe−νγ|p|‖∞;Sa (2.312)

for large enough x.

12Here and elsewhere we identify a function with its analytic continuation.
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2.11a.1 Sketch of the proof of Theorem 2.304

We can assume that f(0) = f ′(0) = 0 since subtracting out a finite number
of terms of the asymptotic expansion does not change the problem. Then, we
take to x = 1/z (essentially, to bring the problem to our standard setting).
Let

F =
1

2πi

∫ c+i∞

c−i∞
f(1/x)epxdx =

1

2πi

∫ c+i∞

c−i∞
g(x)epxdx

We now want to show analyticity in Sσ of F . That, combined with the
proof of Theorem 2.303 completes the argument.

We have

f(1/x) =

N−1∑
j=2

aj
xj

+RN (x)

and thus,

F (p) =

N−1∑
j=2

ajp
j−1

(j − 1)!
+

1

2πi

∫ c+i∞

c−i∞
RN (1/x)epxdx

and thus

|F (N−2)(p)| =
∣∣∣∣aN−1 +

1

2πi

∫ c+i∞

c−i∞
xN−2RN (1/x)epxdx

∣∣∣∣ 6 A2σ
NN !; p ∈ R+

and thus |F (n)(p)/n!| 6 A3n
2σn, and the Taylor series of F at any point

p0 ∈ R+ converges, by Taylor’s theorem, to F , and the radius of convergence
is 1/σ. The bounds at infinity follow in the usual way: let c = R−1. Since f
is analytic for Rex > c and is uniformly bounded for Rex > c, we have∣∣∣∣∫ c+i∞

c−i∞
f(1/x)epxdx

∣∣∣∣ 6 K1e
cp

∫ ∞
−∞

dx

x2 + 1
6 K2e

cp (2.313)

for p ∈ R+. In the strip, the estimate follows by combining (2.313) with the
local Taylor formula.

Note 2.314 As we see, control over the analytic properties of Bf̃ near p = 0
is essential to Borel summability and, it turns out, BE summability. Certainly,
mere inverse Laplace transformability of a function with a given asymptotic
series, in however large a sector, does not ensure Borel summability of its
series. We know already that for any power series, for instance one that is not
Gevrey of finite order, we can find a function f analytic and asymptotic to it
in more than a half-plane (in fact, many functions). Then (L−1f)(p) exists,
and is analytic in an open sector in p, origin not necessarily included. Since
the series is not Gevrey of finite order, it can’t be Borel summable. What
goes wrong is the behavior of L−1f at zero.
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2.12 Multiple scales; Adiabatic invariants

We now look at slightly perturbed equations with periodic solutions. This
is a represents a class of asymptotic problems in its own right, with many
applications from celestial mechanics to the study of oscillators with changing
parameters. Interestingly, there are still open problems in this area, see [3].
One of the simplest problems in this category is the slowly changing length
L(t).We sketch the derivation of the equations without getting into details
(see e.g. [4]). One writes the position in polar coordinates,

x(t) = L(t) sin θ(t); y(t) = −L(t) cos θ(t) (2.315)

writes the kinetic energy T = m
2 (ẋ2 + ẏ2), U = mgy(t), then the Lagrangian

L = T − U . The motion is described by the Euler-Lagrange equation

d

dt

∂L
∂θ̇
− ∂L
∂θ

= 0

which in appropriate units to eliminate m and g reads

θ̈ +
2L̇

L
θ̇ +

1

L
sin θ = 0 (2.316)

and in the approximations sin θ ≈ θ we get

θ̈ +
2L̇

L
θ̇ +

1

L
θ = 0 (2.317)

The function L is slowly changing; we will take L(t) = ϕ(εt). Let’s take for
simplicity L(t) = 1 + εt. The equation becomes

θ̈ +
2ε

1 + εt
θ̇ +

1

1 + εt
θ = 0 (2.318)

2.12a The problem as a regularly perturbed equation; sec-
ular terms

Superficially, this appears to be a regularly perturbed problem. So let us
see first what regular perturbation theory gives. We substitute

θ = θ0 + εθ1 + ε2θ2 + · · · (2.319)

in (2.318) and get
θ′′0 + θ0 = 0 (2.320)

with the general solution Aeit +Be−it. By linearity, it suffices to analyze the
sequence of equations for θj when θ0 = e±it and by conjugation symmetry,
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we can reduce the analysis to the case θ0 = eit (this choice is simpler than
a trigonometric function, say θ0 = cos t since d/dt generates sin t as well).
Then, θ1 satisfies

θ′′1 + θ1 = (t− 2i)eit (2.321)

with the general solution

θ1 = Aeit +Be−it − ( 1
4 it+ 3

4 )teit = −( 1
4 it+ 3

4 )teit (2.322)

where without loss of generality, we took A = B = 0 (other combinations
would simply be absorbed in a more general, ε− dependent, initial condition).
Next, we get

θ′′2 + θ2 = −( i4 t
3 + 9

4 t
2 + 9

2 t+ 3
2 )eit (2.323)

Again choosing the free constants to be zero, we get

θ2 = −( 1
32 t

3 − 5i
16 t

2 − 21
32 t+ 3i

32 )teit (2.324)

By induction we easily see that θk grows with t like t2k+2. For the expansion
(2.319) to stay asymptotic we need t2ε � 1 that is, t � ε−1/2. But this
time is too short for anything interesting to happen, since L = 1 + εt is at
most of order 1 +O(ε1/2), barely away from the initial value 1, and then the
expansion becomes invalid. The terms in the expansion that are not periodic
in t and lead to grow are called “secular” terms (from Latin –temporal as
opposed to eternal). There are various ways to eliminate them (compensate
for them would be more accurate). In any case, the solution seems to grow
with t, but the accuracy does not allow to determine if this is a problem with
the expansion or with the solution.

2.12b The Poincaré-Lindstedt method

We consider a choice of “local” time variable adapted to the changing fre-
quency: instead of t we use

τ = t+

k∑
l=1

N∑
k=1

aklε
ltk (2.325)

and write again θ = θ0(τ) + εθ1(τ) + ε2θ2(τ) + · · · . We try to determine the
akl together with the θj so that the equation is formally satisfied, and so that
θj contain no secular terms. The leading equation is the same:

θ′′0 + θ0 = 0⇒ θ0 = eiτ (2.326)

The equation for θ1 is now

θ′′1 + θ1 = −
[
−6a31τ

2 + (6ia31 − 4a21 − 1) τ + 2i+ 2ia21 − 2a11

]
eiτ (2.327)
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The right side of (2.327) has to vanish, since eiτ is resonant (it is a solution
of the homogeneous equation) and its presence would create secular terms;
this determines a31, a21 and a11. The procedure works order by order, while
becoming more and more cumbersome of course. To o(ε2) we get

τ = τ+(t) = t− ( 1
4 t

2 + 3i
4 t)ε+ ( 1

8 t
3 − 3i

8 t
2 − 3

32 t)ε
2 + (− 5

64 t
4 + 9

128 t
2 + 3i

64 t)ε
3

(2.328)
We can proceed similarly with a second solution of (2.318) starting with e−it

and get

τ−(t) =

(
1− 3i

4
ε− 3

32
ε2

)
t−
(

1

4
ε− 3i

8
ε2

)
t2 +

1

8
ε2t3 + o(ε2) (2.329)

and finally obtain a general (approximate) solution in the form

θ = C+e
iτ+(t) + C−e

iτ−(t) (2.330)

If carried to all orders, this covers a time interval tε � 1, where the length
still changes very little, but show that there is no growth of the solution on
this larger time scale.

