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Foreword

The field of asymptotics has evolved substantially in the last thirty years or so
and tools have been developed to extract exact solutions from formal expan-
sions. The literature on the subject is still relatively scattered and the bulk
of it is found in relatively specialized articles. The present book is intended
to provide a self-contained introduction to asymptotic analysis (with some
emphasis on tools needed in exponential asymptotics, and on applications
which are not part of usual asymptotics books, such as asymptotics of Taylor
coefficients), and to explain basic ideas, concepts and methods of generalized
Borel summability, transseries and exponential asymptotics. Transseries are
first introduced rather heuristically; a complete construction is provided in
the Appendix.

To provide a sense on how these latter methods are used in a systematic
way, general nonlinear ODEs are near a generic irregular singular point are
analyzed in detail. The analysis of difference equations, PDEs and other
types of problems, only supperficially touched upon in this book, while cer-
tainly providing a number of new challenges, is not radically different in spirit.
Mastering the basic techniques for ODEs should provide most of the necssary
background to give a smoother access to the many existing articles on other
types of problems.

The book assumes standard knowledge of Real and Complex Analysis. Most
chapters are suitable for use as a textbook for graduate or advanced under-
graduate students.

The book provides complete mathematical rigor, yet it is written so that
at a first reading many proofs can be omitted. The included exercises range
from simple to more advanced with hints provided at the end of the book.
The book has a brief glossary of terms, explaining some notions that might
not be part of a usual asymptotics book, and providing references for further
reading.

9





Chapter 1

Introduction

1.1 Expansions and approximations

Classical Asymptotic Analysis studies the limiting behavior of solutions
of mathematical problems, when singular points are approached. It shares
with analytic function theory the goal of providing a detailed description
of functions, and is distinguished from it by the fact that the main focus
is on singular behavior. Asymptotic expansions provide better and better
approximations as the special points are approached yet they rarely converge
to a solution.

Convergent expansions are simpler to understand and we start by looking
at a few simple ones to see their power and their limitations.

The local theory of analytic functions is largely a theory of convergent power
series. The expansion − ln(1 − x) =

∑∞
k=0 x

k/k provides a practical way to
calculate the log for small x. Likewise, to calculate z! := Γ(1+z) =

∫∞
0
e−ttzdt

for small z we can use

ln Γ(1 + z) = −γz +
∞∑
k=2

(−1)kζ(k)zk

k
, (|z| < 1), ζ(k) :=

∞∑
j=1

j−k (1.1)

and γ = 0.5772.. is the Euler constant. Thus, for small z we have

Γ(1 + z) = exp(−γz + π2z2/12 · · · )

= exp(−γz +
M∑
k=2

(−1)kζ(k)k−1zk)(1 +O(zM+1)) (1.2)

where, as usual, f = O(zj) means that |z−jf | < const if z is small.

Exercise 1.3 Prove formula (1.1); find a bound for “const” when |z| < 1/2.

Near z = 0 we have a similar convergent expansion of Γ(z), though now
describing a singular function

Γ(z) = Γ(1 + z)/z = z−1 exp(γz+
M∑
k=2

k−1(−1)kζ(k)zkk(1 +O(zM+1)) (1.4)

11



12 Asymptotics and Borel summability

This is a perfectly useful way of calculating Γ(z) for small z.
Now let us look at a function near an essential singularity, e.g. e−1/z near

z = 0. It has a convergent Laurent expansion

e−1/z =
∞∑
j=0

(−1)j

j!zj
(1.5)

Eq. (1.5) is fundamentally distinct from the first examples. This can be seen
by trying to calculate the function from its expansion for say, z = 10−10:
(1.1) provides the desired value very quickly, while (1.5) is virtually unusable.
Mathematically, we see that error bounds as in (1.1) and (1.4) do not hold
for (1.5). On the contrary, we have

e−1/z −
M∑
j=0

1
j!zj

� z−M , as z → 0 (1.6)

where� means much larger than. Consequently, (1.5), though convergent, is
antiasymptotic: the terms of the expansion get larger and larger as z → 0.
The exponential needs to be calculated in a different way, and there are cer-
tainly many good ways. Surprisingly perhaps, it is the exponential, together
with related functions such as log, sinx (and powers, since we prefer the no-
tation x to eln x) are the only ones that we need in order to represent many
complicated functions, asymptotically. This fact has been noted already by
Hardy, who wrote [12] “No function has yet presented itself in analysis the
laws of whose increase, in so far as they can be stated at all, cannot be stated,
so to say, in logarithmico-exponential terms”. This reflects some important
fact about the relation between asymptotic expansions and functions which
will be clarified in Chapter 3.

If we need to calculate Γ(x) as x → +∞, the Taylor about a given point,
say 1, would not work, since the radius of convergence is 1. Instead we have
Stirling’s series,

ln(Γ(x))

= (x− 1/2) lnx− x+
1
2

ln(2π) +
M∑
j=1

cjx
−2j+1 +O(x−2M−1), x→ +∞

(1.7)

where 2j(2j − 1)cj = B2j and {B2j}j∈N = {1/6,−1/30, 1/42...} are Bernoulli
numbers. This expansion is asymptotic as x → ∞: successive terms get
smaller and smaller. Yet, −x+ 1

2 ln(2π) +
∑∞
j=1 cjx

−2j−1 cannot converge to
ln(Γ(x))− (x− 1/2) lnx since ln(Γ(x)) is singular at all n ∈ −N (why is this
relevant?). In fact, S has zero radius of convergence. Nonetheless, truncating
the expansion to x−5, we get Γ(6) ≈ 120.00000086 while Γ(6) = 120.
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Unlike asymptotic expansions, convergent but antiasymptotic expansions
do not contain manifest, detailed information. Of course, this is not meant
to understate the value of convergent representations, nor to advocate for
uncontrolled approximations.

1.1a Asymptotic expansions

An asymptotic expansion of a function f at a point t0, usually dependent
on the direction along which t0 is approached, is a formal series1 of simpler
functions fk,

f̃ =
∞∑
k=0

fk(t) (1.8)

in which each successive term is much smaller than its predecessors. For
instance if the limiting point is t0 approached from above along the real line
this requirement is written

fk+1(t) = o(fk(t)) or fk+1(t)� fk(t) (1.9)

meaning

lim
t→t+0

fk+1(t)/fk(t) = 0 (1.10)

We will often use the variable x when the limiting point is +∞ and z when
the limiting point is zero.

1.1b Functions asymptotic to an expansion, in the sense of
Poincaré

The relation f ∼ f̃ between an actual function and a formal expansion is
defined as a sequence of limits:

Definition 1.11 A function f is asymptotic to the formal series f̃ as t→ t+0
if

f(t)−
N∑
k=0

f̃k(t) = f(t)− f̃ [N ](t) = o(f̃N (t)) (∀N ∈ N) (1.12)

1That is, there are no convergence requirements. More precisely, formal series are sequences
of functions {fk}k∈N∪{0}, written as infinite sums, with the operations defined as for rep-
resented convergent series; see also §1.1c .
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We note that condition (1.12) can then be also written in a number of equiv-
alent ways, and this is useful in applications. We have the following simple
result.

Proposition 1.13 If f̃ =
∑∞
k=0 f̃k(t) is an asymptotic series as t → t+0

and f is a function asymptotic to it, then the following characterizations are
equivalent to each other and to (1.10). (i)

f(t)−
N∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N) (1.14)

where g(t) = O(h(t)) means lim supt→t+0 |g(t)/h(t)| <∞.
(ii)

f(t)−
N∑
k=0

f̃k(t) = fN+1(1 + o(1)) (∀N ∈ N) (1.15)

(iii) There is a function a : N 7→ N such that a(N) ≥ N and

f(t)−
a(N)∑
k=0

f̃k(t) = O(f̃N+1(t)) (∀N ∈ N) (1.16)

This condition seems strictly weaker, but it is not. It allows us to use less
accurate estimates of remainders, provided we can do so to all orders.

PROOF We only show (iii), the others being immediate. Let N ∈ N. We
have

1
fN+1(t)

(
f(t)−

N∑
k=0

f̃k(t)

)

=
1

fN+1(t)

f(t)−
a(N)∑
k=0

f̃k(t)

+
a(N)∑
j=N+1

fj(t)
fN+1

= O(1) (1.17)

since in the last sum in (1.17) N , and thus the number of terms, is fixed, and
thus the sum converges to 1 as t→ t+0 .

Simple examples of asymptotic expansions are

sin z ∼ z − z3

6
+ ...+

(−1)n+1z2n+1

(2n+ 1)!
+ · · · (|z| → 0) (1.18)

f(z) = sin z + e−
1
z ∼ z − z3

6
+ ...+

(−1)n+1z2n+1

(2n+ 1)!
+ · · · (z → 0+) (1.19)
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e−1/z

∫ 1/z

1

et

t
dt ∼

∞∑
k=0

k!zk+1 (z → 0+) (1.20)

The series on the right side of (1.18) converges to sin z for any z ∈ C and it
is asymptotic to it for small |z|. The series in the second example converges for
any z ∈ C but not to f . In the third example the series is nowhere convergent,
in short it is a divergent series, and it can be obtained by repeated integration
by parts:∫ x

1

et

t
dt =

ex

x
− e+

∫ x

1

et

t2
dt

= · · · = ex

x
+
ex

x2
+

2ex

x3
+ · · ·+ (n− 1)!ex

xn
+ Cn + n!

∫ x

1

et

tn+1
dt (1.21)

with Cn = −e
∑n
j=0 j!. For the last term we have

lim
x→∞

∫ x

1

et

tn+1
dt

ex

xn+1

= 1 (1.22)

(by L’Hospital) and (1.20) follows.

Note 1.23 The constant Cn cannot be included in (1.20) using the definition
(1.12), since it is smaller than x−Nex for any N and Cn and its contribution
vanishes in any of the limits implicit in (1.12).

By a similar calculation,

f2 =
∫ x

2

et

t
dt ∼ exf̃0 =

ex

x
+
ex

x2
+

2ex

x3
+ · · ·+ n!ex

xn+1
+ · · · as x→ +∞ (1.24)

and now, unlike the case of (1.18) versus (1.19) there is no obvious function
to prefer, insofar as asymptoticity goes, on the left side of the expansion.

Stirling’s formula (1.7) is another example of a divergent asymptotic ex-
pansion.

Remark 1.25 Asymptotic expansions cannot be added, in general. Other-
wise, since on the one hand f1− f2 =

∫ 2

1
dses/s = 3.0591..., and on the other

hand both f1 and f2 are asymptotic to the same expansion, it would follow that
3.0591... ∼ 0. This is one reason for considering, for restricted expansions, a
weaker asymptoticity condition, see §1.1c .

Examples of expansions that are not asymptotic are (1.5) for small z or

∞∑
k=0

x−k

k!
+ e−x (x→ +∞) (1.26)
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(because of the exponential term, this is not an ordered simple series satisfying
(1.9)). Note however expansion (1.26), does satisfies all requirements in the
left half plane, if we write e−x in the first position.

Remark 1.27 Sometimes we encounter expansions for large x of the form
sinx(1 + a/x + b/x2 + · · · ) which, while very useful, have to be understood
differently and we will discuss this question later. They are not asymptotic
expansions in the sense above, since sin can vanish. Usually the approximation
itself fails near to zeros of the sin.

1.1c Asymptotic power series

A special role is played by power series which are series of the form

S̃ =
∞∑
k=0

ckz
k, z → 0+ (1.28)

With the transformation z = t− t0 (or z = x−1) the series can be centered at
t0 (or +∞, respectively).

Definition 1.29 (Asymptotic power series) A function possesses an asymp-
totic power series as z → 0 if

f(z)−
N∑
k=0

ckz
k = O(zN+1) (∀N ∈ N) as z → 0 (1.30)

Remark 1.31 An asymptotic series is not an asymptotic expansion in the
sense of Definition1.11 and (1.30) is not a special case of (1.14) unless all ck
are nonzero.

The asymptotic power series at zero in R of e−1/z2
is the zero series. It is

however not true that the asymptotic expansion of e−1/z2
is zero.

1.2 Operations with asymptotic power series

Addition and multiplication of asymptotic power series are defined as in
the convergent case:

A

∞∑
k=0

ckz
k +B

∞∑
k=0

dkz
k =

∞∑
k=0

(Ack +Bdk)zk

( ∞∑
k=0

ckz
k

)( ∞∑
k=0

dkz
k

)
=
∞∑
k=0

 k∑
j=0

cjdk−j

 zk
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Remark 1.32 If the series f̃ is convergent and f is its sum f =
∑∞
k=0 ckz

k(note
the ambiguity of the sum notation), then f ∼ f̃ .

The proof follows directly from the definition of convergence.
The proof of the following lemma is immediate:

Lemma 1.33 (Algebraic properties of asymptoticity to a power series)
If f ∼ f̃ =

∑∞
k=0 ckz

k and g ∼ g̃ =
∑∞
k=0 dkz

k then
(i) Af +Bg ∼ Af̃ +Bg̃
(ii) fg ∼ f̃ g̃

Corollary 1.34 (Uniqueness of the asymptotic series to a function)
If f(z) ∼

∑∞
k=0 ckz

k as z → 0 then the ck are unique.

PROOF Indeed, if f ∼
∑∞
k=0 ckz

k and f ∼
∑∞
k=0 dkz

k, then, by Lemma 1.33
we have 0 ∼

∑∞
k=0(ck − dk)zk which implies, inductively, that ck = dk for all

k.

Algebraic operations with asymptotic series are limited too, division of
asymptotic series is not always possible. e−1/z2 ∼ 0 in R while 1/ exp(−1/z2)
has no asymptotic series at zero.

1.2 .1 Integration and differentiation of asymptotic power series.

Asymptotic relations can be integrated termwise as Proposition 1.35 below
shows.

Proposition 1.35 Assume f is integrable near z = 0 and that

f(z) ∼ f̃(z) =
∞∑
k=0

ckz
k

Then ∫ z

0

f(s)ds ∼
∫
f̃ :=

∞∑
k=0

ckz
k+1

k + 1

PROOF This follows from the fact that
∫ z

0
o(sn)ds = o(zn+1) as it can

be seen by immediate estimates.

Differentiation is a different issue. Many simple examples show that asymp-
totic series cannot be freely differentiated. For instance e−1/x2

sin e1/x4 ∼ 0
as x→ 0 on R, but the derivative is unbounded.

Asymptotic power series of analytic functions can be differentiated if they
hold in a region which is not too rapidly shrinking. Such a region is often a
sector or strip in C, but can be allowed to be more general.



18 Asymptotics and Borel summability

1.2 .2 Asymptotics in regions in C

Proposition 1.36 Let M > 0 and assume f(x) is analytic in the region
Sa = {x : |x| > R, |=(x)| < a|<(x)|−M}, and

f(x) ∼
∞∑
k=0

ckx
−k as |x| → ∞

in any subregion of the form Sa′ with a′ < a.
Then

f ′(x) ∼
∞∑
k=0

(−kck)x−k−1

as |x| → ∞ in any subregion of the form Sa′ with a′ < a.

PROOF Here, Proposition 1.13 will come in handy. Let N > M + 2.
By the analyticity and asymptoticity assumptions, there is some constant C
so that |f(x) −

∑N
k=0 ckx

−k| < C|x|−N in Sa′ (a′ < a) (why?). Let a′′ < a′

and take a circle of radius (a′ − a′′)/2|x|−M around x ∈ Sa′′ . This circle is
contained in Sa′ if x is large enough (why?).

∣∣∣∣∣f ′(x)−
N∑
k=0

(−kck)x−k−1

∣∣∣∣∣ =

∣∣∣∣∣ 1
2πi

∮
C
(s− x)−2

(
f ′(s)−

N∑
k=0

cks
−k

)
ds

∣∣∣∣∣
≤ 4C

(a′ − a′′)2
|x|2M |x|−N (1.37)

and the result follows.

Exercise 1.38 Consider the following integral related to the error function

F (z) = ez
−2
∫ z

0

s−2e−s
−2
ds

It is clear that the integral converges at the origin, if the origin is approached
through real values (see also the change of variable below); thus we We define
the integral to z ∈ C as being taken on a curve γ with γ′(0) > 0, and extend
F by F (0) = 0. The resulting function is analytic in C \ 0, see Exercise 3.8
below.

What about the behavior at z = 0? It depends on the direction in which 0
is approached! Substituting z = 1/x and s = 1/t we get

E(x) = ex
2
∫ ∞
x

e−t
2
dt =:

√
π

2
ex

2
erfc(x) (1.39)

Check that if f(x) is continuous on [0, 1] and differentiable on (0, 1) and
f ′(x) → L as x ↓ 0, then f is differentiable to the right at zero and this
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derivative equals L. Use this fact, Proposition 1.36 and induction to show
that the Taylor series at 0+ of F (z) is indeed given by (3.7).

1.2a Concrete functions and unique expansions

Prompted by the need to eliminate apparent paradoxes, mathematics was
formulated in a precise language with a well defined set of axioms, first by
Zermelo [43], [41] within set theory. In this language, a function is defined
as a set of ordered pairs (x, y) 2 such that for every x there is only one pair
with x as the first element. All this can be written precisely and it is certainly
foundationally satisfactory, since it uses arguably more primitive objects: sets.

A tiny subset of these general functions can arise as unique solutions to well
defined problems, however. Indeed, on the one hand it is known that there is
no specific way to distinguish two arbitrary functions based on their intrinsic
properties alone3. On the other hand, a function which is known to be the
unique solution to a specific function can a fortiori be distinguished from any
other function.

Then most functions just exist in an unknowable realm, and only their col-
lective presence has mathematical consequences. We can usefully restrict the
study of functions to those which do arise in specific problems, and hope that
they have, in general, better properties than arbitrary ones. For instance,
solutions of specific equations, such as systems of linear or nonlinear ODEs
or difference equations with meromorphic coefficients, near a regular or sin-
gular point, can be described completely in terms of their behavior at such
a point (more precisely, they are completely described by their transseries, a
generalization of series described later).

*
Convegent expansions have been in use for a very long time, as a convenient

calculational tool. The error resulting from keeping only a finite number of
terms can be made, in principle, as small as we want.

Factorially divergent asymptotic series came later; they were already in use
for very precise astronomical calculations calculations at the turn of the 19th
century 4. As the variable, say 1/x, becomes small, the first few terms of
the expansion should provide a good approximation of the function. Taking
for instance x = 100 and 5 terms in the asymptotic expansion we get the
approximation 2.715552711 · 1041 for both f1(100) = 2.715552745 . . . · 1041

and f2(100) = f1(100)−3.05911 · · · . However, in using divergent series, there
is a threshold in the accuracy of approximation, as it can be seen by comparing
(1.20) and (1.24).

2Here x, y are themselves sets, and (x, y) := {x, {x, y}}); x is in the domain of the function
and y is in its range.
3More precisely, in order to select one function out of an arbitrary, unordered pair of func-
tions, some form of the axiom of choice [41] is needed.
4Interestingly, in the early 19th century they were often called “semi-convergent”.
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The two functions differ by a constant, which is exponentially smaller than
each function. The expected relative error cannot be better than exponen-
tially small, at least for one of them. As we shall see, it is exponentially
small for each one of them, and slightly smaller for a privileged choice of the
constant, when the lower limit of integration is taken to be −∞ (and the
improper integral is defined as the Cauchy principal part; this defines the
function Ei(x)). This smallest error is achieved by stopping the sum at its
least term, which can be seen to be n ≈ x. The error in calculating Ei(x) is
very small, of order x−1/2 which is indeed pretty good for a function which
grows exponentially as x→∞. Still, for fixed x, in this calculation there is a
buit-in error.

Cauchy [2] , proved that least term truncation in Stirling’s formula gives
errors of the order of magnitude of the least term.

Stokes refined Cauchy summation to the least term, and discovered the
“Stokes phenomenon”: if a solution of a linear differential equation is asymp-
totic to a divergent series, it must grow exponentially in some other directions.

But a clear definition and a general procedure of summation were absent
at the time. Abel, himself the inventor of a number of summation procedures
of divergent series, labeled divergent series “an invention of the devil”.

Later on, the view of divergent series as somehow linked to specific functions
and encoding their properties was later abandoned, together with the notion
of a function as a rule. This view was replaced by the rigorous notion of
an asymptotic series, associated instead to a vast family of functions via the
rigorous Poincaré definition 1.11, which is precise and general, but specificity
is lost even in simple cases.

*
Can we usefully associate to a divergent series a unique function which

might call the sum of the series? The answer is yes, in many practical cases,
no in general. Exploring this question will carry us through a number of
interesting questions.

In [14], Euler considered this question for the formal series s = 1− 2 + 6−
24 + 120 · · · , in fact extended to the formal expansion

f̃ :=
∞∑
k=0

k!(−z)k+1, x→∞ (1.40)

Euler notes that f̃ satisfies the equation

z2y′ + y = z (1.41)

and concludes that f̃ = e1/zEi(−1/z) + Ce1/z and thus, since the series is
formally small as z → 0+, we should have C = 0, f̃ = e1/zEi(−1/z), and in
particular s = eEi(−1). What can we make out of this calculation? At the
very least, this shows that if (1.40) sums to a function, in a way compatible
with basic operations and properties, the function can only be e1/zEi(−1/z).
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FIGURE 1.1: L. Euler, De seriebus divergentibus, Novi Commentarii
Academiae Scientiarum Petropolitanae (1754/55) 1760, p. 220
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On the other hand, the formal expression∑
q∈Q

1
x+ q

(1.42)

cannot have a nontrivial, meaningful sum, since the sum would have any
rational number as a period, and would therefore not be Lebesgue measurable
[40]. Since it is known that nonmeasurable functions only exist by virtue of
some form of the axiom of choice, no definable (such as “the sum of (1.42)”)
nonmeasurable functions can exist.

A good correspondence between functions and expansions is possible only
by carefully restricting both. We will restrict the analysis to functions and
expansions arising in differential or difference equations, and some few other
concrete problems.

Some elements of Écalle’s theory

In the 80’s by Écalle found a vast class of functions, closed under usual
operations (algebraic ones, differentiation, composition, integration and func-
tion inversion) whose properties are, at least in principle, easy to analyze: the
analyzable functions.

We might fear such a closure is either nonconstructive, or else horrendously
intricate. Let’s see what happens in the closure using say two operations,
reciprocal and integration.

∫
1 = x −→ 1

·
x = x−1 −→

∫
x−1 = lnx

and lnx has to be taken as a new primitive object.

−→ 1
·

lnx =
1

lnx
−→

∫
1

lnx
nonelementary (1.43)

and, within functions we would need to include the last integral as yet another
primitive object.

Transseries. The way to obtain analyzable functions was in fact to first
construct transseries, the closure of formal series under operations, a far
more manageable task, and then establish a good correspondence between
transseries and functions.

Transseries are surprisingly simple. They consists, roughly, in all formally
asymptotic expansions, finitely generated in terms of powers exponentials and
logs in exponentials powers and logs of ordinal length with coefficients which
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have at most power-of-factorial growth. For instance, as x→∞, integrations
by parts in (1.43) yields ∫

1
lnx

= x

∞∑
k=1

k!
(lnx)k+1

(a divergent expansion). Other examples are:

ee
x+x2

+ e−x
∞∑
k=0

k!(lnx)k

xk
+ e−x ln x

∞∑
k=−1

k!22k

xk/3
x→ +∞

∞∑
k=0

e−kx

 ∞∑
j=0

ckl
xk


Note how the terms are ordered decreasingly, with respect to � (far greater
than) from left to right. The generators in the first and third transseries
are 1/x and e−x. Transseries contain, order by order, manifest asymptotic
information.

Transseries, as constructed by Ecalle, are the closure of series under a num-
ber of operations, including

(i) Algebraic operations: addition, multiplication and their inverses.
(ii) Differentiation and integration.
(iii) Composition and functional inversion.
However, operations (i), (ii) and (iii) are far from sufficient; for instance

differential equations cannot be solved through (i)–(iii). Indeed, most ODEs
cannot be solved by quadratures, i.e. by finite combinations of integrals of
simple functions, but by limits of these operations. Limits though are not
easily accommodated in the construction. Instead we can allow for

(iv) Solution of fixed point problems of formally contractive mappings, see
§2.1b .

Operation (iv) was introduced by abstracting from the way problems with
a small parameter 5 are solved by successive approximations.

Proposition. Transseries are closed under (i)–(iv).

This will be shown in §4 and §A; it means many problems can be solved
within transseries. It is however unlikely that (i)–(iv) encompass all there is
needed to solve asymptotic problems and more needs to be understood.

Analyzable functions. To establish a one-to-one isomorphic correspon-
dence between a class of transseries and functions, Écalle also vastly general-
ized Borel summation .

5The small parameter could be the independent variable itself. Infinity is often taken as
the special point, one reason being that repeated differentiation of exp(1/x) is clumsy.
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Écalle-Borel (EB) summation extends usual summation, does not depend
on how the transseries was obtained, and is a perfect isomorphism between
expansions and functions. The sum of an EB summable transseries is, by
definition an analyzable function.

EB summable transseries are known to be closed under operations (i)–(iii)
but not yet (iv). EB summability has been shown to apply generic systems of
linear or nonlinear ODEs, PDEs (including the Schrödinger equation, Navier-
Stokes) etc, Quantum Field Theory, KAM and so on. Concrete theorems will
be given later.

The representation by transseries is effective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
terms of its transseries.

Determining the transseries of a function is the “analysis” part and transse-
riable functions are “analyzable ”, while the opposite process, reconstruction
by EB summation of a function from its transseries is known as “synthesis”.

We have the following diagram

Convergent series −→ Summation −→ Analytic functions

−→ −→

operations
“all”
under
C

losure

operations
“all”
under
C

losure

−→ −→

Transseries −→ E-B Summation −→ Analyzable functions

This is the only known way to close functions under the listed operations.

Formal and actual solutions.

Few calculational methods have longer history than successive approxima-
tion. Suppose ε is small and we want to solve the equation y−y5 = ε. Looking
first for a small solution, we see that y5 � y and then, writing

y = ε+ y5 (1.44)

as a first approximation, we have

y ≈ y1 = ε (1.45)
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We can use y ≈ y1 in (1.44) to improve in accuracy over (1.45):

y2 = ε+ ε5

and further
y3 = ε+

(
ε+ ε5

)5
Repeating this procedure indefinitely, the right side becomes

ε+ ε5 + 5ε9 + 35ε13 + 285ε17 + 2530ε21 + · · · (1.46)

Exercise 1.47 Show that this series converges for |ε| < 4 · 5−5/4.

The binomial series (1.46) converges to z for |t| < 1, and is computationally
most useful if t is small.

Regular differential equations can be locally solved much in the same way.
Consider the Painlevé equation

y′′ = y2 + z

near z = 0 with y(0) = y0 and y′(0) = y1 small. If y is small like some power
of z, then y′′ is far larger than y2 and then, to leading approximation,

y′′ = z

and

y = y0 + y1z +
z2

2
We can substitute this back into the equation and get a better approxima-
tion of the solution, and if we repeat the procedure indefinitely, we get the
actual solution of the problem (since, as it follows from the general theory of
differential equations, the solution is analytic).

Let us look at the equation
f ′ − f = x−1 (1.48)

the same as the one Euler used, now in the variable z = 1/x, for x large
and positive. If f is small like an inverse power of x, then f ′ should be even
smaller, and we can apply again successive approximations to the equation
written in the form

f = f ′ − x−1 (1.49)

To leading order f ≈ f1 = 1/x, we then have f ≈ f2 = 1/x − 1/x2 and now
if we repeat the procedure indefinitely we get

f ∼ 1
x
− 1
x2

+
2
x3
− 6
x4

+ · · · − (−1)nn!
xn+1

+ · · · (1.50)

Something must have gone wrong here. We do not get a solution (in any obvi-
ous meaning) to the problem: for no value of x is this series convergent. But



26 Asymptotics and Borel summability

note that “not convergent” presupposes a topology, or a notion of convergence
(such as pointwise convergence). Is there a good topology under which such
wildly divergent expansions converge? The answer is yes, but for now we shall
pull a trick out of the hat that allows us to interpret the series. If we write

n! =
∫ ∞

0

e−ttndt

in (1.50), it becomes∫ ∞
0

∞∑
n=0

e−ttnx−n−1dt =
∫ ∞

0

e−np

1 + p
dp (1.51)

provided we can interchange summation and integration, and sum the geo-
metric series to 1/(1 + p) for all values of p, not only for |p| < 1.

Upon closer examination, we see that another way to view the formal cal-
culation leading to (1.51) is to say that we first performed a term-by-term
inverse Laplace transform (cf. §2.1a ) of the series (the inverse Laplace trans-
form of n!x−n−1 being pn), summed the p-series for small p (to (1 + p)−1)
analytically continued this sum on the whole of R+ and then took the Laplace
transform of this result. Up to analytic continuations and ordinary convergent
summations, what has been done in fact is the combination Laplace inverse-
Laplace transform, which is the identity. In this sense, the emergent function
is “equal” to the initial series, and should inherit its formal properties. In par-
ticular, (1.51) is a solution of (1.48). The steps we have just described define
Borel summation , which applies precisely when the above steps succeed.

What distinguishes the first two examples from the last one? In the first two,
the next approximation was obtained from the previous one either by algebraic
operations and integration. These processes are regular, and they produce,
at least under some restrictions on the variables, convergent expansions. We
have, e.g.,

∫
· · ·
∫
x = xn/n!. But in the last example, we iterated upon

differentiation which makes functions “worse and worse”. We have (1/x)(n) =
n!/xn+1. In §4.6 we will see why the trick above works to interpret such series.

1.2b Laplace transforms

Let F ∈ L1(R). Then, by Fubini’s theorem and dominated convergence,
the Laplace transform

LF :=
∫ ∞

0

e−pxF (p)dp (1.52)

is well defined and continuous in x in the closed right half plane and analytic
in the open RHP (the open right half plane). (Obviously, we could allow
Fe−|α|p ∈ L1 and then LF would be defined for <x > |α|.) F is uniquely
defined by its Laplace transform, as seen below. The Laplace convolution is
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given by

(f ∗ g)(p) =
∫ p

0

f(s)g(p− s)ds (1.53)

and we have
L(f ∗ g) = L(f)L(g) (1.54)

and L(pF ) = (LF )′.

1.2c A Laplace inversion formula

Theorem 1.55 Assume c ≥ 0, f(z) is analytic in the closed half plane Hc :=
{z : < z ≥ c}. Assume further that supc′≥c |f(c′ + it)| ≤ g(t) with g(t) ∈
L1(R). Let

F (p) =
1

2πi

∫ c+i∞

c−i∞
epxf(x)dx =: (L−1F )(p) (1.56)

Then for any x ∈ {z : < z > c} we have

LF =
∫ ∞

0

e−pxF (p)dp = f(x) (1.57)

PROOF Note that for any x′ = x′1 + iy′1 ∈ {z : < z > c}

∫ ∞
0

dp

∫ c+i∞

c−i∞

∣∣∣ep(s−x′)f(s)
∣∣∣ d|s| ≤ ∫ ∞

0

dpep(c−x
′
1)‖g‖1 ≤

‖g‖1
x′1 − c

(1.58)

and thus, by Fubini we can interchange the orders of integration:

U(x′) =
∫ ∞

0

e−px
′ 1
2πi

∫ c+i∞

c−i∞
epxf(x)dx

=
1

2πi

∫ c+i∞

c−i∞
dxf(x)

∫ ∞
0

dpe−px
′+px =

1
2πi

∫ c+i∞

c−i∞

f(x)
x′ − x

dx (1.59)

Since g ∈ L1 there must exist subsequences τn,−τ ′n tending to ∞ such that
|g(τn)| → 0. Let x′ > <x = x1 and consider the box Bn = {z : <z ∈
[x1, x

′],=z ∈ [−τ ′n, τn]} with positive orientation. We have∫
Bn

f(s)
x′ − s

ds = −f(x′) (1.60)

while, by construction,

lim
n→∞

∫
Bn

f(s)
x′ − s

ds =
∫ x′+i∞

x′−i∞

f(s)
x′ − s

ds−
∫ c+i∞

c−i∞

f(s)
x′ − s

dx (1.61)
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On the other hand, by dominated convergence, we have∫ x′+i∞

x′−i∞

f(s)
x′ − s

ds→ 0 as x′ →∞ (1.62)



Chapter 2

Review of some basic analytic tools

2.1 The Phragmén-Lindelöf Theorem

This result is very useful in obtaining information about the size of a func-
tion in a sector, when the only information available is on the edges.

Theorem 2.1 (Phragmén-Lindelöf) Let U be the open sector between two
rays from the origin, forming an angle π/β, β > 1

2 . Assume f is analytic in
U , and continuous on its closure, and for some C1, C2,M > 0 and α ∈ (0, β)
it satisfies the estimates

|f(z)| ≤ C1e
C2|z|α ; z ∈ U ; |f(z)| ≤M ; z ∈ ∂U (2.2)

Then
|f(z)| ≤M ; z ∈ U (2.3)

PROOF By a rotation we can make U = {z : 2| arg z| < π/β}. Making
a cut in the complement of U we can define an analytic branch of the log
in U and, with it, an analytic branch of zβ . By taking g = f(z1/β), we
can assume without loss of generality that β = 1 and α ∈ (0, 1) and then
U = {z : | arg z| < π/2}. Let α′ ∈ (α, 1) and consider the analytic function

e−C2z
α′

f(z) (2.4)

Since |e−C2z
α′ | < 1 in U (check) and |e−C2z

α′+C2z
α | → 0 as |z| → ∞ on the

half circle |z| = R,<z ≥ 0 (check), the usual maximum modulus principle
completes the proof.

2.1a Some properties of Laplace transforms

There are many textbooks on integral transforms; we will briefly mention
now a few facts about the Laplace transform. We will study Laplace and
inverse Laplace transforms in more detail later.

Lemma 2.5 (Uniqueness) Assume F ∈ L1(R+) and LF = 0 for a set of x
with an accumulation point. Then F = 0 a.e.

29
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We will from now on write F = 0 on a set to mean F = 0 a.e. on that set.

PROOF By analyticity, LF = 0 in the open RHP and by continuity, for
s ∈ R, LF (is) = 0 = F̂F where F̂F is the Fourier transform of F (extended
by zero for negative values of p). Since F ∈ L1 and 0 = F̂F ∈ L1, by the
known Fourier inversion formula [40], F = 0.

More however can be said. We can draw interesting conclusions about F
just from the rate of decay of LF .

We can apply the Phragmén-Lindelöf theorem to obtain a result on the
subexponential behavior of Laplace transforms, which shows in particular that
no two different L1(R+) functions, real–analytic on (0,∞), can have Laplace
transforms within exponentially small corrections of each–other.

Proposition 2.6 (Lower bound on decay rates of Laplace transforms)
Assume F ∈ L1(R+) and for some ε > 0 we have

LF (x) = O(e−εx) as x→ +∞ (2.7)

Then F = 0 on [0, ε].

PROOF We write∫ ∞
0

e−pxF (p)dp =
∫ ε

0

e−pxF (p)dp+
∫ ∞
ε

e−pxF (p)dp (2.8)

we note that∣∣∣ ∫ ∞
ε

e−pxF (p)dp
∣∣∣ ≤ e−εx ∫ ∞

ε

|F (p)|dp ≤ e−pε‖F‖1 = O(e−εx) (2.9)

Therefore

g(x) =
∫ ε

0

e−pxF (p)dp = O(e−εx) as x→ +∞ (2.10)

The function g is entire (prove this!) Let h(x) = eεxg(x). Then by assumption
h is entire and uniformly bounded for x ∈ R (since by assumption, for some
x0 and all x > x0 we have h ≤ C and by continuity max |h| < ∞ on [0, x0]).
The function is also manifestly bounded for x ∈ iR (by ‖F‖1). By Phragmén-
Lindelöf (first applied in the first quadrant and then in the fourth quadrant,
with β = 2, α = 1) h is bounded in the closed RHP. Now, for x = −s < 0 we
have

e−sε
∫ ε

0

espF (p)dp ≤
∫ ε

0

|F (p)| ≤ ‖F‖1 (2.11)
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Again by Phragmén-Lindelöf (again applied twice) h is bounded in the closed
LHP thus bounded in C, and it is therefore a constant. But, by the Riemann-
Lebesgue lemma, h → 0 for x = is when s → +∞. Thus h ≡ 0. But then,
with χA the characteristic function of A,∫ ε

0

F (p)e−ispdp = F̂(χ[0,ε]F ) = 0 (2.12)

for all s ∈ R entailing the conclusion.

Corollary 2.13 Assume F ∈ L1 and LF = O(e−AX) as x → +∞ for all
A > 0. Then F = 0.

PROOF This is straightforward.

As we see, uniqueness of the Laplace transform can be reduced to estimates.

2.1b Banach spaces and an essential tool: the contractive
mapping principle

We discuss, for completeness, a few basic features of Banach spaces. There
is a vast literature on the subject; see e.g. [39]. Familiar examples of Banach
spaces are the n-dimensional euclidian vector spaces Rn. A norm exists in a
Banach space, which has the essential properties of a length: scaling, positivity
except for the zero vector which has length zero and the triangle inequality
(the sum of the lengths of the sides of a triangle is no less than the length
of the third one). Once we have a norm, we can define limits, by reducing
the notion to that in R: xn → x iff ‖x− xn‖ → 0. A normed vector space B
is a Banach space if it is complete, that is every sequence with the property
‖xn − xm| → 0 uniformly in n,m (a Cauchy sequence) has a limit in B.
Note that Rn can be thought of the space of functions defined on the set
of integers {1, 2, ..., n}. Then it is clear that there are infinite-dimensional
Banach spaces, for instance the space of bounded functions on [0, 1] with the
norm ‖f‖ = sup[0,1] |f |. Infinite dimensional Banach spaces can be different
from the finite-dimensional ones:

Exercise 2.14 Find examples of normed vector spaces which are not com-
plete.

A function L between two Banach spaces which is linear, L(x+y) = Lx+Ly,
is bounded (-or continuous) if ‖L‖ := sup‖x‖=1 ‖Lx‖ <∞.

In a complete normed space the vector structure and associated restrictions
on the norm are dropped.

Assume B is a Banach space and that S is a closed subset of B. In the
induced topology (i.e, in the same norm), S is a complete normed space.
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Throughout the book we will rely on the contractive mapping principle,
which is a handy way to obtain solutions of perturbed problems from those
of the simpler, unperturbed ones.

Assume M : S 7→ B is a (linear or nonlinear) operator with the property
that for any x, y ∈ S we have

‖M(y)−M(x)‖ ≤ λ‖y − x‖ (2.15)

with λ < 1. We call such operators contractive. Note that if N is linear,
this just means that the norm of M is less than one.

Theorem 2.16 Assume M : S 7→ S, where S is a closed subset of B is a
contractive mapping. Then the equation

x =M(x) (2.17)

has a unique solution in S.

PROOF Consider the sequence {xj}j ∈ N defined recursively by

x0 = x0 ∈ S (2.18)
x1 =M(x0)

· · ·
xj+1 =M(xj)

· · ·

We see that

‖xj+2 − xj+1‖ = ‖M(xj+1)−M(xj)‖ ≤ λ‖xj+1 − xj‖ ≤ · · · ≤ λj‖x1 − x0‖
(2.19)

Thus,

‖xj+p+2 − xj+2‖ ≤
(
λj+p + · · ·λj

)
‖x1 − x0‖ ≤

λj

1− λ
‖x1 − x0‖ (2.20)

and xj is a Cauchy sequence, and it thus converges, say to x. Since by (2.15)
M is continuous, passing the equation for xj+1 in (2.18) to the limit j →∞
we get the limit we get

x = x0 +M(x) (2.21)

that is existence of a solution of (2.17). For uniqueness, note that if X and Y
are two solutions of (2.17), by subtracting their equations we get

‖X − Y ‖ = ‖M(X)−M(Y )‖ ≤ λ‖X − Y ‖ (2.22)

implying ‖X − Y ‖ = 0, since λ < 1.
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Note 2.23 Note that contractivity and therefore existence of a solution of a
fixed point problem depends on the norm. An adapted norm needs to be chosen
for this approach to give results.

Exercise 2.24 Show that if L is a linear operator from the Banach space B
into itself and ‖L‖ < 1 then I −L is invertible, that is x−Lx = y has always
a unique solution x ∈ B. Note thus that assuming that I −L is not invertible,
then whatever other norm ‖ · ‖∗ which makes B a Banach space, ‖L‖∗ ≥ 1.

2.1c Fixed points and vector valued analytic functions

A theory of analytic functions from a Banach space to itself can be con-
structed by almost exactly following the usual construction of analytic func-
tions. For the construction to work, we need the usual vector space operations
and a topology in which they are continuous. If multiplication is present –in a
Banach algebra setting– multiplication is continuous as well. We can define a
derivative in the usual way, by writing F (f + εg) = F (f) + εLfg+ o(ε), ε ∈ C
small, where Lf =: ∂fF is a linear operator, define an integral in the usual
way, as a limit of a sum, or using appropriately generalized measure theory.
Cauchy’s formula is valid for complex-differentiable (analytic) functions. A
detailed presentation is found in [13], but the basic facts are simple enough
for the reader to redo the necessary proofs. An immediate recasting of the
contractive mapping principle is that

Remark 2.25 In the context of Theorem 2.16 we have, equivalently: If N :
S2 7→ S is analytic in f and ‖∂fN‖ < λ < 1 for f, g in S, then the equation
f = N (f, g), where ‖∂fN‖ < λ < 1 in S has a unique fixed point in S.

Indeed, if ‖h‖ = δ we have h = δh1 with ‖h1‖ = 1

‖N (g, f + h)−N (g, f)‖ ≤
∫ δ

0

∥∥∥∥∂N∂f (g, f + th1

)∥∥∥∥ dt ≤ λδ
The implicit function theorem could be restated abstractly in a similar setting.

2.1d Choice of N

An equation can be rewritten in a number of equivalent ways. In solving
an asymptotic problem, as a rule of thumb the final operator N should not
contain derivatives or other operations poorly behaved with respect to asymp-
totics, and it should only contain the sought-for solution through formally
small corrections. The norms should reflect as well as possible the expected
growth/decay tendency of the solution itself and the spaces are spaces where
this solution lives.

Note 2.26 The contractive mapping and implicit function results above are
trivially equivalent, and the difficulty in proving an asymptotic result virtually
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never lies here, but in finding the contractive reformulation, and the adequate
spaces and norms.

2.1d .1 Applications

2.1d .2 Existence and uniqueness of solutions of differential equa-
tions

Assume G(X, t) is a function defined on B × [0, a] where a B is a Banach
space and that G is continuous in x and Lipschitz continuous in X, i.e.

‖G(X, t)−G(Y, t)‖ ≤ A(t)‖X − Y ‖ (2.27)

for all t ∈ [a, b] and X,Y ∈ B with A(t) continuous. Then A(t) ≤ A for some
A and all t ∈ [a, b]. Then for some ε > 0, the differential equation

Y ′(t) = G(Y (t), t); Y (a) = Ya (2.28)

has a unique solution on the interval [a, a+ ε].

PROOF The definition of the derivative is the same as in usual calculus,
since we have a well defined notion of limit. Likewise, an Riemann integral of
the form ∫ a2

a1

Y (s)ds (2.29)

is defined as in usual calculus as a limit of Riemann sums and it exists if Y is
continuous in s. Consider the space of continuous functions t 7→ Y (t) defined
for t ∈ [a, a+ ε] in the norm

‖Y (t)‖∞ = max
t∈[a,a+ε]

‖Y (t)‖ (2.30)

Check that this is a Banach space. Let ‖G(Ya, a‖ = M . Consider the ball B
of radius δ1 centered at Ya and the interval [a, a+ δ2] with δ2 small. We can
choose δ1 and δ2 small enough so that ‖G(Ya + y, a + ε‖ ≤ 2M if ‖y‖ < δ1
and ε < δ2.

Consider the auxiliary equation

Y (t) = Ya +
∫ a+t

a

G(Y (s), s)ds =:MY (2.31)

We first check that the ball B is invariant under M. We have

‖MY − Ya‖ =
∥∥∥ ∫ s

a

G(Y (s), s)ds
∥∥∥ ≤ |2Mδ2| ≤ δ1 (2.32)

if δ2 < δ1/M .
Now we want to check contractivity. We have
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‖(M(X)−M(Y ))‖(t) =
∥∥∥∥∫ a+t

a

(G(X(s), s)−G(Y (s), s))ds
∥∥∥∥

≤
∫ a+t

a

‖G(X(s), s)−G(Y (s), s)‖ds ≤ A
∫ a+t

a

‖X(s)− Y (s)‖ds

≤ A
∫ a+t

a

‖X − Y ‖∞ds = δ2A‖X − Y ‖∞ (2.33)

which is contractive if Aδ2 < 1. We see that the assumptions of the contractive
map theorem are met if

δ2 ≤
∣∣∣A−1 − δ1/M |

∣∣∣
It is easy to check that the solution to (2.31) solves the original problem. We
see that the definition of G can be restricted to a neighborhood of Ya.

Local existence is all that can be shown in this generality since even an
equation as simple as y′ = y2 + 1, whose general solution is tan(x + φ) has
infinitely many poles on R.

2.1d .3 Global existence and uniqueness of solutions of linear dif-
ferential equations

Consider now the equation

Y ′(t) = L(t)Y ; Y (0) = Y0 (2.34)

where L(t) is a uniformly bounded linear operator,

max
t∈[0,∞)

‖L(t)‖ ≤ L (2.35)

Then the problem (2.34) has a global solution on [0,∞).

PROOF Consider the space of continuous functions Y : [0,∞) 7→ B in
the norm

‖Y ‖∞,L = sup
t∈[0,∞)

e−Lt/λ‖Y (t)‖ (2.36)

with λ < 1 and the auxiliary equation

Y (t) = Y0 +
∫ t

0

L(s)Y (s)ds (2.37)

which is well defined on B and is contractive there since

e−Lt/λ
∣∣∣∣∫ t

0

L(s)Y (s)ds
∣∣∣∣ ≤ Le−Lt/λ

∫ t

0

eLs/λ‖Y ‖∞,Lds = λ‖Y ‖∞,L (2.38)
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2.1d .4 Example: A Puiseux series needed in §3.1c , in the asymp-
totics of the Gamma function

We choose a simple example which can be dealt with in a good number
of other ways, yet containing some features of more complicated singular
problems. Suppose we need to find the solutions of the equation x− lnx = t
for t (and x) close to 1. The implicit function theorem does not apply to
F (x, t) = x − lnx − t at (0, 0). We then attempt to find a simpler equation
that approximates well the given one in the singular regime, that is we look
for asymptotic simplification, and then we try to present the full problem as
a perturbation of the approximate one. We write x = 1 + z, t = 1 + s, expand
the left side in series for small z, and and retain only the first nonzero term.
The result is z2/2 ≈ s. There are two solutions, thus effectively two different
problems when s is small. Keeping all terms, we treat the cubic and higher
powers of z as corrections. We look at one choice of sign, the other one being
very similar, and write

z =
(

2s+
2z3

3
− z4

2
+

2z5

5
+ · · ·

)1/2

= (2s+ ε(z))1/2 (2.39)

where ε(z) is expected to be small. We then have

z =
(
2s+O(z3)

)1/2
=
(

2s+O(s3/2)
)1/2

(2.40)

hence

z =
(

2s+
[
(2s)1/2 +O(s3/2)

]3
/3
)1/2

=

(
2s+

4
√

2
3
s3/2 +O(s2)

)1/2

(2.41)
and further,

z =

(
2s+

4
√

2
3
s3/2 +

2s2

3
+O(s5/2)

)1/2

=
√

2s+
2s
3

+
√

2
18
s3/2− 2s2

135
+O(s5/2)

(2.42)
etc., where in fact the series converges, as shown in the Exercise 2.44 below.

Two ingredients are typically necessary for an iteration about an approx-
imate equation to converge: the equation should be written in such a way
that the solution is expected to be unique, and of course, all discarded terms
should indeed be small. For the latter condition one can formally check self-
consistency: using the approximate solution to calculate the expected correc-
tion to the first approximation, the (approximate) correction should indeed
be small. According to the expected size of the solution and corrections, we
should then be able to write a family of equations equivalent to the original
one, which will then be contractive. Here z should be close to

√
2s; we set
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s = w2/2 and z = wZ and get

Z =
(

1 +
2
3
wZ3 − 1

2
w2Z4 +

2
5
w3Z5 + · · ·

)1/2

(2.43)

Exercise 2.44 * Show that if ε is small enough, then (2.43) is contractive in
the sup norm in a ball of radius ε centered at 1 in the space of functions Z
analytic in w for |w| ≤ ε. Show thus that z is analytic in

√
s for small s.

Once the behavior of the solutions has been clarified, we may sometimes
gain in simplicity, or more global information, by returning to the implicit
function theorem, but properly applied. Which one is better depends on
the problem and on taste. The contraction mapping principle is often more
natural, especially when the topology, suggested by the problem itself, is not
one of the common ones.

We take t = τ2/2 and write z2/2+(z−ln(1+z)−z2/2) =: z2/2(1+zφ(z)) =
τ2/2 and (differentiating zφ reintegrating and changing variables) we get

z
√

1− zφ(z) = ±τ ; φ(z) =
∫ 1

0

σ2dσ

1 + zσ
(2.45)

with the usual choice of branch for the square root. It is clear that the implicit
function theorem applies to the functions z

√
1− zφ(z)± w at (0, 0).

The first few terms of the series are easily found from the fixed point equa-
tion by repeated iteration, as in §2.1e ,

z =
1√
2
τ +

1
12
τ2 −

√
2

72
τ3 +

13
4320

τ4 + · · · (2.46)

2.1e A nonlinear differential equation

As another example, consider the equation

y′ + y = x−1 + y3 + xy5 (2.47)

with the restriction y → 0 as x → +∞. Exact solutions exist for special
classes of equations, and (2.47) does not (at least not manifestly) belong to
any of them. However, formal asymptotic series solutions, as x → ∞, are
usually easy to find. If y is small and power-like, then y′, y3 � y and a first
approximation is y1 ≈ 1/x. Then y2 ≈ 1/x+ y3

1 + xy5
1 − y′1. A few iterations

quickly yield (see Appendix D)

y(x) = x−1 + x−2 + 3x−3 + 13x−4 + 69x−5 + 428x−6 +O
(
x−7

)
(2.48)

To find a contractive mapping reformulation, we have to find what can be
discarded in a first approximation. Though the derivative is formally small,
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as we discussed in §2.1d , it cannot be discarded when a rigorous proof is
sought. Since f and 1/x are of both formally larger than f ′ they cannot by
discarded either. Thus the approximate equation can only be

y′ + y = x−1 + E(f) (2.49)

where the “error term” E is just f3 + xf5. An equivalent integral equation is
obtained by solving (2.49) as though E was known,

y = g0 +N (y)

g0(x) = y(x0)e−(x−x0)+e−x
∫ x

x0

es

s
ds; N (y) = e−x

∫ x

x0

es
[
y3(s) + sy5(s)

]
ds

(2.50)

say with x, x0 ∈ R+ (a sector in C can be easily accommodated). Now,
the expected behavior of y is, from (2.48) x−1(1 + o(1). We take the norm
‖y‖ = supx≥x0

|xy(x)| and S the ball {y : (x0,∞) : ‖y‖ < a} where a > 1 (we
have to allow it to be slightly bigger than 1, by (2.48)).

To evaluate the norms of the operators involved in (2.50) we need the fol-
lowing relatively straightforward result.

Lemma 2.51 For x > x0 > m we have

e−s
∫ x

x0

ess−m ≤ |1−m/x0|−1x−m

PROOF In a sense, the proof is by integration by parts: for x > x0 > m
we have

exx−m ≤ |1−m/x0|−1(exx−m)′

and the result follows by integration.

Exercise 2.52 (i) Show that, if a > 1 and if x0 is sufficiently large, then
N is well defined on S and contractive there. Thus (2.50) has a unique fixed
point in S. How small can you make x0?

(ii) A slight variation of this argument can be used to prove the validity of
the expansion (2.48). If we write y = yN + δ(x) where yN is the sum of the
first N terms of the formal power series of y, then, by construction, yN will
satisfy the equation up to errors of order x−N−1. Write an integral equation
for δ and show that δ is indeed O(x−N−1).



Chapter 3

Review of some results in classical
asymptotics

3.0f Asymptotics of integrals: first results

Example: Integration by parts and elementary truncation to the
least term. A solution of the differential equation

f ′ − 2xf + 1 = 0 (3.1)

is related to the the complementary error function:

E(x) = ex
2
∫ ∞
x

e−s
2
ds =

√
π

2
ex

2
erfc(x) (3.2)

Let us find the asymptotic behavior of E(x) for x → +∞. One very simple
technique is integration by parts, done in a way in which the integrated terms
become successively smaller. A decomposition is sought such that in the
identity fdg = d(fg)− gdf we have gdf � fdg in the region of interest. Note
that there is no manifest perfect derivative in the integrand, but we can create
a suitable one by writing e−s

2
ds = −(2s)−1d(e−s

2
).

E(x) =
1

2x
− ex

2

2

∫ ∞
x

e−s
2

s2
ds =

1
2x
− 1

4x3
+

3ex
2

4

∫ ∞
x

e−s
2

s4
ds = ...

=
m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2 )

x2k+1
+

(−1)mex
2
Γ(m+ 1

2 )
√
π

∫ ∞
x

e−s
2

s2m
ds (3.3)

On the other hand, we have, by L’Hospital(∫ ∞
x

e−s
2

s2m
ds

)(
e−x

2

x2m+1

)−1

→ 1
2

as x→∞ (3.4)

and the last term in (3.3) is O(x−2m−1) as well. It is also clear that the
remainder in (3.3) is alternating and thus

m−1∑
k=0

(−1)k

2
√
π

Γ(k + 1
2 )

x2k+1
≤ E(x) ≤

m∑
k=0

(−1)k

2
√
π

Γ(k + 1
2 )

x2k+1
(3.5)

39
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if m is even.

Remark 3.6 In Exercise 1.38, we conclude F (z) has a Taylor series that at
zero,

F̃ (z) =
∞∑
k=0

(−1)k

2
√
π

Γ(k +
1
2

)z2m+1 (3.7)

and F (z) is C∞ on R and analytic away from zero.

Exercise 3.8 Show that z = 0 is an isolated singularity of F (z). Using Re-
mark 1.32, show that F is unbounded as 0 is approached along some directions
in the complex plane.

Notes. (1) The series (3.7) is not related in any immediate way to the Laurent
series of f at 0. Laurent series converge. Think carefully about this distinction
and why the positive index coefficients do not coincide.

(2) The rate of convergence of the Laurent series of F is slower as 0 is
approached, quickly becoming numerically useless. By contrast, the precision
gotten from (3.5) near zero is such that for z = 10 the relative error in
calculating f is about 5.3 · 10−42% (check) ! However, of course (3.5) is
divergent and it cannot be used to calculate exactly for any z.

3.0g Laplace’s method for linear ODEs with first order poly-
nomial coefficients

Equations of the form
n∑
k=0

(akx+ b)y(k) = 0 (3.9)

can be solved through explicit integral representations of the form∫
C
e−xpF (p)dp (3.10)

with F expressible by quadratures and where C is a contour in C, which has
to be chosen subject to the following conditions:

• The integral (3.10) should be convergent, together with sufficiently many
x-derivatives, and not identically zero.

• The function e−xpF (p) should vanish with sufficiently many derivatives
at the endpoints, or more generally, the contributions from the endpoints
when integrating by parts should cancel out.

Then it is clear that the equation satisfied by F is first order linear homoge-
neous, and then it can be solved by quadratures. It is not very difficult to
analyze this method in general, but this would be beyond the purpose of this
course.
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We illustrate the method on Airy’s equation

y′′ = xy (3.11)

Under the restrictions above we can check that F satisfies the equation

p2F = F ′ (3.12)

Then F = exp(p3/3) and we get a solution in the form

Ai(x) =
1

2πi

∫ ∞eπi/3
∞e−πi/3

e−xp+p
3/3dp (3.13)

along some curve that crosse the real line. It is easy to check the restrictions
for x ∈ R+, except for the fact that the integral is not identically zero. We
can achieve this at the same time as finding the asymptotic behavior of the
Ai function.

Solutions of differential or difference equations can be represented in the
form

F (x) =
∫ b

a

exg(s)f(s)ds (3.14)

with simpler g and f in wider generality, as it will become clear in later
chapters.

3.1 Laplace, stationary phase and saddle point methods

These deal with the behavior for large x of integrals of the form (3.14). We
distinguish three particular cases: (1) The case where all parameters are real
(dealt with by the so-called Laplace method); (2) The case where everything
is real except x which is purely imaginary (stationary phase method) and (3)
The case when f and g are analytic (steepest descent method). In this latter
case, the integral may also come as a contour integral along some path.
(1) The Laplace method. Even when very little regularity can be assumed
about the functions, we can still infer something about the large x behavior
of (3.14).

Proposition 3.15 If f(s) ∈ L∞([a, b]) then

lim
x→+∞

(∫ b

a

exf(s)ds

)1/x

= e‖f‖∞
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PROOF This is simply the fact that ‖f‖n → ‖f‖∞.

Note that this does not ensure even a first term in an asymptotic expansion
in the sense of (1.12). For that, more regularity is needed.

Heuristics. The intuitive idea is that if x is large and g has a unique ab-
solute maximum, the absolute maximum in s of φ(x; s) = exp(xg(s)) exceeds,
for large x, by a large amount the value of φ at any point neighboring point.
Then the contribution of the integral outside a tiny neighborhood of the max-
imum point is negligible. But in a neighborhood of the maximum point, both
f and g are very well approximated by their local expansion. For example,
assume the absolute maximum is at the left end, x = 0 and we have f(0) 6= 0
and g′(0) = −α < 0. Then,∫ a

0

exg(s)f(s)ds ≈
∫ a

0

exg(0)−αxsf(0)ds

≈ f(0)exg(0)

∫ ∞
0

e−αxsds = f(0)exg(0) 1
αx

(3.16)

Watson’s Lemma, proved in the sequel, is perhaps the ideal way to make the
previous argument rigorous, but for the moment we just make the approximate
reasoning into a proof following the same line of reasoning.

Proposition 3.17 (the case when g is maximum at one endpoint). Assume
f is continuous on [a, b], f(a) 6= 0, g is in C1[a, b] and g′ < −α < 0 on [a, b].
Then

Jx :=
∫ b

a

f(s)exg(s)ds =
f(a)exg(a)

x|g′(a)|
(1 + o(1)) (x→ +∞) (3.18)

Note: Since the derivative of g enters in the final result, regularity is clearly
needed.

PROOF Without loss of generality, we may assume a = 0, b = 1, f(0) > 0.
Let ε be small enough and choose δ such that if x < δ we have |f(x)−f(0)| < ε
and |g′(x)− g′(0)| < ε.
We write ∫ 1

0

f(s)exg(s)ds =
∫ δ

0

f(s)exg(s)ds+
∫ 1

δ

f(s)exg(s)ds (3.19)

the last integral in (3.19) is bounded by∫ 1

δ

f(s)exg(s)ds ≤ ‖f‖∞exg(0)ex(g(δ)−g(0)) (3.20)

For the middle integral in (3.19) we have
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∫ δ

0

f(s)exg(s)ds ≤ (f(0) + ε)
∫ δ

0

ex[g(0)+(g′(0)+ε)s]ds

≤ −e
xg(0)

x

f(0) + ε

g′(0) + ε

[
1− exδ(g

′(0)+ε)
]

(3.21)

Combining these estimates, as x→∞ we thus obtain

lim sup
x→∞

xe−xg(0)

∫ 1

0

f(s)exg(s)ds ≤ − f(0) + ε

g′(0) + ε
(3.22)

A lower bound is obtained in a similar way. Since ε is arbitrary, the result
follows.

When the maximum of g is reached inside the interval of integration, sharp
estimates require more regularity.

Proposition 3.23 (Interior maximum) Assume f ∈ C[−1, 1], g ∈ C2[−1, 1]
has a unique absolute maximum (say at x = 0) and that f(0) 6= 0 (say f(0) >
0) and g′′(0) < 0. Then

∫ 1

−1

f(s)exg(s)ds =

√
2π

x|g′′(0)|
f(0)exg(0)(1 + o(1)) (x→ +∞) (3.24)

PROOF The proof is similar to the previous one. Let ε be small enough
and let δ be such that |s| < δ implies |g′′(s)−g′′(0)| < ε and also |f(s)−f(0)| <
ε.
We write

∫ 1

−1

exg(s)f(s)ds =
∫ δ

−δ
exg(s)f(s)ds+

∫
|s|≥δ

exg(s)f(s)ds (3.25)

The last term will not contribute in the limit since by our assumptions for
some α > 0 and |s| > δ we have g(s)− g(0) < −α < 0 and thus

e−xg(0)
√
x

∫
|s|≥δ

exg(s)f(s)ds ≤ 2
√
x‖f‖∞e−xα → 0 as x→∞ (3.26)

On the other hand,
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∫ δ

−δ
exg(s)f(s)ds ≤ (f(0) + ε)

∫ δ

−δ
exg(0)+ x

2 (g′′(0)+ε)s2ds

≤ (f(0)+ε)exg(0)

∫ ∞
−∞

exg(0)+ x
2 (g′′(0)+ε)s2ds =

√
2π

|g′′(0)− ε|
(f(0)+ε)exg(0)

(3.27)

An inequality in the opposite direction is obtained in the same way by noting
that ∫ a

−a e
−xs2ds∫∞

−∞ e−xs2ds
→ 1 as x→∞ (3.28)

as can be seen by changing variables to u = sx−
1
2 .

With appropriate decay conditions, the interval of integration does not
have to be compact. For instance, let J ⊂ R be an interval (finite or not) and
[a, b] ⊂ J .

Proposition 3.29 (Interior maximum, noncompact interval) Assume f ∈
C[a, b] ∩ L∞(J), g ∈ C2[a, b] has a unique absolute maximum at x = c and
that f(c) 6= 0 and g′′(c) < 0.

Assume further that g is measurable in J and g(c)− g(s) = α+ h(s) where
α > 0, h(s) > 0 on J \ [a, b] and e−h(s) ∈ L1(J). Then,

∫ B

A

f(s)exg(s)ds =

√
2π

x|g′′(c)|
f(c)exg(c)(1 + o(1)) (x→ +∞) (3.30)

PROOF This case reduces to the compact interval case by noting that

∣∣∣∣∣√xe−xg(c)

∫
J\[a,b]

exg(s)f(s)ds

∣∣∣∣∣ ≤ √x‖f‖∞e−xα
∫
J

e−xh(s)ds

≤ Const.
√
xe−xα → 0 as x→∞ (3.31)

Example. We see that the last proposition applies to the Gamma function by
writing

n! =
∫ ∞

0

e−ttndt = nn+1

∫ ∞
0

en(−s+ln s)ds (3.32)
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whence we get Stirling’s formula

n! =
√

2πn
(n
e

)n
(1 + o(1)); n→ +∞

3.1a Watson’s Lemma

In view of the wide applicability of Écalle-Borel summability, for instance
to formal solutions of generic analytic differential equations as we shall see
later, many functions admit representations as Laplace transforms

(LF ) (x) :=
∫ ∞

0

e−xpF (p)dp (3.33)

The behavior of LF for large x relates to the behavior for small p of F .
For the error function note that∫ ∞

x

e−s
2
ds = x

∫ ∞
1

e−x
2u2

du =
x

2
e−x

2
∫ ∞

0

e−x
2p

√
p+ 1

dp

For the Gamma function, writing
∫∞

0
=
∫ 1

0
+
∫∞

1
in (3.32) we can make the

substitution t− ln t = p in each integral and obtain (see §3.1c )

n! = nn+1e−n
∫ ∞

0

e−npG(p)dp

Lemma 3.34 Let F ∈ L1(R+), x = ρeiφ, ρ > 0, φ ∈ (−π/2, π/2) and
assume

F (p) ∼ pβ as p→ 0+

with <(β) > −1. Then∫ ∞
0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ→∞)

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the
characteristic function of the set A and φ = arg(x). We choose C and a
positive so that |F (p)| < C|pβ | on [0, a]. Since

∣∣∣∣∫ ∞
a

F (p)e−pxdp
∣∣∣∣ ≤ e−xa‖F‖1 (3.35)

we have by dominated convergence, and after the change of variable s = p/|x|,

xβ+1

∫ ∞
0

F (p)e−pxdp = eiφ(β+1)

∫ ∞
0

sβU(s/|x|)χ[0,a](s/|x|)e−se
iφ

ds

+O(|x|β+1e−xa)→ Γ(β + 1) (|x| → ∞) (3.36)
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Watson’s Lemma
This important tool finds the asymptotic series at infinity of (LF )(x) provided
F (p) a series at zero.

Lemma 3.37 Let F ∈ L1(R+) and assume F (p) ∼
∑∞
k=0 ckp

kβ1+β2−1 as
p→ 0+ for some constants βi with <(βi) > 0, i = 1, 2. Then, for a ≤ ∞,

f(x) =
∫ a

0

e−xpF (p)dp ∼
∞∑
k=0

ckΓ(kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H.

Proof. Induction, using Lemma 3.34.

Remark 3.38 (i) Clearly, the asymptotic formula holds if
∫∞

0
is replaced by∫ a

0
, a > 0, since we can always extend F and the integral with zero for x > a.
(ii) The presence of Γ(kβ1 + β2) makes the large x series often divergent

even when F is analytic at zero. However, the asymptotic series of f is still
the term-by-term Laplace transform of the series of F at zero, whether a is
finite or not or the series converges or not. This freedom also shows that some
information is lost.

3.1b Applications. 1. Laplace’s method revisited

(i) Absolute maximum at left endpoint with nonvanishing deriva-
tive.

Proposition 3.39 Let g be analytic (smooth) on [a, b] where g′ < −α < 0.
Then the problem of finding the large x behavior of F in (3.14) is analytically
(resp. smoothly) conjugated to the canonical problem of the large x behavior
of ∫ g(b)

g(a)

exsH(s)ds = exg(a)

∫ g(a)−g(b)

0

e−xuH(g(a)− u)du (3.40)

with H(s) = f(ϕ(s))ϕ′(s)

This just means that is, we can reduce to (3.40) after analytic (smooth)
changes of variable, and the change is clear, g(s) = u, ϕ = g−1. The proof of
smoothness is immediate, and we leave it to the reader.

Note that we have not required that f(0) 6= 0 anymore. If H is smooth
and some derivative at zero is nonzero, Watson’s lemma clearly provides the
asymptotic expansion of the last integral in (3.40). The asymptotic series is
dual, as in Lemma 3.37 to the series of H at g(a).
(ii) Absolute maximum at an interior point with nonvanishing sec-
ond derivative.
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Proposition 3.41 Let g be analytic (smooth) on the interval a ≤ 0 ≤ b
(we assume at least one endpoint is nonzero, otherwise the problem is trivial)
where g′′ < −α < 0 and assume g(0) = 0. Then the problem of finding the
large x behavior of F in (3.14) is analytically (resp. smoothly) conjugated to
the canonical problem of the large x behavior of

∫ √|g(b)|
−
√
|g(a)|

e−xu
2
H(u)du

= −1
2

∫ −|g(a)|

0

e−xvH(−v 1
2 )v−

1
2 dv +

1
2

∫ |g(b)|
0

e−xvH(v
1
2 )v−

1
2 dv (3.42)

with H(s) = f(ϕ(s))ϕ′(s), ϕ2(s) = −g(u); Watson’s Lemma applies to the
last representation. If g, f ∈ Ck, then ϕ ∈ Ck−1 and H ∈ Ck−2.

PROOF We note that near zero g = −s2h(s) where h(0) = 1. Thus
√
h is

well defined and analytic (smooth) near zero; we choose the usual branch and
note that the implicit function theorem applies to the equation s

√
h(s) = u

throughout [a, b]. The rest is left to the reader.

Exercise 3.43 Assume H ∈ C∞ and a > 0. Show that the asymptotic be-
havior of ∫ a

−a
e−xu

2
H(u)du (3.44)

is given by

∞∑
l=0

1
2l!

∫ ∞
−∞

H(2l)(0)u2le−xu
2
du =

1
2

∞∑
l=0

Γ
(
l + 1

2

)
Γ(l + 1)

H(2l)(0)x−
1
2−l (3.45)

(This is a formal series, not expected to converge, in general.) In other words,
the classical asymptotic series is obtained by formal expansion of H at the crit-
ical point x = 0 and termwise integration, extending the limits of integration
to infinity and the odd terms do not contribute, by symmetry. The value of a
does not enter the formula, so once more, information is lost.

Exercise 3.46 Generalize (3.24) to the case when g ∈ C4[−1, 1] and the first
three derivatives vanish at the unique point of absolute maximum, s = 0.

Exercise 3.47 * Consider the problem (3.18) with f and g smooth and take
a = 0 for simplicity. Show that the asymptotic expansion of the integral
equals the one obtained by the following formal procedure: we expand f and
g in Taylor series at zero, replace f in the integral by its Taylor series,
keep ng′(0) in the exponent, reexpand eng

′′(0)s2/2!+··· in series in s, and in-
tegrate the resulting series term by term. The contribution of a term csm is
c(g′(0))−m−1m!/x−m−1.
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Exercise 3.48 (*) Consider now the inner maximum problem in the form
(3.24), with f and g smooth at zero. Formulate and prove a procedure similar
to the one in the previous problem. Now the odd terms can be discarded since
by symmetry they give a zero contribution. An even power cs2m gives rise to
a contribution c2m+1/2Γ(m+ 1/2)(g′′(0))−m−1/2x−m−1/2.

Exercise 3.49 (*) Use Exercise (3.47) to show that the Taylor coefficients
of the inverse function φ−1 can be obtained from the Taylor coefficients of φ
in the following way. Assume φ′(0) = 1. We let Pn(x), a polynomial in x, be
the n−th asymptotic coefficient of eyφ(x/y) as y →∞. The desired coefficient
is 1

n!

∫∞
0
e−xPn+1(x)dx.

3.1c 2. The Gamma function

We start from the representation

n! =
∫ ∞

0

tne−tdt = nn+1

∫ ∞
0

e−n(s−ln s)ds (3.50)

We can now use the results in §2.1d .4 and Watson’s Lemma to find the
behavior of n!. With s = 1 + z, z − ln(1 + z) = u2, dz = F (u)du we have

F (u) =
√

2 +
4
3
u+
√

2
6
u2 − 8

135
u3 +

√
2

216
u4 +

8
2835

u5 − · · · (3.51)

Exercise 3.52 (*) Note the pattern of signs: + + − − · · · . Show that this
pattern continues indefinitely.

We have, using Exercise 3.43,∫ ∞
0

e−n(s−ln s)ds ∼ nne−n
√

2
∫ ∞
−∞

(
1 +

u2

6
+ · · ·

)
e−nu

2
du (3.53)

or

n! ∼
√

2πnnne−n
(

1 +
1

12n
+

1
288n2

− 139
51840n3

+ ...

)
(3.54)

3.1d 3. Asymptotic expansions of differential equations

Consider the differential equation

y′ − y = x−2 − y3 (3.55)

for large x. If f behaves like a power series in inverse powers of x then y′ and
y3 are small, and we can proceed as in §2.1e to get, formally,

y(x) ∼ −x−2 + 2x−3 − 6x−4 + 24x−5 − 119x−6 + 708x−7 − 4926x−8 + · · ·
(3.56)
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How do we prove this rigorously? One way is to truncate the series in (3.56)
to n terms, say the truncate is yn, and look for solutions of (3.55) in the form
y(x) = yn(x) + δ(x). For δ(x) we write a contractive equation in a space of
functions with norm supx>x0

|xn+1δ(x)|.

Exercise 3.57 Carry out the construction above and show that there is a
solution with an asymptotic power series starting as in (3.56).

Alternatively, we can write an integral equation just for y, as in §2.1e and
show that it is contractive in a space of functions with norm supx>x0

|x2y(x)|.
Then, knowing that it is a contraction, we can iterate the operator a given
number of times, with controlled errors. First,

ex
∫ ∞
x

e−ss−2ds = ex
1
x

∫ ∞
1

e−xss−2ds =
1
x

∫ ∞
0

e−xs(1 + s)−2ds

∼ 1
x2
− 2
x3

+
6
x4
− 24
x5

+ · · · (3.58)

Then,

y(x) = ex
∫ x

∞
e−ss−2ds− ex

∫ x

∞
e−sy(s)3ds (3.59)

together with contractivity in the chosen norm implies

y(x) = ex
∫ x

∞
e−ss−2ds+ ex

∫ x

∞
e−sO(s−6)ds

=
1
x2
− 2
x3

+
6
x4
− 24
x5

+O(x−6) (3.60)

We can use (3.60) and (3.58) in (3.59) to obtain the asymptotic expansion of
y to O(x−10), and by induction, to all orders.

Exercise 3.61 Based on (3.60) and (3.58) show that y has an asymptotic
power series in the open right half plane. In particular, the asymptotic series
is differentiable (why?).

To find the power series of y, we can also note that the asymptotic series must
be a formal power series solution of (3.55) (why?). Say we want five terms of
the expansion. Then we insert y = a2s

−2 + a3s
−3 + a4s

−4 + a5s
−5 + a6x

−6

in (3.55) and solve for the coefficients. We get

1 + a2

x2
+

2a2 + a3

x3
+

3a3 + a4

x4
+

4a4 + a5

x5
+
a6 + 5a5 + a3

2

x6
= 0 (3.62)

and it follows immediately that

a2 = −1, a3 = 2, a4 = −6, a5 = 24, a6 = −119 (3.63)
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Note that the signs alternate! This is true to all orders and has a simple
explanation to which we will return later.

*
The integral in (3.13) can be brought to Watson’s Lemma setting by simple

changes of variables. First we put p = q
√
x and get

Ai(x) =
1

2πi
x1/2

∫ ∞eπi/3
∞e−πi/3

e−x
3/2(q−q3/3)dq (3.64)

We see that (q − q3/3)′ = 1− q2 = 0 iff q = ±1. We now choose the contour
of integration to pass through q = 1. It is natural to substitute q = 1 + z and
then the integral becomes

Ai(x) =
e−

2
3x

3/2
x1/2

2πi

[ ∫ 0

∞e−πi/3
e−x

3/2(z2+z3/3)dq+
∫ ∞eπi/3

0

e−x
3/2(z2+z3/3)dq

]
(3.65)

Along each path, the z2 + z3/3 = s has a unique well defined solution z1,2(s)
where we choose arg(z1)→ π/2, as s→ 0+. As z1 →∞eπi/3 we have s→∞
tangent to R+. We can homotopically deform the contour and write

Ai(x) =
e−2/3x3/2

x1/2

2πi

[ ∫ ∞
0

e−sx
3/2 dz1

ds
ds−

∫ ∞
0

e−sx
3/2 dz2

ds
ds
]

(3.66)

where the analysis proceeds as in the Gamma function case, invert z2 + z3/2
near zero and calculate the expansion to any number of orders.

Exercise 3.67 * Complete the details of the analysis and show that

Ai(x) =
1

2
√
πx1/4

e−
2
3x

3/2
(1 + o(1)) (x→ +∞) (3.68)

§2.1d .4.

Again, once we know that an asymptotic series exists, and it is differentiable
(by Watson’s Lemma), to obtain the first few terms of the asymptotic series
it is easier to deal directly with the differential equation, see also [3], pp.
101. We can proceed as follows. The expansion is not a power series, but its
logarithmic derivative is. We then substitute y(x) = ew(x) in the equation (a
simple instance of the WKB method, discussed later), we get (w′)2 +w′′ = x,
and for a power series we expect w′′ � (w′)2 (check that this would be true
if w is a differentiable asymptotic power series), and set the iteration scheme

(w′)n+1 = −
√
x− (w′n+1)′

and get

w′ = −
√
x− 1

4x
+

5
32
x−5/2 − 15

64
x−4 +

1105
2048

x−11/2 − · · ·
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and derive from it

y ∼ Const.e− 2
3x

3/2
(

1− 5
48
x−3/2 +

385
4608

x−3 − 85085
663552

x−9/2 + · · ·
)

and the constant is obtained by comparing to (3.68).
The Bessel equation. This is the equation

x2y′′ + xy′ + (x2 − ν2)y = 0 (3.69)

For ν = 0 we get
xy′′ + y′ + xy = 0 (3.70)

to which it is easy to apply Laplace’s method. We get

(p2Y )′ − pY + Y ′ = 0 ⇒ Y = C(p2 + 1)−1/2 (3.71)

We get solutions by taking contours from +∞, around a singularity and back
to infinity in ∫

C

e−xp√
p2 + 1

dp (3.72)

or around both branch points.

Exercise 3.73 * Find the relations between these integrals (we know that
there are exactly two linearly independent solutions to (3.70)).

To find the asymptotic behavior of an integral starting at ∞ + i − iε, going
around x = i and then to ∞+ i+ iε, we note that this integral equals

2
∫ ∞+i

i

e−xp√
p2 + 1

dp = 2e−ix
∫ ∞

0

e−xs√
s2 + 2is

ds

∼ e−ix
√
π

[
1− i√
x

+
1
8

1 + i

x3/2
− 9

128
1− i
x5/2

+ · · ·
]

(3.74)

by Watson’s lemma.

Exercise 3.75 * Using the binomial formula, find the general term in the
expansion (3.74).

3.1e 4. Borel-Ritt Lemma

Any asymptotic series at infinity is the asymptotic series in a half plane of
some (many in fact) entire functions. First a weaker result.

Proposition 3.76 Let f̃(z) =
∑∞
k=0 akz

k be a power series. There exists a
function f such that f(z) ∼ f̃(z) as z → 0.
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PROOF
The following elementary line of proof is similar to the technique of optimal

truncation of series, a very useful procedure in asymptotics.
By Remark 1.32 we can assume, without loss of generality, that the series

has zero radius of convergence.
For every z define N(z) = max{N : ∀ n ≤ N, |anzn/2| ≤ 2−n. We have

N(z) < ∞, otherwise, by Abel’s theorem, the series would have nonzero
radius of convergence. Noting that for any n we have n ln |z| ↓ −∞ as |z| ↓ 0
it follows that N(z) is nonincreasing as |z| decreases and that N(z) → ∞ as
z → 0. Consider

f(z) =
N(z)∑
j=0

anz
n

Let N be given and choose z0; |z0| < 1 such that N(z0) ≥ N . For |z| < |z0|
we have N(z) ≥ N(z0) ≥ N and thus

∣∣∣∣∣f(z)−
N∑
n=0

anz
n

∣∣∣∣∣ =

∣∣∣∣∣∣
N(z)∑

n=N+1

anz
n

∣∣∣∣∣∣ ≤
N(z)∑
j=N+1

|zj/2|2−j ≤ |z|N/2+1/2

Using now Lemma 1.13, the proof follows.

The function f is certainly not unique. Given a power series there are many
functions asymptotic to it. Indeed there are many functions asymptotic to the
(identically) zero power series at zero, in any sectorial punctured neighborhood
of zero in the complex plane, and even on the Riemann surface of the log on
C \ {0}, e.g. e−x

−1/n
has this property in a sector of width 2nπ.

Lemma 3.77 (Borel-Ritt) Given a formal power series f̃ =
∑∞
k=0

ck
xk+1

there exists an entire function f(x), of exponential order one, which is asymp-
totic to f̃ in the right half plane, i.e., if φ ∈ (−π/2, π/2) then

f(x) ∼ f̃ as x = ρeiφ, ρ→ +∞

PROOF Let F̃ =
∑∞
k=0

ck
(k−1)!p

k−1, let F (p) be a function asymptotic to

F̃ as in Proposition 3.76. Then clearly the function

f(x) =
∫ 1

0

e−xpF (p)dp

is entire, bounded by Const.e|x|, and, by Watson’s Lemma has the desired
properties.
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Exercises.
(1) How can this method be modified to give a function analytic in a sector
of opening 2πn for an arbitrary fixed n (not necessarily entire or with given
growth) which is asymptotic to f̃?

(2) Assume F is bounded on [0, 1] and has an asymptotic expansion F (t) ∼∑∞
k=0 ckt

k as t→ 0+. Let f(x) =
∫ 1

0
e−xpF (p)dp

(a) Find necessary and sufficient conditions on F such that f̃ , the asymp-
totic power series of f for large positive x, is a convergent series for |x| > R >
0.

(b) Assume that f̃ converges to f . Show that f is zero.
(c) Show that in case (a) if F is analytic in a neighborhood of [0, 1] then

f = f̃ + e−xf̃1 where f̃1 is convergent for |x| > R > 0.

(3) The width of the sector in Proposition 3.77 cannot be extended to a more
than a half plane: Show that if f is entire, of exponential order one, and
bounded in a sector of opening exceeding π then it is constant. (This follows
immediately from the Phragmen-Lindelöf principle; an alternative proof can
be derived from elementary properties of Fourier transforms and contour de-
formation.) The exponential order has to play a role in the proof: check that
the function

∫∞
0
e−px−p

2
dp is bounded for arg(x) ∈ (− 3π

4 ,
3π
4 ). How wide can

such a sector be made?

3.2 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
look at the case where there is minimal regularity; the following is a version
of the Riemann–Lebesgue lemma.

Proposition 3.78 Assume f ∈ L1[0, 2π]. Then
∫ 2π

0
eixtf(t)dt → 0 as x →

±∞.

It is enough to show the result on a set which is dense in L1. Since trigono-
metric polynomials are dense in C[0, 2π] in the sup norm, and thus in L1[0, 2π],
it suffices to look at trigonometric polynomials, thus (by linearity), at eikx for
fixed k; the latter integral can be expressed explicitly and gives∫ 2π

0

eixseiksds = O(x−1) for large x.
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No rate of decay of the integral in the Proposition follows without further
knowledge about the regularity of f . With some regularity we have the fol-
lowing characterization.

Proposition 3.79 For η ∈ (0, 1] let the Cη[0, 1] be the Hölder continuous
functions of order η on [0, 1], i.e., the functions with the property that there
is some C such that for all x, x′ ∈ [0, 1] we have |f(x)− f(x′)| ≤ C|x− x′|η.

(i) We have

f ∈ Cη[0, 1]⇒
∣∣∣∣∫ 1

0

f(s)eixsds
∣∣∣∣ ≤ 1

2
Cπηx−η +O(x−1) as x→∞ (3.80)

(ii) If f ∈ L1(R) and |x|ηf(x) ∈ L1(R) with η ∈ (0, 1], then its Fourier
transform f̂ =

∫∞
−∞ f(s)e−ixsds is in Cη(R).

(iii) Let f ∈ L1(R). If xnf ∈ L1(R) with n ∈ N then f̂ is n − 1 times
differentiable, with the n − 1th derivative Lipschitz continuous. If e|Ax|f ∈
L1(R) then f̂ extends analytically in a strip of width |A| centered on R.

PROOF (i) We have as x→∞ (b ·c denotes the integer part)

∣∣∣∣∫ 1

0

f(s)eixsds
∣∣∣∣ =∣∣∣∣∣∣

b x2π−1c∑
j=0

(∫ (2j+1)πx−1

2jπx−1
f(s)eixsds+

∫ (2j+2)πx−1

(2j+1)πx−1
f(s)eixsds

)∣∣∣∣∣∣+O(x−1)

=

∣∣∣∣∣∣
b x2π−1c∑
j=0

∫ (2j+1)πx−1

2jπx−1

(
f(s)− f(s+ π/x)

)
eixsds

∣∣∣∣∣∣+O(x−1)

≤
b x2π−1c∑
j=0

C
(π
x

)η π
x
≤ 1

2
Cπηx−η +O(x−1) (3.81)

(ii) We see that

∣∣∣∣∣ f̂(s)− f̂(s′)
(s− s′)η

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

eixs − eixs′

xη(s− s′)η
xηf(x)dx

∣∣∣∣∣ ≤
∫ ∞
−∞

∣∣∣∣∣ eixs − eixs
′

(xs− xs′)η

∣∣∣∣∣∣∣∣xηf(x)
∣∣∣dx

(3.82)
is bounded. Indeed, by elementary geometry we see that for |φ1−φ2| < π we
have

| exp(iφ1)− exp(iφ2)| ≤ |φ1 − φ2| ≤ |φ1 − φ2|η (3.83)

while for |φ1 − φ2| ≥ π we see that

| exp(iφ1)− exp(iφ2)| ≤ 2 ≤ 2|φ1 − φ2|η
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(iii) Follows in the same way as (ii), using dominated convergence.

Exercise 3.84 Complete the details of this proof. Show that for any η ∈ (0, 1]
and all φ1,2 ∈ R we have | exp(iφ1)− exp(iφ2)| ≤

√
2|φ1 − φ2|η.

Exercise 3.85 (*) (a) Consider the function f given by the lacunary trigono-
metric series f(z) =

∑
k=2n,n∈N k

−ηeikz, η ∈ (0, 1). Show that f ∈ Cη[0, 2π].
One way is to write φ1,2 as a1,22−p, use the first inequality in (3.83) to esti-
mate the terms in f(φ1) − f(φ2) with n < p and the simple bound 2/kη for
n ≥ p. Then it is seen that

∫ 2π

0
e−iksf(s)ds = 2πk−η and the decay of the

Fourier transform is exactly given by (3.80).
(b) Use Proposition 3.79 and the result in Exercise 3.85 to show that the

function f(t) =
∑
k=2n,n∈N k

−ηtk, analytic in the open unit disk, has no
analytic continuation across the unit circle, that is, the unit circle is a barrier
of singularities for f .

Note 3.86 Dense nondifferentiability is the only way one can get very poor
decay, see also Exercise 3.94.

Notes. In part (i), compactness of the interval is crucial. In fact, the Fourier
transform of an L2(R+) entire function may not necessarily decrease point-
wise. Indeed, the function f̂(x) = 1 on the interval [n, n+e−n

2
] for n ∈ N and

zero otherwise is in L1(R) and further has the property that e|Ax|f̂ ∈ L1(R)
for any A ∈ R, and thus F−1f̂ is entire. Thus f̂ is the Fourier transform
of an entire function, it equals F−1f̂ a.e., and nevertheless it does not decay
pointwise as x→∞. Evidently the issue here is poor behavior of f at infinity,
otherwise integration by parts would show decay.
(2) It is worth noting that in Laplace type integrals Watson’s Lemma implies
that it suffices for a function to be continuous to ensure an O(x−1) decay of
the integral whereas in Fourier-like integrals, the considerably weaker decay
(3.80) is optimal.

Proposition 3.87 Assume f ∈ Cn[a, b]. Then we have

∫ b

a

eixtf(t)dt = eixa
n∑
k=1

ckx
−k + eixb

n∑
k=1

dkx
−k + o(x−n)

= eixt
(
f(t)
ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)
(ix)n

)∣∣∣∣b
a

+ o(x−n) (3.88)

PROOF This follows by integration by parts and the Riemann-Lebesgue
Lemma since
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∫ b

a

eixtf(t)dt = eixt
(
f(t)
ix
− f ′(t)

(ix)2
+ ...+ (−1)n−1 f

(n−1)(t)
(ix)n

)∣∣∣∣b
a

+
(−1)n

(ix)n

∫ b

a

f (n)(t)eixtdt (3.89)

Corollary 3.90 (1) Assume f ∈ C∞[0, 2π] is periodic with period 2π. Then∫ 2π

0
f(t)eint = o(n−m) for any m > 0 as n→ +∞, n ∈ Z.

(2) Assume f ∈ C∞0 [a, b], a smooth function which vanishes with all deriva-
tives at the endpoints; then f̂(x) =

∫ b
a
f(t)eixt = o(x−m) for any m > 0 as

x→ +∞.

Exercise 3.91 Show that if f is analytic in a neighborhood of [a, b] but not
entire, then both series in (3.88) have zero radius of convergence.

Exercise 3.92 In Corollary 3.90 (2) show that lim supx→∞ eε|x||f̂(x)| = ∞
for any ε > 0 unless f = 0.

Exercise 3.93 For smooth f , the interior of the interval does not contribute
because of cancellations: rework the argument in the proof of Proposition 3.79
under smoothness assumptions. If we write f(s+ π/x) = f(s) + f ′(s)(π/x) +
1
2f
′′(c)(π/x)2 cancellation is manifest.

Exercise 3.94 Show that if f is piecewise differentiable and the derivative
is in L1, then the Fourier transform is O(x−1).

3.2 .1 Oscillatory integrals with monotonic phase

Proposition 3.95 Let the real valued functions f ∈ Cm[a, b] and g ∈ Cm+1[a, b]
and assume g′ 6= 0 on [a, b]. Then∫ b

a

f(t)eixg(t)dt = eixg(a)
m∑
k=1

ckx
−k + eixg(b)

m∑
k=1

dkx
−k + o(x−m) (3.96)

as x → ±∞, where the coefficients ck and dk can be computed by Taylor
expanding f and g at the endpoints of the interval of integration.

This essentially follows from Proposition 3.39, since the problem is amenable
by smooth transformations to the setting of Proposition 3.87. Carry out the
details.
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3.3 Stationary phase method

In general, the behavior of oscillatory integrals of the form (3.96) comes
from:

• Endpoints

• Stationary points

• Singularities of f or g.

We consider now the case when g(s) has a stationary point inside the in-
terval [a, b]. In this case the main contribution to the integral on the lhs of
(3.96) comes from a neighborhood of the stationary point of g since around
that point the oscillations that make the integral small are less rapid.

We have the following result:

Proposition 3.97 Assume f, g are real valued C∞[a, b] functions and that
g′(c) = 0 g′′(x) 6= 0 on [a, b]. Then for any m ∈ N we have

∫ b

a

f(s)eixg(s)ds = eixg(c)
2m∑
k=1

ckx
−k/2

+ eixg(a)
m∑
k=1

dkx
−k + eixg(b)

m∑
k=1

ekx
−k + o(x−m) (3.98)

for large x, where the coefficients of the expansion can be calculated by Taylor
expansion around a, b and c of the integrand as follows from the proof. In
particular, we have

c1 =

√
2πi
g′′(c)

f(c)

PROOF Again, by smooth changes of variables, the problem is amenable
to the problem of the behavior of

J =
∫ a

−a
H(u)eixu

2
du (3.99)
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which is given, as we will see in a moment, by

J ∼
∑
k≥0

(
e−ixa

2
∫ i∞eiπ/4

−a

H(k)(−a)
k!

(u+ a)keixu
2
du

−eixa
2
∫ i∞eiπ/4

a

H(k)(a)
k!

(u− a)keixu
2
du+

∫ i∞eiπ/4

−∞e−iπ/4

H(2k)(0)
2k!

u2keixu
2
du

)
(3.100)

in the sense that J minus a finite number of terms of the series is small on
the scale of the last term kept.

For a conveniently small ε we break the integral and are left with estimating
the three integrals problems

J1 =
∫ −ε
−a

H(u)eixu
2
du; J2 =

∫ a

ε

H(u)eixu
2
du; J3 =

∫ ε

−ε
H(u)eixu

2
du

By smooth changes of variables, J1 is turned into∫ a2

ε2
H1(v)eixvdv (3.101)

where H,H1 are smooth. Proposition 3.87 applies to the integral (3.101); J3

is treated similarly. For the second integral we write

J2 −
m∑
l=0

H(k)(0)
k!

∫ ε

−ε
ukeixu

2
du

=
∫ ε

−ε
um+1eixu

2
F (u)du =

∫ ε2

0

v
m−1

2 F1(v)eixvdu (3.102)

where F1 is smooth. We can integrate by parts m/2 times in the last inte-
gral. Thus, combining the results from the two cases, we see that J has an
asymptotic series in powers of x−1/2. Since there exists an asymptotic series,
we know it is unique. Then, the series of J cannot of course depend on an
arbitrarily chosen parameter ε. Thus, we do not need to keep any endpoint
terms at ±ε: they cancel out.

Note It is easy to see that in the settings of Watson’s Lemma and of Propo-
sitions 3.87, 3.95 and 3.97 the asymptotic expansions are differentiable, in
the sense that the integral transforms are differentiable and their derivative
is asymptotic to the formal derivative of the associated expansion.

3.3a Analytic integrands

In this case, contour deformation is used to transform oscillatory exponen-
tials with decaying ones. A classical result in this direction is the following.
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Proposition 3.103 (Fourier coefficients of analytic functions) Assume
f is periodic of period 2π, analytic in the strip {z : |=(z)| < R} and contin-
uous in its closure. Then the Fourier coefficients cn(2π)−1

∫ 2π

0
eintf(t)dt are

o(e−|n|R) for large |n|. Conversely, if cn = o(e−|n|R), then f is analytic in
the given strip.

PROOF We take n > 0 the opposite case being very similar. By analyt-
icity we have

∫ 2π

0

eintf(t)dt =
∫ iR

0

eintf(t)dt+
∫ iR+2π

iR

eintf(t)dt−
∫ 2π+iR

2π

eintf(t)dt

The first and last integrals on the rhs cancel by periodicity while the middle
one equals

e−nR
∫ 2π

0

einsf(s+ iR)ds = o(e−nR) as n→∞

The converse is straightforward.

3.3b Examples

Example 1. Consider the problem of finding the asymptotic behavior of the
integral

I(n) =
∫ π

−π

e−int

2− eit
dt :=

∫ π

−π
F (t)dt

as n → ∞. We see by corollary 3.90 that J = o(x−m) for any m ∈ N.
Proposition 3.103 tells us more, namely that the integral is exponentially
small. But both methods only give us upper bounds for the decay, and no
detailed description.

In this simple example however we could simply expand convergently the
integrand and use dominated convergence:∫ π

−π

e−int

2− eit
=
∫ π

−π

∞∑
k=0

2−k−1e−it(n−k) =
∞∑
k=0

∫ π

−π
2−k−1e−it(n−k) = 2−nπ

In case n < 0 we get I(n) = 0. If we have x /∈ N instead of n we could try
same, but in this case we end up with

i(e−2πix − 1)
∞∑
k=0

(−2)−k−1

x− k

which needs further work to extract an asymptotic behavior in x.



60 Asymptotics and Borel summability

Exercise 3.104 Make use of the argument below, leading to (3.105) to find
the behavior as y → +∞ of

∞∑
k=0

ak

y + k
; (|a| < 1)

We can alternatively apply a more general method to estimate the integral,
using deformation of contour. The point is to try to express J in terms of
integrals along paths of constant phase of e−int. Then Watson’s lemma would
be applicable. Note that F is analytic in C \ {−i ln 2 + 2kπ}k∈Z and mero-
morphic in C. Furthermore, as N →∞ we have F (t− iN)→ 0 exponentially
fast. This allows us to push the contour of integration down, in the following
way. We have ∮

C

F (t)dt = 2πi res
(
F (t); t = −i ln 2

)
= −π2−x

where the contour C of integration is an anticlockwise rectangle with vertices
−π, π,−iN + π,−iN − π with N > ln 2. As N → ∞ the integral over the
segment from −iN + π to −iN − π goes to zero exponentially fast, and we
find that ∫ π

−π
F (t)dt =

∫ −π−i∞
−π

F (t)dt−
∫ π−i∞

π

F (t)dt+ π2−x

I(x) = −i(eixπ − e−ixπ)
∫ ∞

0

e−xs

2 + es
ds+π2−x = 2 sinπx

∫ ∞
0

e−xs

2 + es
ds+π2−x

Watson’s Lemma now applies and we have∫ ∞
0

e−xs

2 + es
ds ∼ 1

3x
− 1

9x2
− 1

27x3
+

1
27x4

+
5

81x5
− 7

243x6
+ ...

and thus

I(x) ∼ 2 sinπx
(

1
3x
− 1

9x2
− 1

27x3
+

1
27x4

+
5

81x5
− 7

243x6
+ ...

)
(3.105)

whenever the prefactor in front of the series is not too small. More generally,
the difference between I(x) and the m-th truncate of the expansion is o(x−m).
Or, the function on the left hand side can be decomposed in two functions
using Euler’s formula, each of which has a nonvanishing asymptotic expansion.
This is the way to interpret similar asymptotic expansions, which often occur
in the theory of special functions, when the expansions involve trigonometric
functions. But none of these characterizations tells us what happens when
the prefactor is small. Does the function vanish when sinπx = 0? Not for
n > 0. Another reason to be careful with relations of the type (3.105).
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3.3b .1 Note on exponentially small terms

In our case we have more information: if we add the term π2−x to the
expansion and write

I(x) ∼ 2 sinπx
(

1
3x
− 1

9x2
− 1

27x3
+

1
27x4

+
5

81x5
− 7

243x6
+ ...

)
+ π2−x

(3.106)
then the expansion is valid when x→ +∞ along the positive integers, a rather
trivial case since only π2−x survives. But we have trouble interpreting the
expansion (3.106) when x is not an integer! The expression (3.106) is not of
the form (1.8) nor can we extend the definition to allow for π2−x since 2−x is
asymptotically smaller than any term of the series, and no number of limits
as in Definition 1.11 would reveal it. We could try to subtract out first the
whole series preceding the exponential from I(x) to see “what is left”, but
this subtraction is not well defined either since the series has zero radius of
convergence. (The divergence follows from the fact that the term of order k
of the series is, by Watson’s Lemma, k! times the Maclaurin coefficient of the
function (2 + es)−1 and this function is not entire.)

We may nevertheless have the feeling that (3.106) is correct “somehow”.
Indeed it is, in the sense that (3.106) is the complete transseries of J , as we
will see in Chapter 4.

*

3.4 Steepest descent method

Consider the problem of finding the large x behavior of an integral of the
form ∫

C

f(s)exg(s)ds (3.107)

where g is analytic and f is meromorphic in a domain in the complex plane
of the contour C and x is a large parameter.

As in the Example 1 on p. 59, the key idea is to use deformation of contour
to bring the integral to one which is suitable to the application of the Laplace
method. We can assume without loss of generality that x is real and positive.

(A) Let g = u + iv and let us first look at the simple case where C ′ is a
curve such that v = K is constant along it. Then

∫
C′
f(s)exg(s)ds = exiK

∫
C′
f(s)exu(s)ds = exiK

∫ 1

0

f(γ(t))exu(γ(t))γ′(t)dt
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is in a form suitable for Laplace’s method.
The method of steepest descent consists in using the meromorphicity of

f , analyticity of g to deform the contour of integration such that modulo
residues, the original integral can be written as a sum of integrals of the type
C ′ mentioned. The name steepest descent comes from the following remark.
The lines of v =constant are perpendicular to the direction of ∇v. As a
consequence of the Cauchy-Riemann equations we have ∇u ·∇v = 0 and thus
the lines v =constant are lines of steepest variation of u therefore of |exg(s)|.
On the other hand, the best way to control the integral is to go along the
descent direction. The direction of steepest descent of u is parallel to −∇u.
Thus the steepest descent lines are the integral curves of the ODE system
ODEs

ẋ = −ux(x, y); ẏ = −uy(x, y) (3.108)

We first look at some examples, and then discuss the method in more gener-
ality.

Example 2. The Bessel function J0(ξ) can be written as 1
πRe I, where

I =
∫ π/2

−π/2
eiξ cos tdt (3.109)

Suppose we would like to find the behavior of J0(ξ) as ξ → +∞. It is conve-
nient to find the steepest descent lines by plotting the phase portrait of the
flow (3.108), which in our case is

ẋ = − cosx sinh y; ẏ = − sinx cosh y (3.110)

and which is easy to analyze by standard ODE means.

I =
∫ −π/2+i∞

−π/2
eiξ cos tdt+

∫
γ

eiξ cos tdt+
∫ π/2−i∞

π/2

eiξ cos tdt (3.111)

as shown in the figure.
All the curves involved in this decomposition of I are lines of constant imag-

inary part of the exponent, and the ordinary Laplace method can be applied
to find their asymptotic behavior for ξ → +∞ (note also that the integral
along the curve γ, called Sommerfeld contour, is the only one contributing
to J0, the other two being purely imaginary, as it can be checked by making
the changes of variable t = −π/2 ± is). Then, the main contribution to the
integral comes from the point along γ where the real part of the exponent is
maximum, that is z = 0. We then expand cos t = 1− t2/2 + t4/4! + · · · keep
the first two terms in the exponent and expand the rest out:
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FIGURE 3.1: Relevant contours for J0

∫
γ

eiξ cos tdt ∼ eix
∫
γ

e−iξt
2/2(1 + iξt4/4! + · · · )dt

∼
∫ ∞e−iπ/4
∞e3iπ/4

e−iξt
2/2(1 + iξt4/4! + · · · )dt (3.112)

and integrate term by term. Justifying this rigorously would amount to re-
doing parts of the proofs of theorems we have already dealt with. Whenever
possible, Watson’s Lemma is a shortcut, often providing more information as
well. We will use it for (3.109) in Example 4.