2.12c Multi-scale analysis

We describe this briefly here (see [8] for more details), but will not elaborate
since for many equations coming for applications (such as Hamiltonian sys-
tems) there are better approaches. Multi-scale analysis apparently also goes
back to Poincaré and Lindstedt and is meant to make the series calculations
more systematic. The problem at hand presents two scales: the fast one, t ∼ 1
related to the period of cos and a scale of order tε = τ ∼ 1 where it appears
that the period starts to change. We then write, with τ(t) = tε,

θ(t) ∼
∞∑
k=0

Θk(t, τ(t))εk (2.331)

treat t and τ as if they were independent variables and get a system of PDEs:

∂2
t Θ0 + (1 + τ)−1Θ0 = 0 (2.332)

The equation for Θ1 is

∂2
t Θ1 + (1 + τ)−1Θ1 = −2∂2

tτΘ0 − 2(1 + τ)−1∂tΘ0 (2.333)

with general solution

Θ0 = F+(τ)eit(1+τ)−1/2

+ F−(τ)e−it(1+τ)−1/2

(2.334)

To obtain further terms, one substitutes (say) Θ0 = F+(τ)eit(1+τ)−1/2

in the
equation for Θ1 and determines F (τ) to eliminate secular terms. This is not
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always possible, and the reason is that the method of multiple scales does
not allow for substantial changes in oscillation frequency; they have to be
addressed by changes of dependent variable if they do, see [8]. Our equation is
one that would need to be modified, since it leads to the inconsistent equation

dF

dτ
+

(
1

2(1 + τ)
− it

2(1 + τ)3/2

)
F = 0 (2.335)

which is inconsistent because of the presence of t while F is a function of τ
only. Once more, we will be content with (2.334), which we will compare with
results gotten by more systematic methods, and send to [8] on how to amend
the approach.

2.12d How do the parameters of the motion change when L
is doubled?

Of course none of the methods above gives us any information on this; we
have some series expansions that are not known to converge, and the question
is no simpler than trying to predict the behavior of an analytic function beyond
the disk of analyticity, when only estimates on the Taylor coefficients are
provided. A representation with wider range of validity is needed.

2.12e WKB

What we saw in (2.330) an (2.329) is that in fact if we use a power series
inside an exponential instead of just a ordinary power series, the domain of
validity increases. This suggests that there is an underlying WKB setting.
Since the problem is linear, WKB is applicable. The variable that needs to
be small in (2.330) and (2.329) for the expansions to be valid is the “slow”
variable s = tε. We change thus to this variable, s = tε, θ(t) = v(s), and we
get

ε2v′′ + 2ε2 v′

1 + s
+

v

1 + s
(2.336)

which is singularly perturbed. Performing first a Liouville transformation
v = hg and choosing h = (1 + s)−1 so that the first derivative term vanishes
we get

g′′ + ε−2 g

1 + s
= 0 (2.337)

where, as usual, we substitute g = ew, w′ = f , and obtain

f = ±i
√
ε−2(1 + s)−1 + f ′ (2.338)

wherefrom, by iteration, we get

w = ±2i(1 + s)1/2ε−1 +
1

4
ln(1 + s)± 3iε

16
√

1 + s
+

3ε2

64(1 + s)
(2.339)
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and thus, expressing the results in terms of the original θ, we get two asymp-
totic solutions,

θ± = (1 + s)−3/4 exp

(
±2i

ε

√
1 + s

)(
1 +

3iε

16
√

1 + s
+

15ε2

512(1 + s)
+ · · ·

)
(2.340)

At this stage we note that taking

θ = A(ε)θ+; where A(ε) = exp

(
−2i

ε
− 3iε

16
− 3ε2

64

)
(2.341)

the Taylor series of θ at ε = 0 is

θ = eit
[
1−

(
i

4
t+

3

4

)
tε+

(
− 1

32
t3 +

5i

16
t2 +

21

32
t− 3i

32

)
tε2 + · · ·

]
(2.342)

which is what we get by combining (2.322) and (2.324). Likewise, if we take

ϕ = ln (θ+)− 2i

ε
− 3iε

16
− 3ε2

64
(2.343)

and expand ϕ in series we get

ϕ = it−
(
it

4
+

3

4

)
tε+

(
it2

8
+

3t

8
− 3i

32

)
tε2 + · · · (2.344)

which is the expansion (2.328). We see that the regular perturbation expan-
sion containing secular terms and the Poincaré-Lindstedt series simply corre-
spond to various re-expansions of the WKB solutions. The range of validity of
the Poincaré-Lindstedt series, if calculated to all orders is tε� 1 since we are
expanding ln θ+ for small τ . The regular perturbation expansion has an even
smaller range of validity, as we are also expanding out the exponential. The
term econst.tε

2

cannot be expanded asymptotically in ε when tε2 6� 1. Thus,
the very narrow domain of validity of the regular perturbation expansion is
explained by the fact that exponential behavior cannot be approximated by
power series, in a region where the exponent is large. The fact that the ex-
pansion breaks down is only a sign of the mismatch in behavior type, and not
an actual change in the solutions.

Note 2.345 The form (2.340) is valid for all |tε provided no singularities or
turning points are crossed. Here, this simply means t ∈ R+.