*
Example 3. We know by Watson’s Lemma that for a function F which has a

nontrivial power series at zero, LF =
∫∞

0
e−xpF (p)dp decreases algebraically

as x→∞. We also know by Proposition 2.6 that regardless of F 6≡ 0 ∈ L1, LF
cannot decrease superexponentially. What happens if F has a rapid oscillation
near zero? Consider for x→ +∞ the integral

I :=
∫ ∞

0

e−xp cos(1/p)dp (3.113)

It is convenient to write

I = <
∫ ∞

0

e−xpe−i/pdp = <I1 (3.114)
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FIGURE 3.2: Constant phase lines for t+ i/t passing through the saddle
point t =

√
i.

To bring this problem to the steepest descent setting, we make the substitu-
tion p = t/

√
x. Then I1 becomes

I1 = x−1/2

∫ ∞
0

e−
√
x(t+i/t)e−i/pdp (3.115)

The constant imaginary part lines of interest now are those of the function
t + i/t. This function has saddle points at (t + i/t)′ = 0 i.e. t = ±

√
i. We

see that t =
√
i = t0 is a maximum point for −<g := −<(t + i/t) and the

main contribution to the integral is from this point. We have, near t = t0
g = g(t0) + 1

2g
′′√t0(t− t0)2 + · · · and thus

I1 ∼ x−1/2e−
√

2(1+i)
√
x

∫ ∞
−∞

exp
[(
−1

2
+
i

2

)√
2x(t− t0)2

]
(3.116)

and the behavior of the integral is, roughly, e−
√
x, decaying faster than powers

of x but slower than exponentially. The calculation can be justified mimicking
the reasoning in Proposition 3.23. But this integral too can be brought to a
form suitable for Watson’s Lemma, as in (B) below.

Exercise 3.117 Finish the calculations in this example.
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FIGURE 3.3: Steepest descent lines for <[i cos(x+ iy)]

3.4a Some general remarks about steepest descent lines

Assume for simplicity that g is nonconstant entire and f is meromorphic.
We can let the points on the curve C = (x0(τ), y0(τ)); τ ∈ [0, 1] evolve with
(3.108) keeping the endpoints fixed. More precisely, at time t consider the
curve t 7→ C(t) = C1 ∪C2 ∪C3 where C1 = (x(s, x0(0)), y(s, y0(0)); s ∈ [0, t),
C2 = x(t, x0(τ)), y(t, y0(τ)), τ ∈ (0, 1)) and C3 = (x(s, x0(1)), y(s, y0(1)); s ∈
[0, t). Clearly, if no poles of f are crossed,∫

C

f(s)exg(s)ds =
∫
C(t)

f(s)exg(s)ds (3.118)

We can see that z(t, x0(τ)) = (x(t, x0(τ)), y(t, x0(τ))) has a limit as t → ∞
on the Riemann sphere, since u is strictly decreasing along the flow:

d

dt
u
(
x(t), y(t)

)
= −u2

x − u2
y (3.119)

There can be no closed curves along which v = K =const. or otherwise we
would have v ≡ K. since v is harmonic. Thus steepest descent lines extend to
infinity. They may pass through saddle points of u (and g: ∇u = 0⇒ g′ = 0)
where their direction can change non-smoothly. These are equilibrium points
of the flow (3.108).
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Define S as the smallest forward invariant set with respect to the evolution
(3.108) which contains (x0(0), y0(0)), all the limits in C of z(t, x0(τ)) and the
descent lines originating at these points. The set S is a union of steepest
descent curves of u, S = ∪nj=1Cj and, if sj are poles of f crossed by the curve
C(t) we have, under suitable convergence assumptions1,

∫
C

f(s)exg(s)ds =
n′≤n∑
j=1

∫
Cn

f(s)exg(s)ds+2πi
∑
j

Res(f(s)exg(s))s=sj (3.120)

and the situation described in (A) above has been achieved.
One can allow for branch points of f , each of which adds a contributions of

the form ∫
C

δf(s)exg(s)ds

where C is a cut starting at the branch point of f , along a line of steepest
descent of g, and δf(s) is the jump across the cut of f .

3.4b Reduction to Watson’s Lemma

It is often more convenient to proceed as follows.
We may assume we are dealing with a simple smooth curve. We assume

g′ 6= 0 at the endpoints (the case of vanishing derivative is illustrated shortly
on an example). Then, possibly after an appropriate small deformation of C
we have g′ 6= 0 along the path of integration C and g is invertible in a small
enough neighborhood D of C. We make the change of variable g(s) = −τ
and note that the image of C is smooth and has at most finitely many self-
intersections. We can break this curve into piecewise smooth, simple curves.
If the pieces are small enough, they are homotopic to straight lines; we get

N∑
n=1

∫ cn+1

cn

f (s(τ)) e−xτ
ds

dτ
dτ (3.121)

We calculate each integral in the sum separately. Without loss of generality
we take n = 1, c1 = 0 and c2 = i:

I1 =
∫ i

0

f(s(τ))e−xτs′(τ)dτ (3.122)

1Convergence assumptions are required, as can be seen by applying the described procedure
to very simple integral Z i

0
exe−zdz

The procedure described in (B) is better in many respects.
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The lines of steepest descent for I1 are horizontal, towards +∞. Assuming
suitable analyticity and growth conditions and letting H(τ) = f(s(τ))s′(τ)
we get I1 equals

I1 =
∫ ∞

0

e−xτH(τ)dτ −
∫ i+∞

i

H(τ)e−xτdτ

− 2πi
∑
j

Res
(
H(τ)e−xτ

)
s=sj

+
∑
j

∫ dj+∞

dj

δH(τ)e−xτdτ (3.123)

where the residues come from poles of H in the strip S = {x+ iy : x > 0, y ∈
[0, 1]}, while dj are branch points of H in S, assumed integrable, and δH
denotes the jump of H across the branch cut. If more convenient, one can
alternatively subdivide C such that g′ is nonzero on the (open) subintervals.
Example 4. In the integral (3.109) we have, using the substitution cos t = iτ ,

∫ π/2

−π/2
eiξ cos tdt = 2

∫ π/2

0

eiξ cos tdt = −2i
∫ 0

−i

e−ξτ√
1 + τ2

dτ = 2i
∫ ∞

0

e−ξτ√
1 + τ2

dτ

− 2i
∫ −i+∞
−i

e−ξτ√
1 + τ2

dτ = 2i
∫ ∞

0

e−ξτ√
1 + τ2

dτ − 2ieiξ
∫ ∞

0

e−ξs√
−2is+ s2

ds

(3.124)

to which Watson’s Lemma applies.
Exercise. Find the asymptotic behavior for large x of∫ 1

−1

eixs

s2 + 1
ds

3.5 Asymptotics of Taylor coefficients

There is dual relation between the behavior of the Taylor coefficients of an
analytic function and the structure of its singularities in the complex plane.
We will study a few examples in which this relationship is exhibited.

Proposition 3.125 Assume f is analytic in the open disk of radius R + ε
with N cuts zn = Reiφn , and in a neighborhood of zn f has a convergent
Puiseux series

f(z) = (z − zn)β
[n]
1 A

[n]
1 (z) + ...+ (z − zn)β

[n]
m A[n]

m (z) +A
[n]
m+1(z)
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R

R+ε

FIGURE 3.4: Deformation of the Cauchy contour.

where A
[n]
1 , ..., A

[n]
m+1 are analytic in a neighborhood of z = zn (and we can

assume β[n]
i 6∈ N ∪ {0}). With ck = f (k)(0)/k!, we have

ck ∼ R−k
N∑
l=1

e−ikφl

k−β[l]
1 −1

∞∑
j=0

c
[l]
j;1

kj
+ ...+ k−β

[l]
m−1

∞∑
j=0

c
[l]
j;m

kj

 (3.126)

where the coefficients c[n]
j;m can be calculated from the Taylor coefficients of the

functions A[n]
1 , ..., A

[n]
m , and conversely, this asymptotic expansion determines

the functions A[n]
1 , ..., A

[n]
m .

PROOF We have

ck =
1

2πi

∮
f(s)
sk+1

ds

where the contour is a small circle around the origin. This contour can be
deformed, by assumption, to the dotted contour in the figure. The integral
around the circle of radius R+ ε can be estimated by

1
2π

∣∣∣∣∣
∮
CR+ε

f(s)
sk+1

ds

∣∣∣∣∣ ≤ ‖f‖∞(R+ ε)−k−1 = O((R+ ε)−k−1)
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and does not participate in the series (3.126), since it is smaller than R−k

times any power of k, as k →∞. Now the contribution from each singularity
is of the form

1
2π

∫
Bl

f(s)
sk+1

ds

where Bl is an open dotted box around the branch cut at Reiφl as in the
figure, so it is enough to determine the contribution of one of them, say z1.
By the substitution f1(z) = f(Reiφ1z), we reduce ourselves to the case R = 1,
φ = 0. We omit for simplicity the superscript “[1]”.

The integral along B1 is a sum of integrals of the form

1
2πi

∫
C

(s− 1)βA(s)s−k−1ds (3.127)

We can restrict ourselves to the case when β is not an integer, the other case
being calculable by residues.

Assume first that (i) <(β) > −1. We then have

1
2πi

∫
C

(s− 1)βA(s)s−k−1ds = −eπiβ sin(πβ)
π

∫ 1+ε

1

(s− 1)βA(s)s−k−1ds

(3.128)
with the branch choice ln(s−1) > 0 for s ∈ (1,∞). It is convenient to change
variables to s = eu. The rhs of (3.128) becomes

−eπiβ sin(πβ)
π

∫ ln(1+ε)

0

uβ
(
eu − 1
u

)β
A(eu)e−kudu (3.129)

where A(eu) and [u−1(eu − 1)]β are analytic at u = 0, the assumptions of
Watson’s Lemma are satisfied and we thus have

∫
C

(s− 1)βA(s)s−k−1ds ∼ k−β−1
∞∑
j=0

dj
kj

(3.130)

where the dj can be calculated straightforwardly from the Taylor coefficients
of A[u−1(eu − 1)]β . The proof when <β ≤ −1 is by induction. Assume that
(3.130) holds for all for <(β) > −m with 1 ≤ m0 ≤ m. One integration by
parts gives
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∫
C

(s− 1)βA(s)s−k−1ds =
(s− 1)β+1

β + 1
A(s)s−k−1|C

− 1
β + 1

∫
C

(s− 1)β+1[A(s)s−k−1]′ds = O((R+ ε)−k−1)

+ k
1 + 1/k
β + 1

∫
C

(s− 1)β+1A(s)s−k−2ds− 1
β + 1

∫
C

(s− 1)β+1A′(s)s−k−1ds

(3.131)

By assumption, (3.130) applies with β + 1 ↔ β to both integrals in the last
sum and the proof is easily completed.

3.6 Singularities of differential equations

We first review briefly some basic notions about singularities of linear differ-
ential equations.

3.6a Linear meromorphic differential equations. Regular
and irregular singularities

A linear meromorphic m-th order differential equation has the canonical
form

y(m) +Bm−1(x)y(m−1) + ...+B0(x)y = B(x) (3.132)

where the coefficients Bj(x) are meromorphic near x0. We note first that any
equation of the form (3.132) can be brought to a homogeneous meromorphic
of order n = m+ 1

y(n) + Cn−1(x)y(n−1) + ...+ C0(x)y = 0 (3.133)

by applying the operator B(x) d
dx

1
B(x) to (3.132). We want to look at the

possible singularities of the solutions y(x) of this equation. Note first that by
the general theory of linear differential equations (or by a simple fixed point
argument) if all coefficients are analytic at a point x0 then the general solution
is also analytic. Such a point is called regular point. Solutions of linear ODEs
can only be singular because of singularities in the coefficients.

The main distinction is made with respect to the type of local solutions,
whether they can be expressed as convergent asymptotic series (regular sin-
gularity) or not (irregular one).
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Theorem 3.134 [Frobenius] If near the point x = x0 the coefficients Cn−j,
j = 1...n can be written as (x− x0)−jAn−j(x) where An−j are analytic, then
there is a fundamental system of solutions in the form

ym(x) = (x− x0)rm
Nm∑
j=0

(ln(x− x0))jBj;m(x) (3.135)

where Bj;m are analytic in an open disk centered at x0 with radius equal to the
distance from x0 to the first singularity of Aj. The powers rm are solutions
of the indicial equation
r(r− 1) · · · (r− n+ 1) +An−1(x0)r(r− 1) · · · (r− n+ 2) + . . .+A0(x0) = 0

Furthermore, logs appear only in the resonant case, when two (or more) char-
acteristic roots rm differ by an integer.

A straightforward way to prove the theorem is by induction on n. We can
take x0 = 0. Let rM be one of the indicial equation solutions. A transfor-
mation of the type y = xrM f reduces the equation (3.133) to an equation
of the same type, but where one characteristic root is zero. One can show
there is an analytic solution f0 of this equation by inserting a power series,
identifying the coefficients and estimating the growth of the coefficients. The
substitution f = f0

∫
g(s)ds gives an equation for g which is of the same type

as (3.133) but of order n − 1. We will not go into the details of the general
case but instead we will illustrate the approach on the simple equation

x(x− 1)y′′ + y = 0 (3.136)

around x = 0. The indicial equation is r(r − 1) = 0 (a resonant case).
Substituting y0 =

∑∞
k=0 ckx

k in the equation and identifying the powers of x
yields the recurrence

ck+1 =
k2 − k + 1
k(k + 1)

ck (3.137)

with c0 = 0 and c1 arbitrary. By linearity we may take c1 = 1 and by induction
we see that 0 < ck < 1. Thus the power series has radius of convergence at
least 1. The radius of convergence is in fact exactly one as it can be seen
applying the ratio test and using (3.137); the series converges exactly up to
the nearest singularity of (3.136).

Exercise 3.138 What is the asymptotic behavior of ck as k →∞?

We let y0 = y0

∫
g(s)ds and get for g the equation

g′ + 2
y′0
y0
g = 0 (3.139)

and, by the previous discussion, 2y′0/y0 = 2/x + A(x) with A(x) is analytic.
The point x = 0 is a regular singular point of (3.139) and in fact we can check



72 Asymptotics and Borel summability

that g(x) = C1x
−2B(x) with C1 an arbitrary constant and B(x) analytic at

x = 0. Thus
∫
g(s)ds = C1(a/x+b ln(x)+A1(x))+C2 where A1(x) is analytic

at x = 0. Undoing the substitutions we see that we have a fundamental set of
solutions in the form {y0(x), B1(x)+B2(x) lnx} where B1 and B2 are analytic.

A converse of this theorem also holds, namely

Theorem 3.140 (Fuchs) If a meromorphic linear differential equation has,
at x = x0, a fundamental system of solutions in the form (3.135), then x0 is
a regular singular point of the equation.

Instead for irregular singularities at least one formal solution contains diver-
gent power series and/or exponentially small (large) terms. The way divergent
power series are generated by the higher order of the poles is illustrated below.
Example. Consider the equation

y′ + x−2y = 1 (3.141)

which has an irregular singularity at x = 0 since the order of the pole in
C0 = x−2 exceeds the order of the equation. Substituting y =

∑∞
k=0 ckx

k we
get c0 = c1 = 0, c2 = 1 and in general the recurrence

ck+1 = −kck
whence ck = (−1)k(k − 1)! and the series has zero radius of convergence. (It
is useful to compare this recurrence with the one obtained if x−2 is replaced
by x−1 or by 1.) The associated homogeneous equation y′+x−2y = 0 has the
general solution y = Ce1/x with an exponential singularity at x = 0.

3.6b Singularities of nonlinear differential equations; formal
Painlevé property

For nonlinear differential equations, the solutions may be singular at points
x where the equation is regular. Indeed, for example, the equation

y′ = y2 + 1

has a one parameter family of solutions y(x) = tan(x + C); each solution
has infinitely many poles. Since the location of these poles depends on C,
thus on the solution itself, these singularities are called movable or sponta-
neous. Painlevé studied the problem of finding differential equations, now
called equations with the Painlevé property , whose only movable singulari-
ties are poles2. There are no restriction on the behavior at singular points

2There is no complete agreement on what the Painlevé property should require and Painlevé
himself apparently oscillated among various interpretations; certainly movable branch
points are not allowed, but often the property is understood to mean that all solutions
are single-valued on a common Riemann surface.
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of the equation. The solutions of such an equation have a common Riemann
surface simple enough we can hope to understand globally.

We also note that the Painlevé property guarantees some form of integra-
bility of the equation, in the following sense. If we denote by Y (x;x0;C1, C2)
the solution of the differential equation y′′ = F (x, y, y′) with initial condi-
tions y(x0) = C1, y

′(x0) = C2 we see that y(x1) = Y (x1;x; y(x), y′(x)) is
formally constant along trajectories and so is y′(x1) = Y ′(x1;x; y(x), y′(x)).
This gives thus two constants of motion in C provided the solution Y is well
defined almost everywhere in C, i.e., if Y is meromorphic.

On the contrary, “randomly occurring” movable branch-points make the
inversion process explained above ill defined.

This does not of course entail that there is no constant of motion. However,
the presence of spontaneous branch-points does have the potential to prevent
the existence of well-behaved constants of motions for the following reason.
Suppose y0 satisfies a meromorphic (second order, for concreteness) ODE and
K(x; y, y′) is a constant of motion. If x0 is a branch point for y0, then y0

can be continued past x0 by avoiding the singular point, or by going around
x0 any number of times before moving away. This leads to different branches
(y0)n of y0, all of them, by simple analytic continuation arguments, solutions
of the same ODE. By the definition of K(x; y, y′) however, we should have
K(x; (y0)n, (y0)′n) = K(x; y0, y

′
0) for all n, so K assumes the same value on

this infinite set of solutions. We can proceed in the same way around other
branch points x1, x2, ... possibly returning to x0 from time to time. Generi-
cally, we expect to generate a family of (y0)n1,...nj which is dense in the phase
space. This is an expectation, to be proven in specific cases. To see whether
an equation falls in this generic class M. Kruskal introduced a test of nonin-
tegrability, the poly-Painlevé test which measures indeed whether branching
is “dense”. Properly interpreted and justified the Painlevé property measures
whether an equation is integrable or not.
Local analysis of Painlevé’s equation P1 near a singularity. We write
P1 in the form

y′′ = y2 + x (3.142)

We look at the local behavior of a solution that blows up, and will find so-
lutions that are meromorphic but not analytic. In a neighborhood of a point
where y is large, keeping only the largest terms in the equation (dominant
balance ) we get y′′ = y2 which can be integrated explicitly in terms of ellip-
tic functions and its solutions have double poles. Or, we could have instead
searched for a power-like behavior

y ∼ A(x− x0)p

where p < 0 obtaining, to leading order, the equation Ap(p− 1)xp−2 = A2p2

which gives p = −2 and A = 6 (the solution A = 0 is inconsistent with our
assumption). Let’s look for a power series solution, starting with 6(x−x0)−2 :
y = 6(x − x0)−2 + c−1(x − x0)−1 + c0 + · · · . We get: c−1 = 0, c0 = 0, c1 =
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0, c2 = −x0/10, c3 = −1/6 and c4 undetermined, thus free. Chosing a c4, all
others are uniquely determined.

To show that there indeed is a convergent such power series solution, we
apply a successive correction method. Substituting y(x) = 6(x−x0)−2 + δ(x)
where for consistency we should have δ(x) = o((x − x0)−2) and taking x =
x0 + z we get the equation

δ′′ =
12
z2
δ + z + x0 + δ2 (3.143)

Note now that our assumption δ = o(z−2) makes δ2/(δ/z2) = z2δ = o(1)
and thus the nonlinear term in (3.143) is relatively small (Thus, to leading
order, the new equation is linear. This is a general phenomenon: taking out
more and more terms out of the local expansion, the correction becomes less
and less important, and the equation is better and better approximately by a
linear equation.) It is then natural to separate out the large terms from the
small terms and writing a fixed point equation for the solution based on this
separation. We write (3.143) in the form

δ′′ − 12
z2
δ = z + x0 + δ2 (3.144)

and integrate as if the right side was known. This leads to an equivalent
integral equation. Since all unknown terms on the right side are chosen to
be relatively smaller, by construction this integral equation is expected to be
contractive.

The indicial equation for the Euler equation corresponding to the left side
of (3.144) is r2 − r− 12 = 0 with solutions 4,−3. By the method of variation
of parameters we thus get

δ =
D

z3
− 1

10
x0z

2 − 1
6
z3 + Cz4 − 1

7z3

∫ z

0

s4δ2(s)ds+
z4

7

∫ z

0

s−3δ2(s)ds

= − 1
10
x0z

2 − 1
6
z3 + Cz4 + J(δ) (3.145)

the assumption that δ = o(z−2) forces D = 0; C is arbitrary. To find δ
formally, we would simply iterate (3.145) in the following way: We take r = 0
first and obtain δ0 = − 1

10x0z
2− 1

6z
3 +Cz4. Then we take r = δ2

0 and compute
δ1 from (3.145) and so on. This yields:

δ = − 1
10
x0z

2 − 1
6
z3 + Cz4 +

x2
0

1800
z6 +

x0

900
z7 + ... (3.146)

This series is actually convergent. To see that, we scale out the leading power
of z in δ, z2 and write δ = z2u. The equation for u is
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u = −x0

10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0

10
− z

6
+ Cz2 + J(u) (3.147)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ε such that this is a contractive equation for u in the ball
‖u‖∞ < C1 in the space of analytic functions in the disk |z| < ε. Our conclu-
sion is that δ is analytic and that y is meromorphic near x = x0.

Thus the equation PI has the local Painlevé property.
Note. The full Painlevé property requires that y is globally meromorphic,

and we did not prove this. That indeed y is globally meromorphic is in fact
true, but the proof is delicate (see e.g. [1]).

Generic equations fail even the local Painlevé property. For instance, for
the simpler, autonomous, equation

f ′′ + f ′ + f2 = 0 (3.148)

the same analysis yields a local behavior starting with a double pole, f ∼
−6z−2. Taking f = −6z−2+δ(z) with δ = o(z−2) again leads to a nearly linear
equation for δ which can be solved by convergent iteration, using arguments
similar to the ones above. The iteration is now (for some a 6= 0)

δ =
6
5z

+ Cz4 − 1
7z3

∫ z

0

s4δ(s)ds+
z4

7

∫ z

a

s−3δ(s)ds (3.149)

but now the leading behavior of δ is larger, δ = 6
5z . Iterating in the same way

as before, we see that this will eventually produce logs in the expansion for δ
(it first appears in the second integral, thus in the form z4 ln z). We get

δ =
6
5z

+
1
50

+
z

250
+

7z2

5000
+

79
75000

z3− 117
2187500

z4 ln(z) +Cz4 + ... (3.150)

where later terms will contain higher and higher powers of ln(z). This is
effectively a series in powers of z and ln z a simple example of a transseries,
which is convergent as can be straightforwardly shown using the contractive
mapping method, as above. In any case, (3.148) does not have the Painlevé
property. This log term shows that infinitely many solutions can be obtained
just by analytic continuation around one point, and suggests the equation is
not integrable.
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3.7 Singular perturbations

3.7a Introduction to the WKB method

If the order of the poles of a linear systems are higher than in a regular
singularity, Fuchs’s theorem shows that a fundamental set of solutions cannot
be found in terms of convergent Frobenius series. What is the nature of the
solutions then?

We start with a simple example which fails the assumptions of Theo-
rem 3.134 namely,

z2f ′ + f = 0 (3.151)

The general solution is f(z) = Ce−1/z. We see that in a neighborhood of
z = 0, the solution cannot be expanded in a Taylor or Frobenius series in
powers of z (a Laurent series is not of the form (3.135)). More generally, (at
least formal) solutions of meromorphic equations that fail the assumptions of
Theorem 3.134 can be written in terms of combinations of exponentials and
Frobenius-like series (which, this time, may diverge). A formal solution of the
equation

z2f ′ + f = −z (3.152)

is
∞∑
k=0

k!(−z)k+1 (3.153)

Consider now the second order equation

z3y′′ + y = 0 (3.154)

Based on the previous example, we may expect solutions roughly behaving
like e−az

b

. Here b < 0, otherwise the exponential can be reexpanded and
we are dealing with usual power series solutions. If that is the case, then a
substitution of the form y = ew should bring the equation to one in which
power series solutions are to be expected.

In problems depending analytically on a small parameter, internal or ex-
ternal, the dependence of the solution on this parameter may be analytic
(regular perturbation) or not (irregular perturbation). In ordinary differen-
tial equations, singular perturbations happen when the small perturbation is
such that, in a formal series solution, the highest derivative is formally small.
In a formal successive approximation scheme then, small terms, the highest
derivative included, should be placed on the rhs and iterated upon. This, as
we have seen already in many examples, leads to divergent expansions. Furt-
thermore, there should exist formal solutions other than power series, since
the procedure above obviously yields a space of solutions of dimensionality
strictly smaller than the degree of the equation.
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An example is the Schrödinger equation

−ε2ψ′′ + V (x)ψ − Eψ = 0 (3.155)

for small ε, which will be studied in more detail later. In an ε-power series,
ψ′′ is subdominant 3. The leading approximation would be (V (x)−E)ψ = 0
or ψ = 0 which is not an admissible solution.

Similarly, in

x2f ′ + f = x2 (3.156)

the presence of x2 in front of f ′ makes f ′ subdominant if f ∼ xp for some p.
In this sense the Airy equation (3.172) below, is also singularly perturbed, at
x =∞. It turns out that in many of these problems the behavior of solutions
is exponential in the parameter, generically yielding what level one transseries,
studied in the sequel, of the form QeP where P and Q have algebraic behavior
in the parameter. An exponential substitution of the form f = ew should then
make the leading behavior algebraic.

3.7b Singularly perturbed Schrödinger equation. Setting
and heuristics

We look at (3.155) under the assumption that V ∈ C∞(R) and would like
to understand the behavior of solutions for small ε.

3.7b .1 Heuristics

Assume V ∈ C∞ and that the equation V (x0) = E has finitely many
solutions.

Applying the WKB transformation ψ = ew we get

−ε2w′2 − ε2w′′ + V (x)− E = −ε2w′2 − ε2w′′ + U(x) = 0 (3.157)

where, near an x0 where
U(x0) 6= 0 (3.158)

the only consistent balance4 is between −ε2w′2 and V (x)−E with ε2w′′ much
smaller than both. For that to happen we need

ε2U−1h′ � 1 where h = w′ (3.159)

3Meaning that it is asymptotically much less than other terms in the equation.
4As the parameter, ε in our case, gets small, various terms in the equation contribute
unevenly. Some become relatively large (the dominant ones) and some are small (the
subdominant ones). If no better approach is presented, one tries all possible combinations,
and rules out those which lead to conclusions inconsistent with the size assumptions made.
The approach roughly described here is known as the method of dominant balance [3]. It
is efficient but heuristic and has to be supplemented by rigorous proofs at a later stage of
the analysis.
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We place the term ε2h′ on the right side of the equation and set up the
iteration scheme

h2
n = ε−2U − h′n−1; h−1 = 0 (3.160)

or

hn = ±
√
U

ε

√
1−

ε2h′n−1

U
; h−1 = 0 (3.161)

Under the condition (3.159) the square root can be Taylor expanded around
1,

hn = ±
√
U

ε

(
1− 1

2
ε2
h′n−1

U
− 1

8
ε4
(
h′n−1

U

)2

+ · · ·

)
(3.162)

We thus have

h0 = ±ε−1U1/2 (3.163)

h1 = ±ε−1U1/2

(
1± ε2h

′
0

U

)
= ±ε−1U1/2 − 1

4
U ′

U
(3.164)

h2 = ±ε−1U1/2 − 1
4
U ′

U
+ ε

(
− 5

32
(U ′)2

U5/2
+

1
8
U ′′

U3/2

)
(3.165)

and so on. We can check that the procedure is formally sound if ε2U−1h′0 � 1
or

εU ′U−3/2 � 1 (3.166)

Formally we thus have

w = ±ε−1

∫
U1/2(s)ds− 1

4
lnU + · · · (3.167)

and thus

ψ ∼ U−1/4e±ε
−1 R

U1/2(s)ds (3.168)

If we include the complete series in powers of ε in (3.168) we get

ψ ∼ exp
(
±ε−1

∫
U1/2(s)ds

)
U−1/4

(
1 + εF1(x) + ε2F2(x) + ...

)
(3.169)

There are two possibilities compatible with our assumption about x0, namely
V (x0) > E and V (x0) < E. In the first case there is (formally) an exponen-
tially small solution and an exponentially large one, in the latter two rapidly
oscillating ones.

The points where (3.166) fails are called turning points. Certainly if |U(x1)| >
δ, then (3.166) holds near x1, for ε small enough (depending on δ). In the
opposite direction, assume U ′U−3/2 = φ is bounded; integrating from x0 + ε
to x we get −2(U(x)−1/2 +U(x1)−1/2) =

∫
φ(s)ds, and thus U(x0 + ε)−1/2 is

uniformly bounded near x0. For instance if U has a simple root at x = 0, the
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only one that we will consider here (but multiple roots are not substantially
more difficult) then condition (3.166) reads

x� ε2/3 (3.170)

The region where this condition holds is called outer region. In a small re-
gion where (3.166) fails, called inner region, a different approximation will
be sought. We see that V (x) − E = V ′(0)x + x2h(x) =: αx + x2h(x) where
h(x) ∈ C∞(R). We then write

−ε2ψ′′ + αx = −x2h(x)ψ (3.171)

and treat the rhs of (3.171) as a small perturbation. The substitution x = ε2/3t
makes the leading equation an Airy equation:

−ψ′′ + αtψ = −ε2/3t2h(ε2/3t)ψ (3.172)

which is a regularly perturbed equation! For a perturbation method to apply,
we merely need that x2h(x)ψ in (3.171) is much smaller than the lhs, roughly
requiring x� 1. This shows that the inner and outer regions overlap, there is
a subregion –the matching region– where both expansions apply, and where,
by equating them, the free constants in each of them can be linked. In the
matching region, maximal balance occurs, in that a larger number of terms
participate in the dominant balance. Indeed, if we examine (3.157) near x = 0,
we see that w′2 � w′′ if ε−2x � ε−1x−1/2, where we used (3.163). In the
transition region, all terms in the middle expression in (3.157) participate
equally.

3.7c Outer region. Rigorous analysis

We first look at a region where U(x) is bounded away from zero. We will
write U = F 2.

Proposition 3.173 Let F ∈ C∞(R), F 2 ∈ R, and assume F (x) 6= 0 in [a, b].
Then for small enough ε there exists a fundamental set of solutions of (3.155)
in the form

ψ± = Φ±(x; ε) exp
[
±ε−1

∫
F (s)ds

]
(3.174)

where Φ±(x; ε) are C∞ in ε > 0.

PROOF We show that there exists a fundamental set of solutions in the
form

ψ± = exp
[
±ε−1R±(x; ε)

]
(3.175)

where R±(x; ε) are C∞ in ε. The proof is by rigorous WKB.
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Note first that linear independence is immediate, since for small enough ε
the ratio of the two solutions cannot be a constant, given their ε behavior.

We take ψ = ew/ε and get, as before, to leading order w′ = ±F . We look at
the plus sign case, the other case being similar. It is then natural to substitute
w′ = F + δ; we get

δ′ + 2ε−1Fδ = −F ′ − ε−1δ2 (3.176)

which we transform into an integral equation by treating the rhs as if it
was known and integrating the resulting linear inhomogeneous differential
equation. Setting H =

∫
F the result is

δ = −e− 2H
ε

∫ x

a

F ′(s)e
2H(s)
ε ds− 1

ε
e−

2H
ε

∫ x

a

δ2(s)e
2H(s)
ε ds =: J(δ) =: δ0 +N(δ)

(3.177)
We assume that F > 0 on (a, b), the case F < 0 being very similar. The case
F ∈ iR is not too different either, as we will explain at the end.

Let now ‖F ′‖∞ = A in (a, b) and assume also that mins∈(a,b) |U(s)| = B2 >
0.

Lemma 3.178 For small ε, the operator J is contractive in a ball B := {δ :
‖δ‖∞ ≤ 2AB−1ε}

PROOF i) Preservation of B. We have

|δ0(x)| ≤ Ae− 2
εH(x)

∫ x

a

e
2
εH(s)ds

By assumption, H is increasing on (a, b) and H ′ 6= 0 and thus, by the
Laplace method, cf. Proposition 3.17, for small ε we have (since H ′ =

√
U),

|δ0(x)| ≤ 2Ae−
2
εH(x) e

2
εH(x)

2
εH
′(x)

≤ εAB−1

Note We need this type of estimates to be uniform in x ∈ [a, b] as ε→ 0. To
see that this is the case, we write

∫ x

a

e
2
εH(s)ds =

∫ x

a

e
2
εH(s) 2F (s)

ε

ε

2F (s)
ds

≤ ε

2B
e

2
εH(s)

∣∣∣∣∣
x

a

≤ ε

2B
e

2
εH(x) (3.179)

Similarly,
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∣∣∣∣1ε e− 2H
ε

∫ x

a

δ2(s)e
2H(s)
ε ds

∣∣∣∣ ≤ 2ε2A2B−3

and thus, for small ε and δ ∈ B we have

J(δ) ≤ ε−1AB−1 + 2ε2A2B−3 ≤ 2εAB−1

ii) Contractivity. We have, with δ1, δ2 ∈ B, using similarly Laplace’s
method,

|J(δ2)− J(δ1)| ≤ 1
ε
e−

2H
ε

∫ x

a

|δ2(s)− δ1(s)||δ2(s) + δ1(s)|e
2H(s)
ε ds

≤ 2εA
B2
‖δ2 − δ1‖ (3.180)

and thus the map is contractive for small enough ε.

Note. We see that the conditions of preservation of B and contractivity allow
for a dependence of (a, b) on ε. Assume for instance a, b > 0, V (x) = E has
no root in [a, b + γ) with γ > 0, and that a is small. Assume further that
V (0) = E is a simple root, V ′(0) = α 6= 0. Then for some C > 0 we have
B ≥ Cm2a2 and the condition of contractivity reads

ε2|α|
|α|3

< 1

i.e. a > (ε/|α|)2/3 and for small enough ε this is also enough to ensure
preservation of B. We thus find that the equation δ = J(δ) has a unique
solution and that, furthermore, ‖δ‖ ≤ const.ε. Using this information and
(3.180) which implies

‖J(δ)‖ ≤ εA

B2
2AB−1ε

we easily get that, for some constants Ci > 0 independent on ε,

|δ − δ0| ≤ C1ε|δ| ≤ C1ε|δ0|+ C1ε|δ − δ0|

and thus
|δ − δ0| ≤ C2ε|δ0|

and thus, applying again Laplace’s method we get

δ ∼ −εF
′

2F
(3.181)

which gives
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ψ ∼ exp
(
±ε−1

∫
U1/2(s)ds

)
U−1/4

The proof of the C∞ dependence on ε can be done by induction, using (3.181)
to estimate δ2 in the fixed point equation, to get an improved estimate on δ,
etc.
In the case F ∈ iR, the proof is the same, by using the Stationary Phase
method instead of the Laplace Method.

3.7d Inner region. Rigorous analysis

By rescaling the independent variable we may assume without loss of gen-
erality that α = 1 in (3.172) which we rewrite as

−ψ′′ + tψ = −ε2/3t2h1(ε2/3t)ψ := f(t) (3.182)

which can be transformed into an integral equation in the usual way,

ψ(t) = −Ai(t)
∫ t

f(s)Bi(s)ds+ Bi(t)
∫ t

f(s)Ai(s)ds+ C1Ai(t) + C2Bi(t)

(3.183)
where Ai, Bi are the Airy functions, with the asymptotic behavior

Ai(t) ∼ 1√
π
t−1/4e−

2
3 t

3
2 ; Bi(t) ∼ 1√

π
t−1/4e

2
3 t

3
2 (3.184)

and

|t−1/4Ai(t)| < const., |t−1/4Bi(t)| < const. (3.185)

as t → −∞. In view of (3.184) we must be careful in choosing the limits of
integration in (3.183). It is important to ensure that the second term does
not have a fast growth as t → ∞, and for this purpose we need to integrate
from t toward infinity in the associated integral. For that, we ensure that
the maximum of the integrand is achieved at or near the variable endpoint of
integration. Then Laplace’s method shows that the leading contribution to
the integral comes from the variable endpoint of integration as well, which
allows for the opposite exponentials to cancel out. We choose to look at an
interval in the original variable x ∈ IM = [−M,M ] where we shall allow for
ε-dependence of M . We then write the integral equation with concrete limits
in the form below, which we analyze in IM .
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ψ(t) = −Ai(t)
∫ t

0

f(s)Bi(s)ds+

Bi(t)
∫ t

M

f(s)Ai(s)ds+ C1Ai(t) + C2Bi(t) = Jψ + ψ0 (3.186)

Proposition 3.187 For some positive const., if ε is small enough (3.186) is
contractive in the sup norm if M ≤ const.ε2/5.

PROOF
Using the Laplace method we see that for t > 0 we have

t−1/4e−
2
3 t

3
2

∫ t

0

s−1/4e
2
3 s

3
2 ds ≤ const.(|t|+ 1)−1

and also

t−1/4e
2
3 t

3
2

∫ M

t

s−1/4e−
2
3 s

3
2 ds ≤ t−1/4e

2
3 t

3
2

∫ ∞
t

s−1/4e−
2
3 s

3
2 ds

≤ const.(|t|+ 1)−1 (3.188)

and thus for a constant independent of ε, using (3.184) we get

|Jψ(t)| ≤ const.ε2/3(|t|+ 1)−1 sup
s∈[0,t]

|ψ(s)|

for t > 0. For t < 0 we use (3.185) and get

∣∣∣∣Ai(t)
∫ t

M

f(s)Bi(s)ds
∣∣∣∣ ≤ (1 + |t|)−1/4 sup

s∈[−t,0]

|f(s)|(const.+
∫ 0

t

s−1/4ds

and get for a constant independent of ε

|Jψ(t)| ≤ const.ε2/3(1 + |t|)5/2 ≤ const.ε2/3(ε−2/3M)5/2 < 1

We see that for small enough ε, the regions where the outer and inner equa-
tions are contractive overlap. This allows for performing asymptotic matching
in order to relate these two solutions. For instance, from the contractivity ar-
gument it follows that

ψ = (1− J)−1ψ0 =
∞∑
k=0

Jkψ0

giving a power series asymptotics in powers of ε2/3 for ψ.
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3.7e Matching

We may choose for instance x = const.ε1/2 for which the inner expansion (in
powers of ε2/3) and the outer expansion (in powers of ε) are valid at the same
time. We assume that x lies in the oscillatory region for the Airy functions
(the other case is slightly more complicated).

We note that in this region of x the coefficient of εk of the outer expansion
will be large, of order (U ′U−3/2)k ∼ ε−3k/4. A similar estimate holds for
the terms of the inner expansion. Both expansions will thus effectively be
expansions in ε−1/4. Since they represent the same solution, they must agree
and thus the coefficients of the two expansions are linked. This determines
the constants C1 and C2 once the outer solution is prescribed.

3.8 PDE analog

Consider now a a parabolic PDE, say the heat equation.

ψt = ψxx (3.189)

The fact that the principal symbol is degenerate (there are fewer t than x
derivatives) has an effect similar to that of a singular perturbation. If we
attempt to solve the PDE by a power series

ψ =
∞∑
k=0

tkFk(x) (3.190)

this series will generically have zero radius of convergence. Indeed, the re-
currence relation for the coefficients is Fk = F ′′k−1/k whose solution, Fk =
F

(2k)
0 /k! behaves like Fk ∼ k! for large k, if F is analytic but not entire.
Generally, exponential solutions are expected too.5 If we take ψ = ew in

(3.189) we get

wt = w2
x + wxx (3.191)

where the assumption of algebraic behavior of w is expected to ensure w2
x �

wxx and so the leading equation is approximately

wt = w2
x (3.192)

5The reason will be better understood after Borel summation methods have been studied.
Divergence means that the Borel transform of the formal solution is nontrivial: it has
singularities. Upon Laplace transforming it, paths of integration on different sides of the
singularities give different results, and the differences are exponentially small.
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which can be solved by characteristics. We take wx = u and get for u the
quasilinear equation

ut = 2uux (3.193)

with a particular solution u = −x/(2t), giving w = −x2/(4t). We thus take
w = −x2/(4t) + δ and get for δ the equation

δt +
x

t
δx +

1
2t

= δ2
x + δxx (3.194)

where we have separated the relatively small terms to the rhs. We would
normally solve the leading equation (the lhs of (3.194)) and continue the
process, but for this equation we note that δ = − 1

2 ln t solves not only the
leading equation, but the full equation (3.194). Thus

w = −x
2

4t
− 1

2
ln t (3.195)

which gives the classical heat kernel

ψ =
1√
t
e−

x2
4t (3.196)

This exact solvability is of course rather accidental, but a perturbation ap-
proach formally works in a more PDE general context.





Chapter 4

Introduction to transseries and
analyzable functions

There is, as we have seen an important distinction between asymptotic ex-
pansions and asymptotic series. The operator f 7→ Ap(f) which associates to
f its asymptotic power series is linear as seen in §1.1c . But it has a nontrivial
kernel (Ap(f) = 0 for many nonzero functions), and the description through
asymptotic power series is fundamentally incomplete. There is no unambigu-
ous way to determine a function from its classical asymptotic series alone. On
the other hand, the operator f 7→ A(f) which associates to f its asymptotic
expansion has zero kernel, but it is still false that A(f) = A(g) implies f = g
(A is not linear, see Remark 1.25). The description of a function through its
asymptotic expansion is also incomplete.

4.1 Analyzable functions and the theory of Écalle: a pre-
view

4.1a Analytic function theory as a toy model of the theory
of analyzable functions

Let A denote the set of germs of analytic functions at z = 0, let C[[z]] be the
space of formal series in z with complex coefficients, of the form

∑∞
k=0 ckz

k,
and define Cc[[z]] as the subspace of series with nonzero radius of convergence.

The Taylor series at zero of a function in A is also its asymptotic series
at zero. Moreover, the map T : A 7→ Cc[[z]] is an isomorphism and its
inverse T −1 = S is simply the operator of summation of series in Cc[[z]]. T
and S commute with most of the useful function operations defined on A, in
particular we have, with f̃ , f̃1 and f̃2 in Cc[[z]]

87
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(1) S{αf̃1 + βf̃2} = αS f̃1 + βS f̃2

(2) S{f̃1f̃2} = S f̃1S f̃2

(3) S{f̃?} =
{
S f̃
}?

(4) S
{
f̃
}′ =

{
S f̃
}′

; S
{∫ x

0

f̃

}
=
∫ x

0

S f̃

(5) S{f̃1 ◦ f̃2} = S f̃1 ◦ S f̃2

(6) S1 = 1 (4.1)

where f̃?(z) = f̃(z). In fact T is such a good isomorphism between A and
Cc[[z]], that usually no distinction is made between formal (albeit convergent)
expansions and their sums which are actual functions. There does not even
exist a notational distinction between a convergent series, as a series, and its
sum as a number.

As a consequence of the isomorphism, whenever a problem can be solved in
Cc[[z]], S provides an actual solution of the same problem. For example, if ỹ
is a formal solution of the equation

ỹ′ = ỹ2 + z (4.2)

as a series in powers of z, with nonzero radius of convergence, and we let
y = S ỹ we may write, using (4.1),(

ỹ′ = ỹ2 + z
)
⇔
(
S {ỹ′} = S

{
ỹ2
}

+ z
)
⇔
(
y′ = y2 + z

)
i.e. ỹ is a formal solution of (4.2) iff y is an actual solution. The same
reasoning would work in most natural problems with analytic coefficients for
which solutions ỹ ∈ CC [[z]] can be found.

On the other hand, if we return to the example in Remark 1.25, f1 and f2

differ by a constant C, coming from the lower limit of integration, and this
C is lost in the process of calculating the asymptotic expansion. To have a
complete description, clearly we must account for C. It is then natural to try
to write instead

f1,2 ” ∼ ” exf̃ + C1,2 (4.3)

However, Note 1.23 however shows C1,2 cannot be defined through (1.12);
C1,2 they cannot be calculated as f1,2 − exf̃ since f̃ does not converge. The
right side of (4.3) becomes for now a purely formal object, in the sense that
it does not connect to an actual function in any obvious way.

It is the task of the theory of analyzable functions to give a general, natu-
ral and consistent meaning to expansions such as (4.3) ((4.3) is perhaps the
simplest nontrivial instance of a transseries), in such a way that expansions
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and functions are into a true one-to-one correspondence. An isomorphism like
(4.1) holds in much wider generality.

Some ideas of the theory of analyzable functions can be traced back to Euler
as seen in §1.2a , Cauchy , Borel who found the first powerful technique to
deal with divergent expansions, and by Dingle and Berry who substantially
extended optimal truncation methods.

In the early 80’s exponential asymptotics became a field of its own, with the
a number of major discoveries of Écalle, the theory of transseries and analyz-
able functions, and a very comprehensive generalization of Borel summation.

Setting of the problem. One operation is clearly missing from both A
and Cc[[z]] namely division, and this severely limits the range of problems
that can be solved in either A or Cc[[z]]. The question is then, which spaces
A1 ⊃ A and S1 ⊃ Cc[[z]] are closed under all function operations, including
division, and are such that an extension of T is an isomorphism between
them? (Because of the existence of an isomorphism between A1 and the
formal expansions S1 the functions in A1 will be called called, in agreement
with Écalle, formalizable). Exploring the limits of formalizability is at the
core of the modern theory of analyzable functions.

In addition to the obvious theoretical interest, there are many important
practical applications. One application of such a theory, for instance for some
generic classes of differential systems where it has been worked out, is the
possibility of solving problems starting from formal expansions, which are
easy to produce (usually algorithmically), and from which the isomorphism
produces, constructively, actual solutions.

We start by studying general formal expansions in their own right, to un-
derstand their structure and operations with them.

4.1b Formal asymptotic power series

Definition 4.4 For x → ∞, an asymptotic power series (APS) is a formal
structure of the type ∑

i∈J

ci
xki

(4.5)

where J is a set of ordinals and ki > kj if i > j. We assume that there is no
infinite strictly decreasing subsequence ki1 > ki2 > .... For simplicity we shall
assume J = N and that there is no accumulation point of the ki.

In particular, there is a smallest power kj ∈ Z, possibly negative.
Examples. (1) Integer power series, i.e. series of the form

∞∑
k=M

ck
xk

(4.6)
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(2) An important instance are the finitely generated power series, which are
by definition of the form ∑

ki≥M

ck1,k2,...,kn

xα1k1+...+αnkn
(4.7)

for some M ∈ Z and n ∈ N, where α1 > 0, ..., αn > 0. Its generators are the
monomials x−α1 , ..., x−αn .

Proposition 4.8 A series of the form (4.7) is (can be rearranged as) an
APS.

PROOF For the proof we note that for any L ∈ Z, the set

{(k1, k2, ..., kn) ∈ Zn : ki ≥M for 1 ≤ i ≤ n and L ≥
n∑
i=1

αiki}

is finite. Indeed, ki are bounded below, αi > 0 and
∑n
i=1 αiki →∞ if at least

one of the sequences {kij} is unbounded.

Exercise 4.9 As a consequence show that:
(1)

inf{ν : ν = α1k1 + · · ·+ αnkn = ν for some k1, ..., kn ≥M} <∞

(2) The set

J := {ν : ν = α1k1 + · · ·+ αnkn = ν for some k1, ..., kn ≥M}

is countable with no accumulation point. Furthermore J can be linearly or-
dered

ν1 < ν2 < · · · < νk < · · ·

and all the sets

Ji := {k1, ..., kj ≥M : νi = α1k1 + · · ·+ αnkn}

are finite.
Complete the proof of the proposition.

Thus (4.7) can be written in the form (4.5). In particular we can define the
dominance of a series in the following way:

Definition 4.10 (of Dom) If S is a nonzero APS of the type (4.5) we define
Dom(S) to be ci1x

−ki1 where i1 is the first i in (4.5) for which ci 6= 0. We
write Dom(S) = 0 iff S = 0.
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4.1b .1 Operations with APS

Note 4.11 The following operations are defined in a natural way and have
the usual properties: +,−,×, / differentiation and composition S1 ◦ S2 where
S2 is a series such that k1 < 0. For composition and division, see note after
Proposition 4.18. For instance,

∞∑
k=0

cj
xνj

∞∑
l=0

dl
xηl

=
∞∑

k,l=0

cjdl
xνj+ηl

(4.12)

Exercise 4.13 * Show that the last series in (4.12) can be written in the
form (4.5).

Exercise 4.14 * Show that finitely generated power series are closed under
the operations mentioned above.

4.1b .2 Asymptotic order relation

If C1, C2 6= 0, we naturally write (remember that x→ +∞ and the defini-
tion of � in (1.9) and (1.10))

C1x
p � C2x

q iff p < q

Definition 4.15 For two nonzero APSs S1, S2 we write S1 � S2 iff Dom(S1)�
Dom(S2).

Proposition 4.16 Dom(S1S2) = Dom(S1)Dom(S2), and if Dom(S) 6= const
then Dom(S′) = Dom(S)′.

PROOF Exercise.

Thus we have

Proposition 4.17 (See note(4.11)).
(i) S1 � T and S2 � T imply S1 + S2 � T and for any nonzero S3 we

have S1S3 � S2S3.
(ii) S1 � T1 and S2 � T2 imply S1S2 � T1T2.
(iii) S � T implies 1

S �
1
T .

(iv) S � T � 1 implies S′ � T ′ � 1 and 1 � S � T implies S′ � T ′

(prime denotes differentiation). Also, s � 1 ⇒ s′ � s and L � 1 ⇒ L �
L′ � 1. S′ � T ′ and T � 1 implies S � T . Also 1 � S′ � T ′ implies
S � T .

(v) There is the following trichotomy for two nonzero APSs : S � T or
S � T or else S

T − C � 1 for some constant C.

PROOF Exercise.
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Proposition 4.18 Any nonzero APS S can be uniquely decomposed in the
following way

S = L+ C + s

where C is a constant and L and s are APS, with the property that L has
nonzero coefficients only for positive powers of x (L is purely large) and s has
nonzero coefficients only for negative powers of x (s is purely small).

PROOF Exercise.

Exercise 4.19 * Show that any nonzero series can be written in then form
S = D(1 + s) where D =Dom(S) and s is a small series.

Exercise 4.20 Show that the large part of a series has only finitely many
terms.

Exercise 4.21 * Show that for any coefficients a1, ..., am, ... and small series
s the formal expression

1 + a1s+ a2s
2 + · · · (4.22)

defines a formal power series.

Note 4.23 Let S be a nonzero series and D = C1x
−ν1 = Dom(S). We define

1/D = (1/C1)xν1 and

1
S

=
1
D

(1− s+ s2 − s3 · · · ) (4.24)

and more generally

Sβ := Cβ1 x
−ν1β

(
1 + βs+

1
2
β(β − 1)s2 + · · ·

)
(4.25)

The composition of two series S =
∑∞
k=0 skx

−νk and L where L is large is
defined as

S ◦ L :=
∞∑
k=0

skL
−νk (4.26)

Exercise 4.27 * Show that (4.26) defines a formal power series which can
be written in the form (4.5).

Example

Proposition 4.28 The differential equation

y′ + y =
1
x

+ y3 (4.29)

has a unique solution as an APS which is purely small.
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PROOF For the existence part, note that direct substitution of a formal
integer power series y0 =

∑∞
k=1 ckx

−k leads to the recurrence relation c1 = 1
and for k ≥ 2,

ck = (k − 1)ck−1 +
∑

k1+k2+k3=k;ki≥1

ck1ck2ck3

for which direct induction shows the existence of a solution, and we have

y0 =
1
x

+
1
x2

+
3
x3

+
12
x4

+
60
x5

+ · · ·

For uniqueness assume y0 and y1 are APS solutions and let δ = y1−y0. Then
δ satisfies

δ′ + δ = 3y2
0δ + 3y0δ

2 + δ3 (4.30)

Since by assumption δ � 1 we have Dom(δ′) � Dom(δ) and similarly
Dom(3y2

0δ + 3y0δ
2 + δ3) � Dom(δ). But this implies Dom(δ) = 0 and thus

δ = 0.

4.1b .3 The exponential

Proposition 4.31 (the exponential is not a power series.) The differ-
ential equations f ′ ± f = 0 have no nontrivial solution as an APS.

PROOF If Dom(f) = c = const then f = c + s where s is purely small
and thus s′ � s. But then the equation s′ ± (c + s) = 0 is contradictory.
Similarly if f = s where s is purely small then s′ + s = 0 is impossible by
Proposition 4.17. If instead f � 1 then f ′ + f = 0 is again impossible.

Thus the exponential, which we need since very simple equations generate it,
is a new element. We would like it to be compatible with the basic structures
of APS and with the asymptotic ordering. Then ex � 1 or ex � 1 or finally
ex−c� 1. The last inequality is not consistent if we differentiate it using (iv)
of Proposition 4.17. The remaining choices are consistent, and correspond to
selecting a sign in x → ±∞. Since we chose x → +∞, we let, by definition,
ex � 1. Compatibility with Proposition 4.17 implies (ex)′ � x′ and thus
ex � x. Inductively, ex � xn for all n.

Proposition 4.32 If s is a purely small series then the equation y′ = s′y
(corresponding intuitively to y = es) has APS solutions of the form C + s1

where s1 is small. If we choose C = 1 then s1 = s1;1 is uniquely defined.

PROOF Exercise.
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Definition 4.33 We define, according to the previous proposition, es = 1 +
s1;1; 1 + s1,;1 is simply the familiar Maclaurin series of the exponential. In
general if S = L+C+s we write eS = C(1+s1;1)eL where eL is to be thought
of as a primary symbol, subject to the further definitions eL1+L2 = eL1eL2 and
(eL)′ = L′eL.

4.1b .4 Exponential power series (EPS)

A simple example of EPS is a formal expression of the type

∞∑
i,j=1

cij
eλixxkj

(4.34)

where λi are increasing in i and kj are increasing in j. Again the usual
operations are well defined on EPS (composition is not defined on (4.34) but
it would be if more general terms of the form C(1 + s1;1)eL are allowed; we
will postpone this until the formal introduction of transseries).

The order relation, compatible with the discussion in § 4.1b .3, is defined
by eλ1xxk2 � eλ3xxk4 iff λ1 > λ3 or if λ1 = λ3 and k2 > k4. Consistent with
this order relation it is then natural to reorder the expansion(4.34) as follows

∞∑
i=1

e−λix
∞∑
j=1

cij
xkj

(4.35)

Then we can still define the dominance of a structure of the form (4.34).
The question is what is the general formal solution of

f ′ + f = x−1 (4.36)

For this we have to assume we have a space A of formal objects in which
all operations involved in (4.36) make sense and have the usual properties.
A would be a differential algebra. It is natural to assume that in A f ′ = 0
has the general solution f = C for some constant C. We need A to contain
x−1 so that the differential equation makes sense, which implies by closure
under algebraic operations that A contains all inverse powers of x, including
constants (power zero), and A should contain the formal series solution of
(4.36)

ỹ0 =
∞∑
k=0

k!
xk+1

(4.37)

Exercise 4.38 * Show that there exist differential fields, containing 1/x,in
which (4.36) has no solution.

Then if ỹ is any solution of (4.36) then f̃ = ỹ − ỹ0 satisfies the homogeneous
equation f ′+f = 0. To proceed, we may include solutions of this homogeneous
equation. If we call this solution e−x and the solution of the related equation
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f ′ − f = 0 by ex we see that (e−xex)′ = 0 thus e−xex = C for some C and
we can normalize our choice of ex to make C = 1. Then the general solution
of y′ + y = 0 is Ce−x. Indeed, we may multiply by ex and get (yex)′ = 0, i.e.
yex = C or y = Ce−x.

4.1b .5 Exponential power series solutions for (4.29)

To show how transseries arise naturally as solutions of ODEs we take the
prototypical nonlinear equation (4.29). The analysis that follows is formal,
and assumes the space of formal solutions has all the “expected” properties.
A rigorous construction, backing up this analysis will follow in Chapter 3.

To simplify notation, we drop the tildes from formal asymptotic expansions.
We have obtained, in Proposition 4.17 a formal series solution (4.29), y0. We
look for possible further solutions. We take y = y0 + δ. The equation for δ
is (4.30) where we search for solutions δ � 1, in which assumption the terms
on the right side of the equation are subdominant (see footnote 4 on Page
77). We have δ′ + δ(1 + o(1)) = 0 thus δ = Ce−x+o(x)and this suggests the
substitution δ = ew. We get

w′ + 1 = 3y2
0 + 3y0e

w + e2w

and since ew = δ � 1 the dominant balance (footnote 4, Page 77) is between
the terms on the left side, thus w = −x+ C + w1 and we get

w′1 = 3y2
0 + 3y0e

−xew1 + e−2x+2w1

We have y0e
−xew1 = y0δ = y0e

−x+o(x). Since −x + o(x) � n ln(x) we have
y0e
−xew1 � x−n for any n and thus w′1 = O(x−2) then w1 = O(x−1). Thus,

ew1 = 1+w1 +w2
1/2+ ... and consequently 3y0e

−xew1 +e−2x+2w1 is negligible
with respect to y2

0 . Again by dominant balance, to leading order, w′1 = 3y2
0

and thus w1 =
∫

3y2
0 +w2 := φ1 +w2 (φ1 is a formal power series). It follows

that, to leading order, we have

w′2 = 3y0e
−x

and thus w2 = φ2e
−x where φ2 is a power series. Continuing this process of

iteration, we can see inductively that w must be of the form

w = −x+
∞∑
k=0

φke
−kx

where φk are formal power series, which means

y =
∞∑
k=0

e−kxyk (4.39)
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where yk are also formal power series. Having obtained this information, it
is more convenient to plug in(4.39) directly in the equation and solve for the
unknown series yk. We get the system

y′0 + y0 = x−1 + y3
0

y′1 = 3y2
0y1

· · · (4.40)

y′k − kyk − 3y2
0yk = 3y0

∑
k1+k2=k;ki≥1

yk1yk2 +
∑

k1+k2+k3=k;ki≥1

yk1yk2yk3

· · ·

We can easily see by induction that this system of equations does admit a
solution where yk are integer power series. Furthermore, y1 is defined up to
an arbitrary multiplicative constant, and there is no further freedom in yk,
whose equation can be solved by our usual iteration procedure, after placing
the subdominant term y′k on the RHS. We note that all equations for k ≥ 1
are linear inhomogeneous. The fact that high-order equations are linear is a
general feature in perturbation theory.

Choosing then y0 in such a way that y[1]
1 = 1+ax−1 +... we have y1 = Cy

[1]
1 .

By the special structure of the RHS of the general equation in (4.40) we see
that if y[1]

k is the solution with the choice y1 = y
[1]
1 we see, by induction, that

the solution when y1 = Cy
[1]
1 is Cky[1]

k . Thus the general formal solution of
(4.29) in our setting should be

∞∑
k=0

Cky
[1]
k e
−kx

where y[1]
0 = y0.

Exercise 4.41 ** Complete the details in the previous proof: show that the
equation for y1 in (4.40) has a one parameter family of solutions of the form
y1 = c(1 + s1) where s1 is a small series, and that this series is unique. Show
that for k > 1, given y0, ..., yk−1, the equation for yk in (4.40) has a unique
small series solution. Show that there exists exactly a one parameter family of
solutions general formal exponential-power series solution of the form (4.39)
of (4.29).
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4.2 Preview of general properties of transseries

4.2a Remarks about the form of asymptotic expansions

The asymptotic expansions seen in the previous examples have the common
feature that they are written in terms of powers of the variable, exponentials
and logs, e.g.

∫ ∞
x

e−s
2
ds ∼ e−x

2
(

1
2x
− 1

4x2
+

5
8x3
− ...

)
(4.42)

n! ∼
√

2πen lnn−n+ 1
2 lnn

(
1 +

1
12n

+ ...

)
(4.43)∫ x

1

et

t
dt ∼ ex

(
1
x

+
1
x2

+
2
x3

+ ...

)
(4.44)

Hardy noted that “No function has yet presented itself whose asymptotic
expansion cannot be expressed in terms of exponentials, power series and
logs”. The modern conjecture of Écalle states that functions of natural origin
can be isomorphically represented by “transseries” in the same way as an
analytic function is locally given by a convergent Taylor series.

4.2b Transseries

Transseries are studied carefully in Chapter 3.
Informally, they are finitely generated asymptotic combinations of powers,

exponentials and logs and are defined inductively. In the case of a power series,
finite generation means that the series is an integer multiseries in y1, ..., yn
where yj = x−βj ,<(βj) > 0. Examples are (4.34), (3.105) and (1.26); a more
involved one would be

ln lnx+
∞∑
k=0

e−k exp(
P∞
k=0 k!x−k)

A single term in a transseries is a transmonomial.

1. A term of the form m = x−α1k1−...−αnkn with αi > 0 is a level zero
(trans)monomial.

2. Real transseries of level zero are simply finitely generated asymptotic
power series. That is, given α1, ..., αn with αi > 0 a level zero transseries
is a sum of the form

S =
∑
ki≥Mi

ck1,...,knx
−α1k1−...−αnkn (4.45)
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with cM1,...Mn
6= 0 where M1, ...,Mn are integers, positive or negative;

the terms of S are therefore nonincreasing in ki and bounded above by
O(x−α1M1−...−αnMn).

3. x−α1M1−...−αnMn is the leading order, cM1,...Mn
is the leading constant

and cM1,...Mn
x−α1M1−...−αnMn is the dominance of (4.45), Dom(S).

4. When we will construct transseries more carefully, we will denote µk =:
µk1

1 · · ·µnkn the monomial x−k1α1−···−knαn . We note that k 7→ µk de-
fines a morphism between Zn and the abelian multiplicative group gen-
erated by µ1, ..., µn.

5. The lower bound for ki easily implies that there are only finitely many
terms with the same monomial. Indeed, the equation α1k1+...+αnkn =
p does not have solutions if <(αi)ki > |p|+

∑
j 6=i |αj ||Mj |.

6. A level zero transseries can be decomposed as L + const + s where L,
which could be zero, is the purely large part in the sense that it contains
only large monomials, and s is small.

If S 6= 0 we can write uniquely

S = const x−α1M1−...−αnMn(1 + s)

where s is small.

7. Operations are defined on level zero transseries in the natural way. The
product of level zero transseries is a level zero transseries where as in (5)
above the lower bound for ki entails that there are only finitely many
terms with the same monomial in the product.

8. It is easy to see that the expression (1− s)−1 := 1− s+ s2 − ... is well
defined and this allows definition of division via

1/S = const−1xα1M1+...+αnMn(1− s)−1

9. A transmonomial is small m = o(1) and large if 1/m is small. m is
neither large nor small iff m = 1 i.e., −α1k1 − ... − αnkn = 0; this is a
degenerate case and for some purposes it is not considered a monomial.

10. It can be checked that level zero transseries form a differential field.
Composition S(s) is also well defined whenever s is a large transseries.



Introduction to transseries and analyzable functions 99

In a more abstract language that we will use later, for a given set of monomi-
als µ1, ..., µn and the multiplicative group G generated by them, a transseries
of level zero is a function defined on Zn with values in C, with the property
that for some k0 we have F (k) = 0 if k < k0.

More general transseries are defined inductively; in a first step exponentials
of purely large level zero series are level one series.

It is convenient to first construct transseries without logs and then define
the general ones by composition to the right with an iterated log.

11. In general, transseries have an exponential level (height) which is the
highest order of composition of the exponential, and similarly a loga-
rithmic depth; both of these are finite; exp(exp(x2)) + lnx has height 2
and depth 1.

12. Level one. The exponential ex has no asymptotic power series at in-
finity (Proposition 4.31) and ex is taken to be its own expansion. It is
a new element.

13. A level one transmonomial is of the form µ = meL where m is a level
zero transmonomial and L is a purely large level zero transseries. µ
is large if the leading constant of L is positive and small otherwise. If
L is large and positive then eL is, by definition, much larger than any
monomial of level zero. We define naturally eL1eL2 = eL1+L2 . Note
that in our convention bot x and −x are large transseries.

14. A level one transseries is of the form

S =
∑
ki≥Mi

ck1,...,knµ
−k1
1 · · · µ−knn :=

∑
k≥M

ckµk (4.46)

where µi are large level one transmonomials.

With the operations defined naturally as above, level one transseries
form a differential field.

15. We define, for a small transseries, es =
∑∞
k=0 s

k/k!. If s is of level zero,
then es is of level zero too.

16. The construction proceeds similarly, by induction and a general exponential-
free transseries is one obtained at some level of the induction. They form
a differential field.

17. It can be shown, by induction, that S′ = 0 iff S = const.

18. Dominance: If S 6= 0 then there is a largest transmonomial µ−k1
1 · · ·µ−knn

in S, with nonzero coefficient, C. Then Dom(S) = Cµ−k1
1 · · · µ−knn . If

S is a nonzero transseries, then S = Dom(S)(1 + s) where s is purely
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small, i.e., all the transmonomials in s are small. It can be shown (the
construction is given later) that a base of monomials can then be chosen
such that all Mi in s are positive.

19. Topology.

(a) If S̃ is the space of transseries generated by the monomials µ1, ..., µn
then, by definition, the sequence S[j] converges to S given in (4.46)
if for any k there is a j0 = j0(k) such that c[j]k = ck for all j ≥ j0.

(b) This topology is metrizable, see the discussion after Definition 22.

(c) In this topology, addition and multiplication are continuous, but
multiplication by scalars is not.

(d) It is easy to check that any Cauchy sequence is convergent and
transseries form a complete linear metric space.

(e) Contractive mappings: A function (operator) A : S̃ → S̃ is con-
tractive if for some α < 1 and any S1, S2 ∈ S̃ we have d(A(S1) −
A(S2)) ≤ αd(S1 − S2).

(f) Fixed point theorem. It can be proved in the usual way that if A is
contractive, then the equation S = S0 + A(S) has a unique fixed
point.
Examples –This is a convenient way to show the existence of mul-
tiplicative inverses. It is enough to invert 1 + s with s small. We
choose a basis such that all Mi in s are positive. Then the equation
y = 1− sy is contractive.
–The equation y = 1/x−y′ is contractive within level zero transseries;
It has a unique solution.

20. If Ln = log(log(... log(x))) n times, and T is an exponential-free transseries
then T (Ln) is a general transseries. They form a differential field, closed
under integration, composition to the right with large transseries, and
many other operations; this closure is proved as part of the general
induction.

21. The theory of differential equations in transseries has many similarities
with the usual theory. For instance it is easy to show, using an inte-
grating factor and 17 above that the equation y′ = y has the general
solution Cex and that the equation y” = xy has at most two linearly
independent solutions. We will find two such solutions in the examples
below.

*
The type of exponential growth is related to the factorial power of diver-

gence of the power series. For illustration we take
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g′′ + 2z−1g′ − z−5g = 1 analyzed for z ↓ 0 (4.47)

To bring it to a canonical form, we would take z = 1/x. To get used to various
limits, we will rather work with the equation as presented. The dominant
balance of the homogeneous equation occurs between g′′ and z−5g. By WKB
we see that the solution of this dominant equation is

Const.z1/4e−2/3 z−3/2

The presence of a pole of higher order than the equation makes the power
series expansion

∑
k ckz

k of a solution diverge (ck ∝ (k!)p, p > 0), since at
the level of the recurrence for the ck it implies that coefficients with larger k
are given in terms of earlier ones multiplied by powers of n. In our specific
case we get

cn+3 = n(n+ 1)cn

with the solution

c3k = const.32kΓ(k + 1/3)Γ(k)

roughly,

ck ∝ (k!)2/3 (4.48)

Example 2. By a similar method, we can find a formal solution for the
Gamma function an+1 = nan. We look directly for transseries of level at least
one, an = efn and thus fn+1 = lnn + fn. It is clear that fn+1 − fn � fn;
this suggests writing fn+1 = fn + f ′n + 1

2f
′′
n + ... and, taking f ′ = h we get the

equation

hn = lnn− 1
2
h′n −

1
6
h′′n − ... (4.49)

(which is contractive in the space of transseries of zero height as we shall see
in Chapter A). We get

h = lnn− 1
2n
− 1

12n2
+

1
120n4

...

and thus

fn = n lnn− n− 1
2

lnn+
1

12n
− 1

360n3
...+ C
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4.2c Properties of the Laplace transform

Proposition 4.50 If F ∈ L1(R+) then LF is analytic in the right half plane
H and continuous on the imaginary axis ∂H, and L{F}(x) → 0 as x → ∞
in H.

Proof. Continuity and analyticity are preserved by integration against a fi-
nite measure (F (p)dp). Equivalently, these properties follow by dominated
convergence, as ε → 0, of

∫∞
0
e−isp(e−ipε − 1)F (p)dp and of

∫∞
0
e−xp(e−pε −

1)ε−1F (p)dp respectively, the last integral for <(x) > 0. The stated limit
also follows easily from dominated convergence, if | arg(x) ± π/2| > δ; the
general case follows from the case | arg(x)| = π/2 which is a consequence of
the Riemann-Lebesgue lemma.

First inversion formula.

Let H denote the space of analytic functions in H.

Proposition 4.51 (i) L : L1(R+) 7→ H and ‖L{F}‖∞ ≤ ‖F‖1.
(ii) L : L1 7→ L(L1) is invertible, and the inverse is given by

F (x) = F̂−1{L{F}(it)}(x) (4.52)

for ( x ∈ R+) where F̂ is the Fourier transform.

Proof. Part (i) is immediate, since |e−xp| ≤ 1. (ii) Extending F on R− by
zero we have L{F}(it) =

∫∞
−∞ e−iptF (p)dp = F̂F .

Second inversion formula.

Laplace transform is not surjective from L1 to H but functions in H with
sufficient decay do belong to L(L1).

Proposition 4.53 (i) Assume f is analytic in an open sector Hδ := {x :
| arg(x)| < π+ δ}, δ ≥ 0 and is continuous on ∂Hδ, and that for some K > 0
and any x ∈ Hδ we have

|f(x)| ≤ K(|x|2 + 1)−1 (4.54)

Then L−1f is well defined by

F = L−1f =
1

2πi

∫ +i∞

−i∞
dt eptf(t) (4.55)

and ∫ ∞
0

dp e−pxF (p) = LL−1f = f(x)
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and in addition ‖L−1{f}‖∞ ≤ Kπ and L−1{f} → 0 as p→∞.
(ii) If δ > 0 then F = L−1f is analytic in the sector S = {p 6= 0 : | arg(p)| <

δ}. In addition, supS |F | ≤ Kπ and F (p)→ 0 as p→∞ in S.

Proof. (i) We have∫ ∞
0

dp e−px
∫ ∞
−∞

ds eipsif(is) =
∫ ∞
−∞

dt f(is)
∫ ∞

0

dp e−pxeips (4.56)

=
∫ i∞

−i∞
f(z)(x− z)−1dz = 2πif(x) (4.57)

where we applied Fubini’s theorem and then pushed the contour of integration
past x to infinity. The norm is obtained by majorizing |feips| by K(|x2|+1)−1.

(ii) We have for any δ′ < δ, by (4.54),

∫ i∞

−i∞
ds epsf(s) =

(∫ 0

−i∞
+
∫ i∞

0

)
ds epsf(s)

=

(∫ 0

−i∞e−iδ′
+
∫ i∞eiδ

′

0

)
ds epsf(s) (4.58)

and analyticity is clear in (4.58).
For (ii) we note that (i) applies in

⋃
|δ′|<δ

eiδ
′
H0.

Many cases can be reduced to this one after transformations. For instance if
g =

∑N
j=1 ajx

−kj +f(x), with kj > 0 and f satisfying the assumptions above,
then g is inverse Laplace transformable since the finite sum in its definition is
explicitly transformable.

Proposition 4.59 Let F be analytic in the open sector Sp = eiφR+ with
φ ∈ (−δ, δ) be such that |F (|x|eiφ)| ≤ g(|x|) for some g ∈ L1[0, ε) bounded as
x→∞. Then f = LF is analytic in the sector Sx = {x : | arg(x)| < π/2 + δ}
and f(x)→ 0 as |x| → ∞, arg(x) = θ ∈ (−π/2− δ, π/2 + δ).

Proof. Because of the analyticity of F and the decay conditions for large
p, the path of Laplace integration can be rotated by any angle φ ∈ (−δ, δ)
without changing (LF )(x) (see also the next example). This means Proposi-
tion 4.50 applies in ∪|φ|<δeiφH.

Note that without further assumptions on LF , F is not necessarily analytic
at p = 0.

Corollary 4.60 The kernel of L is trivial: if F ∈ L1(R+) and LF = 0 then
F = 0.

Remark. It is useful to note that by continuity and analyticity, it is enough
to have LF (x) = 0 on any set with an accumulation point in the right half
plane to ensure F ≡ 0.
Proof. An immediate consequence of the first inversion formula.
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4.2c .1 Asymptotic properties Laplace transforms

The asymptotic behavior of Laplace integrals is particularly important given
that every analyzable function should be convergently expressed by

4.2d Representability in terms of Laplace transforms

Let us now consider the homogeneous equation associated to (4.47) after
the substitution z = 1/x. We divide by the exponential and change variable
2
3x

3/2 = s to linearize the exponent and ensure that the transformed func-
tion has an asymptotic series with factorial divergence. Such a series can
be obtained by Watson’s Lemma from a convergent series. Inverse Laplace
transform in then likely to regularize the equation.

Taking f(x) = e
2
3x

3/2
h( 2

3x
3/2) we get

h′′ +
(

2 +
1
3s

)
h′ +

1
3s
h = 0 (4.61)

and with H = L−1(h) we get

p(p− 2)H ′ =
5
3

(1− p)H

which indeed has a regular singularity at p = 0. The solution is

H = Cp−5/6(2− p)−5/6

and it can be easily checked that any integral of the form

h =
∫ ∞eiφ

0

e−psH(p)dp

for φ 6= 0 is a solution of (4.61) yielding the expression

f = e
2
3x

3/2
∫ ∞eiφ

0

e−
2
3x

3/2pp−5/6(2− p)−5/6dp (4.62)

for a solution of the Airy equation. A second solution can be obtained in a
similar way, replacing e

2
3x

3/2
by e−

2
3x

3/2
, or by taking the difference between

two integrals of the form (4.62).

For Example 2 above, factorial suggests taking inverse Laplace transform
of gn = fn − (n lnn− n− 1

2 lnn).
Inverse Laplace transform is given by the Bromwich integral along a vertical

contour in the right half plane:

(L−1F )(x) :=
1

2πi

∫ c+i∞

c−i∞
expF (p)dp
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The recurrence satisfied by g is

gn+1 − gn = qn = 1−
(1

2
+ n

)
ln
(

1 +
1
n

)
= − 1

12n2
+

1
12n3

+ ...

First note that L−1q = p−2L−1q′′ which can be easily evaluated by residues
since

q′′ =
1
n
− 1
n+ 1

− 1
2

( 1
(n+ 1)2

+
1
n2

)
Thus, with L−1gn := G we get

(e−p − 1)G(p) =
1− p

2
−
(p

2
+ 1
)
e−p

p2

gn =
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−npdp

(It is easy to check that the integrand is analytic at zero; its Taylor series is
1
12 −

1
720p

2 +O(p3).)
The integral is well defined, and it easily follows that

fn = C + n(lnn− 1)− 1
2

lnn+
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−npdp

solves our recurrence. The constant C = 1
2 ln(2π) is most easily obtained by

comparing with Stirling’s series (3.54) and we thus get the identity

ln Γ(n+1) = n(lnn−1)− 1
2

lnn+
1
2

ln(2π)+
∫ ∞

0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−npdp

(4.63)
which holds with n replaced by z ∈ C as well.

This represents, as we shall soon see, the Borel summed version of Stirling’s
formula.

Other recurrences can be dealt with in the same way. One can calculate∑n
j=1 j

−1 as a solution of the recurrence

sn+1 − sn =
1
n

Proceeding as in the Gamma function example, we have f ′− 1
n = O(n−2) and

the substitution sn = lnn+ gn yields
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gn+1 − gn =
1
n

+ ln
( n

n+ 1

)
and in the same way we get

fn = C + lnn+
∫ ∞

0

e−np
(1
p
− 1

1− e−p
)
dp

where the constant can be obtained from the initial condition, f1 = 0,

C = −
∫ ∞

0

e−p
(1
p
− 1

1− e−p
)
dp

which, by comparison with the usual asymptotic expansion of the harmonic
sum also gives

γ =
∫ ∞

0

e−p
( 1

1− e−p
− 1
p

)
dp

Comparison with (4.63) gives

n−1∑
j=1

1
j
− γ = lnn+

∫ ∞
0

e−np
(1
p
− 1

1− e−p
)
dp =

Γ′(n)
Γ(n)

(4.64)

Exercise: Zeta function. Use the same strategy to show that

(n− 1)!ζ(n) =
∫ ∞

0

pn−1 e−p

1− e−p
dp =

∫ 1

0

lnn−1 s

1− s
ds (4.65)

4.2d .1 The Euler-Maclaurin Sum formula

We can also generalize the asymptotic evaluation of difference equations in
the following setting. Assume f(n) does not increase too rapidly with n and
and we want to find the asymptotic behavior of

S(n+ 1) =
n∑

k=k0

f(k) (4.66)

for large n. We see that S(k) is the solution of the difference equation

S(k + 1)− S(k) = f(k) (4.67)

To be more precise, assume f has a level zero transseries as n→∞. Then we
write S̃ for the transseries of S which we seek at level zero. Then S(k + 1)−
S(k) = S′(k) + S′′(k)/2 + ... + S(n)(k)/k! + ... where the last sum converges
in the topology of transseries since differentiation is contractive on level zero
transseries, we get

S̃′(k) = f(k)− (S̃′′(k)/2 + ...+ S̃(n)(k)/k! + ...) (4.68)
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If Df := f ′, the operator ∑ Dk

k!
(4.69)

is contractive in the space T0 of transseries of level zero (check)! and we get
that S̃′ is uniquely defined as the solution in T0 of (4.68).

has a unique level zero transseries solution. It is easy to check that there
are no other solutions of other levels, and this should be also obvious from
the interpretation of S as the solution of (4.67) which is thereby defined, on
the positive integers, up to an additive constant. What do we get, in terms
of f? We only need to iterate (4.68) At the first step we get

S̃′(k) = f(k) (4.70)

At the second step the result is

S̃′(k) = f(k)− 1
2
f ′(k) (4.71)

At the third step we obtain

S̃′(k) = f(k)− 1
2
f ′(k) +

1
12
f ′′(k)

Continuing like this we get

S̃′(k) = f(k)− 1
2
f ′(k) +

1
12
f ′′(k)− 1

720
f (4)(k) + · · · =

∞∑
j=0

Cjf
(j)(k) (4.72)

What are the coefficients Cj? It is clear from the procedure itself that they
should not depend on f . But then it suffices to look at some particular f for
which the sum can be calculated explicitly. If n > 0 we have

1
1− e−1/n

=
∞∑
k=0

e−k/n (4.73)

while, by one of the definitions of the Bernoulli numbers we have

z

1− e−z
=
∞∑
k=0

(−1)j
Bj
j!
zj (4.74)

By integration we get

S(k) ∼
∫ k

k0

f(s)ds+ C +
∞∑
j=0

Bj+1

(j + 1)!
f (j)(k) (4.75)

Exercise 4.76 ** Complete the details of the calculation involving the iden-
tification of coefficients in the Euler-Maclaurin sum formula.
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Exercise 4.77 * Without using the Euler-Maclaurin sum formula, find rig-
orously for which values of a > 0 the series

∞∑
k=1

ei
√
k

ka

is convergent.

Exercise 4.78 * Prove the Euler-Maclaurin sum formula in the case f is
C∞ by first looking at the integral

∫ n+1

n
f(s)ds and expanding f in Taylor by

s = n. Then correct f to get a better approximation etc.

That (4.75) gives the correct asymptotic behavior in some generality is proved,
for example, in [19]. Eq. (4.75) is called the Euler-Maclaurin sum formula.

We will prove here, under stronger assumptions, a stronger result which
implies (4.75). The conditions are often met in applications, after chenges of
variables, as our examples showed.

Lemma 4.79 Assume f is analytic at the origin and f(z) = O(z2). Then
f(1/n) =

∫∞
0
F (p)e−npdp, F (p) = O(p) for small p and

n−1∑
k=n0

f(1/n) =
∫ ∞

0

e−np
F (p)
e−p − 1

dp−
∫ ∞

0

e−n0p
F (p)
e−p − 1

dp (4.80)

PROOF The fact that f(1/n) =
∫∞

0
F (p)e−npdp and F (p) = O(p) follows

from the general theory of Laplace transforms. We seek a solution of (4.67)
in the form S = C +

∫∞
0
H(p)e−kpdp, or, in other words we inverse Laplace

transform the equation (4.67). We get

(e−p − 1)H = F ⇒ H(p) =
F (p)
e−p − 1

(4.81)

and the conclusion follows by taking the Laplace transform which is well
defined since F (p) = O(p), and imposing the initial condition S(k0) = 0.

4.2d .2 Example: The Painlevé equation P1

d2y

dz2
= 6y2 + z (4.82)

We first look for formal solutions. As a transseries of level zero it is easy to
see that the only possible balance is 6y2 + z = 0 giving

y ∼ ± i√
6

√
z
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We choose one of the signs, say + and write

y =
i√
6

√
z − y′′ =

i√
6

(√
z − y′′

2
√
z
− 1

8z3/2
(y′′)2 · · ·

)
(4.83)

Equation (4.83) is contractive in the space of level zero transseries, and it
therefore has a unique solution there. A few iterations yield

y =
i√
6

(
√
z +

i
√

6
48z2

+
49i

768z9/2
· · ·

)
(4.84)

Since the procedure placed the highest derivative on the right side, we expect
that the series (4.84) is divergent. We could analyze the recurrence relation
for the coefficients to determine the rate of divergence, but this is harder
than the following process. We first look at the type of possible exponentials
besides the power series. If we attempt to represent the solution as a Laplace
transform of a nonentire analytic function with respect to a variable s, then
choosing two distinct contours would yield in general different solutions. If we
have a nearest singularity at, say p0 in the right half plane, then it is easy to
see that the difference of the two Laplace transforms would be roughly of the
order e−p0s. On the other hand, by Cauchy estimates and Watson’s Lemma
it is easy to see that the formal asymptotic series of the Laplace transform
has coefficients increasing roughly like k!/|p0|k. Thus, the divergence of the
series in the adapted variable s is k!|p0|k. It is easy from here to infer the rate
of divergence in the original variable.

We denote by y0 the series in (4.84) and look for further solutions in the form
y0 + δ, where we assume that δ is exponentially small (indeed, if exponential
solutions exist, we should be able to find a direction in C where the exponential
decreases.) We get for δ(x), discarding the quadratic terms,

δ′′ − 12y0δ = 0 (4.85)

We solve this equation by formal WKB. Substituting δ = ew in (4.85) we get

w′ = ±
√

2i
√

6
√
z − 1

4z2
+ · · · − w′′ (4.86)

which is again contractive in the space of transseries of level zero. We get

w =
4
5

√
2i61/4z5/4 + · · · (4.87)

The natural variable is z5/4. We further normalize the equation so that the
transseries for δ is the simplest. That should bring the equation P1 to its
simplest form for the purpose of Borel summation . We let

x =
(−24z)5/4

30
; y(z) =

√
−z
6

(
1− 4

25x2
+ h(x)

)
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P1 becomes

h′′ +
1
x
h′ − h− 1

2
h2 − 392

625x4
= 0 (4.88)

We are now in the adapted variable, the and the divergence of the series is
expected to be of order k! which can be compensated by the inverse Laplace
transform (by virtue of Watson’s Lemma).

If we write h(x) =
∫∞

0
H(p)e−xpdp, then the equation for H is

(p2 − 1)H(p) =
196
1875

p3 +
∫ p

0

sH(s)ds+
1
2
H ∗H (4.89)

where convolution is defined by

(F ∗G)(p) =
∫ p

0

F (s)G(p− s)ds

We will learn how to solve equations of the form (4.89).

4.3 Borel transforms

The Laplace transform is defined on integrable functions of at most expo-
nential growth by

L{F}(x) :=
∫ ∞

0

e−pxF (p)dp (<(x) > x0)

When dealing with functions defined in the complex domain it is useful to
allow for different contours of integration; Lφ denotes the Laplace transform
in the direction φ:

Lφ{F}(x) :=
∫ ∞eiφ

0

e−pxF (p)dp (<(xe−iφ) > x0)

The formal Laplace transform, still denoted L : C[[p]] 7→ C[[x−1]] is defined
by

L{s} = L

{ ∞∑
k=0

ckp
k

}
=
∞∑
k=0

ckL{pk} =
∞∑
k=0

ckk!x−k−1 (4.90)

(with L{pα−1} = Γ(α)x−α the definition extends straightforwardly to nonin-
teger power series).
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4.4 The Borel transform B

The Borel transform, B : C[[x−1]] 7→ C[[p]] is the (formal) inverse of the
operator L in (4.90). This is a transform on the space of formal series. By
definition, for a monomial we have

BΓ(s+ 1)
xs+1

= ps (4.91)

to be compared with the inverse Laplace transform,

L−1 Γ(s+ 1)
xs+1

=

{
ps for < p > 0
0 otherwise

(4.92)

For a formal series, the Borel transform is the formal sum of the Borel trans-
forms of its terms.

Because the k − th coefficient of B{f̃} is smaller by a factor k! than the
corresponding coefficient of f̃ , B{f̃} may converge even if f̃ does not. Since
factorial divergence is commonplace in analytic problems (for reasons that
will become clear in the sequel) this convergence-improving property of B is
very useful.

Also important is that the combination LB is, formally, the identity op-
erator, and must thus have, when properly interpreted, good commutation
properties with function operations.

These two facts account for the central role played by LB, the operator of
Borel summation in the theory of analyzable functions .

Summable series

6

B

?

B−1

Convergent series�
S
-

T

Analytic germsAnalytic functions �
AC
-

?

6

L−1L

Analyzable functions -
�

Borel summation

This diagram is crucial to Écalle’s theory.
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4.5 Definition of Borel summation and basic properties

Series of the form f̃ =
∑∞
k=0 ckx

−β1k1−...−βmkm−r with <(βj) > 0 fre-
quently arise as formal solutions of differential systems. We will first analyze
the case m = 1, r = 1, β = 1 but the theory extends without difficulty to more
general series.

Borel summation is relative to a direction, see Remark 4.119. The same
formal series f̃ may yield different functions by Borel summation in different
directions.

Borel summation along R+ consists in three operations, assuming they are
possible:

1. Borel transform, f̃ 7→ B{f̃}.
2. Summation of the series B{f̃} and analytic continuation along R+; de-

note this function by F .
3. Laplace transform, F 7→

∫∞
0
F (p)e−pxdp =: LB{f̃}, which requires

exponential bounds on F , defined in some half plane <(x) > x0.
The domain of Borel summation is the subspace SB of series for which the

conditions for the steps 1-3 above are met. For 3 we can require that for
some constants CF , νF we have |F (p)| ≤ CF e

νF p. Or we can require that
‖F‖ν <∞ where, for ν > 0 we define

‖F‖ν :=
∫ ∞

0

e−νp|F (p)|dp (4.93)

We note that L1
ν := {f : ‖f‖ν < ∞} forms a Banach space, and it is easy to

check that
L1
ν ⊂ L1

ν′ if ν′ > ν (4.94)

and that
‖F‖ν → 0 as ν →∞ (4.95)

the latter statement following from dominated convergence.

4.6 General remarks on Borel summation

A few notes are in order, to understand why Borel summation is natural.

1. If a problem has analytic coefficients and is nonsingular, or regularly
perturbed, the series expansions are convergent. In differential systems,
a problem is singularly perturbed if the highest derivative is formally
small, for instance in problems like f ′ + f = 1/x or, exiting the realm
of one variable, εf ′′ + h(x)f = g.



Introduction to transseries and analyzable functions 113

2. In singularly perturbed problems the highest derivative belongs formally
to the right side. One then iterates upon the highest derivative. For
generic analytic functions, by Cauchy’s formula, f (n) grows roughly like
constnn!

3. It is then natural to diagonalize d/dx. Then, by repeated iteration of
d/dx yields geometric rather that factorial divergence. This is much
easier to resolve.

4. The operator d/dx is diagonalized by the Fourier transform. Since it is
often the case that we deal with asymptotic problems, for say a large
variable x, we would like to perform it while keeping x large. The
Fourier transform on a vertical contour in the complex domain is in fact
an inverse Laplace transform, cf. (1.56).

5. L−1f ′ = pf thus repeated differentiation means repeated multiplication
by p. As noted in 4 above, Factorial growth is replaced by geometric
growth, much easier to control.

6. The formal inverse Laplace transform (Borel transform, B) of a small
zero level transseries, that is of a small multiseries, is defined, roughly,
as the term-by-term inverse Laplace transform of the series. It is still a
level zero transseries,

B
∑
k>0

ckx
−k·a =

∑
k>0

ckp
k·a−1/(k · a− 1)! (4.96)

where the factorial is understood in terms of the Gamma function.

The result of summing a formal series is still a formal series, convergent
or not.

7. One difference between L−1 and B is that L−1x−b−1 = pb/b! for all
small p, not only for < p > 0.

8. A series is classically Borel summable if (a) the series in p in (4.96) is
convergent (as a Puiseux series) for small p, (b) the sum admits analytic
continuation along R+ and (c) the sum f is analytic in a neighborhood
of the real line, along which f does not grow faster than exponentially.
The norm can be taken the sup norm with weight e−νp for some ν, or
L1(R+, e−νpdp) etc.

9. The Borel sum is then, by definition the Laplace transform of f . As
mentioned before the whole process is formally the identity, and it should
preserve “all properties”.
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4.6a Borel summation as analytic continuation

There is another interpretation which clarifies showing Borel summation
should commute with all operations. We can take the more general sum

∞∑
k=0

(−1)kΓ(βk + β)
xk+1

(4.97)

which for β = 1 agrees with (1.50). For β = i, (4.97) converges if |x| > 1,
and the sum is, using the integral representation for the Gamma function
and dominated convergence,∫ ∞

0

e−px

1 + pβxβ−1
dp (4.98)

Analytic continuation of (4.98) back to β = i becomes precisely (1.51).

Exercise 4.99 Complete the details in the calculations above. Show
that continuation to i and to −i give the same result (1.51).

Thus Borel summation should commute with all operations with which
analytic continuation does. This latter commutation is very general, and
comes under the umbrella of the vaguely stated “principle of permanence
of relations” which can hardly be formulated rigorously without giving
up some legitimate “relations”.

10. We will extend this summation to transseries. In practice however,
rarely does one need to Borel sum several levels of a transseries1: once
the lowest level has been summed, usually the remaining object is con-
vergent.

11. As we shall see, generic formal solutions which allow for small real valued
exponential corrections are not Borel summable, in the classical sense.
Even the prototypical example

∑∞
k=0 k!x−k−1 is not summable since its

Borel transform (1− p)−1 is not real-analytic. Natural extensions (me-
dianization, multisummation) exist to cover these cases. Higher powers
of the factorial can often be easily dealt with by changes of the inde-
pendent variable. For instance, in

∑∞
k=0(k!)2x−k+1 we achieve that by

taking x = y2 to get
∑∞
k=0(k!)2y−2k+2. Note that k!2 roughly behaves

like (2k)!. But at times, mixtures of series may occur and no single
change of variable suffices. This is dealt with by multisummability.

12. As a rule of thumb, we pass to the variable in which divergence is fac-
torial. It will turn out that this is intimately linked to the form of free

1That is, terms appearing in higher iterates of the exponential.
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small exponential corrections. If these are of the form e−x
q

then diver-
gence is usually like (n!)1/q. The variable should then be chosen to be
t = xq. This t is the critical time.

The reason for this choice can be understood as follows. If we expect
the solutions of an equation to be summable with respect to a power of
the variable, then the possible freedom in choosing the Laplace contour
in the complex domain should be compatible with the type of freedom
in the solutions. For instance we can take the Laplace transform of
(1− p)−1 along any ray other than R+. An upper half plane transform
differs from a lower half plane transform precisely by 2πie−x. But sub-
or super-exponential corrections cannot originate in proper Borel sums.
This will be proved shortly.

13. It is crucial to perform Borel summation in the adequate variable. If the
divergence is not fully compensated, then obviously we are still left with
a divergent series. “Oversummation”, the result of overcompensating
divergence usually leads to superexponential growth of the transformed
function. The presence of singularities in Borel plane is in fact a good
sign.

For equation (4.101), one can check that the divergence is like
√
n!. The

equation is oversummed if we inverse Laplace transform it in x; what
we get is

2H ′ − pH = 0; H(0) = 1/2 (4.100)

and thus H = 1
2e
p2/4. There are no singularities anymore but we have

superexponential growth; this combination is a sign of oversummation.
After oversummation there is no obvious way of taking the Laplace
transform close to the real line. In some cases, a simple change of
variable, as we have seen, can cure the problem.

14. For instance, to find the antiderivative of ex
2
, g′ = ex

2
we can write

g = uex
2

and then
2xu′ + u = 1 (4.101)

The freedom is that of an additive constant, g = Pex2
+C and thus the

correction is roughly e−x
2

times the dominant term. The critical time
is t = x2. We then take it is convenient to take g = h(x2)ex

2
. The

equation for h is

h′ + h =
1

2
√
t

(4.102)

15. If the transform of the solution of an equation is summable, then it is
expected that the transformed equation should be more regular. In this
sense, Borel summation is a regularizing transformation.
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In the case of (4.102) it becomes

−pH +H = p−1/2π−1/2 (4.103)

an algebraic equation, with algebraic singularities. The irregular singu-
larity has been removed.

16. We see though that H is not Laplace transformable, since it has a pole
at p = 1. This type of difficulty is not so rare, and it is dealt with
by an appropriate Écalle medianization. This is a suitable universal
linear combination of analytic continuations, chosen in such a way that
averaging commutes with the Laplace convolution (1.53) and the Borel
sum of a product is the product of Borel transforms. We will return to
this. For (4.103) it all amounts to taking the half-sum of the Laplace
transforms along contours from 0 to (1± iε)∞.

Exercise 4.104 Show, using dominated convergence, Morera’s and Fubini’s
theorems that if F ∈ L1

ν then LF is analytic in x in the half plane <(x) ≥ ν.

Note 4.105 Equivalently we can say that the series f̃ is Borel summable if it
is the asymptotic series as x→ +∞ of LF with F analytic in a neighborhood
DR+ of R+ (in particular, we say such a function is real-analytic on [0,+∞))
and exponentially bounded at infinity. The domain DR+ as well as the bounds
may depend on F . The definition is unambiguous since on the one hand the
asymptotic series of a function is unique, and, by Watson’s Lemma, if the
asymptotic series of LF is zero, then the Taylor series of F at p = 0 is zero
as well, and then F ≡ 0.

Definition 4.106 (Inverse Laplace space convolution) If f, g ∈ L1
loc then

(f ∗ g)(p) :=
∫ p

0

f(s)g(p− s)ds (4.107)

Lemma 4.108 The space of functions which are in L1[0, ε) for some ε >
0 and real-analytic on (0,∞) is closed under convolution. If F and G are
exponentially bounded then so is F ∗G. If F,G ∈ L1

ν then F ∗G ∈ L1
ν .

Proof. The statement about L1 follows easily from Fubini’s theorem. Analyt-
icity follows by writing∫ p

0

f1(s)f2(p− s)ds = p

∫ 1

0

f1(pt)f2(p(1− t))dt (4.109)

which is manifestly analytic in p. Clearly, if |F1| ≤ C1e
ν1p and |F2| ≤ C2e

ν2p,
then

|F1 ∗ F2| ≤ C1C2p e
(ν1+ν2)p ≤ C1C2 e

(ν1+ν2+1)p
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Finally, we note that∫ ∞
0

e−νp
∣∣∣∣∫ p

0

F (s)G(p− s)ds
∣∣∣∣ dp ≤ ∫ ∞

0

e−νse−ν(p−s)
∫ p

0

|F (s)||G(p−s)|dsdp

=
∫ ∞

0

∫ ∞
0

e−νs|F (s)|e−ντ |G(τ)|dτ = ‖F‖ν‖G‖ν (4.110)

by Fubini.

Remark 4.111 The results above can be rephrased for more general series of
the form

∑∞
k=0 ckx

−k−r by noting that for <(ρ) > −1 we have

Lp ρ = x−ρ−1Γ(ρ+ 1)

and thus

B

( ∞∑
k=0

ckx
−k−r

)
= c0

pr−1

Γ(r)
+
pr−1

Γ(r)
∗ B

( ∞∑
k=1

ckx
−k

)
Furthermore, Borel summation summation naturally extends to to series of
the form

∞∑
k=−M

ckx
−k−r

where M ∈ N by defining

LB

( ∞∑
k=−M

ckx
−k−r

)
=

0∑
k=−M

ckx
−k−r + LB

( ∞∑
k=0

ckx
−k−r

)
and more general powers can be allowed, replacing analyticity in p with ana-
lyticity in pβ1 , ..., pβm .

Proposition 4.112 (i) SB is a differential field,2 and LB : SB 7→ LBSB is a
differential algebra isomorphism.

(ii) If Sc ⊂ SB denotes the differential algebra of convergent power series,
and we identify a convergent power series with its sum, then LB is the identity
on Sc.

(iii) In addition, for f̃ ∈ SB, LB{f̃} ∼ f̃ as |x| → ∞, <(x) > 0.

Proof. (i) Clearly SB is a linear space; furthermore, f̃ = 0 ⇐⇒ Bf̃ =
0 ⇐⇒ LB{f̃} = 0 (the last step follows from the injectivity of L which, in
our case also follows from Watson’s Lemma as in Note 4.105 above.)

2with respect to formal addition, multiplication, and differentiation of power series.
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Exercise 4.113 Show that if Bf̃ = F and Bg̃ = G then Bf̃ g̃ is the power
series in p of F ∗G.

To show multiplicativity, we use Note 4.105. Analyticity and exponential
bounds of |F ∗G| follow from Lemma 4.108. Consequently, F ∗G is Laplace
transformable, and by elementary properties of Laplace transforms (or by
performing a simple change of variables in a double integral) we see that

L(F ∗G) = LF LG
We have to show that if f̃ is a Borel summable series, so is 1/f̃ . We have

f = Cxm(1 + s) for some m where s is a small series.
We want to show that

1− s+ s2 − s3 + · · · (4.114)

is Borel summable, or that

−s+ s2 − s3 + · · · (4.115)

is Borel summable. Let Bs = H. We examine the series

S = −H +H ∗H −H∗3 + · · · (4.116)

where H∗n is the self convolution of H n times. Each term of the series is
analytic, by Lemma 4.108. If maxp∈D |H(p)| = m, then it is easy to see that

|H∗n| ≤ mn1∗n = mn pn−1

(n− 1)!
(4.117)

Thus the function series in (4.116) is absolutely and uniformly convergent in
D and the limit is analytic. Let now ν be large enough so that ‖H‖ν < 1.
This is possible by (4.95). Then the series in (4.116) is norm convergent, thus
an element of L1

ν .

Exercise 4.118 Check that (1 + LH)(1 + LS) = 1.