2.12f The adiabatic invariant

For a pendulum of fixed length, (2.317) takes the form

θ̈ + L−1θ =: θ̈ + ω2θ = 0 (2.346)
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Multiplying by L2θ̇ and integrating we get

E = 1
2L

2θ̇2 + L 1
2θ

2 = const. ≈ 1
2v

2 + L(1− cos θ) (2.347)

where E is the total energy. This is a conserved quantity, or an invariant of
the motion. What happens when L = L(t)? Are there conserved quantities?
Clearly, since the general solution is

θ = C+θ+ + C−θ− (2.348)

any combination of C+ and C− is conserved. We then solve for C+ and C− as
a function of θ, θ̇. Up to numerical constants of no relevance, and to leading
order in ε, we have –recall that θ̇ denotes dθ

dt

C+ =
1

2
(1 + s)3/4(θ − iθ̇

√
1 + s) exp

(
−2i

ε

√
1 + s

)
[1 +O(ε)] (2.349)

C− =
1

2
(1 + s)3/4(θ + iθ̇

√
1 + s) exp

(
2i

ε

√
1 + s

)
[1 +O(ε)] (2.350)

Certainly C+ and C− are constant to the order presented, see Note 2.345.
Both of them oscillate rapidly on the slow, s, scale. We notice however that
C+C− does not oscillate, and in fact any constant of motion that does not
change rapidly on the s scale is a function of C+C−:

C+C− ∼
1

4
L(t)3/2θ2 +

1

4
L(t)5/2θ̇2 =

1

2
L(t)1/2E(t) =

E(t)

2ω(t)
=
E0

2
(1 + o(1))

(2.351)
see (2.347). The quantity E(t)/ω(t) (ω(t) being the instantaneous frequency)
is an adiabatic invariant: it is constant to leading order along the solutions
of (2.317). How does the pendulum behave when L → λL, λ > 1? Since
E = Lθ2

max/2, (2.358) implies that the amplitude θmax decreases by a factor
of λ3/4. To find the position at a time t, one needs calculate a few orders in
the asymptotic expansion of C+ and C− until enough accuracy is obtained
to determine θ(t). This gives the solution of the main connection problem,
relating two positions after a very long time.

Having obtained the absolute position at time t, for a small number of
periods centered at t the behavior of the pendulum is then well approximated
by one of length L(t), energy E0L(t)−1/2 and initial location calculated above.
We note that a numerical approach would require integration over a very
long time, with a high number of digits to avoid accumulation of errors, a
demanding task.

2.12g Solution for more general L

We now write the length as L(εt); with the change of variable s = t/ε,
θ(t) = y(s),(2.317) and ′ denoting d/ds we get

y′′ +
2L′

L
y′ +

1

ε2L
y′ = 0 (2.352)
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which we solve for small ε by the usual WKB substitution y(s) = exp(w(s)/ε);
this leads to

w′ = ± i

ε
√
L

√
1 + ε2L

(
w′′ +

2L′w′

L

)
(2.353)

where we iterate in the usual way,

w′
[n+1]

= ± i

ε
√
L

√
1 + ε2L

(
w′′[n] +

2L′w′[n]

L

)
(2.354)

and this yields

y± = L−
3
4 exp

(
± i
ε

∫
1√
L(u)

du

)[
1∓ 3iε

8

(
L′

L
1
2

+
3

4

∫
L′(u)

2

L(u)3/2

)
+ · · ·

]
(2.355)

Taking y = C+y+ +C−y−, and solving for C± in terms of y(s) = θ(t), ε ddsy =

θ̇, we obtain

C+y+ =
L1/2

2i
θ̇ +

(
1

2
+

3εL′

8iL
+O(ε2)

)
θ, (2.356)

C−y− = −L
1/2

2i
θ̇ +

(
1

2
− 3εL′

8iL
+O(ε2)

)
θ. (2.357)

Since E(t) = 1
2L

2(εt)θ̇2 + 1
2L(εt)θ2, ω(t) = L−1/2(εt), (2.356), (2.357) and

(2.355) imply

C−C+ =
1

2

E(t)

ω(t)
+

3

20

dL
5
2

ds
ε θθ̇ +O(ε2);

(2.358)

If we define the truncation of C−C+ to order ε to be K, i.e.

K(θ, θ̇, t) ==
1

2

E(t)

ω(t)
+

3

20

dL
5
2

ds
ε θθ̇, (2.359)

then using (2.317) we get that variation of K is of order ε2:

d

dt
K(θ, θ̇, t) = 3

8L
2 d
dt

(
L−

1
2 dL
dt

)
θθ̇ (2.360)

2.12h Working with action-angle variables (Second choice)

The WKB method allows for a rigorous, precise and uniform asymptotic
analysis. A serious limitation of the method is that is does not easily extend to
nonlinear problems. We discuss, at an informal level a method that generalizes
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to nonlinear systems as well. We first look at the pendulum, and then apply
the method to the equation PI .

In the pendulum problem, the angle is periodic, a natural angle variable.
It is convenient to pass to the angle as an independent variable to eliminate
the oscillation. To work with slowly changing we choose one of them to be a
constant of motion for the pendulum of fixed length. In that case

θθ̈ +
θθ̇

L
= 0⇒ θ̇2 + L−1θ2 = const. (2.361)

This is, up to a multiplicative constant, the energy 2E = L2θ̇2 + Lθ2. From
the point of view of calculations in the variable length case, the quantity

S = Lθ̇2 + θ2 (2.362)

is slightly simpler. Aiming at analyzing slow variables and at eliminating
to leading order the oscillatory part of the evolution, we proceed as follows.
We perform a hodograph-like transformation, taking θ to be the independent
variable and L and S to be the dependent ones. Formally for now, we have

dS

dθ
= −3L̇L−

1
2

√
S − θ2 (2.363)

dL

dθ
= L̇L

1
2 (S − θ2)−

1
2 (2.364)

Then we analyze the change in L and S after a complete θ cycle.
It is simpler to describe the procedure when L is analytic. We then evolve

θ on a positively oriented loop in C \ J where cut J = (−a, a) contains the
interval [−

√
S,
√
S]. Without analyticity assumptions, the procedure would

be to evolve θ from −
√
S to

√
S and back to −

√
S changing the sign of

the square root every time it becomes zero, to preserve smoothness of the
quantities involved. We write (2.363) in integral form, with θi an initial value
of θ,

S(θ) = S(θi)− 3

∫ θ

θi

L̇(u)L(u)−
1
2

√
S(u)− u2 du (2.365)

L(θ) = L(θi) +

∫ θ

θi

L̇(u)L(u)
1
2 (S(u)− u2)−

1
2 du (2.366)

If θ evolves for say, a loop or less, L, L̇ and S are approximately constant,
equal to their value at θi which we denote by Li, L̇i, Si respectively. This can
be shown in a straightforward way by noticing that the right side of (2.361) is
contractive mapping in the sup norm, since L̇ = d

dtL(εt) is small. We omit the
straightforward details. To leading order, the integrals can then be calculated
explicitly, and the result is

S(θ)− S(θi) = −3

2
L̇L−

1
2u
√
S − u2

∣∣θ
θi
− 3

2
L̇L−

1
2S arcsin(u/

√
S)
∣∣θ
θi

+ o(L̇)

L(θ)− Li = L̇L
1
2 arcsin(u/

√
S)
∣∣θ
θi

+ o(L̇) (2.367)
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To eliminate to leading order the θ dependence, we can calculate the Poincaré
map, that is the change of S and L after one full loop. We denote by Sj and
Lj the value of these quantities after j loops. In the complement of the cut,√
S − u2 is single-valued, and thus only the arcsin changes, by 2π. We obtain

the recurrence

Sn+1 − Sn = −3L̇L−
1
2Sπ + o(L̇); Ln+1 − Ln = 2L̇L

1
2π + o(L̇) (2.368)