It remains to show that the asymptotic expansion of L(F ∗ G) is indeed the
product of the asymptotic series of LF and LG, which is a consequence of
the more general fact that the asymptotic series of a product is the product
of the corresponding asymptotic series.

(ii) Since f̃1 = f̃ =
∑∞
k=0 ckx

−k−1 is convergent, then |ck| ≤ CRk for some
C,R and F (p) =

∑∞
k=0 ckp

k/k! is entire, |F (p)| ≤
∑∞
k=0 CR

kpk/k! = CeRp

and thus F is Laplace transformable for |x| > R. By dominated convergence
we have for |x| > R,

L
{ ∞∑
k=0

ckp
k/k!

}
= lim
N→∞

L
{ N∑
k=0

ckp
k/k!

}
=
∞∑
k=0

ckx
−k−1 = f(x)

(iii) This part follows simply from Watson’s Lemma, cf. § 3.1a .
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Remark 4.119 We note that in the last step in Borel summation we may
take the integral in p along a different half-line in C, as long as <(xp) > 0,
and the algebraic properties are preserved. But it is also easy to check that
the path matters, in general. For instance, if x ∈ R+ and Bf̃ = (1− p)−1, the
half line can be any ray in the open right half plane, other than R+. But

∫ ∞ei0+

0

e−xp

1− p
dp−

∫ ∞ei0−
0

e−xp

1− p
dp = 2πie−x

thus a convention for a choice of ray is needed.
Definition. The Borel sum of a series in the direction φ (arg x = φ), (LB)φf̃
is by convention, the Laplace transform of Bf̃ in the direction that ensures
xp ∈ R+,

(LB)φ f̃ =
∫ ∞e−iφ

0

e−pxF (p)dp = L−φF = LF (·e−iφ) (4.120)

We can also say that Borel summation of f̃ along the ray arg(x) = φ is defined
as the (real) Borel summation of f̃(xeiφ).

Control over the analytic properties of Bf̃ near p = 0 is essential to Borel
summability (classical or generalized). Indeed, by the Borel-Ritt Lemma,
§3.77, for any power series f̃ =

∑∞
k=0 ckx

−k and any sector S there exist
(many) functions f analytic in S and asymptotic in S to f̃ [17]. Now, choosing
δ > 0, a sector S of angle larger than π + δ, and any f such that f ∼ f̃ in S,
and denoting f1 = f , then Proposition 4.53 below shows that f−c0−c1x−1 =
L{F1} with F1 analytic in a sector of angle δ; in addition, by Watson’s Lemma
(see Lemma 3.37), L{F1} ∼ f̃1 in S. Any series would thus be “summable”
(very non-uniquely) in this weak sense. Summable series f̃ are distinguished
by the analytic properties of F1 at p = 0.

Since in most cases of interest Bf̃ has singularities in the complex plane,
different functions LBφf̃ are obtained for different φ. For example, we have

LBφ
∞∑
k=0

k!
xk+1

= L−φ{(1− p)−1} =
{

e−x (Ei(x)− πi) for φ ∈ (−π, 0)
e−x (Ei(x) + πi) for φ ∈ (0, π)

(4.121)
while the series is not classically Borel summable along R+, because of the
pole at p = 1.

(iv) On the other hand it can be seen by deforming the contour in L that
if Bf̃ is analytic and has uniform exponential bounds at infinity for arg(p) ∈
(−δ1, δ2), then the function LBφf̃ is the same for all arg(x) ∈ (−δ2, δ1), in
contrast to (4.121).
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4.6b Recovering exact solutions from formal series.

If a differential equation has a formal solution f̃ ∈ SB then LBf̃ is an actual
solution of the same equation. For example

f ′ − f = x−1 (4.122)

for x → ∞ has the series solution f̃ =
∑∞
k=0(−x)−k−1k! and B{f̃} =∑∞

k=0(−p)k sums to the Laplace transformable function (1 + p)−1. Now,
for any f̃ ∈ SB and f ∈ LB(SB) we have

f̃ ′ − f̃ − x−1 = 0 ⇐⇒ LB
(
f̃ ′ − f̃ − x−1

)
= 0 (4.123)

⇐⇒
(
LB{f̃}

)′ − LB{f̃} − x−1 = 0 (4.124)

In particular,

LB{f̃} =
∫ ∞

0

e−pxdp
1 + p

= f (4.125)

is an actual solution of (4.122). Solving the analytic problem (4.122) in
LB(SB) has reduced thus to an essentially algebraic question, that of find-
ing f̃ .

4.6c Stokes phenomena: first examples

Rotation of the contour of integration in the complex plane is a convenient
way to calculate the change in asymptotic behavior with respect to the sector
of analysis. We illustrate this on a simple case:

y(x) :=
∫ ∞

0

e−px

1 + p
dp (4.126)

and we would like, say, to find the asymptotic behavior in the complex plane
of the analytic continuation of this integral with respect to x after one anti-
clockwise loop around infinity. A simple estimate of the integral over an arc
of radius R shows that for x ∈ R+ y(x) also equals

y(x) =
∫ ∞e−iπ/4

0

e−px

1 + p
dp (4.127)

Then the functions given in (4.126) and (4.127) agree in R+ thus they agree
everywhere they are analytic. Furthermore, the expression (4.127) is analytic
for arg x ∈ (−π/4, 3π/4) and by the very definition of analytic continuation f
admits analytic continuation in a sector arg(x) ∈ (−π/2, 3π/4). Now we take
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x with arg x = π/4 and note that along this ray, by the same argument as
before, the integral equals

y(x) =
∫ ∞e−πi/2

0

e−px

1 + p
dp (4.128)

we can continue this rotation process until arg(x) = π − ε in which case we
have

y(x) =
∫ ∞e−πi+iε

0

e−px

1 + p
dp (4.129)

which is now manifestly analytic for arg(x) ∈ (π/2− ε, 3π/2− ε). To proceed
further, we relate the integral below the pole to the integral above the pole,
noting that their difference is simply calculated in terms of the at the pole:∫ ∞e−πi−iε

0

e−px

1 + p
dp−

∫ ∞e−πi+iε
0

e−px

1 + p
dp = 2πiex (4.130)

and thus

f(x) =
∫ ∞e−πi−iε

0

e−px

1 + p
dp− 2πiex (4.131)

which is manifestly analytic for arg(x) ∈ (π/2+ε, 3π/2+ε). We can now freely
proceed with the analytic continuation in similar steps until arg(x) = 2π and
get

f(xe2πi) = f(x)− 2πiex (4.132)

The function has nontrivial monodromy at infinity. We also note that by
Watson’s Lemma, as long as f can be written as a pure Laplace-like integral,
f has an asymptotic series in a half-plane. The relation (4.131) shows that
this ceases to be the case when arg(x) = π. This line is called a Stokes line.
The exponential, “born” there is smaller than the terms of the series until
arg(x) = 3π/2 when it becomes the dominant term of the expansion. This
line is called an Antistokes line. The fact that the function itself is not
single-valued in a neighborhood of infinity is also seen from the calculation
(take first x ∈ R+)

f(x) = e−x
∫ ∞

1

e−xt

t
dt = e−x

∫ ∞
x

e−s

s
ds = e−x

(∫ 1

x

e−s

s
ds+

∫ ∞
1

e−s

s
ds

)
= e−x

(
C1 +

∫ 1

x

e−s

s
ds

)
= e−x

(
C1 +

∫ 1

x

e−s − 1
s

ds− lnx
)

= e−x (entire− lnx) (4.133)

The Stokes phenomenon however is not due to the multivaluedness of the
function but to the divergence of the asymptotic series, as seen from the
following simple remark.
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Remark 4.134 Assume f is analytic outside a compact set and is asymptotic
to f̃ as |x| → ∞ (in any direction). Then f̃ is convergent.

PROOF By the change of variable x = 1/z we move the analysis at zero.
The existence of an asymptotic series as z → 0 implies in particular that f
is bounded at zero. Since it is analytic in C \ {0} then zero is a removable
siungularity of f , and thus the asymptotic series, which as we know is unique,
must coincide with the Taylor series of f at zero, a convergent series.

The exercise below also shows that the Stokes phenomenon is not due to
multivaluedness.

Exercise 4.135 * (1) Show that the function f(x) =
∫∞
x
e−s

2
ds is entire.

(2) Note that

∫ ∞
x

e−s
2
ds =

1
2

∫ ∞
x2

e−t√
t
dt =

1
2x

∫ ∞
1

e−x
2u

√
u
du =

e−x
2

2x

∫ ∞
0

e−x
2p

√
1 + p

dp

(4.136)
Do a similar analysis to the one in the text and identify the Stokes and anti-
stokes lines for f . Note that the “natural variable” now is x2.

4.6d Nonlinear Stokes phenomena and formation of singu-
larities

Let us now look at (4.63). If we take n to be a complex variable, then the
Stokes lines are those for which after deformation of contour of the integral

∫ ∞
0

1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)
e−npdp (4.137)

in (4.63), which is manifestly a Borel sum of a series, will run into singularities
of the denominator. This happens when n is purely imaginary. Assume that
n is on a ray arg n = −π/2 + ε. We let

F (p) =
1− p

2
−
(p

2
+ 1
)
e−p

p2(e−p − 1)

We rotate the contour of integration to arg p = π/2− ε, compare with the
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integral to the left of the imaginary line and get the representation∫ ∞eiπ/2−iε
0

F (p)e−npdp =
∫ ∞eiπ/2+iε

0

F (p)e−npdp+2πi
∑
j∈N

ResF (p)e−np|p=2jπi

=
∫ ∞eiπ/2+iε

0

F (p)e−npdp+
∑
j∈N

1
je2njπi

=
∫ ∞eiπ/2+iε

0

F (p)e−npdp− ln(1− exp(−2nπi)) (4.138)

where the sum is convergent when arg n = −π/2 + ε, and thus, when arg n =
−π/2 + ε we can also write

Γ(n+ 1) =
1

1− exp(−2nπi)

√
2πn

(n
e

)n
exp

(∫ ∞eiπ/2+iε

0

F (p)e−npdp

)
(4.139)

from which it is manifest that Γ is analytic in the complex plane, has Stirling’s
formula as asymptotic series in the classical sense for arg(n) ∈ (−π, π) and
has simple poles at all negative integers.

We see that these poles occur on the antistokes line of Γ, and the first
time corrections are visible, they come in the form of singularities. We also
note that, after reexpansion of the log, the middle expression in (4.138) is
a Borel summed series plus a transseries in n (although now we allow n to
be complex). Singularities occur precisely where the transseries ceases to be
valid formally, on the line where |e2πin| 6� 1. This is typical when there are
infinitely many singularities in Borel space, generically the case for nonlinear
ODEs that we will study in more detail in the sequel (this is the reason we
spoke of nonlinear Stokes phenomena). This is also the case, as we saw, in
difference equations. Our calculations also show that we have, for arg(n) 6= π

ln Γ(n+ 1) ∼ n(lnn− 1)− 1
2

ln(2πn) + P.S. (4.140)

where P.S. is a power series

P.S. =
1

12x
− 1

360x3
+

1
1260x5

− 1
1680x7

+
1

1188x9
− · · ·

(explain the sign pattern and the fact that it is an odd series; this is a spe-
cial case of Dingle’s rule of signs that we shall study later, asserting roughly
speaking that small exponentials are born on the rays where all signs are in
phase). The power series Borel sums to

P.S.
LB=


ln Γ(n+ 1)− ln

[√
2πn

(
n
e

)n] arg(n ∈ (−π/2, π/2)
ln Γ(n+ 1)− ln

[√
2πn

(
n
e

)n]− ln(1− exp(−2nπi)) arg n ∈
(
−π,−π2

)
ln Γ(n+ 1)− ln

[√
2πn

(
n
e

)n]− ln(1− exp(2nπi)) arg n ∈
(
π
2 , π

)
(4.141)
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and the lines arg n = ±π/2 are Stokes lines. We note that nothing special
happens to the function on these lines, while the asymptotic series has the
same shape. The discontinuity lies in the representation of the function as
a Borel summed series. Something similar, although the similarity should
not be pushed too far, happens with the function (1 + x)−1 when x = 1, in
reference to its power series, which diverges at x = 1 without x = 1 being
special in any way for the function.

Exercise 4.142 ** Find the asymptotic expansion for large |x| in all direc-
tions in C of a solution of the Airy equation y′′ = xy which goes to zero as
x → +∞. It is convenient to use formulas of the type (4.62). (Note that by
Remark 4.111, Borel summation allows for the Borel transform to be conver-
gent power series in noninteger powers of p).

4.6e Overview of Borel summation results obtained so far

• Some series which are not convergent are Borel summable. (After we
generalize Borel summation we shall see that this is the case in many
problems.)

• Borel summation has many of the good features of usual summation of
geometrically convergent series. In particular, it commutes with alge-
braic operations and differentiation.

• Borel summation gives, via Watson’s Lemma, a transparent description
of the asymptotic properties in the complex domain of the function
obtained.

• The function obtained by nontrivial Borel summation depends on the
direction. The asymptotic properties of functions thus obtained also
depend on the direction. This is seen as Stokes phenomena or formation
of singularities. An example is (4.121).

• If there are finitely many singularities in Borel space (the case, as we
shall see, of solutions of linear ODEs), then a solution that decays in
some direction increases exponentially in complementary directions. If
there are infinitely many singularities (the case of solutions of nonlinear
ODEs and difference equations among others), solutions that decrease
along some directions typically form singularities in complementary di-
rections. An example is (4.141). These singularities are arranged in
almost periodic arrays. The transseries representation of a solution is a
very useful tool to find its singularities in the complex domain, as we
shall see.
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4.6f Some of the difficulties of classical Borel summation

The domain of definition of classical Borel summation is not large enough
to be able to use it to sum transseries. First, LB only applies to power series,
while for instance the general solution of (4.122) is LB{f̃}+Cex. This is not
a serious problem however; the definition LB exp(ax) = exp(ax) solves it.

A more substantial difficulty is encountered within simple power series. The
change of variable x 7→ (−x) in (4.122) leads to the equation f ′ + f = 1/x,
with formal series solution f̃ =

∑∞
k=0 k!x−k−1. We now get

∑
Bf̃ = (1−p)−1

which is not Laplace transformable, because of the nonintegrable singularity
at p = 1. Although one can avoid the singularity by shifting the contour
of L in the complex plane, there is no systematic way to define the shift
to allow for arbitrary location of the singularities of a general Bf̃ , and if
the contour of integration has to depend on f̃ , then the linearity of LB is
lost. (Commutation with complex conjugation is also lost if the contour of
integration is not fixed.) Restricting however the location of singularities
would make Borel summability incompatible with the trivial change of variable
x 7→ Const.x.

Finally, LB cannot be usefully restricted to those f̃ ∈ SB for which F1 =
B{f̃} is entire and |F1(p)| ≤ C1e

C2|p| in C, because this simply entails the con-
vergence of f̃ . Indeed, by shifting the contour of integration in

∫∞
0
e−pxF1(p)dp

and rotating x simultaneously to keep xp real and positive, we see that
(LF1)(x) is single-valued near infinity. By Proposition 4.112 LF1 ∼ f̃1 as
|x| → ∞, x ∈ C, therefore ∞ is a removable singularity of LF1 and the series
f̃1 converges.

Furthermore, as a manifestation of Stokes’ phenomenon, as we saw in the
previous section, a single-valued function f cannot be asymptotic to the same
divergent expansion in every direction in the complex plane.

Since the restrictions needed for classical Borel summation to apply do
not allow it to define a sufficiently general isomorphism, one looks instead at
extensions of LB, as an operator.

4.7 Gevrey classes, least term truncation, and Borel sum-
mation

In the simple example of Ei(x), factorial divergence is associated with the
possible presence of exponentially small terms, terms beyond all orders. This
and the power-of-factorial-like divergence of formal asymptotic series of so-
lutions of differential equations are quite general phenomena, as will become
clear in the following chapters.

Let now f̃ =
∑∞
k=0 ckx

−k be a formal power series and f a function asymp-
totic to it. The definition (1.12) provides estimates of the value of f(x) for
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large x , within o(x−N ), N ∈ N, which are, as we have seen, insufficient to
pin down a unique f associated to f̃ . Simply widening the sector in which
(1.12) is required cannot change this situation since, for instance, exp(−x1/m)
is beyond all orders of f̃ in a sector of angle almost mπ.

It seems then reasonable to attempt to (a) lower the errors in the approxi-
mation of f by the truncates of f̃ to less than O(e−Const.|x|), to roughly match
the “natural” indeterminacy of f , and then (b) look for estimates in a wide
enough sector in the hope of ruling out any possible terms beyond all orders,
in this way restoring uniqueness of the association between f and f̃ . In some
cases this strategy is successful. One important approach in this class is due
to Gevrey (see e.g. [10]).

The formal series

f̃(x) =
∞∑
k=0

ckx
−k, x→∞

is by definition Gevrey of order 1/m, or Gevrey-(1/m) if |ck| ≤ C1C
k
2 (k!)m

for some C1, C2. Taking x = ym and g̃(y) = f̃(x), then g̃ is Gevrey-1 (albeit
not necessarily an integer power series, the generalization to noninteger power
series is immediate) and we will focus on this case. Also, the corresponding
classification for series in z, z → 0 is obtained by taking z = 1/x.

Remarks 4.143 (a) The Gevrey order of the series
∑
k(k!)rx−k r > 0, is the

same as that of
∑
k(rk)!x−k. Indeed, if ε > 0 we have, by Stirling’s formula,

Const (1 + ε)−k ≤ (rk)!/(k!)r ∼ Const k 1
2−r ≤ Const (1 + ε)k

(b) There is a simple connection between the Gevrey order of formal power
series solutions of a differential equation at an irregular singular point and the
type of exponentials of the associated homogeneous equation. For illustration
consider the example of the equation zq+1y′ − ay = 1 in a neighborhood
of zero, with q ∈ N. The coefficients ck of a formal power series solution
ỹ =

∑
k≥0 ckz

k satisfy the recurrence a0 = 0 and (k − q)ck−q + ack = 0 if
k − q > 0. If q ≥ 1 we get cjq+q = ajj!, the series diverges and x = 0 is an
irregular singularity. Using part (a) above we see that the series is Gevrey-q.
On the other hand, the solution of the homogeneous equation zq+1y′−ay = 0
is C exp

(
−aq z

−q
)

. Precise asymptotic control of the coefficients of formal
power series solutions can be obtained for quite general differential systems,
see e.g. [23].

Exercise. Formulate and prove a more general result in the spirit of Remark
4.143 (b) for n-th order linear differential equations.

*
Let f̃ be Gevrey-1 . A function f is Gevrey-1 asymptotic to f̃ as x→∞ in

a sector S if for some C3, C4, C5, and all x ∈ S with |x| > C5 and all N we
have
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|f(x)− f̃ [N ]| ≤ C1C
N+1
2 |x|−N−1(N + 1)! (4.144)

i.e. the error f − f̃ [N ] is of the same form as the first omitted term in f̃ .

Remark 4.145 If f̃ is Gevrey-1 and f is Gevrey-1 asymptotic to f̃ then f
can be approximated by f̃ with exponential precision in the following sense.
Let N = b |x/C2| c (b·c is the integer part) then for any C > C2 we have

f(x)− f̃ [N ](x) = O(|x|−1/2e−|x|/C) |x| large) (4.146)

Indeed, letting |x| = NC2 + ε with ε ∈ ([0, 1) and applying Stirling’s formula
we have

N !(N + 1)CN2 |NC2 + ε|−N−1 = O(|x|1/2e−|x|/C2)

Notes. (a) A heuristic discussion about the strategy may be helpful now;
rigorous statements will follow.

Usually the imprecision implied by (4.146) is larger than the potential terms
beyond a Gevrey-1 series f̃ , at least in some directions.

However, if the estimate (4.146) holds for f in a sector Sπ+ of opening
more than π, then it is easy to see that (4.146) cannot hold at the same time
for f and for f + C ′e−C

′′xpx−m, no matter what C ′′,m, p > 1 are, unless
C ′ = 0. Since terms beyond all orders, if present, are expected to be some
combinations of powers, exponentials and logs, these and similar attempts
suggest that if f satisfies (4.146) in Sπ+, then f is unique. Theorem 4.147
below shows that this is true.

(b) It is also interesting that when there is a unique f in Sπ+ with the
property (4.146), then f̃ is Borel summable, and f is precisely the Borel sum
of f̃ (Theorem 4.147 below).3

(c) However the same theorem suggests that unless the series f̃ is trivial,
there must exist some Sπ+ in which no f is Gevrey−1-asymptotic to f̃ and
where this method of associating an f to f̃ fails. In addition we note that
there is no entire function of exponential order one at infinity (i.e., f(x) ≤
C1 exp(C2|x|)) which is Gevrey−1 asymptotic to a divergent series in more
than a half plane. Indeed if there was such a function f then the Phragmén-
Lindelöf principle applied in C\Sπ+ would imply that f is bounded at infinity,
thus f and f̃ would be constant.

(d) Summation to the least term as will be detailed in the Chapter 4, is in
a sense a refined version of Gevrey asymptotics. It requires optimal constants
in addition to an improved form of Rel. (4.144). In this way the imprecision

3Borel summability is clearly not ensured by the Gevrey character of f̃ alone, since such
estimates give no information about

P
Bf̃ beyond the implied disk of convergence.
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of approximation of f by f̃ turns out to be smaller than the largest exponen-
tially small “possible” term beyond all orders, and thus the cases in which
uniqueness is ensured are more numerous.

4.7a Connection between Gevrey asymptotics and Borel
summation

The following theorem goes back to Watson [12].

Theorem 4.147 Let f̃ =
∑∞
k=2 ckx

−k be a Gevrey-1 series and assume the
function f is analytic for large x in Sπ+ = {x : | arg(x)| < π/2 + δ} for some
δ > 0 and Gevrey-1 asymptotic to f̃ in Sπ+. Then

(i) f is unique.
(ii) f̃ is Borel summable in any direction eiθR+ with |θ| < δ and f = LBθf̃ .
(iii) B(f̃) is analytic (at p = 0 and) in the sector Sδ = {p : arg(p) ∈

(−δ, δ)}, and Laplace transformable in any closed subsector.
(iv) Conversely, if f̃ is Borel summable along any ray in the sector Sδ

given by | arg(x)| < δ, and if Bf̃ is uniformly bounded by eν|p| in any closed
subsector of Sδ, then f is Gevrey-1 with respect to its asymptotic series f̃ in
the sector | arg(x)| ≤ π/2 + δ.

Notes. (i) In particular, when the assumptions of the theorem are met,
Borel summability follows using only asymptotic estimates.

(ii) We also see that the cases described in Theorem 4.147 in which Gevrey
estimates ensure uniqueness of the association between f̃ and f are weaker
than those in which f̃ is Borel summable, since Borel summability requires
analyticity in some neighborhood of R+ and not in a sector.

Proof of Theorem 4.147. Let us note first a possible pitfall. Inverse Laplace
transformability of f follows immediately from the assumptions. What doesn’t
follow is analyticity of the transform at zero. On the other hand, the formal
inverse Laplace of f̃ trivially converges to an analytic function. But there is
no guarantee that this analytic function has anything to do with the inverse
Laplace transform of f ! This is where Gevrey estimates enter.

(i) If f1 and f2 satisfy the assumption of the theorem, then by Proposi-
tion 4.145, for some constants C1, C2 (same for f1 and f2) we have

|f1(x)− f2(x)| < C1

√
|x|e−C2|x| (4.148)

in a sector of opening more then π. Note that by Proposition 4.53 L−1{f1−f2}
exists and is analytic for arg(p) ∈ (−δ, δ) and that, by (4.148), for |p| < C2

the contour of integration in (4.55) can be pushed to infinity implying that
L−1{f1 − f2} = 0 on the interval (0, C2). By analyticity L−1{f1 − f2} ≡ 0
and the inversion formula gives f1 − f2 = 0.

(ii) By a simple change of variables we arrange C1 = C2 = 1. The series
F̃1 = Bf̃ is convergent for |p| < 1 and defines an analytic function, F1. By
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Proposition 4.53, the function F = L−1f is analytic for |p| > 0, | arg(p)| < δ,
and F (p) is analytic and uniformly bounded if | arg(p)| < δ1 < δ. We now
show that F is analytic for |p| < 1. Taking p real, p ∈ [0, 1) we obtain in view
of (4.144) that

|F (p)− F̃ [N−1](p)| ≤
∫ i∞+N

−i∞+N

d|s|
∣∣∣f(s)− f̃ [N−1](s)

∣∣∣ e<(ps)

≤ N !epN
∫ ∞
−∞

dx
|x+ iN |N

= N !epN
∫ ∞
−∞

dx
(x2 +N2)N/2

(4.149)

where we take x = N tan t and get the estimate for the last term

N !epN

NN−1

∫ π/2

−π/2
cosN−2(t)dt ≤ constN3/2e(p−1)N (N →∞) (4.150)

Since the RHS in (4.150) vanishes in the limit N → ∞ for p ∈ [0, 1), this
implies F = F1 for p ∈ [0, 1), thus F = F1 for any p with |p| < 1 and also for
any p with | arg(p)| < δ.

Since
∑
Bf̃ = L−1f , (iii) follows now from Proposition 4.53.

(iv) Let |φ| < δ. We have, by integration by parts,

f(x)− f̃ [N−1](x) = x−NL d
N

dpN
F (4.151)

On the other hand, F is analytic in Sa, some a = a(φ)−neighborhood of
the sector {p : | arg(p)| < |φ|}. Estimating Cauchy’s formula on an a−circle
around the point p with | arg(p)| < |φ| we get

|F (n)(p)| ≤ N !a(φ)−N‖F (p)‖∞;Sa

Thus, by (4.151), with |θ| ≤ |φ| chosen so that γ = cos(θ−arg(x)) is maximal
we have

∣∣∣f(x)− f̃ [N ]
∣∣∣ =

∣∣∣∣∣x−N
∫ ∞ exp(−iθ)

0

F (N)(p)e−pxdp

∣∣∣∣∣
≤ N !a−N |x|−N‖Feν|p|‖∞;Sa

∫ ∞
0

e−px+ν|p|γdp = const.N !a−Nγ−1|x|−N−1‖F‖∞;Sa

(4.152)

for large enough x.
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4.7b Stokes lines

Theorem 4.147 and the discussion in §4.6f show that for a non-convergent
Gevrey-1 series f̃ there must exist sectors of opening more than π where no f
is Gevrey−1 asymptotic to f̃ . These “singular” directions reflect the presence
of the local Stokes phenomenon .
Definition. Let f̃ be Gevrey-1.

We say that f̃ is Gevrey-1 asymptotic in S(φ; ε;R) where

S(φ; ε;R) = {x : |x| > R, | arg(x)− φ| < π/2 + ε}

if there exists f analytic S(φ; ε;R) such that f G1∼ f̃ in S(φ; ε;R) (then this f
is unique, by Theorem 4.147).

If φ is such that f̃ is not Gevrey-1 asymptotic in S(φ; ε;R), we say that
dφ = {x : arg(x) = φ} is a Stokes ray for f̃ .

Proposition 4.153 Let f̃ be Gevrey-1. Then f̃ is divergent iff it has at least
a Stokes ray .

PROOF This property of f̃ is clearly independent of any finite number
of terms in f̃ so we may assume f̃ =

∑∞
k=2 fkx

−k. If f̃ is convergent then
clearly it has no Stokes line s. For the converse, we assume that f̃ has no
Stokes line s and for φ ∈ [0, 2π+ δ] we let εφ > 0, Rφ, fφ be such that fφ

G1∼ f̃

in S(φ; εφ;Rφ). If E(φ) is the sup of εφ such that f̃ is Gevrey-1 asymptotic in
S(φ; εφ;Rφ) for some Rφ then it is easy to check that E(φ) is continuous in
φ and then, for some N ∈ N we have infφ∈[0,2π+δ]E(φ) > (2/N) > 0. In all
sectors Sj = S(j/N ; εj/N ;Rj/N ) with 0 ≤ j/N < 2π+δ the series f̃ is Gevrey-
1 asymptotic, and since Sj ∩ Sj+1 is wider than π we have by Theorem 4.147
that f(j+1)/N = fj/N if 0 ≤ j/N < 2π + δ. Thus fj/N = f is independent of
j and in particular f is single-valued at infinity. Thus, by Liouville’s theorem
f is analytic at infinity and f̃ is convergent.

4.7c Strategies of Borel summation of formal power series
solutions: an introduction

Assume we intend to solve using Borel summability techniques an ODE,
say

y′ + y = x−2 + y3 (4.154)

To find a formal power series solution we proceed as usual, separating out the
dominant terms, in this case y and x−2. We get the iterations scheme

y[n](x)− x−2 = y3
[n−1] − y

′
[n−1] (4.155)
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with y[0] = 0. After a few iterations we get

ỹ(x) = x−2+2x−3+6x−4+24x−5+121x−6+732x−7+5154x−8+· · · (4.156)

For differential equations of this kind there exist results in great generality as
to the Borel summability of formal transseries solutions, and we shall see a
few of these in the sequel. The purpose now is to illustrate a strategy of proof
that is convenient and which applies to a reasonably large class of settings.

It would be technically awkward to prove, solely based on (4.156) that the
Borel transform of the series is convergent, extends analytically along the real
line and that is has the required exponential bounds towards infinity.

A better approach is to control the Borel transform of ỹ via the equation
it satisfies. This equation is the formal inverse Laplace transform of (4.155),
namely, setting Y = Bỹ

−pY + Y = p+ Y ∗ Y ∗ Y := p+ Y ∗3 (4.157)

We then show that the equation (4.157) has a (unique) solution which is
analytic in a neighborhood of the origin together with a sector centered on
R+ in which this solution has exponential bounds. Thus Y is Laplace trans-
formable, and immediate verification shows that y = LY satisfies (4.154).
Furthermore, since the Maclaurin series S(Y ) formally satisfies (4.157) then
the formal Laplace (inverse Borel) transform B−1SY is a formal solution of
(4.154), and thus equals ỹ since this solution, as we proved in many simi-
lar settings is unique. But since then SY = Bỹ it follows that ỹ is Borel
summable, and the Borel sum solves (4.154).

The transformed equations are expected to have analytic solutions, there-
fore to be more regular than the original ones.

4.7c .1 Regularizing the heat equation

fxx − ft = 0 (4.158)

Since (4.158) is parabolic, power series solutions

f =
∞∑
k=0

tkFk(x) =
∞∑
k=0

F
(2k)
0

k!
tk (4.159)

are divergent even if F0 is analytic (but not entire). Nevertheless, under
suitable assumptions, Borel summability results of such formal solutions have
been shown by Lutz, Miyake, and Schäfke [15] and more general results of
multisummability of linear PDEs have been obtained by Balser [10].

The heat equation can be regularized by a suitable Borel summation . The
divergence implied, under analyticity assumptions, by (4.159) is Fk = O(k!)
which indicates Borel summation with respect to t−1. Indeed, the substitution



132 Asymptotics and Borel summability

t = 1/τ ; f(t, x) = t−1/2g(τ, x) (4.160)

yields

gxx + τ2gτ +
1
2
τg = 0

which becomes after formal inverse Laplace transform (Borel transform) in τ ,

pĝpp +
3
2
ĝp + ĝxx = 0 (4.161)

which is brought, by the substitution ĝ(p, x) = p−
1
2u(x, 2p

1
2 ); y = 2p

1
2 , to the

wave equation, which is hyperbolic, thus regular

uxx − uyy = 0. (4.162)

Existence and uniqueness of solutions to regular equations is guaranteed by
Cauchy-Kowalevsky theory. For this simple equation the general solution
is certainly available in explicit form: u = f1(x − y) + f2(x + y) with f1, f2

arbitrary twice differentiable functions. Since the solution of (4.162) is related
to a solution of (4.158) through (4.160), to ensure that we do get a solution
it is easy to check that we need to choose f1 = f2 =: u (up to an irrelevant
additive constant which can be absorbed into u) which yields,

f(t, x) = t−
1
2

∫ ∞
0

y−
1
2

[
u
(
x+ 2 y

1
2

)
+ u

(
x− 2 y

1
2

)]
exp

(
−y
t

)
dy (4.163)

which, after splitting the integral and making the substitutions x± 2 y
1
2 = s

is transformed into the usual Heat kernel solution,

f(t, x) = t−
1
2

∫ ∞
−∞

u(s) exp
(
− (x− s)2

4t

)
ds (4.164)

*

4.7d Convolutions: elementary properties

The transformed equation (4.157) is a convolution equation and it is useful
to list first some elementary properties of convolutions. Some spaces are well
suited for the study of convolution algebras.

(1) Let ν ∈ R+ and define L1
ν := {f : R+ : f(p)e−νp ∈ L1(R+)}; then the

norm ‖f‖ν is defined as ‖f(p)e−νp‖1 where ‖ · ‖1 denotes the L1 norm.

Proposition 4.165 L1
ν is a Banach algebra with respect to convolution.
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PROOF Note first that if f ∈ L1
ν then the Laplace transform of f exists

for <(x) ≥ ν and f, g ∈ L1
ν implies

‖f ∗ g‖ν =
∫ ∞

0

e−νp
∣∣∣∣∫ p

0

f(s)g(p− s)ds
∣∣∣∣ dp

=
∫ ∞

0

∣∣∣∣∫ p

0

f(s)e−νsg(p− s)e−ν(p−s)ds

∣∣∣∣ dp
≤
∫ ∞

0

∫ p

0

∣∣f(s)e−νs
∣∣ ∣∣∣g(p− s)e−ν(p−s)

∣∣∣ dsdp
=
∫ ∞

0

∣∣f(s)e−νs
∣∣ ∫ ∞

0

ds
∣∣g(s)e−νs

∣∣ ds = ‖f‖ν‖g‖ν (4.166)

In particular, convolution is well defined in L1
ν and we have, by a very similar

calculation,

L [f ∗ g] = (Lf)(Lg) (4.167)

Furthermore,

L [f ∗ (g ∗ h)] = L[f ]L [g ∗ h] = L[f ]L[g]L[h] = L [(f ∗ g) ∗ h] (4.168)

and since the Laplace transform is injective, we get

f ∗ (g ∗ h) = (f ∗ g) ∗ h (4.169)

and convolution is associative. Similarly, it is easy to see that

f ∗ g = g ∗ f, f ∗ (g + h) = f ∗ g + f ∗ h (4.170)

(2) A simple generalization is to allow p to be complex. We say that f ∈
L1
ν(R+eiφ) (along the ray {teiφ : t ∈ R+}) if fφ := f(teiφ) ∈ L1

ν . Convolution
is defined as

(f ∗ g)(p) =
∫ p

0

f(s)g(p− s)ds =

eiφ
∫ |p|eiφ

0

f(teiφ))g(eiφ(|p| − t)dt = eiφ(fφ ∗ gφ)(|p|eiφ) (4.171)

and it is clear that L1
ν(R+eiφ) is also a Banach algebra with respect to con-

volution.
Similarly, we say that f ∈ L1

ν(S) where S = {teiφ : t ∈ R+, φ ∈ (a, b)} if
f ∈ L1

ν(R+eiφ) for all φ ∈ (a, b). We define ‖f‖ν,S = supφ∈(a,b) ‖f‖L1
ν(Reiφ).

L1
ν(S) is also a Banach algebra.
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(3) The L1
ν spaces can be restricted to an initial interval along a ray, or a

compact subset of S, with the norm restricted to the appropriate subset. For
instance,

L1
ν([0, 1]) = {f :

∫ 1

0

e−νs|f(s)|ds <∞} (4.172)

These spaces are Banach algebras as well. Obviously, if A ⊂ B, L1
ν(B) is

naturally imbedded in L1
ν(A).

(4) Another important space is AK;ν(N ), the space of analytic functions
analytic in a star-shaped neighborhood N ∈ C of the interval [0,K] in the
norm (ν ∈ R+)

‖f‖ = K sup
p∈N

∣∣∣e−ν|p|f(p)
∣∣∣

Note This norm is topologically equivalent with the sup norm, but this form
is better suited for controlling exponential growth.

Proposition 4.173 The space AK;ν is a Banach algebra with respect to con-
volution.

PROOF Analyticity of convolution is proved in the same way as Lemma 4.108.
Associativity and commutativity of convolution are shown either by a strategy
similar to the one in the previous proposition, or by direct verification.

To show continuity of convolution we let |p| = P , p = Peiφ and note that

∣∣∣∣Ke−νP ∫ p

0

f(s)g(p− s)ds
∣∣∣∣ =

∣∣∣∣∣Ke−νP
∫ P

0

f(teiφ)g((P − t)eiφ)dt

∣∣∣∣∣
=

∣∣∣∣∣K−1

∫ P

0

Kf(teiφ)e−νtKg((P − t)eiφ)e−ν(P−t)dt

∣∣∣∣∣
≤ K−1‖f‖‖g‖

∫ P

0

d|t| = ‖f‖‖g‖ (4.174)

Note that AK;ν ⊂ L1
ν(N ).

(5) Finally, we note that the space AK,ν;0(N ) = {f ∈ AK,ν(N ) : f(0) = 0} is
a closed subalgebra of AK,ν .

Remark 4.175 In the spaces L1
ν , AK;ν , AK,ν;0 etc. we have, for a bounded

function f ,
‖fg‖ ≤ ‖g‖max |f |
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4.7e Spaces of sequences of functions

In Borel summing not simply series but transseries it is convenient to look
at sequences of vector-valued functions belonging to one ore more of the spaces
introduced before. We let

y = {yk}k≥0 ; k ∈ Zm, yk ∈ Cn (4.176)

We let
Y = {Y} (4.177)

If F and G are functions with values in Cn, we write
We let

L1
ν,µ = {

N
Y ∈ (L1

ν)N :
∞∑
k=1

µ−k‖Yk‖ν <∞} (4.178)

N
Y

We introduce the following convolution on L1
ν,µ(

N
F ∗∗

N
G

)
k

=
n−1∑
j=1

Fj ∗Gk−j (4.179)

Exercise 4.180 * Show that

‖
N
F ∗∗

N
G ‖ν,µ ≤ ‖

N
F ‖ν,µ‖

N
G ‖ν,µ (4.181)

(L1
ν,µ,+, ∗∗, ‖ ‖ν,µ) where ‖ ‖ν,µ is the norm introduced in (4.178) is a Banach

algebra.

4.7f Focusing spaces and algebras

An important property of the norms introduced, on the spaces L1
ν and

AK,ν;0 is that for any f in these spaces ‖f‖ → 0 as ν → ∞. In the case L1
ν

this is an immediate consequence of dominated convergence.
More generally, we say that a family of norms ‖‖ν depending on a parameter

ν ∈ R+ is focusing if for any f with ‖f‖ν0 <∞

‖f‖ν ↓ 0 as ν ↑ ∞ (4.182)

Let E be a linear space and {‖‖ν} a family of norms satisfying (4.182). For
each ν we define a Banach space Bν as the completion of {f ∈ E : ‖f‖ν <∞}.
Enlarging E if needed, we may assume that Bν ⊂ E . For α < β, (4.182) shows
that the identity is an embedding of Bα in Bβ . Let F ⊂ E be the projective
limit of the Bν . That is to say
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F :=
⋃
ν>0

Bν (4.183)

is endowed with the topology in which a sequence is convergent if it converges
in some Bν . We call F a focusing space.

Consider now the case when (Bν ,+, ∗, ‖‖ν) are commutative Banach al-
gebras. Then F inherits a structure of a commutative algebra, in which ∗
(“convolution”) is continuous. We say that (F , ∗, ‖‖ν) is a focusing alge-
bra.
Examples. The spaces

⋃
ν>0 L

1
ν and

⋃
ν>0AK;ν;0 and L1

ν,µ are focusing
algebras. The last space is focusing as ν →∞ and/or µ→∞.

Remark 4.184 The following result is immediate. Let A,B be any sets and
assume that the equation f(x) = 0 is well defined and has a unique solution
x1 in A, a unique solution x2 in B and a unique solution x3 in A ∩B. Then
x1 = x2 = x3 = x. In particular, if A ⊂ B then x ∈ A ∩B.

4.8 Borel summability of solutions of nonlinear equa-
tions: an introduction

4.8a An example. Borel summability of the main series

Note Since we have a Banach algebra structure in Borel plane, differential
equations become effectively algebraic equations, much easier to deal with.

The concepts an methods used for the simple equation

y′ + y = x−2 + y3 (4.185)

capture a good part of the ones needed in a general setting.
Formal inverse Laplace transform of (4.185) yields, with the notation L−1y =
Y and Y ∗3 = Y ∗ Y ∗ Y ,

−pY + Y = p+ Y ∗3; ⇔ Y =
p

1− p
+

1
1− p

Y ∗3 := N (Y ) (4.186)

Let [a, b] ∈ (0, 2π), and S = {p : arg(p) ∈ (a, b), SK = {p ∈ S : |p| < K},
B = {p : |p| < a < 1}.

Proposition 4.187 (i) For large enough ν, Eq. (4.186) has a unique solu-
tion in the following spaces: L1

ν(S), L1
ν(SK),Aν,0(SK ∪ B). (ii) There is a

solution of Y which is analytic in S ∪ B and is Laplace transformable along
any direction in S. The Laplace transform is a solution of (4.185).
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PROOF The proof is the same for all these types of spaces, call them
generically Sν , since for each type their inductive limit is a focusing algebra.
Choose ε small enough. Then for large enough ν we have∥∥∥∥ p

1− p

∥∥∥∥
ν

< ε/2 (4.188)

Let B be the ball of radius ε in the norm ν. Then if F ∈ B we have

‖N (F )‖ν ≤
∥∥∥∥ p

1− p

∥∥∥∥
ν

< ε/2 + max
∣∣∣∣ 1
p− 1

∣∣∣∣ ‖Y ‖3ν = ε/2 + cε3 ≤ ε (4.189)

if ε is small enough (that is, if ν is large). Furthermore, for large ν, N is
contractive in B for we have, for small ε,

‖N (F1)−N (F2)‖ν ≤ c‖F ∗31 −F ∗32 ‖ν = c‖(F1−F2)∗(F ∗21 +F1 ∗F2 +F ∗22 )‖ν
≤ c‖(F1 − F2)‖ν(3ε2) < ε (4.190)

(ii) We have the following embeddings: L1
ν(S) ⊂ L1

ν(SK),Aν,0(SK ∪ B) ⊂
L1
ν(SK). Thus, by Remark 4.184, there exists a unique solution Y of (4.186)

which belongs to all these spaces.
Thus Y is analytic in S and in L1

ν(S), in particular Laplace transformable.
The Laplace transform is a solution of (4.185) as it is easy to check.

It also follows from the argument that the formal power series solution ỹ of
(4.185) is Borel summable in any sector not containing R+, which is a Stokes
line. We have, indeed, Bỹ = Y (check!).

4.8a .1 Convergent series composed with Borel summable series

Proposition 4.191 Assume A is an analytic function in the disk of radius
ρ centered at the origin, ak = A(k)(0)/k!, and s̃ =

∑
skx
−k is a small series

which is Borel summable along R+. Then the formal power series obtained by
reexpanding ∑

aks
k

in powers of x is Borel summable along R+.

PROOF Let S = Bs and choose ν be large enough so that ‖S‖ν < ρ−1 in
L1
ν . Then

‖F‖ν := ‖A(∗S)‖ν := ‖
∞∑
k=0

akS
∗k‖ν ≤

∞∑
k=0

ak‖S‖kν ≤
∞∑
k=0

akρ
k <∞ (4.192)

thus A(∗S) ∈ L1
ν . Similarly, A(∗S) is in L1

ν([0, a)), in AK,νν([0, a)) for any a.
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4.8b Borel summation of the transseries solution

If we substitute

y = ỹ0 +
∞∑
k=1

Cke−kxỹk (4.193)

in (4.185) and equate the coefficients of e−kx we get the system of equations

ỹ′k + (1− k − 3ỹ2
0)ỹk = 3ỹ2

0

k−1∑
j=1

ỹj ỹk−j +
∑

j1+j2+j3=k;ji≥1

ỹj1 ỹj2 ỹj3 (4.194)

The equation for y1 is special, being linear homogeneous.

y′1 = 3y2
0y1 (4.195)

and thus

y1 = Ces; s :=
∫ x

∞
3y2

0(s)ds (4.196)

Since s̃ = O(x−3) and it is the product of series which are Borel summable in
C \R+, s̃ and then, by Proposition 4.191 es̃ is Borel summable in C \R+. We
note that y1 = 1 + o(1) and we cannot take the inverse Laplace transform of
y1 directly. It is convenient to make the substitution yk = xkϕk and we get

ϕ̃′k + (1− k − 3ϕ̃2
0 + kx−1)ϕ̃k = 3ϕ̃2

0

k−1∑
j=1

ϕ̃jϕ̃k−j +
∑

j1+j2+j3=k;ji≥1

ϕ̃j1 ϕ̃j2 ϕ̃j3

(4.197)
or after Borel transform

−pΦ + (1− k̂)Φ = −k̂ ∗Φ + 3Y ∗20 ∗Φ + 3Y0 ∗Φ∗∗Φ + Φ∗∗Φ∗∗Φ (4.198)

where Φ = {Φj}j∈N, (k̂Φ)k = Φk and (F ∗G)k := F ∗Gk.

Proposition 4.199 Given Φ1 ∈ L1
ν , (4.198) is contractive in the space of

sequences {Φj}j≥2 in the norm of L1
ν,µ for any µ if ν is large enough. Thus

(4.198) has a unique solution in this space. Similarly, it has a unique solution
in L1

ν,µ(S), L1
ν,µ(S),Aν,µ(SK) for any S and SK as in Proposition 4.187. Thus

there is a ν large enough such that for all k

ϕk(x) =
∫ ∞e−i arg(x)

0

e−xpΦk(p)dp (4.200)

exist for |x| > ν. The functions ϕk(x) = ϕk(x)+ are analytic in x and inde-
pendent of arg x for arg(x) ∈ (−π/2, 2π + π/2). Similarly, ϕk(x) = ϕk(x)−

are analytic in x and independent of arg x for arg(x) ∈ (−2π − π/2, π/2).
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(ii) The function series
∞∑
k=0

Ck+e
−kxxkϕ+

k (x) (4.201)

or
∞∑
k=0

Ck−e
−kxxkϕ−k (x) (4.202)

solve (4.185) for <(x) > ν(C±), arg(x) ∈ (−π/2, π/2).

Note. The solution cannot be written in the form (4.201) or (4.202) in
a sector of opening more than π centered on R+ because the exponentials
would become large and convergence is not ensured anymore. We shall see
that, generically, there is in fact blow-up of the actual solutions.

Exercise 4.203 * Show that distinct values of C+ in (4.201) give rise to
distinct solutions. We will see shortly that all o(1) slutions are of this form.

Exercise 4.204 ** Prove Proposition 4.199.

Proposition 4.205 Any Solution of (4.185) which is o(1) as x → +∞ can
be written in the form (4.201) or, equally well, in the form (4.201).

PROOF Let y+ be the solution of (4.185) of the form (4.201) with C = 0.
Let y be another solution which is o(1) as x → +∞ and let δ = y − y+. We
have

δ′ = −δ + 3y2
0δ + 3y0δ

2 + δ3 (4.206)

or
δ′

δ
= −1 + 3y2

0 + 3y0δ + δ2 = −1 + o(1) (4.207)

Thus (since we can integrate asymptotic series),

ln δ = −x+ C1 + o(1) (4.208)

or
ln δ = Ce−x(1 + o(1)) (4.209)

We then take δ = e−x+s and obtain

s′ = 3y2
0 + 3y0e

−w+s + e−2w+2s (4.210)

or
s = C1 +

∫ x

∞

(
3y2

0(t) + 3y0e
−x+s(t) + e−2t+2s(t)

)
dt (4.211)

For fixed C1, (4.211) is contractive in the space of functions s : [ν,∞) 7→ C
in the sup norm. The solution of this equation is then unique. But s =
ln(y+ − yC) + x where yC is the solution of the form (4.201) with C = lnC1

is already a solution of (4.211).
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4.8c Analytic structure along R+

By Proposition 4.187, Y = Y0 is analytic in any region of the form B∪SK .
We now aim to show that Y0 has analytic continuation along curves that do
not pass through the integers.

For this purpose we shall exploit (4.202) and (4.201). From them we will
derive the behavior of Y . It is a way of exploiting what Écalle has discovered
in more generality, bridge equations.

We start with a relatively trivial, and in fact nongeneric case.
Assume y+ = y− =: y0. Since

y± =
∫ ∞e±iε

0

Y (p)e−pxdp = y0 (4.212)

and Y is analytic in C \R+, we have, by the usual contour deformations and
Watson’s Lemma that y0 ∼ ỹ0 in the sector Sx{x : arg(x) ∈ (−2π−π/2, 2π+
π/2)}.

Exercise 4.213 * If we take the sector S = {p : | arg(p)| > ε} we know that
for some ν, Y ∈ L1

ν(S). We also know that Y (0) = 0 and is analytic near
zero. Show that this implies that there is a constant C and a ν so that for
|x| > ν y0 is analytic in Sx and

|y0(x)| < C|x|−2 ∀x ∈ Sx, |x| > ν (4.214)

Thus, y0 is inverse Laplace transformable along any line of the form eiφ(c +
it), t ∈ R, c > ν. We let this inverse Laplace transform to be Y1; it is bounded
by Keν|p|, for some K independent of arg p (by immediate estimates). In
particular it belongs to L1

ν(Reiφ) for all φ ∈ (−2π, 2π). But it must coincide
with Y for any φ 6= 0 by uniqueness of the solution in L1

ν′ for ν′ large. We
thus get the estimate inherited from Y1

|Y (p)| ≤ Keν|p|, ∀p, arg(p) 6= 0 (4.215)

Thus Y is uniformly bounded in C \ R+. Consequently, J(p) =
∫ p

0
Y (s)ds

defined on C \ R+ has continuous limits as J±(p) as R+ is approached from
above or from below and |J±(p)| ≤ |p|eν|p|.

On the other hand, we have for |x| > ν, by dominated convergence,

y0 =
∫ ∞e±iε

0

e−pxY (p)dp =
∫ ∞e±iε

0

e−px
dJ(p)
dp

dp = x

∫ ∞
0

J±(p)dp (4.216)

Since the Laplace transforms of J±(p) coincide and the kernel of the Laplace
transform is {0}, then J+ = J−, thus J is continuous, and then by Morera’s
theorem it in analytic in C. So Y is entire. In this case, y0 is analytic at
infinity and the series ỹ converges.
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We now consider the (generic) case when y+ 6= y−. Then there exists S
such that

y+ =
∫ ∞eiε

0

e−pxY (p)dp = y− +
∞∑
k=1

Ske−kxxkϕ−k (x) (4.217)

Thus ∫ ∞e+iε
∞e−iε

e−pxY (p)dp = −
∞∑
k=1

Ske−kxxkϕ−k (x) (4.218)

In particular, we have

1
x

∫ ∞e+iε
∞e−iε

e−pxY (p)dp = −S
∫ ∞eiε

0

Y1(p)dp+O(x2e−2x) (4.219)

4.8d General setting

We consider the differential system

y′ = f(x,y) y ∈ Cn (4.220)

under the following assumptions:
(a1) The function f is analytic at (∞, 0).
(a2) A condition slightly weaker than nonresonnance: for any half plane H

in C, the eigenvalues λi of the linearization

Λ̂ := −
(
∂fi
∂yj

(∞, 0)
)
i,j=1,2,...n

(4.221)

lying in H are linearly independent over Z. In particular, all eigenvalues are
distinct and none of them is zero.

Pulling out the inhomogeneous and the linear terms (relevant to leading
order asymptotics) we get

y′ = f0(x)− Λ̂y +
1
x
Ây + g(x,y) (4.222)

Then matrix Λ̂ can be diagonalized by a linear change of the dependent
variable y. It can be checked that by a further substitution of the form
y1 = (I + x−1V̂ )y, the new matrix Â can be arranged to be diagonal. No
assumptions on Â are needed in this second step. See also [17], [28]. Thus,
without loss of generality we can suppose that the system is already presented
in prepared form, meaning:

(n1) Λ̂ = diag(λi) and
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(n2) B̂ = diag(βi)
For convenience, we rescale x and reorder the components of y so that

(n3) λ1 = 1, and, with φi = arg(λi), we have φi ≤ φj if i < j. To simplify
notations, we formulate some of our results relative to λ1; they can be easily
adapted to any other eigenvalue.

To unify the treatment we make, by taking y = y1x
−N for some N > 0,

(n4) <(βj) < 0, j = 1, 2, . . . , n.
(there is an asymmetry at this point: the opposite inequality cannot be
achieved, in general, as simply and without violating analyticity at infin-
ity). Finally, through a transformation of the form y ↔ y −

∑M
k=1 akx−k we

arrange that
(n5) f0 = O(x−M−1) and g(x,y) = O(y2, x−M−1y). We choose M > 1 +

maxi <(−βi).
Formal solutions. In prepared form, given (a1) and (a2), (4.222) admits an

n–parameter family of generalized transseries solutions (check!)

ỹ = ỹ0 +
∑

k≥0;|k|>0

Ck1
1 · · ·Cknn e−(k·λ)xxk·mỹk (4.223)

We note that we allow for complex valued transseries, though we restrict
ourselves to the case when the real part is negative. In this sense we speak of
them as generalized transseries. In our context we will not need to combine
them in a way in which we end up with purely imaginary exponentts, and so
the ordering with respect to � is still preserved.
These formal solutions have been known, under the name of formal exponential-
series solutions, for almost a century now) see [17], [26],[30], and also § Ac
below) where mi = 1 − bβic, (b·c = integer part), C ∈ Cn is an arbitrary

vector of constants, and ỹk = x−k(β+m)
∑∞
l=0 ak;lx

−l are formal power series.
When x is large in some direction d in C, an important role is played by

the subset of transseries which are at the same time asymptotic expressions4:
When there are infinitely many exponentials in (4.223) we ask that for all i
with Ci 6= 0 we have |e−λix| � 1 for large x in the given direction d in C.
Formally, agreeing to omit the terms with Ci = 0, with x in d, any ascending
chain <(−k1 ·λx) ≤ <(−k2 ·λx) ≤ . . ., ki 6= kj , in (4.223) must be finite (the
terms of an asymptotic transseries are well-ordered with respect to ′′ �′′).
Thus for x in some direction d we only consider those transseries that satisfy
the condition:

(c1) ξ+φi := arg(x) +φi ∈ (−π/2, π/2) for all i such that Ci 6= 0. In other
words, Ci 6= 0 implies that λi lies in a half-plane centered on d, the complex
conjugate direction to d.

4An asymptotic expansion of a function carries immediate information about behavior of
the function near the expansion point (in contrast to antiasymptotic expansions, e.g. a
convergent doubly infinite Laurent series)
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From now on, λ = (λi1 , . . . , λin1
), β = (βi1 , . . . , βin1

), m = (mi1 , . . . ,min1
)

and β′ = β + m where the indices i1, . . . , in1 satisfy (c1).
We will henceforth consider that (4.222) is presented in prepared form, and

use the designation transseries only for those formal solutions satisfying (c1).
The series ỹ0 is a formal solution of (4.222) while, for k 6= 0, ỹk satisfy

a hierarchy of linear differential equations [17] (see also § Ac for a brief
exposition and notations).

y 
 ỹ0 +
∑

k≥0;|k|>0

Ck1
1 · · ·Cknn e−(k·λ)xxk·mỹk (x→∞, arg(x) = ξ)(4.224)

Given y, the value of Ci can change only when ξ + arg(λi − k · λ) = 0,
ki ∈ N ∪ {0}, i.e. when crossing one of the (finitely many by (c1)) Stokes
lines. The correspondence (4.224) defines a summation method, in the sense
that it is an extension of convergent summation which preserves its basic
properties: linearity, multiplicativity, commutation with differentiation and
with complex conjugation. These properties are essential for obtaining true
solutions out of transseries for nonlinear differential equations. Our procedure
is similar to the medianization proposed by Écalle, but (due to the structure
of (4.222)) requires substantially fewer analytic continuation paths. In addi-
tion we classify in the context of (4.222) all admissible summation methods
(there is a one-parameter family of them, preserving the properties of usual
summation). Summation recovers from transseries actual solutions of (4.222)
without resorting to (4.222) in the process. In addition, the analysis reveals a
rich analytic structure and formulas linking the various ỹk among themselves
(resurgence relations). In [21] we studied this problem under further restric-
tions on the transseries (decay of the exponentials in a full half-plane) and on
the differential equation. Removing those restrictions creates difficulties that
required a new approach. New resurgence relations are found and in addition
we provide a complete description, needed in applications, of the singularity
structure of the Borel transforms of ỹk.

The results proven for this type of equations may be, informally, summa-
rized as follows. The proofs are given in §5.

i) All ỹk are generalized Borel summable at the same time.

ii) The Borel summed series yk = Bỹk exist in a half plane H = {x :
<(x) > x0} for some x0 independent of k and are analytic there.

iii) There exists a constant c independent of k so that supx∈H |yk| ≤
ck. Thus, the new series,

y =
∑

k∈(N∪{0})n
Cke−λ·kxxα·kyk(x) (4.225)
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is convergent for any C for which the corresponding expansion
(4.223) is a transseries, in a region given by the condition |Cie−λixxαi | <
c−1
i (remember that Ci is zero if |e−λix| is not small).

iv) The function y obtained in this way is a solution of the differential
equation (4.222).

v) Any solution of the differential equation (4.222) which tends to
zero in some direction d can be written in the form (4.225) for a
unique C, this constant depending usually on the sector where d
is. This dependence is a manifestation of the Stokes phenomenon.

vi) The Borel summation operator B is the usual Borel summation
in any direction d of x which is not a Stokes line . However B is
still an isomorphism, whether d is a Stokes direction or not.

4.8e Some remarks about structure of singularities in Borel
space and resurgence phenomena

Let us look at a very simple prototypical example

y′′ + (2 + x−1)y′ − (3 + x−1)y = x−1y2

We take y1 = y, y2 = y′ and get a system of equations of the form(
y1

y2

)′
=
(

0 1
−2 3

)(
y1

y2

)
+

1
x

(
0 0
1 1

)(
y1

y2

)
+

1
x

(
0
y2

1

)
Diagonalization of the two 2-by-2 matrices on the right hand side is achieved
easily my making a transformation of the dependent variable of the form
y 7→ (M̂1 + x−1M̂)y for suitably chosen M̂i and the system that results is of
the form

(
y1

y2

)′
=
(
−1 0
0 2

)(
y1

y2

)
+

1
x

(
α1 0
0 α2

)(
y1

y2

)
+
(
g1(x−1, y1, y2)
g2(x−1, y1, y2)

)
satisfying our assumptions. In this particular example, the eigenvalues, though
not linearly independent over Z still satisfy the weaker conditions in [20] and
the general theory applies. If the direction of interest for the variable x is R+,
then the only admissible exponential is e−x as e2x tends to infinity instead of
being small. Thus there is in the direction of R+ a one-parameter only family
of transseries, in the form

n∑
k=0

Cke−kxxkαỹk(x)
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4.8e .1 Analytic continuations

The series ỹk will be classically Borel summable in any direction other than
R+ and R−. It turns out that along any Stokes line , here R+ and R−, the
Borel transforms Yk = Bỹk develop arrays of singularities. These singularities
are located at positive multiple integers of 1, and −2. It is proved that the
functions Yk can be continued analytically along any paths in the complex
plane that go towards infinity (the modulus of p increases along the path)
and cross between the singular points in the arrays at most once. Borel
summability along the special directions of the singularities is ensured both
in a sense of distributions, in which generalized Laplace transform is taken
through the singular points, or, equivalently, as a specific average of analytic
continuations along the paths mentioned above. The averaging formula is the
same, irrespective of the differential equation.

4.8e .2 Resurgence

This is another very important phenomenon that occurs in differential sys-
tems, in which the higher index series ỹk are related to ỹ0 in a way that does
not depend on the differential equation and permits reconstruction of the ỹk,
thus of the general formal solution and ultimately of the whole differential
equation from the mere knowledge of ỹ0. For instance under proper normal-
ization, the Yk are related to differences in the analytic continuations of Y0

along the various paths between singularities.

4.9 Normalization procedures

Many equations which are not presented in the form (4.222) can be brought
to this form by changes of variables. The key idea for so doing in a systematic
way is to calculate the transseries solutions of the equation, find the transfor-
mations which bring them to the normal form (4.223), and then apply these
transformations to the original variables in the differential equation. The first
part of the analysis need not be rigorous, as the conclusions are made rigorous
in the steps that follow it.

We illustrate this on a simple equation, as t→∞:

u′ = u3 − t (4.226)

This is not of the form (4.222) because g(u, t) = u3 − t is not analytic in t at
t =∞. This can be however remedied in the way described.

As we have already seen before, dominant balance for large t requires writing
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the equation (4.226) in the form

u = (t+ u′)1/3 (4.227)

and we have u′ � t. Three branches of the cubic root are possible and are
investigated similarly, but we aim here merely at illustration and choose the
simplest. Iterating (4.227) in the usual way, we are lead to a formal series
solution in the form

ũ = t1/3 +
1
9
t−4/3 + ... = t1/3

∞∑
k=0

ũk
t5k/3

(4.228)

To find the full transseries we now substitute u = ũ + δ in (4.226) and keep
the dominant terms. We get

δ′

δ
=

9
5
t2/3 +

2
3

ln t

from which it follows that

δ = Ct2/3e
9
5 t

5/3
(4.229)

Since the normalized transseries must have exponentials of the form e−x, the
adequate independent variable must then be x = − 9

5 t
5/3. In this variable, the

formal power series (4.228) takes the form

ũ = x1/5
∞∑
k=0

ũk
xk

(4.230)

But the desired form is
∑∞
k=0

bk
xk

. Thus the appropriate dependent variable is
h = x1/5u. In this variable, we are led to the equation

h′ +
1

5x
h+ 3h3 − 1

9
= 0 (4.231)

where analyticity at infinity is now ensured! The only remaining transforma-
tion is to pull out a few terms out of h, to make the nonlinearity of the order
g = O(x−2, h2). This is done by calculating, again by dominant balance,
the first two terms in the 1/x power expansion of h, namely 1/3 − x−1/15
and subtracting them out of h, i.e., changing to the new dependent variable
y = h− 1/3 + x−1/15. This yields

y′ = −y +
1

5x
y + g(y, x−1) (4.232)

where

g(y, x−1) = −3(y2 + y3) +
3y2

5x
− 1

15x2
− y

25x2
+

1
3253x3

(4.233)
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We see that

λ = 1, α = 1/5 (4.234)





Chapter 5

Ordinary differential equations.
Summability of formal solutions

5.0a Nonresonance

(1) λi, i = 1, ..., n1 are assumed Z-linearly independent for any d. (2) Let
θ ∈ [0, 2π) and λ̃ = (λi1 , ..., λip) where

∣∣arg λij − θ
∣∣ ∈ (−π/2, π/2) (those

eigenvalues contained in the open half-plane Hθ centered along eiθ). We re-
quire that for any θ the complex numbers in the set {λ̃i − k · λ̃ ∈ Hθ : k ∈
Np, i = 1, ..., p} (note: the set is finite) have distinct directions. These are
the Stokes lines di;k.

That the set of λ which satisfy (1) and (2) has full measure follows from
the fact that (1) and (2) follow from the condition:

(
m,m′ ∈ Zn, α ∈ R and (m− αm′) · λ = 0

)
⇒
(
m = αm′

)
(5.1)

Indeed, if (5.1) fails, one of <λj ,=λj is a rational function with rational
coefficients of the other <λj and =λj , corresponding to a zero measure set in
R2n.

5.0b Further notations and conventions

If y1 and y2 are inverse Laplace transformable functions, then in a neigh-
borhood of the origin L−1(y1y2) = (L−1y1) ∗ (L−1y2), where for f, g ∈ L1

convolution is given by

f ∗ g := p 7→
∫ p

0

f(s)g(p− s)ds (5.2)

We use the convention N 3 0. Let

W = {p ∈ C : p 6= kλi ,∀k ∈ N, i = 1, 2, . . . , n} (5.3)

The directions dj = {p : arg(p) = φj}, j = 1, 2, . . . , n (cf. (a2)) are the
Stokes lines of ỹ0 (note: sometimes known as anti-Stokes lines!). We construct
over W a surface R, consisting of homotopy classes of smooth curves in W

149
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2λ1

p=0

2λn

3λn

λ1 λ13

FIGURE 5.1: Constant level lines for the imaginary part of i cos(x+ iy)

starting at the origin, moving away from it, and crossing at most one Stokes
line, at most once (see Fig. 1):

R :=
{
γ : (0, 1) 7→ W : γ(0+) = 0;

d
dt
|γ(t)| > 0; arg(γ(t)) monotonic

}
modulo homotopies(5.4)

Define R1 ⊂ R by (5.4) with the supplementary restriction arg(γ) ∈ (ψn −
2π, ψ2) where ψn = max{−π/2, φn − 2π} and ψ2 = min{π/2, φ2}. R1 may
be viewed as the part of the covering R, above a sector containing the real
axis. Similarly we let R′1 ⊂ R1 with the restriction that the curves γ do
not cross the Stokes line s di,k (cf. §5.0a ), other than R+, and we let ψ± =
±max(± arg γ) with γ ∈ R′1.

Fig 1. The paths near λ2 belong to R.
The paths near λ1 relate to the balanced average

By ACγ(f) we denote the analytic continuation of f along a curve γ. For
the analytic continuations near a Stokes line di;k we use symbols similar to
Écalle’s: f− is the branch of f along a path γ with arg(γ) < φi, while f−j+

denotes the branch along a path that crosses the Stokes line between jλi and
(j + 1)λi (see also [21]).
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We use the notations Pf for
∫ p

0
f(s)ds and Pγf if integration is along the

curve γ.
We write k � k′ if ki ≥ k′i for all i and k � k′ if k � k′ and k 6= k′. The

relation � is a well ordering on Nn1 . We let ej be the unit vector in the jth

direction in Nn1 .
By symmetry (renumbering the directions) it suffices to analyze the sin-

gularity structure of Y0 in R1 only. However, (c1) breaks this symmetry
for k 6= 0 and the properties of these Yk will be analyzed along some other
directions as well.

χA will denote the characteristic function of the set A. We write |f | :=
maxi{|fi|}. We have

g(x,y) =
∑
|l|≥1

gl(x)yl =
∑

s≥0;|l|≥1

gs,lx−syl (|x| > x0, |y| < y0) (5.5)

where yl = yl11 · · · ylnn and |l| = l1 + · · ·+ ln. By construction gs,l = 0 if |l| = 1
and s ≤M .

The formal inverse Laplace transform of g(x,y(x)) (formal since y is still
unrestricted) is given by:

L−1

∑
|l|≥1

y(x)l
∑
s≥0

gs,lx−s

 =
∑
|l|≥1

Gl ∗Y∗l +
∑
|l|≥2

g0,lY∗l =: N (Y)

(5.6)

with Gl(p) =
∑∞
s=1 gs,lps−1/s! and (Gl ∗Y∗l)j := (Gl)j ∗Y

∗l1
1 ∗ .. ∗Y ∗lnn . By

(n5), G(l)
1,l(0) = 0 if |l| = 1 and l ≤ M . The inverse Laplace transform of

(4.222) is the convolution equation:

−pY = F0 − Λ̂Y − B̂PY +N (Y) (5.7)

Let dj(x) :=
∑

l≥j

(
l
j

)
gl(x)ỹl−j

0 . Straightforward calculation (see Appendix
§ Ac ; cf. also [21]) shows that the components ỹk of the transseries satisfy
the hierarchy of differential equations

y′k +
(

Λ̂ +
1
x

(
B̂ + k ·m

)
− k · λ

)
yk +

∑
|j|=1

dj(x)(yk)j = tk

(5.8)

where tk = tk
(
y0, {yk′}0≺k′≺k

)
is a polynomial in {yk′}0≺k′≺k and in {dj}j≤k

(see (5.225)), with t(y0, ∅) = 0; tk satisfies the homogeneity relation
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tk

(
y0,
{
Ck′yk′

}
0≺k′≺k

)
= Cktk

(
y0, {yk′}0≺k′≺k

)
(5.9)

Taking L−1 in (5.8) we get, with Dj =
∑

l≥j

(
l
j

)[
Gl ∗Y∗(l−j)

0 + g0,l ∗Y∗(l−j)
0

]
,

(
−p+ Λ̂− k · λ

)
Yk +

(
B̂ + k ·m

)
PYk +

∑
|j|=1

Dj ∗Y∗jk = Tk

(5.10)

where Tk is now a convolution polynomial, cf. (5.144).

5.0c Main results

(a) Analytic structure.

Theorem 5.11 (i) Y0 = Bỹ0 is analytic in R∪ {0}.
The singularities of Y0 (which are contained in the set {lλj : l ∈ N+, j =

1, 2, . . . , n}) are described as follows. For l ∈ N+ and small z, using the
notations explained in §5.0b ,

Y±0 (z + lλj) = ±
[
(±Sj)l(ln z)0,1Ylej (z)

](lmj)
+ Blj(z) =[

zlβ
′
j−1(ln z)0,1 Alj(z)

](lmj)
+ Blj(z) (l = 1, 2, . . .) (5.12)

where the power of ln z is one iff lβj ∈ Z, and Alj ,Blj are analytic for small
z. The functions Yk are, exceptionally, analytic at p = lλj, l ∈ N+, iff,

Sj = rjΓ(β′j) (A1,j)j (0) = 0 (5.13)

where rj = 1 − e2πi(β′j−1) if lβj /∈ Z and rj = −2πi otherwise. The Sj are
Stokes constants, see Theorem 5.26.

(ii) Yk = Bỹk, |k| > 1, are analytic in R\{−k′ ·λ+λi : k′ ≤ k, 1 ≤ i ≤ n}.
For l ∈ N and p near lλj, j = 1, 2, . . . , n there exist A = Akjl and B = Bkjl

analytic at zero so that (z is as above)

Y±k (z + lλj) = ±
[
(±Sj)l

(
kj + l

l

)
(ln z)0,1Yk+lej (z)

](lmj)
+ Bklj(z) =[

zk·β
′+lβ′j−1(ln z)0,1 Aklj(z)

](lmj)
+ Bklj(z) (l = 0, 1, 2, . . .) (5.14)

where the power of ln z is 0 iff l = 0 or k·β+lβj−1 /∈ Z and Ak0j = ej/Γ(β′j).
Near p ∈ {λi − k′ · λ : 0 ≺ k′ ≤ k}, (where Y0 is analytic) Yk, k 6= 0 have
convergent Puiseux series.
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Remark: The fact that the singular part of Yk(p + lλj) in (5.12) and
(5.14) is a multiple of Yk+lej (p) is the effect of resurgence and provides a
way of determining the Yk given Y0 provided the Sj are nonzero. Since,
generically, the Sj are nonzero this is a surprising upshot: given one formal
solution, (generically) an n parameter family of solutions can be constructed
out of it, without using (4.222) in the process; the differential equation itself
is then recoverable ([25]).

By Theorem 5.11 the Borel transforms Yk = Bỹk define germs of rami-
fied analytic functions and are continuable on the surface R. In order to be
able to take Laplace transforms we need to define Bỹk along any direction
d in S. If d 6= dj,k then Yk are analytically continuable along d and the
continuations turn out to have all the properties that we need. But along
Stokes lines dj,k analytic continuation is impossible: in general the functions
Yk have an infinite array of branch points (5.14). In addition, while both
Y+

k and Y−k turn out to be Laplace transformable (in distributions) along
dj,k, LY+

k and LY−k are generically different. Neither the upper nor the
lower continuation would give rise to a definition of Borel summation which
commutes with complex-conjugation, as discussed in the introduction. ther
analytic continuations along paths γ that cross dj,k have even worse prob-
lems, namely that ACγ(Yk ∗Yk) 6= ACγ(Yk) ∗γ ACγ(Yk), (see [21]). As B
transforms differential equations into convolution equations, the implication
is that with such a γ, LACγ(Yk) would not be, in general, solutions of their
differential equations. Individual analytic continuations are thus inadequate
for solving (4.222), but some averages of analytic continuations do satisfy all
the requirements. Let α = 1/2 + iσ with σ ∈ R and Bỹk be extended along
dj,k by the weighted average of analytic continuations

Bαỹk = Yα
k = Y+

k +
∞∑
j=1

αj
(
Y−k −Y−(j−1)+

k

)
(5.15)

Remark 5.16 Relation (5.15) gives the most general reality preserving, lin-
ear operator mapping formal power series solutions of (4.222) to solutions of
(5.7) in distributions (more precisely in D′m,ν ; see [20]).

This remark follows easily from Proposition 23 in [20] and Theorem 5.22
below.

The choice α = 1/2 has special properties; we call B 1
2
ỹk = Yba

k the balanced
average of Yk. For this choice the expression (5.15) coincides with the one
in which + and − are interchanged (Proposition 34 in [20]), accounting for
the reality-preserving property. Clearly, if Yk is analytic along dj,k, then
the terms in the infinite sum vanish and Yα

k = Yk; we also let Yα
k = Yk if

d 6= dj,k, where again Yk is analytic. It follows from (5.15) and Theorem 5.17
below that the Laplace integral of Yα

k along R+ can be deformed into contours
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as those depicted in Fig. 1, with weight −(−α)k for a contour turning around
kλ1.

In addition to symmetry (the balanced average equals the half sum of
the upper and lower continuations on (0, 2λj), [25]), an asymptotic property
uniquely picks C = 1/2. Namely, for C = 1/2 alone are the LBỹk always
summable to the least term, see [20].

(b) Connection with (4.222) and (5.9). Generalized Borel summation co-
incides with the usual Borel summation when the transseries consists of only
one term, the first series, when that series is classically Borel summable. This
is clear from theorem 5.17 (ii) below. Furthermore, generalized summation is
a map from a class of formal series to functions which is linear, multiplica-
tive, commutes with differentiation and complex conjugation [20], so it is a
summation procedure, which furthermore, establishes along every direction a
one to one correspondence between transseries and decaying actual solutions
of (4.222).

For clarity we state the results for x ∈ Sx, a sector in the right half plane
containing λ1 = 1 in which (c1) holds and for p in the associated domain R′1,
but λ1 plays no special role as discussed in the introduction.

Theorem 5.17 (i) The branches of (Yk)γ in R′1 (R1 if k = 0) have limits
in a C∗-algebra of distributions, D′m,ν(R+) ⊂ D′. Their Laplace transforms
in D′m,ν(R+) L(Yk)γ exist simultaneously and with x ∈ Sx and for any δ > 0
there is a constant K and an x1 large enough, so that for <(x) > x1 we have
|L(Yk)γ (x)| ≤ Kδ|k|.

In addition, Yk(peiφ) are continuous in φ with respect to the D′m,ν topology,
(separately) on (ψ−, 0] and [0, ψ+) .

If m > maxi(mi) and l < mini |λi| then Y0(peiφ) is continuous in φ ∈
[0, 2π]\{φi : i ≤ n} in the D′m,ν(R+, l) topology and has (at most) jump dis-
continuities for φ = φi. For each k, |k| ≥ 1 and any K there is an l > 0 and
an m such that Yk(peiφ) are continuous in φ ∈ [0, 2π]\{φi;−k′ · λ + λi : i ≤
n,k′ ≤ k} in the D′m,ν((0,K), l) topology and have (at most) jump disconti-
nuities on the boundary.

(ii) The sum (5.15) converges in D′m,ν (and coincides with the analytic
continuation of Yk when Yk is analytic along R+). For any δ there is a
large enough x1 independent of k so that Yba

k (p) with p ∈ R′1 are Laplace
transformable in D′m,ν for <(xp) > x1 and furthermore |(LYba

k )(x)| ≤ δ|k|.
In addition, if d 6= R+, then for large ν, Yk ∈ L1

ν(d).
The functions LYba

k are analytic for <(xp) > x1. For any C ∈ Cn1 there
is an x1(C) large enough so that the sum

y = LYba
0 +

∑
|k|>0

Cke−k·λxx−k·βLYba
k (5.18)

converges uniformly for <(xp) > x1(C), and y is a solution of (4.222). When
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the direction of p is not the real axis then, by definition, Yba
k = Yk, L is the

usual Laplace transform and (5.18) becomes

y = LY0 +
∑
|k|>0

Cke−k·λxx−k·βLYk (5.19)

In addition, LYba
k ∼ ỹk for large x in the half plane <(xp) > x1, for all k,

uniformly.
iii) More generally, for any α and any solution y of (4.222) such that

y ∼ ỹ0 for large x along a ray in Sx there exists a constant vector C = Cα;y

so that

y = LBαỹ0 +
∑
|k|>0

Cke−k·λxx−k·βLBαỹk (5.20)

Given α the representation (5.20) of y is unique, with the usual convention
of directional Laplace transforms.

Of special interest are the cases α = 1/2, discussed above, and also α = 0, 1
which give:

y = LY±0 +
∑
|k|>0

Cke−k·λxx−k·βLY±k (5.21)

(c) Resurgence properties; local Stokes phenomenon .
It turns out that the formal series ỹk are connected among each-other via

their Borel transforms. Resurgence formulas link Yk to analytic continuations
of Yk′ with k′ ≺ k, in a way that, generically, Y0 contains enough information
to compute all Yk.

Various resurgence properties have been observed in different contexts, and
the term resurgence has been used with slightly different interpretations. In
the hyperasymptotic theory of M. Berry, it was discovered that the first
asymptotic series reappears in various shapes in the process of computing
higher terms of the expansions. J. Écalle, in his comprehensive theory of
analyzable functions, has obtained a general resurgence principle, the bridge
equation [5]. The common denominator of resurgence is the reappearance of
“earlier” terms in the formulas of “later” ones. It turns out that, for our
problem, resurgence is fundamentally linked to the Stokes phenomenon . In
the following formulas we make the convention Yk(p − j) = 0 for p < j as
an element of D′m,ν(R+). We again state the results is stated for p ∈ R′1 and
x ∈ Sx but hold in any sector where (c1) is valid.

Theorem 5.22 i) For all k and <(p) > j,=(p) > 0 as well as in D′m,ν we
have
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Y±j∓k (p)−Y±(j−1)∓
k (p) = (±S1)j

(
k1 + j

j

)(
Y∓k+je1

(p− j)
)(mj)

(5.23)

and also,

Y±k = Y∓k +
∑
j≥1

(
j + k1

k1

)
(±S1)j(Y∓k+je1

(p− j))(mj) (5.24)

ii) Local Stokes transition.
Consider the expression of a fixed solution y of (4.222) as a Borel summed
transseries (5.18). As arg(x) varies, (5.18) changes only through C, and that
change occurs when Stokes lines are crossed (cf. §5.0a ; the Stokes lines of
Y0 are the directions of λi). We have, in the neighborhood of R+, with S1

defined in (5.13):

C(ξ) =


C− = C(−0) for ξ < 0

C0 = C(−0) + 1
2S1e1 for ξ = 0

C+ = C(−0) + S1e1 for ξ > 0 (5.25)

(d) Classical Stokes phenomena and local Stokes transitions. Again we for-
mulate the result below for λ1 but with straightforward adjustments it holds
relative to any other eigenvalue. Let C be of the form C1e1. Along the imag-
inary axis, condition (c1) fails. The positive and negative imaginary are the
antistokes lines corresponding to λ1 = 1 (note: sometimes called Stokes lines!).
If we choose paths in the right half plane approaching the positive/negative
imaginary axis in such a way that |x−β1−le−x| → K 6= 0 along them, where
l + β ∈ (0,M), then y ∼ C±x−l−β1e−x + ỹ0 for large x and the term mul-
tiplied by K is now the leading behavior of y. The particular choice of K
and l within this range is rather arbitrary, the main point being that along
such special curves, the constant C is definable in terms of classical asymp-
totics. Within the right half plane, it is only near the imaginary axis that
this happens, since otherwise the exponential term is smaller than all terms
of ỹ0. On the other hand Borel summation makes possible the definition of C
throughout the right half plane, and we now address the issue of the relation
between classical asymptotics and exponential asymptotics.

Theorem 5.26 Let γ± be two paths in the right half plane, near the positive/
negative imaginary axis such that |x−β1+1e−xλ1 | → 1 as x → ∞ along γ±.
Consider the solution y of (4.222) given in (5.18) with C = Ce1 and where
the path of integration is p ∈ R+. Then

y = (C ± 1
2
S1)e1x

−β1+1e−xλ1(1 + o(1)) (5.27)
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for large x along γ±, where S1 is the same as in (5.13), (5.25).

Classical asymptotics loses track of the value of C along any ray other than
the imaginary directions, as the terms multiplied by C will be hidden “beyond
all orders” of the classically divergent series ỹ0. In contrast to the classical
picture, we see that through generalized Borel summation the constant C is
precisely defined throughout the positive half-plane and the question of where
the change in C occurs is well defined.

Formula (5.25) is the exponential asymptotic expression of the Stokes phe-
nomenon . It shows that the constant jumps as the Stokes line is crossed,
(5.25), as originally predicted by Stokes himself [16]. Subsequently, the origi-
nal ideas of Stokes, based on optimal truncation of series were greatly refined
by M. Berry, leading to his theory of hyperasymptotic expansions and a de-
scription of Stokes transitions for saddle integrals [31].

If more than one component of C is nonzero, then in general there is no
direction along which C can be defined through classical asymptotics. Part
of the difficulty of studying nonlinear Stokes phenomena using classical tools
stems from this fact.

Relation (5.25) expresses the evolution of C and the presence of a Stokes
phenomenon beyond all orders of Poincaré asymptotics.

5.1 Comments on the proof

Many complications in this general setting stem from higher dimensionality,
which complicates the algebra. Apart from that, a good part of the analysis of
the properties of the Borel transformed equation along nonsingular directions
is not that different from the analysis in §4.8a , which should be studied first.

Then we look more carefully at the behavior along singular directions. It
turns out that the study of the convolution equation is not very difficult
even near a singular point. There, by dominant balance we see that the
leading behavior is governed by a linear, regularly perturbed, ODE, which is
used to rewrite the equation in a contractive form. In nonlinear equations,
one singularity is replicated periodically along its complex direction, via the
autoconvolution.

The next task is to find a Borel summation valid along the singular direc-
tions while preserving all properties of usual Borel summation. The approach
is specific to ODEs, and it is not meant to substitute for the very general one
of Écalle. It has the advantage of simplicity, and also in finding all possible
summation processes, in the context of ODEs. Écalle’s approach shows that
summation processes such as medianization are universal, i.e. would have the
expected properties regardless of the problem of origin. They are described
in [4].
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We work in the restricted setting of [21], where to simplify the analysis we
assume further that <(β) > 0 where β = B̂1,1. Through normalization we
make

<(β) ∈ (0, 1] (5.28)

We are interested in the study of the solutions of (4.222) that are decay-
ing for large x, in one of the half-planes <(xe−iφ) > 0 with φ ∈ (arg λn −
2π, arg λ2). These solutions have the same asymptotic behavior at large x,
described by a (typically divergent) power series

y(x) ∼ ỹ0 =
∞∑
k=2

ỹ0,k

xk
(|x| → ∞; <

(
xe−iφ

)
> const > 0) (5.29)

For instance, all the solutions of the equation y′ + y = x−1 have the property
y(x) ∼

∑∞
k=0 k!x−k−1 as x→∞. If φ 6= 0 there is only one solution of (4.222)

satisfying (5.29). A much more interesting case is when we take φ = 0. Then,
as it is known (and will also follow from the present paper) there is a one
dimensional manifold M+ of solutions of (4.222) such that (5.29) holds. The
manifold M̃+ of all formal solutions which decay in the half plane <x > 0

ỹ = ỹ0 +
∞∑
k=1

Cke−kxỹk (5.30)

also has one free parameter, C ∈ C. In (5.30), ỹk, k ≥ 0, are formal power
series and ỹ is an instance of a trans-series. In our example y′+y = x−1, ỹ =∑∞
k=0 k!x−k−1 + Ce−x. See Section 5.2f a heuristic construction leading to

trans-series solutions and for references.
The series ỹk satisfy the system of differential equations

y′0 +
(

Λ̂ +
1
x
B̂

)
y0 = f0(x) + g(x,y0)

y′k +
(

Λ̂ +
1
x
B̂ − k − ∂g(x,y0)

)
yk =

∑
|l|>1

g(l)(x,y0)
l!

∑
Σm=k

n∏
i=1

li∏
j=1

(ymi,j )i

(5.31)
where g(l) := ∂(l)g/∂yl, (∂g)yk :=

∑n
i=1(yk)i(∂g/∂yi), and

∑
Σm=k stands

for the sum over all integers mi,j ≥ 1 with 1 ≤ i ≤ n, 1 ≤ j ≤ li such that∑n
i=1

∑li
j=1mi,j = k. Because mi,j ≥ 1,

∑
mi,j = k (fixed) and card{mi,j} =

|l|, the sums in (5.31) contain only a finite number of terms. We use the
convention

∏
i∈∅ ≡ 0. The system (5.31) is derived in Section 5.2f .

Starting with k = 1 the equations (5.31) are linear. Note that the inho-
mogeneous term in these linear equations is zero for k = 1, and for k > 1 it
involves only yn with n < k.
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We show that the general solution of (4.222), (5.29) is obtained by replacing
each formal series in (5.30) by its Borel sum which gives a one-to-one corre-
spondence between the formal solutions (trans-series) and the actual solutions
of (4.222), (5.29):

ỹ = ỹ0 +
∞∑
k=1

Cke−kxỹk ←→ LφBφỹ0 +
∞∑
k=1

Cke−kxLφBφỹk = y (5.32)

The Borel summation operator, LB will be defined precisely. The function
y ∈ M+ is convergently defined by (5.32) for large x. The left arrow in
(5.32) means that LφBφỹk(x) ∼ ỹk(x) for x → ∞. The exact statement
corresponding to (5.32) is given in Theorem 5.45.

We study in detail the features of the representation (5.32) and the proper-
ties of the objects involved. The technique that we use differs from that of [4],
[5], [6] and leads to new results. In particular we obtain for the Borel trans-
form of the formal series solutions of differential systems an averaging formula,
having, as the medianization of Ecalle the quality of preserving reality and
of commuting with convolution, but involving a smaller number of analytic
continuations and in addition satisfying the condition of at most exponential
growth at infinity.

For m > 1, the inverse Laplace transform of x−m is

L−1x−m = pm−1/Γ(m− 1) = B x−m

The Borel transform B of a formal series

ỹ = xr
∞∑
k=1

ỹkx−k, r ∈ (0, 1) (5.33)

is by definition the formal series gotten by taking L−1 term by term:

B ỹ = Y := p−r
∞∑
k=0

ỹk+1

Γ(k − r)
pk (5.34)

Of all the formal solutions (5.30), only the one with C = 0 (formally) decays
in a half-plane, if the half-plane is not centered on the real axis. On the other
hand, LφBỹ0 turns out to be the only solution of (4.222), (5.29) which decays
in the same half-plane centered on Φ. Borel summation associates uniquely a
true solution to Y0.

The situation is more complicated and more interesting along Stokes ray
s (we focus on one of them, Φ = R+). Condition 2) above is violated and,
generically, the functions Yk have an array of branch points along R+. If
we reinterpret 2) and consider paths that avoid the singularities then first of
all, analytic continuation is (a priori) ambiguous. What is worse, the Laplace
transform of such analytic continuations of Y0 are, typically, not solutions of
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(4.222) (see Section Ab ). However, Laplace transforms of (a one-parameter
family) of suitable weighted combinations of analytic continuations of Y0 are,
as we will prove, solutions of (4.222). If we require in addition that real series
are Borel-summed to real-valued functions then one of weighted average of
analytic continuations appears as more natural (see also Theorem 5.61 below).

*
To define the Borel transform along the Stokes line R+ we construct a

suitable space of analytic functions. Let φ+ = arg λ2, φ− = 2π − arg λn, and

W1 := {p : p 6∈ N ∪ {0} and arg p ∈ (−φ−, φ+)} (5.35)

(Fig. 1), a sector containing only the eigenvalue λ1 = 1 and punctured at
all the integers (where the functions Bỹk are typically singular; if n = 1 the
condition on the argument is dropped). We construct over W1 a surface R1,
consisting of homotopy classes of curves starting at the origin, going only
forward and crossing the real axis at most once:

R1 :=
{
γ : (0, 1) 7→ W1 s.t. γ(0+) = 0; < (γ(t)) increases in t and

0 = =(γ(t1)) = =(γ(t2))⇒ t1 = t2

}
(5.36)

modulo homotopies. Let also

D := C\ ∪ni=1 {αλi : α ≥ 1} (5.37)

be the complex plane without the rays originating at the eigenvalues λi of Λ̂.
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W1

Fig 1. The region W1. The dotted line is one of the paths that generate R1.
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Using notations similar to those of Ecalle, we symbolize the paths in R1 by
a sequence of signs ε1, .., εj , .., εn, εj = + or −. For example, −−−−+ = −4+
will symbolize a path in R1 that crosses the real line from below through the
interval (4, 5), and then goes only through the upper half-plane (Fig.1); ′′+′′

is a path confined to the upper half plane, etc. The analytic continuation of
a function Y along the path −4+ will be denoted Y−

4+.
The result below gives a first characterization of the analytic properties of

Bỹk. (In the following, we choose the determination of the logarithm which
is real for positive argument.)

Proposition 5.38 i) The function Y0 := Bỹ0 is analytic in D and Laplace
transformable along any direction in D. In a neighborhood of p = 1

Y0(p) =
{
Sβ(1− p)β−1A(p) + B(p) for β 6= 1
Sβ ln(1− p)A(p) + B(p) for β = 1 (5.39)

(see (5.28)), where A, B are (Cn-valued) analytic functions in a neighborhood
of p = 1.

ii) The functions Yk := Bỹk, k = 0, 1, 2, .. are analytic in R1.
iii) For small p,

Y0(p) = pA0(p); Yk(p) = pkβ−1Ak(p), k = 1, 2, .. (5.40)

where Ak, k ≥ 0, are analytic functions in a neighborhood of p = 0 in C.

iv) If Sβ = 0 then Yk, k ≥ 0, are analytic in W1 ∪ N.

v) The analytic continuations of Yk along paths in R1 are in L1
loc(R+)

(their singularities along R+ are integrable). The analytic continuations of
the Yk in R1 can be expressed in terms of each other through “resurgence ”
relations of the type:

SkβYk =
(
Y−0 −Y−

k−1+
0

)
◦ τk, on (0, 1); (τa := p 7→ p− a) (5.41)

relating the higher order series in the trans-series to the first series and

Y−
m+

k = Y+
k +

m∑
j=1

(
k + j

k

)
SjβY+

k+j ◦ τj (5.42)

Sβ is related to the Stokes constant S by

Sβ =


iS

2 sin(π(1− β))
for β 6= 1

iS

2π
for β = 1
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The Borel transformability of the principal series ỹ0 has been considered for
general systems of differential equations, allowing for resonances (see [8],[9]).

Let Y be one of the functions Yk and define, on R+ ∩ R1 the “balanced
average” of Y:

Yba = Y+ +
∞∑
k=1

2−k
(
Y− −Y−

k−1+
)
H ◦ τk (5.43)

(H is Heaviside’s function). For any value of the argument, only finitely
many terms (5.43) are nonzero. Moreover, the balanced average preserves
reality in the sense that if (4.222) is real and ỹ0 is real then Yba is real on
R+−N (and in this case the formula can be symmetrized by taking 1/2 of the
expression above plus 1/2 of the same expression with + and − interchanged).
Equation (5.43) has the main features of medianization (cf. [5]), in particular
(unlike individual analytic continuations, see Appendix Ab ) commutes with
convolution (cf. Theorem 5.61). As it will become clear, the advantage of
the definition (5.43) is that Yba is exponentially bounded at infinity for the
functions we are dealing with.

Let again ỹ be one of ỹk and Y = Bỹ. We define:

LφBỹ := Lφ Y = x 7→
∫ ∞eiφ

0

Y(p)e−pxdp if Φ 6= R+

L0Bỹ := L0 Y = x 7→
∫ ∞

0

Yba(p)e−pxdp if Φ = R+ (5.44)

The connection between true and formal solutions of the differential equa-
tion is given in the following theorem:

Theorem 5.45 i) There is a large enough b such that, for <(x) > b the
Laplace transforms LφYk exist for all k ≥ 0 and φ ∈ (−φ−, φ+), cf. (5.35).

For φ ∈ (−φ−, φ+) and any C the series

y(x) = (LφBỹ0)(x) +
∞∑
k=1

Cke−kx(LφBỹk)(x) (5.46)

is convergent for large enough x in the right half plane.
The function y in (5.46) is a solution of the differential equation (4.222).
Furthermore, for any k ≥ 0 we have LφBỹk ∼ ỹk in the right half plane

and LφBỹk is a solution of the corresponding equation in (5.31).
ii) Conversely, given φ, any solution of (4.222) having ỹ0 as an asymptotic

series in the right half plane can be written in the form (5.46), for a unique
C.

iii) The constant C, associated in ii) with a given solution y of (4.222),
depends on the angle φ:
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C(φ) =

C(0+) for φ > 0
C(0+)− 1

2Sβ for φ = 0
C(0+)− Sβ for φ < 0

(5.47)

(see also (5.39) ).

Note that by (5.47) the change in the correspondence (5.32) occurs when
the Stokes line arg x = 0 is crossed. This is a local manifestation of the Stokes
phenomenon ([16], [17], [18]).

**

Next, we study the correspondence between the solutions of the differential
equations (4.222), (5.55), their formal solutions and the solutions of the inverse
Laplace transform of these equations, which, in the transformed space, are
convolution equations.

With the convolution defined as

f ∗ g := p 7→
∫ p

0

f(s)g(p− s)ds (5.48)

we have, as is well known, L(f ∗ g) = L(f)L(g), L(−pf(p)) = L(f(p))′. (See
Section C for a few more useful formulas.) In (4.222) we write

g(ξ−1,y) =
∑
|l|≥1

gl(ξ)yl =
∑

m≥0;|l|≥1

gm,lξmyl (|ξ| < ξ0, |y| < y0) (5.49)

where by construction g0,l = g1,l = 0 if |l| = 1 and the notation zl means
zl11 ·zlnn and |l| = l1+..+ln. The formal inverse Laplace transform of g(x,y(x))
is given by:

L−1
∑
|l|≥1

y(x)l

∑
m≥0

gm,lx−m

 =
∑
|l|≥1

Gl ∗Y∗l +
∑
|l|≥2

g0,lY∗l =: N (Y)

(5.50)
where

Gl(p) =
∞∑
m=1

gm,l
pm−1

m!
(G1,l(0) = 0 if |l| = 1) (5.51)

Gl ∗Y∗l ∈ Cn; (Gl ∗Y∗l)j := (Gl)j ∗ Y
∗l1
1 ∗ .. ∗ Y ∗lnn (5.52)

The inverse Laplace transform of (4.222) is the convolution equation:

−pY(p) = F0(p)− Λ̂Y(p)− B̂
∫ p

0

Y(s)ds+N (Y)(p) (5.53)
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(see (5.50)) where, since f0(x) = O(x−2),

F0(0) = 0 (5.54)

By transforming (5.31) we get, similarly:

(Λ̂− p− k)Yk(p) + B̂

∫ p

0

Yk(s)ds−
n∑
j=1

∫ p

0

(Yk)j(s)Dj(p− s)ds =

∑
|l|>1

dl ∗
∑

Σm=k

∗
n∏
i=1

∗
li∏
j=1

(Ymi,j )i =: Rk(p) (k = 1, 2, ..) (5.55)

with dm := L−1(g(m)(x,y0)/m!), Dj := L−1(∂g(x,y0)/∂yj) and ∗
∏

stand-
ing for the convolution product.

For a given ray Φ we consider the equations (5.53) and (5.55) in L1
loc(Φ).

When Φ is not a Stokes line, the description of the solutions is quite simple:

Proposition 5.56 i) If Φ is a ray in D, then the equation (5.53) has a unique
solution in L1

loc(Φ), namely Y0 = Bỹ0.
ii) For any ray in W1, the system (5.53), (5.55) has the general solution

solution CkYk = CkBỹk, k ≥ 0.

The more interesting case Φ = R+ is dealt with in the following theorem:

Theorem 5.57 i) The general solution in L1
loc(R+) of the equation (5.53)

can be written in the form:

YC(p) =
∞∑
k=0

CkYba
k (p− k)H(p− k) (5.58)

with C ∈ C arbitrary.

ii) Near p = 1, YC is given by:

YC(p) =
{
Sβ(1− p)β−1A(p) + B(p) for p < 1
C(1− p)β−1A(p) + B(p) for p > 1 (β 6= 1) (5.59)

YC(p) =
{

Sβ ln(1− p)A(p) + B(p) for p < 1
(Sβ ln(1− p) + C)A(p) + B(p) for p > 1 (β = 1)

where A and B extend to analytic functions in a neighborhood of p = 1.

iii) With the choice Y0 = Yba
0 , the general solution of (5.55) in L1

loc(R+)
is CkYba

k , k ∈ N.
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Comparing (5.59) with (5.39) we see that if S 6= 0 (which is the generic
case) the general solution of (5.53) can be written on the interval (0, 2) as a
linear combination of the upper and lower analytic continuations of Bỹ0:

YC = λCY+
0 + (1− λC)Y−0 (5.60)

Finally we mention the following result, which shows that the balanced
average, like medianization [5], commutes with convolution.

Theorem 5.61 If f and g are analytic in R1 then f ∗ g extends analytically
in R1 and furthermore,

(f ∗ g)ba = f ba ∗ gba (5.62)

As a consequence of the linearity of the balanced averaging and its com-
mutation with convolution, if t̃1,2 are the trans-series of the solutions f1,2 of
differential equations of the type considered in the present paper (cf. (5.32)),
and if LBt̃1,2 = f1,2 then

LB
(
at̃1 + bt̃2

)
= af1 + bf2 (5.63)

Moreover, what is less obvious, we have for the component-wise product

LB(̃t1t̃2) = f1f2 (5.64)

Borel summation is in fact an isomorphism between a sub-algebra of trans-
series and a function algebra.

5.2 Proofs and further results

5.2a Outline of the proofs of the main results

To show the results stated in the previous section, we first obtain the general
solution in L1

loc of the convolution system (5.55) in D and then, separately,
on the Stokes line R+. We show that along a ray in D, the solution is unique
whereas along the ray R+ there is a one-parameter family of solutions of
the system, branching off at p = 1. We show that any L1

loc solution of the
system is (uniformly in k) exponentially bounded at infinity therefore Laplace
transformable and (by the usual properties of the Laplace transform) these
transforms solve (4.222). Conversely, any solution of (4.222) with the required
asymptotic properties is inverse Laplace transformable, therefore it has to
be one of the previously obtained solutions of the equation corresponding
to k = 0. We then study the regularity properties of the solutions of the
convolution equation by local analysis.
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Having the complete description of the family of L1
loc solutions we compare

different ways that lead to the same solution and obtain interesting identities;
the identities, together with the local properties of the solutions are instru-
mental in finding the analytic properties of Yk in R1.

Key to the main proofs. The complete connection with Equation (5.43)
is established in Section 5.2g . For the remaining parts: Proposition 5.38: i)
follows from Proposition 5.65 and Lemma 5.108; ii) and iii) follow from Propo-
sition 5.187. The proof of (5.40) is given in Remark 5.176 and iv) is shown in
Remark 5.194. Part v) follows from Proposition 5.181 and Proposition 5.187.
Theorem 5.45: i) and ii) follow from Lemma 5.179 and Proposition 5.169;
iii) is Equation (5.185). Proposition 5.56 follows from Proposition 5.65 and
Lemma 5.179. Theorem 5.57: follows from Proposition 5.145, Lemma 5.125,
Proposition 5.166. The proof of Theorem 5.61 starts with Proposition 5.198
and is continued after it.

5.2b The convolution equation away from Stokes rays

For any star-shaped set E in the complex plane containing the origin (i.e.,
a region such that the origin can be connected with any other point in E by a
straight line segment contained in E) we denote by Lray(E) the set of functions
which are locally integrable along each ray in E .