The right side of (2.368) is small and the recurrence is to leading order ap-
proximated by a differential equation

dS

dL
= −3

2

S

L
⇒ SL

3
2 = 2EL

1
2 =

2E

ω
= const. (2.369)

thus recovering to leading order (2.358). To find the long time behavior of the
pendulum with changing length, one calculates the adiabatic invariant with
sufficiently many orders as a function of L, after n loops; L is known as a
function of t, and after n complete loops the position θ is known (through
S) and the initial velocity is zero. The missing part of the evolution, the one
from loop n to loop n+ 1 is obtained from the integral system (2.365)

2.12i The Physical Pendulum

The analysis can be carried out without the linearization sin θ ≈ θ, the
calculations now involving elliptic functions. We start from eq. (2.317). If
L is fixed, we get a conserved quantity as before, by multiplying with θ̇ and
integrating once:

1
2 θ̇

2 − L−1 cos θ = H ≡
∫ t

0

−2L̇

L
θ̇2(s)ds+ C (2.370)

and we now define
S = 1

2Lθ̇
2 − cos θ (2.371)

We have
θ̇ = w; Ṡ = − 3

2 L̇w
2 (2.372)

Once more we take θ as the independent variable and we get

dt

dθ
=

√
L√

2(cos θ + S)
(2.373)

dS

dθ
= − 3

2 L̇L
− 1

2

√
2(cos θ + S) (2.374)

Changing variable to u = cos θ, dθ = −(1 − u2)−
1
2 du, switching to the slow

variable L instead of t we get

dS

du
=

3√
2
L̇L−

1
2

√
u+ S√
1− u2

(2.375)

dL

du
= − L̇

√
L√

2
√

1− u2
√
u+ S

(2.376)
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Looking as before at the Poincaré map, using the fact that L and S are
approximately constant in one loop, we get for the variation from loop n to
n+ 1 in u,

Sn+1 − Sn =
3√
2
L̇L−

1
2 J(S) + o(L̇) (2.377)

Ln+1 − Ln = −L̇
√

2L
dJ

dS
+ o(L̇); J :=

∮ √
u+ S√
1− u2

du (2.378)

The choice of the loop is such that the evolution is nontrivial. If it encircles
just one root of (u+S)(1−u2), the Riemann surface is two-sheeted, and after
two loops nothing changes. Same conclusion if we encircle all three roots: the
Riemann surface at infinity is two sheeted as well. The loop will then enclose
two roots, chosen in such a way that L changes by a real number.

Once more, L̇ is small and the evolution is approximated by a differential
equation

dS

dL
= − 3J(S)

2LJ ′(S)
+ o(1)⇒ L

3
2 J(S) = const.1 + o(1) (2.379)

The adiabatic constant L3/2J reduces to E/ω when S + 1 is small.

2.12i.1 Region of validity of the expansion (2.234)

This expansion is valid in the transseries region and in a domain containing
one, essentially vertically aligned, array of poles. There are in fact infinitely
many arrays of poles in the fourth (++Ovidiu: did you mean second quadrant
??++) quadrant, and the Hn expansion above fails to be asymptotic after the
first array. One can however proceed in a similar manner, finding a new ξ̃,
involving the original ξ and 1

x , to obtain a valid expansion near the second
array of poles. However, very much as in a two-scale expansion, this re-
expansion method does not work in a sufficiently wide area. In fact, angularly,
it only covers a sector of rough width x−1 lnx after which no further matching
with expansions of the form (2.234) is possible. Beyond this narrow region we
need to do something else.

Since WKB is not suitable for nonlinear equations, we use a method similar
to an adiabatic invariant representation used earlier for the nonlinear pendu-
lum with slowly varying length. Note that for large x (2.224) is close to the
autonomous Hamiltonian system

h′′ − h− h2/2 = 0 (2.380)

with conserved “Hamiltonian”

s = h′
2 − h2 − h3/3 (2.381)
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The solutions of (2.380) are elliptic functions, doubly periodic in C. With
w = u′ we first rewrite equation (2.224) as a system

du

dx
= w (2.382)

dw

dx
= u+

u2

2
− w

x
+

392

625

1

x4
(2.383)

We expect the solutions to be asymptotically periodic for large x, with s to be
a slow varying quantity; this is certainly the case in the region where (2.234)
holds. It is then natural to take h =: u as an independent angle-like variable
and treat s and x as dependent variables. Then, with

R(u, s) =
√
u3/3 + u2 + s, (2.384)

we transform (2.382), (2.383) into a system for s(u) and x(u):

ds

du
= −2w

x
+

784

625

1

x4
= −2R(u, s)

x
+

784

625

1

x4
(2.385)

dx

du
=

1

w
=

1

R(u, s)
(2.386)

Note 2.387 Given an initial condition s(uI), x(uI) such that the right side
of (2.385), (2.386) is analytic, the system {(2.385), (2.386)} admits a locally
analytic solution x(u), s(u). The function x(u) is analytically invertible by
the inverse function theorem since 1/R 6= 0. Using (2.385) this determines an
analytic s(x). From s and u, we define an analytic branch of w = u′. The
systems {(2.382), (2.383)} and {(2.385), (2.386)} are then equivalent in any
domain in which u, u′, s(u), x(u) are analytic.

To obtain a nontrivial evolution in x, we evolve u on a loop around exactly two
of the three roots of R, which is the only choice that generates an infinitely-
sheeted Riemann surface and avoids x returning to the same value. Indeed, a
loop around one square-root branch point would give rise to only two sheets;
an evolution around all three corresponds to a loop around infinity, which is
also a square-root branch point of R and gives rise to two sheets

(++Ovidiu: The following claim is not easily seen to be true. I assume
you purposefully avoided details++) It turns out that there are closed curves
C, see Fig. 2.4, similar to the classical cycles [35], such that R(u, s(u)) does
not vanish on C and x(u) traverses Σ from edge to edge as u travels along
C a number Nm times. More precisely, starting with u0 ∈ C and writing un
instead of u0 to denote that u has traveled n times along C, sn = s(un) and
xn = x(un), the following hold: (i) x0 = x(u0) is close to the first array of
poles near iR, arg(x0) = −π/2(1 + o(1)), and s(u0) is given by (2.381), where
u0 = h(x0) and corresponding w0 = h′(x0) determined from the asymptotic

representation h(x) ∼ H0(ξ) + H1(ξ)
x + .. (ii) for some N = Nm(x0), xN is

close to the last array of poles, arg(xN ) = −π(1 + o(1)). The size of |xn| is
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FIGURE 2.4: Regions of the roots of u3/3 + u2 + s and the contour C.
The ris are the regions where the three roots of R change as x traverses Σ,

and s = s(x) changes accordingly.

of the order |x0| for all n ≤ N . Two roots of R(u, sn), n = 0, 1.., Nm are in
the interior of C and a third one is in its exterior. Written in integral form,
(2.385) and (2.386) become

s(u) = sn − 2

∫ u

un

(
R(v, s(v))

x(v)
− 392

625

1

x(v)4

)
dv (2.388)

x(u) = xn +

∫ u

un

1

R(v, s(v))
dv (2.389)

where the integrals are along C.

2.12i.2 The Poincaré map

As in the case of the pendulum, an important ingredient is the Poincaré
map for (2.388), (2.389): we look at (sn+1, xn+1) as a function of (xn, sn).
With the adiabatic invariants analogy in mind, the Poincaré map is used
to eliminate the fast evolution. The asymptotic expansions of s(u) and x(u)
when u is between un and un+1 are straightforward local expansions of (2.388)
and (2.389). We denote

J(s) =

∮
C
R(v, s) dv; L(s) =

∮
C

dv

R(v, s)
(2.390)

It is easily checked that

J ′′ +
1

4
ρ(s)J = 0; where ρ(s) =

5

3s (3 s+ 4)
(2.391)
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and, since J ′ = L/2 we get

L ′′ − ρ′(s)

ρ(s)
L ′ +

1

4
ρ(s)L = 0 (2.392)

The points s = 0 and s = −4/3 are regular singular points of (2.391)
(and of (2.392)) and correspond to the values of s for which the polynomial
u3/3 + u2 + s has repeated roots. Simple asymptotic analysis of (2.388) and
(2.389) shows that the Poincaré map satisfies

sn+1 = sn −
2Jn
xn

(1 + o(1)) with Jn = J(sn) (2.393)

xn+1 = xn + Ln (1 + o(1)) with Ln = L(sn) (2.394)

Here, and in the following heuristic outline, o(1) stands for terms which are
small for large xn and large n. The rigorous justification of these estimates is
done in [22].

2.12i.3 Solving (2.393) and (2.394); asymptotically conserved quan-
tities

We see from (2.393) (++Ovidiu: We need Jn � xn, J ′n � 1. Not clear
why this is true ++) that sn+1 − sn � sn and xn+1 − xn � xn. Here too it
is natural to take a “continuum limit” and approximate sn+1 − sn by ds/dn
and xn+1 − xn by dx/dn. We get

ds

dx
=
ds/dn

dx/dn
=
−2J(s)

xL(s)
(1 + o(1)) = − J(s)

xJ ′(s)
(1 + o(1)) (2.395)

which implies, by separation of variables and integration,

Q(x, s) := xJ(s) = x0J(s0) (1 + o(1)) (2.396)

That is, Q is asymptotically a constant of motion.
In the case of the pendulum, L(t) is given and one constant of motion

suffices: together with the value of L, it provides two independent conditions
for a second order equation; for PI , to fully solve the equation we need to
control another quantity; a second (nonautonomous) one is obtained using
(2.393) and (2.396) as follows. We write

1

J 2(s)

ds

dn
= − 2

x0J(s0)
(1 + o(1)) (2.397)

Let Ĵ be a solution of (2.391) with Ĵ(0) = 0, which is independent from the
J defined above. Since the first order derivative in (2.391) is missing, the
Wronskian W = Ĵ ′J − J ′Ĵ = κ0, a constant. Thus (Ĵ/J)′ = κ0/J

2 and 1/J2

is a perfect derivative.

K(s) := κ0

∫ s

0

ds

J(s)2
=
Ĵ(s)

J(s)
(2.398)
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Integrating both sides of (2.397) from 0 to n we get

K(s)−K(s0) = − 2n

κ0 x0J(s0)
(1 + o(1))⇒ K(s) +

2n

κ0 x0J(s0)
= K(s0) + o(1)

(2.399)
for n = O(x0). K is in fact a Schwarzian triangle function (++not clear why
this is important; also a reference is needed++).

Note 2.400 As we saw in the analysis leading to (2.234), the singulari-
ties of solutions having asymptotic power series behavior in the right half
plane are almost periodic, with the same period as the exponential terms
in the transseries. While these solutions form a lower dimensional manifold
(++Ovidiu: getting too vague here++) , spontaneous formation of singular-
ities is a “local” process, and it is expected that singularities are produced
with roughly the same spatial spacing for all solutions. For this reason, the
normalization based on simplifying the exponentials in the transseries is a
reasonable choice even in a transseries free region.

2.13 Appendix

In this book we work in Rn (or C) and we will state the results in this
simpler setting. See [74] for general measure spaces. The integrals we use
are Lebesgue integrals. A function is in L1(S) where S is a measurable set
if
∫
S
|f(x)|dx < ∞. The Lebesgue measure λ is simply the measure defined

first on boxes B by λ(B) = volume(B), and then extended to measurable
sets by additivity and “continuity” (regularity). A function is measurable if
its inverse image of any measurable set is measurable.

2.13a The dominated convergence theorem

Theorem 2.401 (dominated convergence) Assume {fn}n∈N is a family
of real-valued functions and that fn(x) → f(x) for almost all x in S 13.
Assume further that for all n |fn| 6 g a.e [λ] 13 , where g is in L1(S). Then
f ∈ L1(S) and

lim
n→∞

∫
S

fn(s)ds→
∫
S

f(s)ds (2.402)

The Theorem also applies for complex valued functions, when real and imag-
inary parts have the requisite properties. Furthermore, it is easy to see that

13That is, except possibly for a set of measure zero; a set has zero measure if it contained
in a union of boxes of arbitrarily small total measure. The notation a.e. [λ] simply means
for all x except for a zero measure set.
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a similar statement holds for more general parametric convergence, that is, if
n is replaced by a parameter y in a, say, metric space, under similar assump-
tions: |f(y, x)| 6 g(x) for all (x, y) where g is integrable, and f(y, x)→ f(x)
as y → y0 a.e.[λ].

Note 2.403 if K is a compact set in R, then F ∈ L1
ν(K), see (1.45), iff

F ∈ L1(K). Indeed, in this case there exist two positive constants c 6 c2 such
that c < e−νp < c2; the rest is straightforward. Nonetheless, if F ∈ L1([a, b]),
it is still useful to work in L1

ν([a, b]) 0 6 a < b ∈ R, since ‖F‖L1
ν([a,b]) → 0 as

ν →∞. Indeed, if ν > 0 we have |F (p)|e−νp 6 |F (p)| and |F (p)|e−νp → 0 on

[a, b]. Thus Theorem 2.13a applies and
∫ b
a
F (p)e−xpdp→ 0.