Proposition 5.65 There is a unique solution of (5.53) in Lray(D) (cf. (5.37))
namely Y0 = Bỹ0.

This solution is analytic in D, Laplace transformable along any ray Φ con-
tained in D and LφY0 is a solution of (4.222).

For the proof we need a few more results.

Remark 5.66 There is a constant K > 0 (independent of p and l) such that
for all p ∈ C and all l ≥ 0

|Gl(p)|∧ < Kµ|l|eµ|p| (5.67)

for µ > max{ξ−1
0 , y−1

0 } (cf. (5.49)) (|f |∧ := max1..n{|f1|, .., |fn|} is an Eu-
clidean norm; for the definition of G see (5.51), (5.49) and (4.222)).

Proof.
From the analyticity assumption it follows that

|gm,l|∧ < Const µm+|l| (5.68)

where the constant is independent on m and l.
Then, by (5.51),

|Gl(p)|∧ < Const µ|l|+1 e
µ|p| − 1
µ|p|

< Const µ|l|+1eµ|p|
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Consider the ray segments

ΦD = {αeiφ : 0 ≤ α < D} (5.69)

and along ΦD the L1 norm with exponential weight

‖f‖b,Φ = ‖f‖b :=
∫

Φ

e−b|p||f(p)||dp| =
∫ D

0

e−bt|f(teiφ)|dt (5.70)

and the space

L1
b(ΦD) := {f : ‖f‖b <∞}

(if D < ∞, L1
b(ΦD) = L1

loc(ΦD)). We mention the following elementary
property:

Remark 5.71 The Laplace transform L is a continuous operator from L1
b(ΦD)

to the space of analytic functions in the half plane <(x) > b with the uniform
norm.

Let K ∈ C be a bounded domain, diam (K) = D < ∞. On the space of
continuous functions on K we take the uniform norm with exponential weight:

‖f‖u := D sup
p∈K
{|f(p)|e−b|p|} (5.72)

(which is equivalent to the usual uniform norm).
Let O ⊂ D, O 3 0 be a star-shaped, open set, diam(O) = D containing a

ray segment Φ. Let A be the space of analytic functions f in O such that
f(0) = 0, endowed with the norm (5.72).

Proposition 5.73 The spaces L1
b(ΦD) and A are Banach algebras with re-

spect to the usual addition of functions and the convolution (5.48). Further-
more

‖f ∗ g‖b ≤ ‖f‖b‖g‖b (f, g ∈ L1
b(ΦD))

‖f ∗ g‖u ≤ ‖f‖u‖g‖u (f, g ∈ A)

‖f ∗ g‖u ≤ ‖f‖u‖g‖b (f ∈ C(ΦD), g ∈ L1
b(ΦD)

(5.74)

(D =∞ is allowed in the first inequality).
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With F (s) := f(seiφ) and G(s) := g(seiφ) we have:

∫ D

0

dte−bt
∣∣∣∣∫ t

0

dsF (s)G(t− s)
∣∣∣∣ ≤ ∫ D

0

dte−bt
∫ t

0

ds|F (s)G(t− s)| =∫ D

0

∫ D−v

0

e−b(u+v)|F (v)||G(u)|dudv ≤∫ D

0

∫ D

0

e−b(u+v)|F (v)||G(u)|dudv = ‖f‖b‖g‖b

(5.75)

On the other hand, for f, g ∈ A we have f ∗ g ∈ A. Also,

‖f ∗ g‖u = D sup
p∈O

e−b|p|
∣∣∣∣∫ p

0

f(s)g(p− s)ds
∣∣∣∣ ≤

D sup
p∈O

∫ |p|
0

∣∣∣f(tei arg p)e−btg(p− tei arg p)e−b(|p|−t)
∣∣∣ dt (5.76)

which is less than both ‖f‖u‖g‖u and ‖f‖u‖g‖b.

Remark 5.77 For f in A or f in L1
b(ΦD),

‖f‖u,b → 0 as b→∞ (5.78)

where ‖‖u,b is either of the ‖‖u or ‖‖b and D = ∞ is allowed in the second
case.

For ‖‖b, Eq. (5.78) is an immediate consequence of the dominated conver-
gence theorem whereas for ‖‖u it follows from the definition of A.

Corollary 5.79 Let f be continuous along ΦD, D < ∞ and g ∈ L1
b(ΦD).

Given ε > 0 there exists a large enough b and K = K(ε,ΦD) such that for all
k

‖f ∗ g∗k‖u < K εk

By Remark 5.77 we can choose b = b(ε,ΦD) so large that ‖g‖b < ε. Then,
by Proposition 5.73 and Eq. (5.72) we have:

∣∣∣∣∣
∫ peiφ

0

f(peiφ − s)g∗k(s)ds

∣∣∣∣∣ ≤ D−1eb|p|‖f‖u
∫ peiφ

0

e−b|s||g∗k(s)||ds| ≤
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D−1eb|p|‖f‖u‖g‖kb < K εk

Remark 5.80 By (5.67), for any b > µ, and ΦD ⊂ C, D ≤ ∞

‖Gl‖b ≤ Kµ|l|
∫ ∞

0

|dp|e|p|(µ−b) = K
µ|l|

b− µ
(5.81)

where, to avoid cumbersome notations, we write

f ∈ L1
b(ΦD) iff ‖|f |∧‖b ∈ L1

b(ΦD) (5.82)

(and similarly for other norms of vector functions).
Proof of Proposition 5.65.
We first show existence and uniqueness in Lray(D) which amounts to noth-

ing more then existence and uniqueness along each ΦD ⊂ D.
Then we show that for large enough b there exists a unique solution of (5.53)

in L1
b(Φ∞). Since this solution is also in L1

loc(Φ∞) it follows that our (unique)
L1
loc solution is Laplace transformable. Analyticity is proven by finding the

solution as a fixed point of a contraction with respect to the uniform norm in
a suitable space of analytic functions.

Proposition 5.83 i) For ΦD ∈ D and large enough b, the operator

N1 := Y(p) 7→ (Λ̂− p)−1

(
F0(p)− B̂

∫ p

0

Y(s)ds+N (Y)(p)
)

(5.84)

is a contraction in a small enough neighborhood of the origin with respect to
‖‖u if D <∞ and with respect to ‖‖b for D ≤ ∞.

ii) For D ≤ ∞ the operator N given formally in (5.50) is continuous in
L1
loc(ΦD). The last sum in (5.50) converges uniformly on compact subsets of

ΦD. N (L1
loc(ΦD)) ⊂ AC(ΦD), the absolutely continuous functions on ΦD.

Moreover, if vn → v in ‖‖b on ΦD, D ≤ ∞, then for b′ ≥ b large enough,
N (vn) exist and converge in ‖‖b′ to v.

The last statements amounts to saying that N is continuous in the topology
of the inductive limit of the L1

b .
Proof.

Since Λ̂ and B̂ are constant matrices,

‖N1(Y)‖u,b ≤ Const(Φ) (‖F0‖u,b + ‖Y‖u,b‖1‖b + ‖N (Y)‖u,b) (5.85)

As both ‖1‖b and ‖F0‖u,b are O(b−1) for large b, the fact that N1 maps a
small ball into itself follows from the following Remark.
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Remark 5.86 Let ε > 0 be small enough. Then, there is a K such that for
large b and all v such that ‖v‖u,b =: δ < ε,

‖N (v)‖u,b ≤ K
(
b−1 + ‖v‖u,b

)
‖v‖u,b (5.87)

By (5.68) and (5.81), for large b and some positive constants C1, .., C5,

‖N (v)‖u,b ≤ C1

∑
|l|≥1

‖Gl‖b‖v‖|l|u,b +
∑
|l|≥2

‖g0,l‖b‖v‖|l|u,b


≤ C2

b

∑
|l|≥1

µ|l|

b− µ
δ|l| +

∑
|l|≥2

µ|l|δ|l|

 ≤ (C2

∞∑
m=1

+
∞∑
m=2

)
µmδm

∑
|l|=m

1

≤
(
C4

b
+ µδ

) ∞∑
m=1

µmδm(m+ 4)n ≤
(
C4

b
+ µδ

)
C5δ

(5.88)

To show that N1 is a contraction we need the following:

Remark 5.89

‖hl‖ := ‖(f + h)∗l − f∗l‖ ≤ |l| (‖f‖+ ‖h‖)|l|−1 ‖h‖ (5.90)

where ‖‖ = ‖‖u or ‖‖b.

This estimate will be useful to us when h is a “small perturbation”. The
proof of (5.90) is a simple induction on l, with respect to the lexicographic
ordering. For |l| = 1, (5.90) is trivial; assume (5.90) holds for all l < l1 and
that l1 differs from its predecessor l0 at the position k (we can take k = 1),
i.e., (l1)1 = 1 + (l0)1. We have:

‖(f + h)∗l1 − f∗l1‖ = ‖(f + h)∗l0 ∗ (f1 + h1)− f∗l1‖ =

‖(f∗l0 + hl0) ∗ (f1 + h1)− f∗l1‖ = ‖f∗l0 ∗ h1 + hl0 ∗ f1 + hl0 ∗ h1‖ ≤
‖f‖|l0|‖h‖+ ‖hl0‖‖f‖+ ‖hl0‖‖h‖ ≤

‖h‖
(
‖f‖|l0| + |l0|(‖f‖+ ‖h‖)|l0|

)
≤

‖h‖(|l0|+ 1)(‖f‖+ ‖h‖)|l0| (5.91)

Remark 5.92 For small δ and large enough b, N1 defined in a ball centered
at zero, of radius δ in the norms ‖‖u,b is contractive.
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By (5.85) and (5.87) we know that the ball is mapped into itself for large b.
Let ε > 0 be small and let f ,h be such that ‖f‖ < δ− ε, ‖h‖ < ε. Using (5.90)
and the notations (5.53) (5.85) and ‖‖ = ‖‖u,b we obtain, for some positive
constants C1, .., C4 and large b,

‖N1(f + h)−N1(f)‖ ≤ C1‖

∑
|l|≥2

g0,l ·+
∑
|l|≥1

Gl∗

((f + h)∗l − f∗l
)
‖ ≤

C2‖h‖

∑
|l|≥1

µ|l|

b− µ
|l‖δ|l|−1 +

∑
|l|≥2

|l|µ|l|δ|l|−1

 < (C3b
−1 + C4δ)‖h‖

(5.93)

To finish the proof of Proposition 5.83 take v ∈ A. Given ε > 0 we can
choose b large enough (by Remark 5.77) to make ‖v‖u < ε. Then the sum
in the formal definition of N is convergent in A, by (5.88). Now, if D < ∞
L1
loc(ΦD) = L1

b(ΦD) for any b > 0. If vn → v in L1
b(ΦD), we choose ε

small enough, then b large so that ‖v‖b < ε, and finally n0 large so that for
n > n0 ‖vn − v‖b < ε (note that ‖‖b decreases w.r. to b) thus ‖vn‖b < 2ε
and continuity (in L1

b(ΦD) as well as in L1
loc(Φ∞) ≡ ∪k∈Φ∞L

1
b(0, k)) follows

from Remark 5.92. Continuity with respect to the topology of the inductive
limit of the L1

b is proven in the same way. It is straightforward to show that
N (L1

loc(Φ)) ⊂ AC(Φ).
P5.83

The fact that LφY0 is a solution of (4.222) follows from Proposition 5.83,
from Remark 5.71 and the elementary properties of L (see also the proof of
Proposition 5.150).

Since Y0(p) is analytic for small p, (LY0)(x) has an asymptotic series for
large x, which has to agree with ỹ0 since LY0 solves (4.222). This shows that
Y0 = Bỹ0.

P5.65

Remark 5.94 For any δ there is a constant K2 = K2(δ, |p|) so that for all l
we have

|Y∗l0 (p)|∧ ≤ K2δ
|l| (5.95)

The estimates (5.95) follow immediately from analyticity and from Corol-
lary 5.79.
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5.2c Behavior of Y0(p) near p = 1.

Let Y0 be the unique solution in Lray(D) of (5.53) and let ε > 0 be small.
Define

H(p) :=
{

Y0(p) for p ∈ D ,|p| < 1− ε
0 otherwise and h(1− p) := Y0(p)−H(p)

(5.96)
In terms of h, for real z = 1− p, z < ε, the equation (5.53) reads:

−(1− z)h(z) = F1(z)− Λ̂h(z) + B̂

∫ z

ε

h(s)ds+N (H + h) (5.97)

where

F1(1− s) := F0(s)− B̂
∫ 1−ε

0

H(s)ds

Proposition 5.98 i) For small ε, H∗l(1 + z) extends to an analytic function
in the disk Dε := {z : |z| < ε}. Furthermore, for any δ there is an ε and a
constant K1 := K1(δ, ε) such that for z ∈ Dε the analytic continuation satisfies
the estimate

|H∗l(1 + z)|∧ < K1δ
l (5.99)

Proof.
The case |l| = 1 is trivial: H itself extends as the zero analytic function.

We assume by induction on |l| that Proposition 5.98 is true for all l, |l| ≤ l
and show that it then holds for (e.g.) H1 ∗H∗l, for all l, |l| ≤ l.

H is analytic in an ε–neighborhood of [0, 1 − 2ε], and therefore so is H∗l.
Taking first z ∈ R+, z < ε, we have

∫ 1−z

0

H1(s)H∗l(1− z − s)ds =
∫ 1−ε

0

H1(s)H∗l(1− z − s)ds =∫ 1/2

0

H1(s)H∗l(1− z − s)ds+
∫ 1−ε

1/2

H1(s)H∗l(1− z − s)ds (5.100)

The integral on [1/2, 1− ε] is analytic for small z, since the argument of H∗l

varies in an ε-neighborhood of [0, 1/2]; the integral on [0, 1/2) equals

∫ 1−z

1/2−z
H1(1−z−t)H∗l(t)dt =

(∫ 1/2

1/2−z
+
∫ 1−ε

1/2

+
∫ 1−z

1−ε

)
H1(1−z−t)H∗l(t)dt

(5.101)
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In (5.101) the integral on [1/2− z, 1/2] is clearly analytic in Dε, the following
one is the integral of an analytic function of the parameter z with respect to
the absolutely continuous measure H∗ldt whereas in the last integral, both
H∗l (by induction) and H1 extend analytically in Dε.

To prove now the the induction step for the estimate (5.99), fix δ small and
let:

η < δ; M1 := max
|p|<1/2+ε

|H(p)|∧; M2(ε) := max
0≤x≤1−ε

|H(p)|∧; ε <
δ

4M1

(5.102)
Let K2 := K2(η; ε) be large enough so that (5.95) holds with η in place

of δ for real x ∈ [0, 1 − ε] and also in an ε neighborhood in C of the interval
[0, 1/2+2ε]. We use (5.95) to estimate the second integral in the decomposition
(5.100) and the first two integrals on the r.h.s. of (5.101). For the last integral
in (5.101) we use the induction hypothesis. If K1 > 2K2 (2M1 +M2), it
follows that |H∗l ∗H1|∧ is bounded by (the terms are in the order explained
above):

M2(ε)K2η
l +M1K2η

l +M1K2η
l + (2ε)M1K1δ

l < K1δ
l+1 (5.103)

Proposition 5.104 The equation (5.97) can be written as

−(1−z)h(z) = F(z)−Λ̂h(z)+B̂
∫ z

ε

h(s)ds−
n∑
j=1

∫ z

ε

hj(s)Dj(s−z)ds (5.105)

where

F(z) := N (H)(1− z) + F1(z) (5.106)

Dj =
∑
|l|≥1

ljGl ∗H∗̄l
j

+
∑
|l|≥2

ljg0,lH∗̄l
j

; l̄j := (l1, l2, ..(lj − 1), ..ln) (5.107)

(cf. also (5.52)) extend to analytic functions in Dε (cf. Proposition 5.98).
Moreover, if H is a vector in L1

b(R+) then, for large b, Dj ∈ L1
b(R+) and the

functions F(z) and Dj extend to analytic functions in Dε.

Proof.
Noting that (Y0 −H)∗2(1 − z) = 0 for ε < 1/2 and z ∈ Dε the result is

easily obtained by re-expanding N (H + h) since Proposition 5.98 guarantees
the uniform convergence of the series thus obtained. The proof that Dj ∈ L1

b
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for large b is very similar to the proof of (5.93). The analyticity properties
follow easily from Proposition 5.98, since the series involved in N (H) and Dj

converge uniformly for |z| < ε.

Consider again the equation (5.105). Let Γ̂ = Λ̂− (1− z)1̂, where 1̂ is the
identity matrix. By construction Γ̂ and B̂ are block-diagonal, their first block
is one-dimensional: Γ̂11 = z and B̂11 = β. We write this as Γ̂ = z⊕ Γ̂c(z) and
similarly, B̂ = β ⊕ B̂c, where Γ̂c and B̂c are (n− 1)× (n− 1) matrices. Γ̂c(z)
and Γ̂−1

c (z) are analytic in Dε.

Lemma 5.108 The function Y0 given in Proposition 5.65 can be written in
the form

Y0(p) = (1− p)β−1a1(p) + a2(p) (β 6= 1)
Y0(p) = ln(1− p)a1(p) + a2(p) (β = 1) (5.109)

for p in the region (Dε + 1)∩D (Dε + 1 := {1 + z : z ∈ Dε}) where a1, a2 are
analytic functions in Dε + 1 and (a1)j = 0 for j > 1.

Proof.
Let Q(z) :=

∫ z
ε

h(s)ds. By Proposition 5.65, Q is analytic in Dε ∩ (1−D).
From (5.105) we obtain

(z⊕ Γ̂c(z))Q′(z)− (β ⊕ B̂c)Q(z) = F(z)−
n∑
j=1

∫ z

ε

Dj(s− z)Q′j(s)ds (5.110)

or, after integration by parts in the r.h.s. of (5.110), (Dj(0) = 0, cf. (5.107)),

(z⊕ Γ̂c(z))Q′(z)− (β ⊕ B̂c)Q(z) = F(z) +
n∑
j=1

∫ z

ε

D′j(s− z)Qj(s)ds (5.111)

With the notation (Q1,Q⊥) := (Q1, Q2, .., Qn) we write the system in the
form

(z−βQ1(z))′ = z−β−1

F1(z) +
n∑
j=1

∫ z

ε

D′1j(s− z)Qj(s)ds


(eĈ(z)Q⊥)′ = eĈ(z)Γ̂c(z)−1

F⊥ +
n∑
j=1

∫ z

ε

D′⊥(s− z)Qj(s)ds


Ĉ(z) := −

∫ z

0

Γ̂c(s)−1B̂c(s)ds

Q(ε) = 0 (5.112)
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After integration we get:

Q1(z) = R1(z) + J1(Q)
Q⊥(z) = R⊥(z) + J⊥(Q) (5.113)

with

J1(Q) = zβ
∫ z

ε

t−β−1
n∑
j=1

∫ t

ε

Qj(s)D′1j(t− s)dsdt

J⊥(Q)(z) := e−Ĉ(z)

∫ z

ε

eĈ(t)Γ̂c(t)−1

 n∑
j=1

∫ z

ε

D′⊥(s− z)Qj(s)ds

 dt

R⊥(z) := e−Ĉ(z)

∫ z

ε

eĈ(t)Γ̂c(t)−1F⊥(t)dt

R1(z) = zβ
∫ z

ε

t−β−1F1(t)dt (β 6= 1)

R1(z) = F1(0) + F ′1(0)z ln z + z

∫ z

ε

F1(s)− F1(0)− sF ′1(0)
s

ds (β = 1)

(5.114)

Consider the following space of functions:

Tβ =
{

Q analytic in Dε ∩ (D − 1) : Q = zβA(z) + B(z)
}

for β 6= 1 and

T1 =
{

Q analytic in Dε ∩ (D − 1) : Q = z ln zA(z) + B(z)
}

(5.115)

where A,B are analytic in Dε. (The decomposition of Q in (5.115) is unam-
biguous since zβ and z ln z are not meromorphic in Dε.)

The norm

‖Q‖ = sup {|A(z)|∧, |B(z)|∧ : z ∈ Dε} (5.116)

makes Tβ a Banach space.
For A(z) analytic in Dε the following elementary identities are useful in what
follows:

∫ z

ε

A(s)srds = Const+ zr+1

∫ 1

0

A(zt)trdt = Const+ zr+1Analytic(z)∫ z

0

sr ln sA(s)ds = zr+1 ln z
∫ 1

0

A(zt)trdt+ zr+1

∫ 1

0

A(zt)tr ln tdt

(5.117)
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where the second equality is obtained by differentiating with respect to r the
first equality.

Using (5.117) it is straightforward to check that the r.h.s. of (5.113) extends
to a linear inhomogeneous operator on Tβ with image in Tβ and that the norm
of J is O(ε) for small ε. For instance, one of the terms in J for β = 1,

z

∫ z

0

t−2

∫ t

0

s ln sA(s)D′(t− s)ds =

z2 ln z
∫ 1

0

∫ 1

0

σA(zτσ)D′(zτ − zτσ)dσdτ+

z2

∫ 1

0

dτ

∫ 1

0

dσσ(ln τ + lnσ)A(zτσ)D′(zτ − zτσ)

(5.118)

manifestly in Tβ if A is analytic in Dε. Comparing with (5.115), the extra
power of z accounts for a norm O(ε) for this term.

Therefore, in (5.112) (1− J) is invertible and the solution Q ∈ Tβ ⊂ L (D).
In view of the the uniqueness of Y0 (cf. Proposition 5.65), the rest of the
proof of Lemma 5.108 is immediate.

5.2d The solutions of (5.53) on

[0, 1 + ε]
Let Y0 be the solution given by Proposition 5.65, take ε small enough and

denote by Oε a neighborhood in C of width ε of the interval [0, 1 + ε].

Remark 5.119 . Y0 ∈ L1(Oε). As φ→ ±0, Y0(peiφ)→ Y±0 (p) in the sense
of L1([0, 1+ε]) and also in the sense of pointwise convergence for p 6= 1, where

Y±0 :=
{

Y0(p) p < 1
(1− p± 0i)β−1a1(p) + a2(p) p > 1 (β 6= 1)

Y±0 :=
{

Y0(p) p < 1
ln(1− p± 0i)a1(p) + a2(p)p > 1 (β = 1) (5.120)

Moreover, Y±0 are L1
loc solutions of the convolution equation (5.53) on the

interval [0, 1 + ε].

The proof is immediate from Lemma 5.108 and Proposition 5.83.

Proposition 5.121 For any λ ∈ C the combination Yλ = λY+
0 + (1−λ)Y−0

is a solution of (5.53) on [0, 1 + ε].
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Proof. For p ∈ [0, 1)∪ (1, 1 + ε] let yλ(p) := Yλ−H(p). Since y∗2λ = 0 the
equation (5.53) is actually linear in yλ (compare with (5.105)).

*
Note: We consider the application Y := y0 7→ Yλ and require that it is

compatible with complex conjugation of functions Y(y0
∗) = (Y(y0))∗ where

F ∗(z) := F (z). We get <λ = 1/2. It is natural to choose λ = 1/2 to make
the linear combination a true average. This choice corresponds, on [0, 1 + ε],
to the balanced averaging (5.43).

*

Remark 5.122 For any δ > 0 there is a constant C(δ) such that for large b

‖(Yba
0 )∗l‖u < C(δ)δ|l| ∀ l with |l| > 1 (5.123)

(‖‖u is taken on the interval [0, 1 + ε]).

Without loss of generality, assume that l1 > 1. Using the notation (5.107),

∥∥∥∥∫ p

0

(Y0)ba1 (s)(Yba
0 )∗̄l

1
(p− s)ds

∥∥∥∥
u

≤∥∥∥∥∥
∫ p

2

0

(Yba
0 )1(s)(Yba

0 )∗̄l
1
(p− s)ds

∥∥∥∥∥
u2

+

∥∥∥∥∥
∫ p

2

0

(Y0)1(p− s)(Yba
0 )∗̄l

1
(s)ds

∥∥∥∥∥
u2

(5.124)

(‖‖u2 refers to the interval p ∈ [0, 1/2 + ε/2].) The first u2 norm can be
estimated directly using Corollary 5.79 whereas we majorize the second one
by

‖(Yba
0 )1‖b‖(Yba

0 )∗̄l
1
(x)‖u2

and apply Corollary 5.79 to it for |l| > 2 (if |l| = 2 simply observe that (Yba
0 )∗l

is analytic on [0, 1/2 + ε/2]).

Lemma 5.125 The set of all solutions of (5.53) in L1
loc([0, 1 + ε]) is param-

eterized by a complex constant C and is given by

Y0(p) =
{

Yba
0 (p) for p ∈ [0, 1)

Yba
0 (p) + C(p− 1)β−1A(p) for p ∈ (1, 1 + ε] (5.126)

for β 6= 1 or, for β = 1,
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Y0(p) =
{

Yba
0 (p) for p ∈ [0, 1)

Yba
0 (p) + C(p− 1)A(p) for p ∈ (1, 1 + ε] (5.126)′

where A extend analytically in a neighborhood of p = 1.
Different values of C correspond to different solutions.
This result remains true if Yba

0 is replaced by any other combination Yλ :=
λY+

0 + (1− λ)Y−0 , λ ∈ C.

Proof.
We look for solutions of (5.53) in the form

Yba(p) + h(p− 1) (5.127)

By Lemma 5.108 , h(p− 1) = 0 for p < 1. Note that

N (Yba
0 ◦ τ−1 + h)(z) = N (Yba

0 )(1 + z) +
n∑
j=1

∫ z

0

hj(s)Dj(z − s)ds (5.128)

where the Dj are given in (5.107), and by Remark 5.123 all the infinite sums
involved are uniformly convergent. For z < ε (5.53) translates to (compare
with (5.105)):

−(1 + z)h(z) = −Λ̂h(z)− B̂
∫ z

0

h(s)ds+
n∑
j=1

∫ z

0

hj(s)Dj(z − s)ds (5.129)

Let

Q(z) :=
∫ z

0

h(s)ds (5.130)

As we are looking for solutions h ∈ L1, we have Q ∈ AC[0, ε] and Q(0) = 0.
Following the same steps as in the proof of Lemma 5.108 we get the system
of equations:

(z−βQ1(z))′ = z−β−1
n∑
j=1

∫ z

0

D′1j(z − s)Qj(s)ds

(eĈ(z)Q⊥)′ = eĈ(z)Γ̂c(z)−1
n∑
j=1

∫ z

0

D′⊥(z − s)Qj(s)ds

Ĉ(z) := −
∫ z

0

Γ̂c(s)−1B̂c(s)ds

Q(0) = 0 (5.131)
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which by integration gives

(1̂ + J)Q(z) = CR(z) (5.132)

where C ∈ C and

(J(Q))1(z) = zβ
∫ z

0

t−β−1
n∑
j=1

∫ t

0

Qj(s)D′1j(t− s)dsdt

J(Q)⊥(z) := e−Ĉ(z)

∫ z

0

eĈ(t)Γ̂c(t)−1

 n∑
j=1

∫ z

0

D′⊥(z − s)Qj(s)ds

 dt

R⊥ = 0

R1(z) = zβ

(5.133)

First we note the presence of an arbitrary constant C in (5.132) (Unlike in
Lemma 5.108 when the initial condition, given at z = ε was determining the
integration constant, now the initial condition Q(0) = 0 is satisfied for all C).

For small ε the norm of the operator J defined on AC[0, ε] is O(ε), as in the
proof of Lemma 5.108. Given C the solution of the system (5.131) is unique
and can be written as

Q = CQ0; Q0 := (1̂ + J)−1R 6= 0 (5.134)

It remains to find the analytic structure of Q0. We now introduce the space

T =
{
Q : [0, ε) 7→ Cn : Q = zβA(z)

}
(5.135)

where A(z) extends to an analytic function in Dε. With the norm (5.116)
(with B ≡ 0), T is a Banach space. As in the proof of Lemma 5.108 the
operator J extends naturally to T where it has a norm O(ε) for small ε. It
follows immediately that

Q0 ∈ T (5.136)

The formulas (5.126), (5.126’) follow from (5.127) and (5.130).

Remark 5.137 If Sβ 6= 0 (cf. Lemma 5.108) then the general solution of
(5.53) is given by

Y0(p) = (1− λ)Y+
0 (p) + λY−0 (p) (5.138)

with λ ∈ C.
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Indeed, if a1 6≡ 0 (cf. Lemma 5.108) we get at least two distinct solutions
of (5.132) (i.e., two distinct values of C) by taking different values of λ in
(5.138). The remark follows from (5.136) (5.135) and Lemma 5.125..

5.2e The solutions of (5.53) on [0,∞)

In this section we show that the leading asymptotic behavior of Yp as
p→ 1+ determines a unique solution of (5.53) in L1

loc(R+). Furthermore, any
L1
loc solution of (5.53) is exponentially bounded at infinity and thus Laplace

transformable. We also study some properties of these solutions and of their
Laplace transforms.

Let H be a solution of (5.53) on an interval [0, 1 + ε], which we extend to
R+ letting H(p) = 0 for p > 1 + ε. For a large enough b, define

SH := {f ∈ L1
loc([0,∞)) : f(p) = H(p) on [0, 1 + ε]} (5.139)

and

S0 := {f ∈ L1
loc([0,∞)) : f(p) = 0 on [0, 1 + ε]} (5.140)

We extend H to R+ by putting H(p) = 0 for p > 1 + ε; for p ≥ 1 + ε (5.53)
reads:

−p(H + h) = F0 − Λ̂(H + h)− B̂
∫ p

0

(H + h)(s)ds+N (H + h) (5.141)

with h ∈ S0, or

h = −H + (Λ̂− p)−1

(
F0 − B̂

∫ p

0

(H + h)(s)ds+N (H + h)
)

:=M(h)

(5.142)
For small φ0 > 0 and 0 ≤ ρ1 < ρ2 ≤ ∞, consider the truncated sectors

S±(ρ1,ρ2) := {z : z = ρe±iφ, ρ1 < ρ < ρ2; 0 ≤ φ < φ0} (5.143)

and the spaces of functions analytic in S±(ρ1,ρ2) and continuous in its closure:

T ±ρ1,ρ2
=
{
f : f ∈ C(S(ρ1,ρ2)); f analytic in S±(ρ1,ρ2)

}
(5.144)

which are Banach spaces with respect to ‖‖u on compact subsets of S(ρ1,ρ2).

Proposition 5.145 i) Given H, the equation (5.142) has a unique solution
in L1

loc[1+ε,∞). For large b, this solution is in L1
b([1+ε,∞)) and thus Laplace

transformable.
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ii) Let Y0 be the solution defined in Proposition 5.65. Then

Y±0 (p) := lim
φ→±0

Y0(peiφ) ∈ C(R+\{1}) ∩ L1
loc(R+) (5.146)

(and the limit exists pointwise on R+\{1} and in L1
loc(R+).)

Furthermore, Y±0 are particular solutions of (5.53) and

Y±0 (p) = (1− p)β−1a±(p) + a±1 (p) (β 6= 1)

Y±0 (p) = ln(1− p) a±(p) + a±1 (p) (β = 1) (5.147)

where a± and a±1 are in T ±0,∞.

Proof
Note first that by Proposition 5.83, M (eq. (5.142)) is well defined on S0,

(eq.(5.140)). Moreover, since H is a solution of (5.53) on [0, 1 + ε), we have,
for h0 ∈ S0, M(h) = 0 a.e. on [0, 1 + ε), i.e.,

M(S0) ⊂ S0

Remark 5.148 For large b, M is a contraction in a small neighborhood of
the origin in ‖‖u,b.

Indeed, sup{‖(Λ̂− p)−1‖Cn 7→Cn : p ≥ 1 + ε} = O(ε−1) so that

‖M(h1)−M(h2)‖u,b ≤
Const
ε
‖N (f + h)−N (f)‖u,b (5.149)

The rest follows from (5.93) —Proposition 5.83 and Remark 5.77 applied to
H.

The existence of a solution of (5.142) in S0 ∩ L1
b([0,∞)) for large enough b

is now immediate.
Uniqueness in L1

loc is tantamount to uniqueness in L1([1 + ε,K]) = L1
b([1 +

ε,K], for all K − 1 − ε ∈ R+. Now, assuming M had two fixed points in
L1
b([1 + ε,K]), by Remark 5.77, we can choose b large enough so that these

solutions have arbitrarily small norm, in contradiction with Remark 5.148.
ii). For p < 1,Y±0 (p) = Y0(p). For p ∈ (1, 1 + ε) the result follows from

Lemma 5.108. Noting that (in view of the estimate (5.88)) M(T ±1+ε,∞) ⊂
T ±1+ε,∞, the rest of the proof follows from the Remark 5.148 and Lemma
5.108.

Proposition 5.150 There is a one parameter family of solutions of equation
(5.53) in L1

loc[0,∞), branching off at p = 1 and in a neighborhood of p = 1
all solutions are of the form (5.126), (5.126’). The general solution of (5.53)
is Laplace transformable for large b and the Laplace transform is a solution of
the original differential equation in the half-space <(x) > b.
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Note: As of now, the correspondence (5.126), (5.126’) with the balanced
average (5.43) is proven only near p = 1; the complete correspondence is
established in Section 5.2g .

Proof.
Let Y be any solution of (5.53). By Lemma 5.125 and Proposition 5.145, b

large implies that Y ∈ L1
b([0,∞)) (thus LY exists), that ‖Y‖b is small and,

in particular, that the sum defining N in (5.50) is convergent in L1
b(R+).

By Remark 5.71,

L

∑
|l|≥1

Gl ∗Y∗l +
∑
|l|≥2

g0,lY∗l

 (x) =

∑
|l|≥1

(LGl)(LY)l(x) +
∑
|l|≥2

g0,l (LY)l =
∑
|l|≥1

gl(x)yl(x) = g(x,y(x))

(5.151)

(and g(x,y(x)) is analytic for <(x) > b). The rest is straightforward.

5.2f Correspondence with formal solutions

Finally we consider formal solutions for large argument of the differential equa-
tion, in the differential algebra generated by formal power series (in decreasing
powers of the large variable) and (decreasing) exponentials, i.e. solutions as
formal asymptotic expansions. The theory of formal solutions is classical ([29],
[26] [27]); see also [5] for a vast and very interesting generalization. We only
sketch the facts that are relevant to us.

The simplest formal solution of (4.222) is an asymptotic series ỹ0.

ỹ0 =
∞∑
m=2

y0,m

xm

In view of the invertibility of Λ̂, the coefficients {y0,m}m∈N ⊂ Cn can be
determined uniquely by expanding in (4.222) in powers of 1/x and equating
the coefficients of the x−m,m ≥ 2. The series ỹ0 is generically divergent.

Since we expect an n − parameter family of solutions, we look for further
solutions as perturbations of ỹ0. Because of the uniqueness of ỹ0 a pertur-
bation must be smaller than all powers of x−1 i.e., “beyond all orders” of
ỹ0.

Taking ỹ = ỹ0 + ỹ1 we get, to the lowest order of approximation, ỹ′1 =
−Λ̂ỹ1. The solutions to this approximate equation are linear combinations
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of e−λx, λ ∈specΛ̂. We only consider solutions ỹ1 that are (formally) small
perturbations of ỹ0 in the half-plane <(x) > 0; this condition selects out the
eigenvalue λ = 1.

Continuing the perturbative procedure until we reach a formal solution of
(4.222), we end up with an exponential series

ỹ = ỹ0 +
∞∑
k=1

e−kxỹk (5.152)

where ỹk are formal power series. Substituting (5.152) into (4.222) and using
the fact that ỹ0 is already a formal solution we get for ỹk, k ≥ 1:

∞∑
k=1

e−kx
[
ỹ′k −

(
k − Λ̂− 1

x
B̂ + ∂g(x, ỹ0)

)
ỹk

]
=

∑
|l|>1

g(l)(x, ỹ0)
l!

( ∞∑
k=1

e−kxỹk

)l

=

∞∑
k=2

e−kx
∑
|l|>1

g(l)(x, ỹ0)
l!

∑
Σm=

n∏
i=1

li∏
j=1

(ỹmi,j )i

(5.153)

Equating the coefficients of e−kx, k ≥ 0 we get the system (5.31).
By assumption, Λ̂−1 has a one-dimensional null-space. Thus, by (5.31), ỹ1

has the freedom of an arbitrary multiplicative constant. We make a definite
choice of ỹ1 by requiring that the first component of the coefficient of the
leading power of x is one.

Still by assumption, for k 6= 1 Λ̂− k is invertible, so that, taking C = 1, all
ỹk, k ≥ 1, are uniquely determined. Letting C be arbitrary we get instead
Cỹ1 for k = 1, C2ỹ2 for k = 2 (because of the condition

∑
m = 2), etc, so

that the general formal solution of type (5.152) is

ỹ = ỹ0 +
∞∑
k=1

Cke−kxỹk

The existence of formal exponential solutions has been considered in [29],
[26], [30] and a very comprehensive theory can be found in Ecalle [4], [5], [6].

The following proposition is a classical result and is a specialization of
general theorems (see [30]).

Proposition 5.154 There is exactly a one parameter family of solutions
of (4.222) having the asymptotic behavior described by ỹ0 in the half-plane
<(x) > 0.
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Proof. Any solution with the properties stated in Proposition 5.154 is in-
verse Laplace transformable and its inverse Laplace transform has to be one
of the L1

loc solutions of the convolution equation (5.53). The rest of the proof
follows from Proposition 5.150.

Proposition 5.155 Let Y be any L1
loc(R+) solution of (5.53). For large b

and some ν > 0 the coefficients dm in (5.55) are bounded by

|dm(p)|∧ ≤ eµpν|m|

Note that L−1(g(m)(x,y)/m!) is the coefficient of Z∗m in the expansion of
N (Y + Z) in convolution powers of Z (5.50):

∑
|l|≥2

g0,l ·+
∑
|l|≥1

Gl∗

 (Y + Z)∗l


Z∗m

=

∑
|l|≥2

g0,l ·+
∑
|l|≥1

Gl∗

 ∑
0≤k≤l

(
l
k

)
Z∗kY∗(l−k)


Z∗m

=

∑
|l|≥2

g0,l ·+
∑
|l|≥1

Gl∗

∑
l≥m

(
l
m

)
Gl ∗Y∗(l−m) (5.156)

(m is fixed) where l ≥m means li ≥ mi, i = 1..n and
(
l
k

)
:=
∏n
i=1

(
li
ki

)
.

Let ε be small and b large so that ‖Y‖b < ε. Then, for some constant K,
estimate (cf. (5.67))

∣∣∣∣∣
(∑

II

g0,l ·+
∑
I

Gl∗

)(
l
m

)
Gl ∗Y∗(l−m)

∣∣∣∣∣
∧

≤
∑
I

Keµ|p|(µε)|l−m|
(

l
m

)
=

ε−|m|Keµ|p|
n∏
i=1

∑
li≥mi

(
li
mi

)
(µε)li = K

eµ|p|µ|m|

(1− εµ)|m|+n
< eµ|p|ν|m| (5.157)

(where I(II) ≡ {|l| ≥ 1(2); l ≥m}) for large enough ν.

For k = 1, R1 = 0 and equation (5.55) is (5.129) (with p ↔ z) but now
on the whole line R+. For small z the solution is given by (5.134) (note that
D1 = d(1,0,..,0) and so on) and depends on the free constant C (5.134). We
choose a value for C (the values of Y1 on [0, ε] are then determined) and we
write the equation of Y1 for p ≥ ε:



Ordinary differential equations. Summability of formal solutions 185

(Λ̂− 1− p)Y1(p) + B̂

∫ p

ε

Y1(s)ds−
n∑
j=1

∫ p

ε

(Y1)j(s)Dj(p− s)ds =

R(p) :=
∫ ε

0

Y1(s)ds+
n∑
j=1

∫ ε

0

(Y1)j(s)Dj(p− s)ds (5.158)

(R only depends on the values of Y1(p) on [0, ε]). We write

(1 + J1)Y1 = Q̂−1
1 R (5.159)

with Q1 = 1− Λ̂ + p. The operator J1 is defined by (J1Y1)(p) := 0 for p < ε,
while, for p > ε,

(J1Y1)(p) := Q−1
1

B̂ ∫ p

ε

Y1(s)ds−
n∑
j=1

∫ p

ε

(Y1)j(s)Dj(p− s)ds


By Proposition 5.104, (5.74) and Remark 5.77, noting that supp>ε ‖Q−1

1 ‖ =
O(ε−1), b we find that (1 + J1) is invertible as an operator in L1

b since:

‖J1‖L1
b 7→L

1
b
< sup

p>ε
‖Q̂−1

1 ‖
(
‖B̂‖‖1‖b + n max

1≤j≤n
‖Dj‖b

)
→ 0 as b→∞

(5.160)
Given C, Y1 is therefore uniquely determined from (5.159) as an L1

b(R+)
function.

The analytic structure of Y1 for small z is contained in in (5.126), (5.126’).
As a result,

L(Y1)(x) ∼ C
∞∑
k=0

Γ(k − β)
xk−β

ak (5.161)

where
∑∞
k=0 akzk is the series of a(z) near z = 0.

Correspondingly, we write (5.55) as

(1 + Jk)Yk = Q̂−1
k Rk (5.162)

with Q̂k := (−Λ̂ + p+ k) and

(Jkh)(p) := Q̂−1
k

B̂ ∫ p

0

h(s)ds−
n∑
j=1

∫ p

0

hj(s)Dj(p− s)ds

 (5.163)

‖Jk‖L1
b 7→L

1
b
< sup

p≥0
‖Q̂−1

k ‖
(
‖B̂‖‖1‖b + n max

1≤j≤n
‖Dj‖b

)
(5.164)
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Since supp≥0 ‖Q̂−1
k ‖ → 0 as k →∞ we have

sup
k≥1

{
‖Jk‖L1

b 7→L
1
b

}
→ 0 as b→∞ (5.165)

Thus,

Proposition 5.166 For large b, (1 +Jk), k ≥ 1 are simultaneously invertible
in L1

b , (cf. 5.165). For specified Y0 and C, Yk, k ≥ 1 are uniquely determined
and moreover, for k ≥ 2,

‖Yk‖b ≤
supp≥0 ‖Q̂−1

k ‖
1− supk≥1 ‖Jk‖L1

b 7→L
1
b

‖Rk‖b := K‖Rk‖b (5.167)

(Note: As we will see later, there only is a one-parameter freedom in Yk:
a change in Y0 can be compensated by a corresponding change in C.)

Because of condition
∑
m = k in the definition of Rk, we get, by an easy

induction, the homogeneity relation with respect to the free constant C,

Y[C]
k = CkY[C=1]

k =: CkYk (5.168)

Proposition 5.169 For any δ > 0 there is a large enough b, so that

‖Yk‖b < δk, k = 0, 1, .. (5.170)

Each Yk is Laplace transformable and yk = L(Yk) solve (5.31).

Proof
We first show inductively that the Yk are bounded. Choose r small enough

and b large so that ‖Y0‖b < r. Note that in the expression of Rk, only Yi

with i < k appear. We show by induction that ‖Yk‖b < r for all k. Using
(5.167), (5.55) the explanation to (5.31) and Proposition 5.155 we get

‖Yk‖b < K‖Rk‖b ≤
∑
|l|>1

µ|l|rk
∑

Σm=k

1 ≤ rk
(∑
l>1

(
l

k

)
µl

)n
≤ (r(1+µ)n)k < r

(5.171)
if r is small which completes this induction step. But now if we look again at
(5.171) we see that in fact ‖Yk‖b ≤ (r(1 + µ)n)k. Choosing r small enough,
(and to that end, b large enough) the first part of Proposition 5.169 follows.
Laplace transformability as well as the fact that yk solve (5.31) follow imme-
diately from (5.170) (observe again that, given k, there are only finitely many
terms in the sum in Rk).

Therefore,
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Remark 5.172 The series

∞∑
k=0

Ck(Yk · H) ◦ τk (5.173)

is convergent in L1
b for large b and thus the sum is Laplace transformable. By

Remark 5.71 and Proposition 5.170

L

( ∞∑
k=0

Ck(YkH) ◦ τk

)
(x) =

∞∑
k=0

e−kxL(Yk)(x) (5.174)

is uniformly convergent for large x (together with its derivatives with respect
to x). Thus (by its formal construction) (5.174) is a solution of (4.222).

(Alternatively, we could have checked in a straightforward way that the
series (5.173), truncated to order N is a solution of the convolution equation
(5.53) on the interval p ∈ [0, N) and in view of the L1

b(R+) (or even L1
loc) con-

vergence it has to be one of the general solutions of the convolution equation
and therefore provide a solution to (4.222).)

Proof of Proposition 5.38, ii)
We now show (5.40). This is done from the system (5.55) by induction on k.

For k = 0 and k = 1 the result follows from Proposition 5.65 and Proposition
5.119. For the induction step we consider the operator Jk (5.163) on the space

Tk =
{
Q : [0, ε) 7→ C : Q(z) = zkβ−1Ak(z)

}
(5.175)

where Ak extends as an analytic function in a neighborhood Dε of z = 0.
Endowed with the norm

‖Q‖Tk := sup
z∈Dε
|Ak(z)|∧

Tk is a Banach space.

Remark 5.176 For k ∈ N the operators Jk in (5.163) extend continuously
to Tk and their norm is O(ε). The functions Rk, k ∈ N (cf. (5.162), (5.55)),
belong to Tk. Thus for k ∈ N, Yk ∈ Tk.

If A,B are analytic then for z < ε

∫ z

0

ds skβ−1A(s)B(z − s) = zkβ
∫ 1

0

dt trA(zt)B(z(1− t)) (5.177)

is in Tk with norm O(ε) and the assertion about Jk follows easily. Therefore
Yk ∈ Tk if Rk ∈ Tk. We prove both these properties by induction and (by
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the homogeneity of Rk and the fact that Rk depends only on Ym,m < k)this
amounts to checking that if Ym ∈ Tm and Yn ∈ Tn then

Ym ∗Yn ∈ Tm+n

This follows from the identity

∫ z

0

ds srA(s)(z − s)qB(z − s) = zr+q+1

∫ 1

0

dt tr(1− t)qA(zt)B(z − zt)

It is now easy to see that LφBỹk ∼ ỹk (cf. Theorem 5.45). Indeed, note
that in view of Remark 5.176 and Proposition 5.169, L(Yk) have asymptotic
power series that can be differentiated for large x in the positive half plane.
Since L(Yk) are true solutions of the system (5.31) their asymptotic series
are formal solutions of (5.31) and by the uniqueness of the formal solution of
(5.31) once C is given, the property follows.

In the next subsection, we prove that the general solution of the system
(5.31) can be obtained by means of Borel transform of formal series and
analytic continuation.

We define Y+ to be the function defined in Proposition 5.145, extended
in D ∩ C+ by the unique solution of (5.53) Y0 provided by Proposition 5.65.
(We define Y− correspondingly.)

By Proposition 5.145, ii) Y± are solutions of (5.53) on [0,∞) (cf. (5.144)).
By Lemma 5.125 any solution on [0,∞) can be obtained from, say, Y+ by
choosing C and then solving uniquely (5.142) on [1+ε,∞) (Proposition 5.145).
We now show that the solutions of (5.159), (5.162) are continuous boundary
values of functions analytic in a region bounded by R+.

Remark 5.178 The function D(s) defined in (5.107) by substituting H =
Y±, is in T ±0,∞ (cf. (5.144)).

By Proposition 5.145, ii) it is easy to check that if H is any function in
T +

0,A then Y+ ∗Q ∈ T +
0,A. Thus, with H = Y+, ll the terms in the infinite

sum in (5.107) are in T +
0,A. For fixed A > 0, taking b large enough, the norm

ρb of Y+ in L1
b can be made arbitrarily small uniformly in all rays in S+

0,A

(5.144) (Proposition 5.145). Then by Corollary 5.79 and Proposition 5.145
ii), the uniform norm of each term in the series (5.107) can be estimated by
Const ρ

|l−1|
b ν|l| and thus the series converges uniformly in T +

0,∞, for large b.

Lemma 5.179 i) The system (5.55) with Y0 = Y+ (or Y−) and given C
(say C = 1) has a unique solution in L1

loc(R+), namely Y+
k , (Y−k , resp.),

k ∈ N. Furthermore, for large b and all k, Y+
k ∈ T

+
0,∞ (Y−k ∈ T

−
0,∞) (cf.

(5.144)).
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ii) The general solution of the equation (5.53) in L1
loc(R+) can be written

in either of the forms:

Y+ +
∞∑
k=1

Ck(Y+
k · H) ◦ τk

Y− +
∞∑
k=1

Ck(Y−k · H) ◦ τk (5.180)

Proof.
i) The first part follows from the same arguments as Proposition 5.166. For

the last statement it is easy to see (cf. (5.177)) that JkT +
0,∞ ⊂ T

+
0,∞ and

by Proposition 5.74 the inequalities (5.164), (5.165) hold for ‖‖T0,A 7→T0,A (A
arbitrary) replacing ‖‖L1

b 7→L
1
b
.

ii) We already know that Y+ solves (5.55) for k = 0. For k > 0 by i)
CkYk ∈ T0,∞ and so, by continuity, the boundary values of Y+

k on R+ solve
the system (5.55) on R+ in L1

loc. The rest of ii) follows from Lemma 5.125,
Proposition 5.145 and the arbitrariness of C in (5.180) (cf. also (5.134).

L4

5.2g Analytic structure and averaging

Having the general structure of the solutions of (5.53) given in Proposition
5.56 and in Lemma 5.179 we can obtain various analytic identities. The
function Y±0 := Y± has been defined in the previous section.

Proposition 5.181 For m ≥ 0,

Y−m = Y+
m +

∞∑
k=1

(
m+ k

m

)
Skβ(Y+

m+k · H) ◦ τk (5.182)

Proof.
Y−0 (p) is a particular solution of (5.53). It follows from Lemma 5.179 that

the following identity holds on R+:

Y−0 = Y+
0 +

∞∑
k=1

Skβ(Y+
k · H) ◦ τk (5.183)

since, by (5.59) and (5.39), (5.183) holds for p ∈ (0, 2).
By Lemma 5.179 for any C+ there is a C− such that

Y+
0 +

∞∑
k=1

Ck+(Y+
k · H) ◦ τk = Y−0 +

∞∑
k=1

Ck−(Y−k · H) ◦ τk (5.184)
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To find the relation C+ and C− we take p ∈ (1, 2); we get, comparing with
(5.183):

Y+
0 (p) + C+Y1(p− 1) = Y−0 (p) + C−Y1(p− 1)⇒ C+ = C− + Sβ (5.185)

whence, for any C ∈ C,

Y+
0 +

∞∑
k=1

(C + Sβ)k(Y+
k · H) ◦ τk = Y−0 +

∞∑
k=1

Ck(Y−k · H) ◦ τk (5.186)

Differentiating m times w.r. to C and taking C = 0 we get

∞∑
k=m

k!
(k −m)!