2.14 Analyticity and estimates for contour integrals

2.14a Determining singularities in Borel plane from asymp-
totics of Laplace integrals

Lemma 2.404 (i) Let H be analytic in the region {z : dist(R+, z) ∈ (0, c)}
and such that for some ν we have sup0<|a|<c ‖H(p+ ia)‖ν <∞. Let

h(x) =

∮ ∞
0;c

e−pxH(p)dp (Re (x) > ν) (2.405)

Assume further that

h(x) = O(e−rx) as x→ +∞ (2.406)

where r < c. Then H is analytic in Dr.
(ii) The same holds in the following other cases:
(a)

∮∞
0;c

is replaced by
∮∞

0;c;ϕ
and H is analytic inside the curve, except

perhaps along R+eiϕ±∞;
(b)

∮∞
0;c

is replaced by
∮∞

0;c;±ϕ where now the contour surrounds R+ at dis-
tance at least c and approaches ∞ at an angle ±ϕ and H is analytic inside
the curve, except perhaps along R+.

PROOF Note first that h1(x) := h(x+ν+ε) is analytic in a neighborhood
of (−ε,∞). This and (2.406) show that ȟ1(q) =

∫∞
0
h1(x)e−qxdx exists, and

the integrand in the definition of ȟ1(q) satisfies the hypotheses of Fubini’s
theorem and

ȟ1(q) =

∮ ∞
0

e−νp−εpH(p)

p+ q
dp =:

∮ ∞
0

H1(p)

p+ q
dp (2.407)
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Note 2.408 Eq. (2.406) implies that the Laplace transform Ȟ :=
∫∞

0
h(x)e−qxdx

exists and is analytic in the half plane Re q > −r.

We start with large Re q and approach the origin. To enter the disk of radius
r, q crosses the contour of integration. We bend the contour inward allowing
q to approach the origin at a distance 0 < c′ < c and then pass the contour
through q, collecting the residue 2πiH(q), and then return to the original
contour. Thus, for |q| < r we have

ȟ1(q) = 2πiH1(q) +

∮ ∞
0;c

H1(p)

p+ q
dp (2.409)

where now q is in Dr. By Note 2.416 ȟ1(q) is analytic in Dr and so is the
integral on the right side of (2.417), manifestly so due to the fact that the
contour is outside Dr. But then H1(q) and therefore H(q) is analytic in Dr.

(ii) The proof is very similar to that of (i).

Exercise 2.410 Adapt the proof above to the weaker condition

h(k) = O(e−rk) as N 3 k → +∞ (2.411)

Hint: consider instead the properties of the generating function
∑∞
k=k0

h1(k)zk.

Lemma 2.412 (i) Let H be analytic in the region {z : dist(R+, z) ∈ (0, c)}
and such that for some ν we have sup0<|a|<c ‖H(p+ ia)‖ν <∞. Let

h(x) =

∮ ∞
0;c

e−pxH(p)dp (Re (x) > ν) (2.413)

where we use the notation
∮∞
a;c

for an integral along a contour encircling R+

counteclockwise, at a distance c of it.
Assume further that

h(x) = O(e−rx) as x→ +∞ (2.414)

where r < c. Then H is analytic in Dr.
(ii) The same holds in the following other cases:
(a)

∮∞
0;c

is replaced by
∮∞

0;c;ϕ
where now the contour surrounds R+ at distance

at least c and approaches ∞ at an angle ϕ and H is analytic inside the curve,
except perhaps for R+eiϕ ±∞;

(b)
∮∞

0;c
is replaced by

∮∞
0;c;±ϕ where now the contour surrounds R+ at dis-

tance at least c and approaches ∞ at an angle ±ϕ and H is analytic inside
the curve, except perhaps for R+.

PROOF Note first that h1(x) := h(x+ν+ε) is analytic in a neighborhood
of (−ε,∞). This and (2.419) show that ȟ1(q) =

∫∞
0
h1(x)e−qxdx exists, and
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the integrand in the definition of ȟ1(q) satisfies the hypotheses of Fubini’s
theorem and

ȟ1(q) =

∮ ∞
0

e−νp−εpH(p)

p+ q
dp =:

∮ ∞
0

H1(p)

p+ q
dp (2.415)

Note 2.416 Eq. (2.419) implies that the Laplace transform Ȟ :=
∫∞

0
h(x)e−qxdx

exists and is analytic in the half plane Re q > −r.

We start with large Re q and approach the origin. To enter the disk of radius
r, q crosses the contour of integration. We bend the contour inward allowing
q to approach the origin at a distance 0 < c′ < c and then pass the contour
through q, collecting the residue 2πiH(q), and then return to the original
contour. Thus, for |q| < r we have

ȟ1(q) = 2πiH1(q) +

∮ ∞
0;c

H1(p)

p+ q
dp (2.417)

where now q is in Dr. By Note 2.416 ȟ1(q) is analytic in Dr and so is the
integral on the right side of (2.417), manifestly so due to the fact that the
contour is outside Dr. But then H1(q) and therefore H(q) is analytic in Dr.

(ii) The proof is very similar to that of (i).

Exercise 2.418 Adapt the proof above to the weaker condition

h(k) = O(e−rk) as N 3 k → +∞ (2.419)

Hint: consider instead the properties of the generating function
∑∞
k=k0

h1(k)zk.

2.15 Appendix: Banach spaces and the contractive map-
ping principle

Saleh, this appendix is new. In rigorously proving asymptotic results about
solutions of various problems, where a closed form solution does not exist
or is awkward, the contractive mapping principle is a handy tool. Once an
asymptotic expansion solution has been found, if we use a truncated expansion
as a quasi-solution, the remainder should be small. As a result, the complete
problem becomes one to which the truncation is an exact solution modulo
small errors (usually involving the unknown function). Therefore, most often,
asymptoticity can be shown rigorously by rewriting this latter equation as a
fixed point problem of an operator which is the identity plus a correction of
tiny norm. Some general guidelines on how to construct this operator are
discussed in §??. It is desirable to go through the rigorous proof, whenever
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possible — this should be straightforward when the asymptotic solution has
been correctly found—, one reason being that this quickly signals errors such
as omitting important terms, or exiting the region of asymptoticity.

In §2.15.1 we discuss, for completeness, a few basic facts about Banach
spaces. There is of course a vast literature on the subject; see e.g. [69].

2.15.1 A brief review of Banach spaces

Familiar examples of Banach spaces are the n-dimensional Euclidian vector
spaces Rn. A norm exists in a Banach space, which has the essential properties
of a length: scaling, positivity except for the zero vector which has length zero
and the triangle inequality (the sum of the lengths of the sides of a triangle
is no less than the length of the third one). Once we have a norm, we can
define limits, by reducing the notion to that in R: xn → x iff ‖x − xn‖ → 0.
A normed vector space B is a Banach space if it is complete, that is every
sequence with the property ‖xn − xm‖ → 0 uniformly in n,m (a Cauchy
sequence) has a limit in B. Note that Rn can be thought of as the space
of functions defined on the set of integers {1, 2, ..., n}. If we take a space of
functions on a domain containing infinitely many points, then the Banach
space is usually infinite-dimensional. An example is L∞[0, 1], the space of
bounded functions on [0, 1] with the norm ‖f‖ = sup[0,1] |f |. A function L
between two Banach spaces which is linear, L(x+ y) = Lx+ Ly, is bounded
(or continuous) if ‖L‖ := sup‖x‖=1 ‖Lx‖ < ∞. Assume B is a Banach space
and that S is a closed subset of B. In the induced topology (i.e., in the same
norm), S is a complete normed space.

2.15.2 Fixed point theorem

Assume M : S 7→ B is a (linear or nonlinear) operator with the property
that for any x, y ∈ S we have

‖M(y)−M(x)‖ 6 λ‖y − x‖ (2.420)

with λ < 1. Such operators are called contractive. Note that ifM is linear,
this just means that the norm of M is less than one.

Theorem 2.421 Assume M : S 7→ S, where S is a closed subset of B is a
contractive mapping. Then the equation

x =M(x) (2.422)

has a unique solution in S.
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PROOF Consider the sequence {xj}j ∈ N defined recursively by

x0 = x0 ∈ S (2.423)

x1 =M(x0)

· · ·
xj+1 =M(xj)

· · ·

We see that

‖xj+2 − xj+1‖ = ‖M(xj+1)−M(xj)‖ 6 λ‖xj+1 − xj‖ 6 · · · 6 λj‖x1 − x0‖
(2.424)

Thus,

‖xj+p+2 − xj+2‖ 6
(
λj+p + · · ·λj

)
‖x1 − x0‖ 6

λj

1− λ
‖x1 − x0‖ (2.425)

and xj is a Cauchy sequence, and it thus converges, say to x. Since by (2.420)
M is continuous, passing the equation for xj+1 in (2.423) to the limit j →∞
we get

x =M(x) (2.426)

that is existence of a solution of (2.422). For uniqueness, note that if x and
x′ are two solutions of (2.422), by subtracting their equations we get

‖x− x′‖ = ‖M(x)−M(x′)‖ 6 λ‖x− x′‖ (2.427)

implying ‖x− x′‖ = 0, since λ < 1.

Note 2.428 Note that contractivity and therefore existence of a solution of a
fixed point problem depends on the norm. An adapted norm needs to be chosen
for this approach to give results.

Exercise 2.429 Show that if L is a linear operator from the Banach space B
into itself and ‖L‖ < 1 then I −L is invertible, that is x−Lx = y has always
a unique solution x ∈ B. “Conversely,” assuming that I −L is not invertible,
then in whatever norm ‖ · ‖∗ we choose to make the same B a Banach space,
we must have ‖L‖∗ > 1 (why?).

2.15a Fixed points and vector valued analytic functions

A theory of analytic functions with values in a Banach space can be con-
structed by almost exactly following the usual construction of analytic func-
tions. For the construction to work, we need the usual vector space operations
and a topology in which these operations are continuous. A typical setting is
that of a Banach algebra. A detailed presentation is found in [51] and [61],
but the basic facts are simple enough for the reader to redo the necessary
proofs.
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2.15b Fréchet derivatives

If N is an operator in a Banach space, then the Fréchet derivative of N is
a linear operator A with the property

lim
h→0

‖N (y + h)−N (y)−Ah‖
‖h‖

= 0 (2.430)

Note 2.431 It is easy to see that , if an operator is linear affine, that is, it
is of the form N (f) = f0 + Lf where L is a linear operator then the Fréchet
derivative ofN is L. It is also easy to check that if the derivative of an operator
is < 1 in a neighborhood of y, then N is contractive in that neighborhood.

2.16 Solving the quintic*

We seek to determine explicit formulas for the roots τ(p) of the qunitic
equation

τ5

5
+ τ = p (2.432)

Locally near p = 0, we can identify the roots in the following manner: There
is one root for which τ = 0 when p = 0 which has a Taylor expansion found

through iterating the relation τ = p− τ5

5 ,

τ = τ1(p) = p− p5

5
+
p9

5
+O(p13) (2.433)

For the four other roots, for j = 1, · · · 4, with p = 51/4ei(2j−1)π/4q, we have

τj+1(p) = 51/4ei(2j−1)π/4

(
1− q

4
− 5

32
q2 − 5

32
q3 − 385

2048
q4 +O(q5)

)
.

(2.434)
We want to have general expressions of τ = τj(p) for any p in terms of hyper-
geometric function. This is known through other methods, but Borel trans-
form provides a simple derivation. First, we notice on direct substitution and
integration by parts

y(x) =

∫
C
e−xt−t

5/5dt , (2.435)

where C is a path joining ∞ei2kπ/5 to ∞ei2(k+1)π/5 for k = 0, · · · , 3 provides
for four independent solutions {yk+1}3k=0 to the fourth order Airy equation

y(iv) + xy = 0 (2.436)
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We note that a change of variable in (2.435) leads to the representation

y = x1/4

∫ ∞e2i(k+1)π/5

∞e2ikπ/5
exp

[
−x5/4

(
τ + τ5/5

)]
dτ , (2.437)

We deform the path to lie along the Steepest descent path, which goes through
saddle τk = ikeiπ/4 Since

p = τ + τ5/5 − τk − τ5
k/5 (2.438)

is real and monotonically increasing from 0 to ∞ on steepest descent path
connecting τk to ∞ei(2k+1)π/5, and decreasing from ∞ to 0 on the steepest
descent path connecting ∞ei2kπ/5 to τk. This implies

y(x) = x1/4 exp

[
−4

5
τkz

] ∫ ∞
0

e−pz
dτ (1)

dp
dp

− x1/4 exp

[
−4

5
τkz

] ∫ ∞
0

e−pz
dτ (2)

dp
dp where z = x5/4 (2.439)

where τ = τ (1)(p) and τ = τ (2)(p) are the inversion of the relation (2.438)
along the path connecting τk to ∞ei2(k+1)π/5 and the one connecting τk to
∞ei2kπ/5 respectively. Using a complex path Ck that wraps around the branch
point pk = 4

5τk, (2.439) implies

y(x) = x1/4

∫
Ck

e−pz
dτ

dp
dp (2.440)

Therefore, x−1/4y(x) is amenable to a Borel transform. Using change of vari-
able

y = x1/4v(z) , (2.441)

then v(z) satisfies

d4v

dz4
+

2

z

d3v

dz3
− 3

5z2

d2v

dz2
+

3

5z3

dv

dz
+

(
256

625
− 231

625z4

)
v = 0 (2.442)

which on Borel transform and taking four derivatives gives rise to(
p4 +

256

625

)
V (iv) + 14p3V ′′′ +

267

5
p2V ′′ + 57pV ′ +

6144

625
V = 0 , (2.443)

We note, as expected, the ODE (2.443) has singular point at p = pk = 4
5 i
keiπ/4

the path of integration Ck to obtain v(z) wraps around p = pk. Since

v(z) =

∫
Ck

e−pzV (p)dp =

∫
Ck

e−pz
dτ

dp
dp , (2.444)
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it follows that for suitable choice of constants any root of the quintic τ(p) =
C0 +

∫ p
0
V (s)ds. Since the integral of hypergeometric function is again a

hypergeometric function, we obtain

τ(p) = C0 + C1p 4F3

([
1

5
,

2

5
,

3

5
,

4

5

]
,

[
1

2
,

3

4
,

5

4

]
,−625

256
p4

)
+ C2p

3
4F3

([
7

10
,

9

10
,

11

10
,

13

10

]
,

[
5

4
,

3

2
,

7

4

]
,−625

256
p4

)
+ C3p

2
4F3

([
9

20
,

13

20
,

17

20
,

21

20

]
,

[
3

4
,

5

4
,

3

2

]
,−625

256
p4

)
+ C4 4F3

([
− 1

20
,

3

20
,

7

20
,

11

20

]
,

[
1

4
,

1

2
,

3

4

]
,−625

256
p4

)
(2.445)

Taylor expanding at p = 0, we obtain

τ(p) = (C0 + C4) + C1p+ C3p
2 + C2p

3 +
77

2048
C4p

4 +O(p5) (2.446)

It follows that if we want to recover the root τ = τ1(p) in (2.433), we must
choose (C0, C1, C2, C3, C4) = (0, 1, 0, 0, 0) giving rise to

τ1(p) = p 4F3

([
1

5
,

2

5
,

3

5
,

4

5

]
,

[
1

2
,

3

4
,

5

4

]
,−625

256
p4

)
(2.447)

The other roots τ = τj+1(p) can similarly be identified by determining (C0, C1, C2, C3, C4)
so that the Taylor series (2.447) matches (2.434).

2.17 Appendix: The Euler-Maclaurin summation for-
mula

Assume f(n) does not increase too rapidly with n and we want to find the
asymptotic behavior of

S(n+ 1) =

n∑
k=k0

f(k) (2.448)

for large n. We see that S(k) is the solution of the difference equation

S(k + 1)− S(k) = f(k) (2.449)

To be more precise, assume f has a level zero transseries as n→∞. Then we
write S̃ for the transseries of S which we seek at level zero (see p. ??). Then
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S̃(k + 1) − S̃(k) = S̃′(k) + S̃′′(k)/2 + ... + S̃(n)(k)/k! + ... = S̃′(k) + LS̃′(k)
where

L =

∞∑
j=2

1

j!

dj−1

dkj−1
(2.450)

is contractive on level zero transseries (check) and thus

S̃′(k) = f(k)− LS̃′(k) (2.451)

has a unique solution,

S̃′ =

∞∑
j=0

(−1)jLjf =:
1

1 + L
f (2.452)

(check that there are no transseries solutions of higher level). From the first
few terms, or using successive approximations, that is writing S′ = g and

gl = f − 1

2
g′l −

1

6
g′′l − · · · (2.453)

we get

S̃′(k) = f(k)− 1

2
f ′(k) +

1

12
f ′′(k)− 1

720
f (4)(k) + · · · =

∞∑
j=0

Cjf
(j)(k) (2.454)

We note that to get the coefficient of f (n) correctly, using iteration, we need
to keep correspondingly many terms on the right side of (2.453) and iterate
n+ 1 times.

In this case, we can find the coefficients explicitly. Indeed, examining the
way the Cjs are obtained, it is clear that they do not depend on f . Then
it suffices to look at some particular f for which the sum can be calculated
explicitly; for instance f(k) = ek/n summed from 0 to n. By one of the
definitions of the Bernoulli numbers we have

z

1− e−z
=

∞∑
j=0

(−1)j
Bj
j!
zj (2.455)

Exercise 2.456 Using these identities, determine the coefficients Cj in (2.454).

Using Exercise 2.456 we get

S(k) ∼
∫ k

k0

f(s)ds+
1

2
f(n) + C +

∞∑
j=1

B2j

2j!
f (2j−1)(k) (2.457)

Rel. (2.457) is called the Euler-Maclaurin sum formula.

Exercise 2.458 (*) Complete the details of the calculation involving the iden-
tification of coefficients in the Euler-Maclaurin sum formula.
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Exercise 2.459 Find for which values of a > 0 the series

∞∑
k=1

ei
√
k

ka

is convergent.

Exercise 2.460 (*) Prove the Euler-Maclaurin sum formula in the case f

is C∞ by first looking at the integral
∫ n+1

n
f(s)ds and expanding f in Taylor

at s = n. Then correct f to get a better approximation, etc.

That (2.457) gives the correct asymptotic behavior in fairly wide generality is
proved, for example, in [41].

We will prove here, under stronger assumptions, a stronger result which
implies (2.457). The conditions are often met in applications, after changes
of variables, as our examples showed.

Lemma 2.461 Assume f has a Borel summable expansion at 0+ (in applica-
tions f is often analytic at 0) and f(z) = O(z2). Then f( 1

n ) =
∫∞

0
F (p)e−npdp,

F (p) = O(p) for small p and

n−1∑
k=n0

f(1/k) =

∫ ∞
0

e−np
F (p)

e−p − 1
dp−

∫ ∞
0

e−n0p
F (p)

e−p − 1
dp (2.462)

PROOF We seek a solution of (2.449) in the form S = C+
∫∞

0
H(p)e−kpdp,

or, in other words we inverse Laplace transform the equation (2.449). We get

(e−p − 1)H = F ⇒ H(p) =
F (p)

e−p − 1
(2.463)

and the conclusion follows by taking the Laplace transform which is well
defined since F (p) = O(p), and imposing the initial condition S(k0) = 0.

For a general analysis of the summability properties of the Euler-Maclaurin
formula see [48].

2.18 Taylor coefficients of entire functions of order one

Let F be an entire function of exponential order one, meaning that p 7→
|F (p)|e−ν|p| is uniformly bounded in C. By changes of variables we can assume
w.l.o.g. that ν = 1 and the uniform bound is 1. We have

F k(0) =
k!

2πi

∮
C

F (s)

sk+1
ds (2.464)
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We take as C a circle of radius k around 0. estimating |F | 6 e|k| on this
contour we obtain immediately,

|F k(0)| 6 k!ek

kk
6
√

2πk(1 + o(1/k)), k →∞ (2.465)

by Stirling’s formula.
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