Sk−mβ (Y+
k · H) ◦ τk = m!(Y−m · H) ◦ τm

from which we obtain (5.182) by rearranging the terms and applying τ−m.

Proposition 5.187 The functions Yk, k ≥ 0, are analytic in R1.

Proof.
Starting with (5.183), if we take p ∈ (1, 2) and obtain:

Y−0 (p) = Y+
0 (p) + SβY1(p− 1) (5.188)

By Proposition 5.145 and Lemma 5.179 the l.h.s of (5.188) is analytic in a
lower half plane neighborhood of (ε, 1 − ε), (∀ε ∈ (0, 1)) and continuous in
the closure of such a neighborhood. The r.h.s. is analytic in an upper half
plane neighborhood of (ε, 1 − ε), (∀ε ∈ (0, 1)) and continuous in the closure
of such a neighborhood. Thus, Y−0 (p) can be analytically continued along a
path crossing the interval (1, 2) from below, i.e., Y−+

0 exists and is analytic.
Now, in (5.183), let p ∈ (2, 3):

S2
βY2(p− 2) = Y0(p)− −Y(p)+ − SβY1(p− 1)+ =

Y0(p)− −Y0(p)+ −Y0(p)−+ + Y0(p)+ = Y0(p)− −Y0(p)−+ (5.189)

and, in general, taking p ∈ (k, k + 1) we get

SkβYk(p− k) = Y0(p)− −Y0(p)−
k−1+ (5.190)

Using (5.190) inductively, the same arguments that we used for p ∈ (0, 1) show
that Y−

k

0 (p) can be continued analytically in the upper half plane. Thus, we
have
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Remark 5.191 The function Y0 is analytic in R1. In fact, for p ∈ (j, j+1),
k ∈ N,

Y−
j+

0 (p) = Y+
0 (p) +

j∑
k=1

SkβY+
k (p− k)H(p− k) (5.192)

The relation (5.192) follows from (5.190) and (5.183).
R5.191

Note: Unlike (5.183), in (5.192) the sum contains a finite number of terms.
For instance we have:

Y−+
0 (p) = Y+

0 (p) +H(p− 1)Y+
1 (p− 1). (∀p ∈ R+) (5.193)

The analyticity of Ym, m ≥ 1 is shown inductively on m, using (5.182) and
following exactly the same course of proof as for k = 0.

Remark 5.194 If Sβ = 0 then Yk are analytic in W1 ∪ N.

Indeed, this follows from (5.183) (5.182) and Lemma 5.179, i)

On the other hand, if Sβ 6= 0, then all Yk are analytic continuations of
the Borel transform of y0 (cf. (5.189)). This is an instance of the so-called
resurgence .
Moreover, we can now calculate Yba

0 . By definition, (see the discussion before
Remark 5.122) on the interval (0, 2),

Yba
0 =

1
2

(Y+
0 + Y−0 ) = Y+

0 +
1
2
Sβ(Y1H) ◦ τ1 (5.195)

Now we are looking for a solution of (5.53) which satisfies the condition
(5.195). By comparing with Lemma 5.179, which gives the general form of
the solutions of (5.53), we get, now on the whole positive axis,

Yba
0 = Y+

0 +
∞∑
k=1

1
2k
Skβ(Y+

k H) ◦ τk (on R+) (5.196)

which we can rewrite using (5.190):

Yba
0 = Y+

0 +
∞∑
k=1

1
2k
(
Y−

k

0 −Y−
k−1,+

0

)
(H ◦ τk) (5.197)

Proposition 5.198 Let y1(p), y2(p) be analytic in R1, and such that for any
path γ = t 7→ t exp(iφ(t)) in R1,

|y1,2(γ(t))| < fγ(t) ∈ L1
loc(R+) (5.199)
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Assume further that for some large enough b,M and any path γ in R1:∫
γ

|y1,2|(s)e−b|s||ds| < M (5.200)

Then the analytic continuation ACγ(y1 ∗ y2) along a path γ in R1, of their
convolution product y1 ∗ y2 (defined for small p by (5.48)) exists, is locally
integrable and satisfies (5.199) and, for the same b and some γ-independent
M ′ > 0, ∫

γ

|y1 ∗ y2|(s)e−b|s||ds| < M ′ (5.201)

Proof.
Since

2y1 ∗ y2 = (y1 + y2) ∗ (y1 + y2)− y1 ∗ y1 − y2 ∗ y2 (5.202)

it is enough to take y1 = y2 = y. For p ∈ R+\N we write:

y− = y+ +
∞∑
k=1

(H · y+
k ) ◦ τk (5.203)

The functions yk are defined inductively (the superscripts “+,(-)” mean, as
before, the analytic continuations in R1 going below(above) the real axis). In
the same way (5.190) was obtained we get by induction:

yk = (y− − y−
k−1+) ◦ τ−k (5.204)

where the equality holds on R+\N and +,− mean the upper and lower contin-
uations. For any p only finitely many terms in the sum in (5.203) are nonzero.
The sum is also convergent in ‖‖b (by dominated convergence; note that, by
assumption, the functions y−−..−± belong to the same L1

b).
If t 7→ γ(t) in R1, is a straight line, other than R+, then:

ACγ((y ∗ y)) = ACγ(y) ∗γ ACγ(y) if arg(γ(t))=const6= 0 (5.205)

(Since y is analytic along such a line). The notation ∗γ means (5.48) with
p = γ(t).

Note though that, suggestive as it might be, (5.205) is incorrect if the
condition stated there is not satisfied and γ is a path that crosses the real
line (see the Appendix, Section Ab )!

We get from (5.205), (5.203) (see also (8.119), in the Appendix):
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(y ∗ y)− = y− ∗ y− = y+ ∗ y+ +
∞∑
k=1

(
H

k∑
m=0

y+
m ∗ y+

k−m

)
◦ τk =

(y ∗ y)+ +
∞∑
k=1

(
H

k∑
m=0

(
ym ∗ yk−m

)+) ◦ τk (5.206)

and now the analyticity of y ∗ y in R1 follows: on the interval p ∈ (m,m+ 1)
we have from (5.204)

(
y∗y

)−j (p) =
(
y∗y

)−(p) =
(
y∗2
)+(p)+

j∑
k=1

k∑
m=0

(
ym∗yk−m

)+(p−k) (5.207)

Again, formula (5.207) is useful for analytically continuing (y ∗ y
)−j along

a path as the one depicted in Fig.1. By dominated convergence, (y ∗ y)± ∈
T ±(0,∞), (5.144). By (5.204), ym are analytic in R+

1 := R1 ∩ {p : =(p) > 0}
and thus by (5.205) the r.h.s. of (5.207) can be continued analytically in R+

1 .
The same is then true for (y ∗ y)−. The function (y ∗ y) can be extended
analytically along paths that cross the real line from below. Likewise, (y ∗y)+

can be continued analytically in the lower half plane so that (y ∗y) is analytic
in R1.

Combining (5.207), (5.205) and (5.202) we get a similar formula for the an-
alytic continuation of the convolution product of two functions, f, g satisfying
the assumptions of Proposition 5.198

(f ∗ g)−
j+ = f+ ∗ g+ +

j∑
k=1

(
H

k∑
m=0

f+
m ∗ g+

k−m

)
◦ τk (5.208)

Note that (5.208) corresponds to (5.203) and in those notations we have:

(
f ∗ g

)
k

=
k∑

m=0

fm ∗ gk−m (5.209)

Integrability as well as (5.201) follow from (5.204), (5.207) and Remark 5.73.
P5.198

By (5.43) and (5.204),

yba = y+ +
∞∑
k=1

1
2k

(y+
k H) ◦ τk

so that (see (8.119))
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yba ∗ yba =
(
y+ +

∞∑
k=1

1
2k

(H ◦ τk)(y+
k ◦ τk)

)∗2
=

y+ ∗ y+ +
∞∑
k=1

1
2k
H ◦ τk

k∑
m=0

(y+
m ◦ τm) ∗ (y+

k−m ◦ τk−m) ◦ τk =

y+ ∗ y+ +
∞∑
k=1

1
2k
H ◦ τk

k∑
m=0

(ym ∗ yk−m)+ ◦ τk = (y∗2)ba (5.210)

To finish the proof of Theorem 5.45 note that on any finite interval the sum
in (5.43) has only a finite number of terms and by (5.210) balanced averaging
commutes with any finite sum of the type∑

k1,..,kn

ck1..knfk1 ∗ .. ∗ fkn (5.211)

and then, by continuity, with any sum of the form (5.211), with a finite or
infinite number of terms, provided it converges in L1

loc. Averaging thus com-
mutes with all the operations involved in the equations (5.162). By uniqueness
therefore, if Y0 = Yba then Yk = Yba

k for all k. Preservation of reality is
immediate since (5.53), (5.55) are real if (4.222) is real, therefore Yba

0 is real-
valued on R+\N (since it is real-valued on [0, 1)∪(1, 2)) and so are, inductively,
all Yk.

A Appendix

Aa Example of non-typical behavior

Consider the equation

f ′ = −f − 1
2x
f +

1
x
− 1

2x2
(5.212)

The general solution of this equation is given by

f =
1
x

+ Cx−1/2e−x =
∫ ∞

0

(
p+

C√
p− 1

H(1− p)
)
dp (5.213)

We see that the asymptotic series of f for x→∞, <(x) > 0, ỹ0 = 1/x. The
inverse Laplace transform of f is

L−1f = p+
C√
p− 1

H(1− p) (5.214)
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i) The Stokes constant is zero and Y0 = B(ỹ0) = p is entire.
ii) All combinations λY+

0 + (1− λ)Y−0 coincide. Therefore (5.60) does not
hold.

Equation (5.212) is exceptional, in the sense that the properties i), ii) above
do not withstand a small perturbation. Indeed, for the equation

f ′ = −f − 1
2x
f +

1 + ε

x
− 1

2x2
(5.215)

we have B(ỹ0) = 2ε + p + ε(1 − p)−1/2 and the inverse Laplace transform of
the general solution is

L−1(f) =
{

2ε+ p+ ε(1− p)−1/2 for p < 1
2ε+ p+ C(p− 1)−1/2 for p > 1

Ab AC(f ∗ g) versus AC(f) ∗AC(g)

Typically, the analytic continuation along curve in W1 which is not homo-
topic to a straight line will not commute with convolution. For example, in
equation (5.215), B(ỹ0)−+ ∗ B(ỹ0)−+ 6= [B(ỹ0) ∗ B(ỹ0)]−+, as it can be seen
from Remark 5.216 below (or by direct calculation). This situation is generic:

Remark 5.216 Let y be a function satisfying the conditions stated in Propo-
sition 5.198 and assume that p = 1 is a branch point of y. Then,

(y ∗ y)−+ 6= y−+ ∗ y−+ (5.217)

Proof
Indeed, by (5.208) and (5.204)

(y ∗ y)−+ = y+ ∗ y+ + 2[(y+ ∗ y+
1 )H] ◦ τ1 6= y−+ ∗ y−+ =

[y+ + (Hy+
1 ) ◦ τ1]∗2 = y+ ∗ y+ + 2[(y+ ∗ y+

1 )H] ◦ τ1 + [H(y+
1 ∗ y

+
1 )] ◦ τ2

(5.218)

since in view of (5.204), in our assumptions, y1 6≡ 0 and thus y1 ∗ y1 6≡ 0.

There is also the following intuitive reasoning leading to the same conclu-
sion. For a generic system of the form (4.222)–(5.29), p = 1 is a branch point
of Y0 and so Y−0 6= Y−+

0 . On the other hand, if AC−+ commuted with con-
volution, then L(Y−+

0 ) would provide a solution of (4.222). By Lemma 5.179,
L(Y−0 ) is a different solution (since Y−0 6= Y−+

0 ). As Y−0 and Y−+
0 coincide

up to p = 2 we have L(Y−+
0 ) − L(Y−0 ) = O(e−2xxpower) for x → +∞. By

Theorem 5.45 however, no two solutions of (4.222)–(5.29) can differ by less
than e−xxpower without actually being equal (also, heuristically, this can be
checked using formal perturbation theory), contradiction.
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Ac Derivation of the equations for the transseries.

Consider first the scalar equation

y′ = f0(x) − λy − x−1By + g(x, y) = −y + x−1By +
∞∑
k=1

gk(x)yk (5.219)

For x→ +∞ we take

y =
∞∑
k=0

yke−kx (5.220)

where yk will be either formal series x−sk
∑∞
n=0 aknx

−n, with ak,0 6= 0 or
actual functions with the condition that (5.220) converges uniformly. As a
transseries, (5.220) can be also understood as a well ordered double sequence
tkn = xpkne−kx, with pk n+1 < pkn. (The order relation is xpe−kx � xp

′
e−k

′x

as x→ +∞ iff k < k′ or k = k′ and p > p′; thus a strictly increasing sequence
of terms of a transseries necessarily terminates.) Power series are a special
case of transseries, with y1 = y2 = . . . = 0. Two transseries

∑∞
k=0 yke−kx

coincide iff all corresponding component power series yk coincide. Transseries
of this type are closed under addition, multiplication and infinite sums of the
form involved in (5.219) (this last aspect will become clear in the calculation
leading to (5.222) below). Note that well-ordering plays an important part in
defining multiplication of transseries; in contrast, for the unrestricted formal
expansion S =

∑∞
k=−∞ xk, no immediate meaning can be given to S2. Let y0

be the first term in (5.220) and δ = y − y0. We have

yk − yk0 − kyk−1
0 δ =

k∑
j=2

(
k

j

)
yk−j0 δj =

k∑
j=2

(
k

j

)
yk−j0

∞∑
i1,...,ij=1

j∏
s=1

(
yise

−isx
)

=
∞∑
m=1

e−mx
k∑
j=2

(
k

j

)
yk−j0

(m;j)∑
(is)

j∏
s=1

yis (5.221)

where
∑(m;j)

(is)
means the sum over all positive integers i1, i2, . . . , ij with the

restriction i1 + i2 + · · · + ij = m. Let d1 =
∑
k≥1 kgky

k−1
0 . Introducing y =

y0 +δ in (5.219) and equating the coefficients of e−lx we get, by separating the
terms containing yl for l ≥ 1 and interchanging the j, k orders of summation,

y′l + (λ(1− l) + x−1B − d1(x))yl =
∞∑
j=2

(l;j)∑
(is)

j∏
s=1

yis
∑

k≥{2,j}

(
k

j

)
gky

k−j
0

=
l∑

j=2

(l;j)∑
(is)

j∏
s=1

yis
∑

k≥{2,j}

(
k

j

)
gky

k−j
0 =:

l∑
j=2

dj(x)
(l;j)∑
(is)

j∏
s=1

yis (5.222)
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where for the middle equality we note that the infinite sum terminates because
is ≥ 1 and

∑j
s=1 is = l. The fact mentioned before that

∑∞
k=1 gk(x)yk is well

defined when yk are formal series is now visible: collecting the coefficient of
xpe−kx, only finite sums of coefficients appear.

For a vectorial equation like (4.222) we first write

y′ = f0(x)− Λ̂y + x−1B̂y +
∑
k�0

gk(x)yk (5.223)

with yk :=
∏n1
i=1(y)kii . The formal operations and ordering extend naturally

to the vectorial general transseries (4.223), under the restriction <(k ·λx) > 0
As with (5.222), we introduce the transseries (4.223) in (5.223) and equate
the coefficients of exp(−k · λx). Let vk = x−k·myk and

dj(x) =
∑
l≥j

(
l
j

)
gl(x)vl−j

0 (5.224)

Noting that, by assumption, k · λ = k′ · λ ⇔ k = k′ we obtain, for k ∈ Nn1 ,
k � 0

v′k +
(

Λ̂− k · λÎ + x−1B̂
)

vk +
∑
|j|=1

dj(x)(vk)j

=
∑
j≤k
|j|≥2

dj(x)
∑

(imp:k)

n∏
m=1

jm∏
p=1

(
vimp

)
m

= tk(v) (5.225)

where
(
l
j

)
=
∏n
j=1

(
li
ji

)
, (v)m means the component m of v, and

∑
(imp:k)

stands for the sum over all vectors imp ∈ Nn, with p ≤ jm,m ≤ n, such that
imp � 0 and

∑n
m=1

∑jm
p=1 imp = k. We use the convention

∏
∅ = 1,

∑
∅ = 0.

With mi = 1− bβic we obtain for yk

y′k +
(

Λ̂− k · λÎ + x−1(B̂ + k ·m)
)

yk +
∑
|j|=1

dj(x)(yk)j = tk(y) (5.226)

There are clearly finitely many terms in tk(y). To find a (not too unreal-
istic) upper bound for this number of terms, we compare with

∑
(imp)′ which

stands for the same as
∑

(imp) except with i ≥ 0 instead of i � 0. Noting that(
k+s−1
s−1

)
=
∑
a1+...+as=k

1 is the number of ways k can be written as a sum of
s integers, we have

∑
(imp)

1 ≤
∑

(imp)′

1 =
n1∏
l=1

∑
(imp)l

1 =
n1∏
l=1

(
kl + |j| − 1
|j| − 1

)
≤
(
|k|+ |j| − 1
|j| − 1

)n1

(5.227)
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Remark 5.228 Equation (5.225) can be written in the form (5.9)

Proof. The fact that only predecessors of k are involved in t(y0, ·) and
the homogeneity property of t(y0, ·) follow immediately by combining the
conditions

∑
imp = k and imp � 0.

The formal inverse Laplace transform of (5.226) is then

(
−p+ Λ̂− k · λ

)
Yk +

(
B̂ + k ·m

)
PYk +

∑
|j|=1

Dj ∗ (Yk)j = Tk(Y)

(5.229)

with

Tk(Y) = T (Y0, {Yk′}0≺k′≺k) =
∑

j≤k; |j|>1

Dj(p) ∗
∑

(imp;k)

n1∗∏
m=1

jm∗∏
p=1

(
Yimp

)
m

(5.230)
and

Dj =
∑
l≥m

(
l
m

)
Gl ∗Y∗(l−m)

0 +
∑

l≥m;|l|≥2

(
l
m

)
g0,lY

∗(l−m)
0 (5.231)



Chapter 6

Difference equations; formal
solutions and summability

d Setting

Let us now look at difference systems of equations which can be brought to
the form

x(n+ 1) = Λ̂
(
I +

1
n
Â

)
x(n) + g(n,x(n)) (6.1)

where Λ̂ and Â are constant coefficient matrices, g is convergently given for
small x by

g(n,x) =
∑

k∈Nm
gk(n)xk (6.2)

with gk(n) analytic in n at infinity and

gk(n) = O(n−2) as n→∞, if
m∑
j=1

kj ≤ 1 (6.3)

under nonresonance conditions: Let µ = (µ1, ..., µn) and a = (a1, ..., an)
where e−µk are the eigenvalues of Λ̂ and the ak are the eigenvalues of Â.
Then the nonresonance condition is

(k · µ = 0 mod 2πi with k ∈ Zm1)⇔ k = 0. (6.4)

The theory of these equations is remarkably similar to that of differential
equations. We consider the solutions of (6.1) which are small as n becomes
large.

d .1 Transseries for difference equations

Braaksma [9] showed that the recurrences (6.1) posess l-parameter transseries
solutions of the form

x̃(t) :=
∑

k∈Nm
Cke−k·µttk·ax̃k(t) (6.5)

(6.5) with t = n where x̃k(n) are formal power series in powers of n−1 and
l ≤ m is chosen such that, after reordering the indices, we have <(µj) > 0 for
1 ≤ j ≤ l.
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It is shown in [9] that these transseries are generalized Borel summable in
any direction and Borel summable in all except m of them and that

x(n) =
∑
k∈Nl

Cke−k·µnnk·axk(n) (6.6)

is a solution of (6.1), if n > y0, t0 large enough.
There is a freedom of composition with periodic functions. For example,

the general solution of xn+1 = xn is an arbitrary 1-periodic function. This
freedom permeates both the formal and analytic theory. It can be ruled out
by disallowing purely oscillatory terms in the transseries.



Chapter 7

The principle of transasymptotic
matching

A Expansion regeneration

Much as in the case of analytic continuation, when transseries break down
on the boundary can be matched in many cases with expansions valid in other
regions. Often when an expansion approaches the edge of validity, the blow-up
structure suggests a new expansion which is valid beyond the breakdown of
the original one. Usually there is then a common region of validity, allowing
for matching the two. We revisit example 3.155 , but now at a purely formal
level to observe this interesting phenomenon. We assumed that U ∈ C∞ and
U has finitely many zeros. Suppose U(0) = 0 and U ′(0) = a > 0. If we look
at the expansion (3.164) in a neighborhood of x = 0 and approximate U by
its Taylor series at zero U(x) = ax+ bx2 + ...

h2 =
√
ax

ε

(
1 +

bx

2a

)
+− 1

4x

(
1 +

bx

a
+ · · ·

)
− 5z

32
√
ax5

(
1− bx

10a
+ · · ·

)
(7.1)

and in general we would get

hn =
√
x

ε

(
y0 + ξy1 + ξ2y2 + · · ·

)
; ξ =

ε

x3/2
(7.2)

where

yj = aj0 + aj1x+ aj2x
2 + · · · = aj0 + aj1

ε2/3

ξ2/3
+ aj2

ε4/3

ξ4/3
+ · · · (7.3)

We note that now the expansion has two small parameters, ε and x; these
cannot be chosen small independently: the condition if ξ � 1 has to be
satisfied to make asymptotic sense of (7.2). This would carry us down to
values of x such that, say, ξ � 1/ ln |ε|. In such

201
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B Introduction

We take first the relatively simple Abel’s equation (4.226). Eq. (4.226) is
known to be non-integrable from Kruskal’s poly-Painlevé analysis [37]. Its
normal form is (4.233). We write the decaying formal asymptotic series solu-
tion as

y ∼
∞∑
j=2

aj,0
xj
≡ ỹ0(x) (7.4)

where aj,0 can be determined algorithmically. and their value is immaterial
for now. If y0 is a particular solution to (4.232) with asymptotic series ỹ0 then,
y0 and y0 + δ will have the same asymptotic series if δ = o(x−n) for any n,
i.e, if δ is a term beyond all orders for the asymptotic series ỹ0. Furthermore,
δ satisfies

δ′ = −δ +
1

5x
δ (7.5)

which has the solution δ ∼ Cx1/5e−x, where C is an arbitrary constant. The
full trannseries solution is obtained as usual by substiting

y = y0 +
∞∑
k=1

Ck xk/5e−kx yk (7.6)

in (4.232) and equating coefficients of e−kx to determine a set of differential
equations for yk, in which we look for solutions which are not exponentially
growing in the right half plane; the only such solutions are of the form

yk(x) ∼
∞∑
j=0

aj,k
xj

≡ ỹk(x) (7.7)

Arbitrariness only appears in the choice of a0,1; all other coefficients are de-
termined recursively. Since C an arbitrary constant multiplying ỹ1, there is
no loss of generality in setting a0,1 = 1. We write (7.6) in the form The
transseries of y is defined to be the formal expansion

ỹ0(x) +
∞∑
k=1

ξk ỹk(x) (7.8)

with ξ = x1/5e−x. We know from Theorem 5.11 that the transseries is Borel
summable and

y = y0(x) +
∞∑
k=1

ξk yk(x) , where ξ = C x1/5 e−x (7.9)
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where

yk(x) = LYk =
∫
C

e−pxYk(p)dp = LBỹk (7.10)

and
Yk(p) = B[ỹk] (7.11)

By the definition of Borel summation , the contour in the Laplace trans-
forms in (7.10) are taken such that −px is real and positive. Thus, analytic
continuation in x in the upper half plane entails simultaneous analytic con-
tinuation in p in the lower half plane. We note, again using Theorem 5.11
that Yk are analytic C \ R+. Then, yk are analytic in x (and bounded by
some ck) in a sector with angles (−π/2, 5π/2). Convergence of the series (7.8)
depends in an essential way on the size of effective variable ξ = C x1/5 e−x.
The solution y(x) is analytic in a sector in the RHP of any angle < π. But
ξ becomes large in the left half plane. The series is not expected to converge
there.

The key to understanding the behavior of y(x) for x beyond its analyticity
region is to look carefully at the borderline region, where (7.9) converges,
barely and see what expansion is adequate there and beyond. Convergence
is marginal along curves such that ξ is small enough, but as |x| → ∞, is
nevertheless larger than all negative powers of x. In this case, any term in
the transseries of the form ξka0,k is larger than any other term of the form
ξl aj,lx

−j , if k, l ≥ 0 and j > 0. Then though the transseries is still valid,
and its summation converges, thye terms are disordered: smaller terms are
followed by both smaller and larger terms.

The natural thing to do is to properly reorder the terms. This will give the
expansion in a form that is suited for this marginal region, and as it turns
out, beyond it as well.

In the aforementioned domain, the largest terms are those containing no
inverse power of x, namely

y(x) ∼
∑
k≥0

ξka0,k ≡ F0(ξ) (7.12)

Next in line, insofar as orders of magnitudes are concerned, are the terms
containing only the first power of x−1 and any power of ξ, followed by the
group of terms containing x−2 and any power of ξ and so on. The result is

y(x) ∼
∞∑
j=0

x−j
∞∑
k=0

ξkaj,k ≡
∞∑
j=0

Fj(ξ)
xj

(7.13)

This is a new type of expansion.
It is intuitively clear that the region of validity of (7.13), while overlapping

as expected with the transseries region, goes beyond it. This is because unless
ξ approaches some singular value of Fj , Fj is much smaller than x. By the
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same token, we can read, with high accuracy, the location of the singularities
of y from this expansion. All this will be shown rigorously in §C.

This is a simple but relevant example of transasymptotic matching. The
new expansion (7.13) might break down further on, in which case we do ex-
actly the same, namely push the expansion close to its boundary of validity,
rearrange the terms there and obtaining a new expansion. This works until
true singularities of y are reached.

It has a two-scale structure, with scales ξ and x, with the ξ-series of each
Fj analytic in ξ for small ξ. This may seem paradoxical, as it suggests that
we have started with a series with zero radius of convergence and ended up,
by mere rearrangement, with a convergent one. This is not the case. The
new series still diverges factorially, because the Fk as a function of k grow
factorially.

Above we have obtained (7.13) by rearranging the series by hand. This
procedure which is quite cumbersome and fortunately there is a better way
to obtain it.

Namely, now that we know how the expansion should look like, we can plug
in (7.13) in the original differntial equation and identify the terms order by
order in 1/x, thinking of ξ as an independent variable. In view of the simple
changes of coordinates involved, we can make this substitution in (4.231),
which is simpler.

We obtain

9ξF ′0 = (3F0)3 − 1; F ′0(0) = 1; F0(0) = 1/3 (7.14)

while for k ≥ 1 we have

−ξF ′k + 9F 2
0Fk =

(
k − 1− ξ

5

)
F ′k−1 +

∑
j1+j2+j2+j3=k

ji 6=0

Fj1Fj2Fj3 (7.15)

The condition F ′0(0) = 1 comes from the fact that the coefficient of ξ =
Ce−xx1/5 in the transseries is one, while F0(0) = h(∞). Of course, the
equation for F0 can be solved in closed form. First we treat it abstractly. If
we take F0 = 1/3 + xG, then it can be written in integral form as

G = 1 + 3ξ
∫ ξ

0

(G2(s) +G3(s))ds (7.16)

which is contractive in the ball of radius say 2 in the sup norm of functions
analytic in ξ for |ξ| < ε, for small enough ε. Thus F0 is analytic in ξ small,
that is, the series (7.12) converges.

We see that the equations for Fk are linear.

Exercise 7.17 Show that for k = 1 we have a one parameter family of solu-
tions which are analytic at ξ = 0, of the form −1/15 + cξ + · · · . There is a
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choice of c1 so that the equation for F2 has a one-parameter family of solu-
tions analytic at ξ = 0, parametrized by c2, and by induction there is a choice
of ck so that the equation for Fk+1 has a one-parameter family of solutions
parametrized by ck+1 and so on.

Remark 7.18 With this choice of constants, clearly, Fj is singular only if
F0 is singular.

Remark 7.19 Of course, the fact that Fj are analytic at zero and thus have
convergent power series in ξ does not mean that (7.13) is a convergent (dou-
ble) series. Rearrangements of factorially divergent series are still factorially
divergent. The growth of Fk as a function of k is still factorial.

Exercise 7.20 Let X > 0 be large and ε > 0 be small. The expansion (7.12)
is asymptotic along any curve of the form in Fig 1, if with the properties

• |x| > X along the curve, the length of the curve is O(Xm) and no
singularity of F0 is approached at a distance less than ε.

For example, a contractive mapping integral equation can be written for the
remainder

y(x)−
N∑
j=0

Fj(ξ)
xj

(7.21)

for N conveniently large.

Ba Equation (4.226)

Let f = F0 − 1/3. The equation for f(ξ) is, cf. (7.48),

ξf ′ = f(1 + 3f + 3f2); f ′(0) = 1 (7.22)

so that

ξ = ξ0f(ξ)(f(ξ) + ω0)−θ(f(ξ) + ω0)−θ (7.23)

with ξ0 = 3−1/2 exp(− 1
6π
√

3), ω0 = 1
2 + i

√
3

6 and θ = 1
2 + i

√
3

2 . and, cf. (7.49),

ξF ′k = (3f + 1)2Fk +Rk(f, ..., Fk−1)

( for k ≥ 1 and where R1 =
3
5
f3) (7.24)

The functions Fk, k ≥ 1 can also be obtained in closed form, order by order.
By Theorem 7.52 below, the relation y ∼ ỹ holds in the sector

Sδ1 = {x ∈ C : arg(x) ≥ −π
2

+ δ, |Cx1/5e−x| < δ1}
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for some δ1 > 0 and any small δ > 0. Theorem 7.52 insures that y ∼ ỹ holds
in fact on a larger region, surrounding singularities of F0 (and thus of y). To
apply this result we need the surface of analyticity of F0 and an estimate for
the location of its singularities.

Lemma 7.25 (i) The function F0 is analytic on the universal covering RΞ

of C \ Ξ where

Ξ = {ξp = (−1)p1ξ0 exp(p2π
√

3) : p1,2 ∈ Z} (7.26)

and its singularities are algebraic of order −1/2, located at points lying above
Ξ.

(ii) (The first Riemann sheet) The function F0 is analytic in C\
(

(−∞, ξ0]∪

[ξ1,∞)
)

.
(iii) The Riemann surface associated to F0 is represented in Fig. 2.

Proof
Singularities of F0. The RHS of (7.14) is analytic except at F0 = ∞, thus

F0 is analytic except at points where F0 → ∞. From (7.23) it follows that
limF0→∞ ξ ∈ Ξ and (i) follows straightforwardly; in particular, as ξ → ξp ∈ Ξ
we have (ξ − ξp)1/2F0(ξ)→

√
−ξp/6.

(ii) We now examine on which sheets in RΞ these singularities are located,
and start with a study of the first Riemann sheet (where F0(ξ) = ξ+O(ξ2) for
small ξ). Finding which of the points ξp are singularities of F0 on the first sheet
can be rephrased in the following way. On which constant phase (equivalently,
steepest ascent/descent) paths of ξ(F0), which extend to |F0| =∞ in the plane
F0, is ξ(F0) uniformly bounded?

Constant phase paths are governed by the equation =(d ln ξ) = 0. Thus,
denoting F0 = X+ iY , since ξ′/ξ =

(
F0 + 3F 2

0 + 3F 3
0

)−1 one is led to the real
differential equation =(ξ′/ξ)dX + <(ξ′/ξ)dY = 0, or

Y (1 + 6X + 9X2 − 3Y 2)dX

− (X + 3X2 − 3Y 2 + 3X3 − 9XY 2)dY = 0 (7.27)

We are interested in the field lines of (7.27) which extend to infinity. Noting
that the singularities of the field are (0, 0) (unstable node, in a natural param-
eterization) and P± = (−1/2,±

√
3/6) (stable foci, corresponding to −ω0 and

−ω0), the phase portrait is easy to draw (see Fig. 2) and there are only two
curves starting at (0, 0) so that |F0| → ∞, ξ bounded, namely ±R+, along
which ξ → ξ0 and ξ → ξ1, respectively.

(iii) Thus Fig. 2 encodes the structure of singularities of F0 on RΞ in the
following way. A given class γ ∈ RΞ can be represented by a curve composed
of rays and arcs of circle. In Fig. 2, in the F0-plane, this corresponds to a curve
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γ′ composed of constant phase (dark gray) lines or constant modulus (light
gray ) lines. Curves in RΞ terminating at singularities of F0 correspond in
Fig 2. to curves so that |F0| → ∞ (the four dark gray separatrices S1, ..., S4).
Thus to calculate where, on a particular Riemann sheet of RΞ, is F0 singular,
one needs to find the limit of ξ in (7.23), as F0 →∞ along along γ′ followed
by Si. This is straightforward, since the branch of the complex powers θ, θ, is
calculated easily from the index of γ′ with respect to P±.

Theorem 7.52 can now be applied on relatively compact subdomains of RΞ

and used to determine a uniform asymptotic representation y ∼ ỹ in domains
surrounding singularities of y(x), and to obtain their asymptotic location.
Going back to the original variables, similar information on u(z) follows. For
example, using Theorem 7.52 for the first Riemann sheet.

D = {|ξ| < K | ξ 6∈ (−∞, ξ1) ∪ (ξ0,+∞) , |ξ − ξ0| > ε, |ξ − ξ1| > ε, }

(for any small ε > 0 and large positive K) the corresponding domain in the
z-plane is shown in Fig. 3.

In general, we fix ε > 0 small, and some K > 0 and define AK = {z : arg z ∈(
3
10π − 0, 9

10π + 0
)
, |ξ(z)| < K} and let RK,Ξ be the universal covering of

Ξ ∩ AK and Rz;K,ε the corresponding Riemann surface in the z plane, with
ε– neighborhoods of the points projecting on z(x(Ξ)) deleted.

Proposition 7.28 (i) The solutions u = u(z;C) described in the beginning
of §D have the asymptotic expansion

u(z) ∼ z1/3

(
1 +

1
9
z−5/3 +

∞∑
k=0

Fk (Cξ(z))
z5k/3

)
(as z →∞; z ∈ Rz;K,ε) (7.29)

where

ξ(z) = x(z)1/5e−x(z), and x(z) = −9
5
z5/3 (7.30)

(ii) In the “steep ascent” strips arg(ξ) ∈ (a1, a2), |a2 − a1| < π starting
in AK and crossing the boundary of AK , the function u has at most one
singularity, when ξ(z) = ξ0 or ξ1, and u(z) = z1/3e±2πi/3(1 + o(1)) as z →∞
(the sign is determined by arg(ξ)).

(iii) The singularities of u(z;C), for C 6= 0, are located within O(ε) of the
punctures of Rz;K,0.

Applying Theorem 7.52 to (4.232) it follows that for n → ∞, a given so-
lution y is singular at points x̃p,n such that ξ(x̃p,n)/ξp = 1 + o(1) (|x̃p,n|
large).
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FIGURE 7.1: The dark lines represent the phase portrait of (7.27), as well
as the lines of steepest variation of |ξ(u)|. The light gray lines correspond to
the orthogonal field, and to the lines |ξ(u)| = const.

Now, y can only be singular if |y| → ∞ (otherwise the r.h.s. of (4.232) is
analytic). If x̃p,n is a point where y is unbounded, with δ = x − x̃p,n and
v = 1/y we have

dδ
dv

= vFs(v, δ) (7.31)

where Fs is analytic near (0, 0). It is easy to see that this differential equation
has a unique solution with δ(0) = 0 and that δ′(0) = 0 as well.

The result is then that the singularities of u are also algebraic of order
−1/2.

Proposition 7.32 If z0 is a singularity of u(z;C) then in a neighborhood of
z0 we have

u = ±
√
−1/2(z − z0)−1/2A0((z − z0)1/2) (7.33)

where A0 is analytic at zero and A0(0) = 1.

Notes. 1. The local behavior near a singularity could have been guessed
by local Painlevé analysis and the method of dominant balance, with the
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standard ansatz near a singularity, u ∼ Const.(z − z0)p. The results however
are global: Proposition 7.28 gives the behavior of a fixed solution at infinitely
many singularities, and gives the position of these singularities as soon as C1

(or the position of only one of these singularities) is known (and in addition
show that the power behavior ansatz is correct in this case).

2. By the substitution y = v/(1 + v) in (4.232) we get

v′ = −v − 27
v3

1 + v
− 10 v2 +

1
5t
v + g[1](t−1, v) (7.34)

The singularities of v are at the points where v(t) = −1.
3. It is not always the case that the singularities of y must be of the same

type as the singularities of F0. The position, as we argued is asymptotically
the same, but near singularities the expansion (7.13) becomes invalid and it
must either be re-matched to an expansion valid near singularities or, again,
we can rely on the differential equation to see what these singularities are.

Further examples and discussions follow, in §Da and §Db .

C Rigorous results for generic nonlinear differential sys-
tems

We describe the results in [42] but omit proofs which follow the lines
sketched in §B, but are rather lengthy. The region where the formal or
summed transseries is valid is

Strans =
{
x ∈ C ; if Cj 6= 0 then xaje−λjx = o(1), j = 1, ..., n

}
(7.35)

This sector might be the whole C if all Cj = 0; otherwise it lies between two
antistokes lines, and has opening at most π.

If we have normalized the equation in such a way that λ1 = 1, and λm is the
eigenvalue in the fourth quadrant (if there is such an eigenvalue) with the most
negative angle, then in the upper half plane, Strans will be controlled, roughly,
by the condition <(λmx) > 0. If there is no such eigenvalue, then the rigion
in the first quadrant will be determined by λ1 = 1, namely xa1e−x = o(1).
If we examine the first quadrant, it is now convenient to rotate again the
independent variable so that λm = 1, since this eigenvalue is the determining
one. Since originally no exponentials associated with λj belonging to the
second or third quadrant were allowed, then after this new rotation there will
be no eigenvalue in the fourth quadrant, and the region of validity in the first
quadrant would be, roughly, up to the imaginary line.
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y(x) =
∑
k≥0

Cke−λ·kxxM·kyk(x)

=
∑
k≥0

Cke−λ·kxxM·kLBỹk(x) ≡ LBỹ(x) (7.36)

for some constants C ∈ Cn, where Mj = b<αjc + 1 (b·c is the integer part),
and

ỹk(x) =
∞∑
r=0

ỹk;r

x−kα′+r
(α′ = α−M) (7.37)

(for technical reasons the Borel summation procedure is applied to the series

ỹk(x) ≡ xkα′ s̃k(x) (7.38)

rather than to s̃k(x).
The key to understanding the behavior of y(x) for x beyond San is to

look carefully at the borderline region where (7.36) converges but barely so.
Because of nonresonance, for arg(x) = π/2 we have <(λjx) > 0, j = 2, ..., n1.
All terms in (7.36) with k not a multiple of e1 = (1, 0, ..., 0) are subdominant
(small). Thus, for x near iR+ we only need to look at

y[1](x) =
∑
k≥0

Ck1 e−kxxkM1yke1(x) (7.39)

The region of convergence of (7.39) (thus of (4.225)) is then determined by the
effective variable ξ = C1e−xxα1 (since yke1 ∼ ỹke1 = e1 + o(1)). Convergence
is marginal along curves such that ξ is small enough but, as |x| → ∞, is
nevertheless larger than all negative powers of x. In this case, any term of
the form Ck1 e

−kxxkM1yke1;0 is much larger than the terms Cl1e
−lxxlα1yle1 if

k, l ≥ 0 and r > 0. Hence the leading behavior of y[1] is expected to be

y[1](x) ∼
∑
k≥0

(C1e−xxα1)kỹke1;0 ≡ F0(ξ) (7.40)

moreover, taking into account all terms in ỹke1 we get

y[1](x) ∼
∞∑
r=0

x−r
∞∑
k=0

ξkỹke1;r ≡
∞∑
j=0

Fj(ξ)
xj

(7.41)

Expansion (7.41) has a two-scale structure, with the scales ξ and x.
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Ca Notation

Let d be a direction in the x-plane which is not not an antistokes line.
Consider a solution y(x) of (4.220) satisfying the assumptions in §5.0a . We
define

San = San (y(x); ε) = S+
ε ∪ S−ε (7.42)

where

S±ε =
{
x ; |x| > R , arg(x) ∈ [−π

2
∓ ε, π

2
∓ ε] and∣∣C−j e−λjxx−βj ∣∣ < δ−1 for j = 1, ..., n

}
(7.43)

We use be the representation of y as summation of its transseries ỹ(x)
(4.225) in the direction d. Let

pj;k = λj − k · λ , j = 1, ..., n1 , k ∈ Zn1
+ (7.44)

For simplicity we assume, what is generically the case, that no pj;k lies on the
antistokes lines bounding Strans.

We assume that not all parameters Cj are zero, say C1 6= 0. Then Strans
is bounded by two antistokes lines and its opening is at most π.

We arrange that
(a) arg(λ1) < arg(λ2) < ... < arg(λn1)
and, by construction,
(b) =λk ≥ 0.
The solution y(x) is then analytic in a region San.
The locations of singularities of y(x) depend on the constant C1 (constant

which may change when we cross the Stokes line R+). We need its value in
the sector between R+ and iR+, the next Stokes line.

Fix some small, positive δ and c. Denote

ξ = ξ(x) = C1e−xxα1 (7.45)

and

E =
{
x ; arg(x) ∈

[
−π

2
+ δ,

π

2
+ δ
]

and

<(λjx/|x|) > c for all j with 2 ≤ j ≤ n1} (7.46)

Also let

Sδ1 = {x ∈ E ; |ξ(x)| < δ1} (7.47)

The sector E contains Strans, except for a thin sector at the lower edge
of Strans (excluded by the conditions <(λjx/|x|) > c for 2 ≤ j ≤ n1, or, if
n1 = 1, by the condition arg(x) ≥ −π2 +δ), and may extend beyond iR+ since
there is no condition on <(λ1x)—hence <(λ1x) = <(x) may change sign in E
and Sδ1 .

Figure 1 is drawn for n1 = 1; E contains the gray regions and extends
beyond the curved boundary.
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Cb The recursive system for Fm

The functions are Fm recursively, from their differential equation. Formally
the calculation is the following.

The series F̃ =
∑
m≥0 x

−mFm(ξ) is a formal solution of (4.220); substi-
tution in the equation and identification of coefficients of x−m yields the
recursive system

d
dξ

F0 = ξ−1
(

Λ̂F0 − g(0,F0)
)

(7.48)

d
dξ

Fm + N̂Fm = α1
d
dξ

Fm−1 + Rm−1 for m ≥ 1 (7.49)

where N̂ is the matrix

ξ−1(∂yg(0,F0)− Λ̂) (7.50)

and the function Rm−1(ξ) depends only on the Fk with k < m:

ξRm−1 = −
[
(m− 1)I + Â

]
Fm−1 −

1
m!

dm

dzm
g

z;m−1∑
j=0

zjFj

∣∣∣∣∣∣
z=0

(7.51)

For more detail see [42] Section 4.3.
To leading order we have y ∼ F0 (see also (7.40)) where F0 satisfies the

autonomous (after a substitution ξ = eζ) equation

F′0 = Λ̂F0 − g(0,F0)

which can be solved in closed form for first order equations (n = 1) (the
equation for F0 is separable, and for k ≥ 1 the equations are linear), as well
as in other interesting cases (see e.g. §Db ).

(7.48), (7.49). To determine the Fm’s associated to y we first note that these
functions are analytic at ξ = 0 (cf. Theorem 7.52). Denoting by Fm,j , j =
1, .., n the components of Fm, a simple calculation shows that (7.48) has a
unique analytic solution satisfying F0,1(ξ) = ξ+O(ξ2) and F0,j(ξ) = O(ξ2) for
j = 2, ..., n. For m = 1, there is a one parameter family of solutions of (7.49)
having a Taylor series at ξ = 0, and they have the form F1,1(ξ) = c1ξ+O(ξ2)
and F1,j(ξ) = O(ξ2) for j = 2, ..., n. The parameter c1 is determined from the
condition that (7.49) has an analytic solution for m = 2. For this value of c1
there is a one parameter family of solutions F2 analytic at ξ = 0 and this new
parameter is determined by analyzing the equation of F3. The procedure can
be continued to any order in m, in the same way; in particular, the constant
cm is only determined at step m+1 from the condition of analyticity of Fm+1.
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Theorem 7.52 (i) The functions Fm(ξ); m ≥ 1, are analytic in D (note
that by construction F0 is analytic in D) and for some positive B,K we have

|Fm(ξ)| ≤ Km!Bm, ξ ∈ D (7.53)

(ii) For large enough R, the solution y(x) is analytic in Dx and has the
asymptotic representation

y(x) ∼
∞∑
m=0

x−mFm(ξ(x)) (x ∈ Dx, |x| → ∞) (7.54)

In fact, the following Gevrey-like estimates hold

∣∣∣∣∣∣y(x)−
m−1∑
j=0

x−jFj(ξ(x))

∣∣∣∣∣∣ ≤ K2m!Bm2 |x|−m (m ∈ N+, x ∈ Dx) (7.55)

(iii) Assume F0 has an isolated singularity at ξs ∈ Ξ and that the projection
of D on C contains a punctured neighborhood of (or an annulus of inner radius
r around) ξs.

Then, if C1 6= 0, y(x) is singular at a distance at most o(1) (r + o(1),
respectively) of xn ∈ ξ−1({ξs}) ∩ Dx, as xn →∞.
The collection {xn}n∈N forms a nearly periodic array

xn = 2nπi+ α1 ln(2nπi) + lnC1 − ln ξs + o(1) (7.56)

as n→∞.

Some of the conclusions of the theorem hold with D noncompact, under some
natural restrictions, see Proposition 7.57.

Remarks. 1. The singularities xn satisfy C1e
−xnxα1

n = ξs(1 + o(1)) (for
n→∞). Therefore, the singularity array lies slightly to the left of the antis-
tokes line iR+ if <(α1) < 0 (this case is depicted in Figure 1) and slightly to
the right of iR+ if <(α1) > 0.

2. In practice it is useful to normalize the system (4.220) so that α1 is as
small as possible.

3. By (7.55) a truncation of the two-scale series (7.54) at an m dependent
on x (m ∼ |x|/B) is seen to produce exponential accuracy o(e−|x/B|), see e.g.
[10].

4. Theorem 7.52 can also be used to determine precisely the nature of the
singularities of y(x). In effect, for any n, the representation (7.54) provides
o(e−K|xn|) estimates on y down to an o(e−K|xn|) distance of an actual singu-
larity xn. In most instances this is more than sufficient to match to a suitable
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local integral equation, contractive in a tiny neighborhood of xn, providing
rigorous control of the singularity. See also §D.

General comments. 1. The expansion scales, x and x−1/2e−x are crucial.
Only for this choice one obtains an expansion which is valid both in Strans
and near poles of (4.88). For instance, the more general second scale xae−x

introduces logarithmic singularities in Hj , except when a ∈ − 1
2 + Z. With

these logarithmic terms, the two scale expansion would only be valid in an
O(1) region in x, what is sometimes called a “patch at infinity”, instead of
more than a sector. Also, a ∈ − 1

2 − N introduces obligatory singularities at
ξ = 0 precluding the validity of the expansion in Strans. The case a ∈ − 1

2 +N
produces instead an expansion valid in Strans but not near poles. Indeed, the
so that

λ1 = 1, α1 = −1
2
− 3

2
Bα

A

implying

ξ2F ′′0 + ξF ′0 − F0 = 3BF 2
0 − F 3

0

and, with the same initial condition as above, we now have

F0 =
2ξ(1 +Bξ)
ξ2 + 2

The first normalization applies for the manifold of solutions such that y ∼
−αx (for α = 0 y is exponentially small and behaves like an Airy function)
while the second one corresponds to y ∼ −B − α

2 x
−3/2.

The following is an extension, in some respects, of Theorem 7.52 (ii).

Proposition 7.57 Assume D is not necessarily compact, Γ is a curve of
possibly infinite length in D with the following properties:
(a) For some ε > 0, T1,2(z, δ) and N̂(z) are analytic for z in an ε neighborhood
of Γ and for |δ| < ε and in addition T1,2(z, δ) = O(zδ, δ2)
(b) M̂(ξ, ξ1,0) is bounded in an ε neighborhood of Γ and for some K and all

ξ ∈ Γ we have
∫ ξ
ξ1,0

∣∣∣M̂(ξ, ξ1,0)
∣∣∣ d|s| < K (where |M̂ | is some Euclidian norm

of the matrix M̂(ξ, ξ1,0)).
Then the conclusions of Theorem 7.52 (ii) hold in the x domain Dx corre-

sponding to D.

Cc Proof of Theorem 7.52 (iii)

To show Theorem 7.52 (iii), assume ξs is an isolated singularity of F0 (thus
ξs 6= 0) and X = {x : ξ(x) = ξs}. By lemma 8.4 there is a circle C around ξs
and a function g(ξ) analytic in Br(ξ − ξs) such that

∮
C F0(ξ)g(ξ)dξ = 1. In

a neighborhood of xn ∈ X the function f(x) = e−xxα1 is conformal and for
large xn
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∮
f−1(C)

y(x)
g(f(x))
f(x)

dx

= −
∮
C
(1 +O(x−1

n ))(F0(ξ) +O(x−1
n ))g(ξ)dξ = 1 +O(x−1

n ) 6= 0 (7.58)

It follows from lemma 8.4 that for large enough xn y(x) is not analytic inside
C either. Since the radius of C can be taken o(1) Theorem 7.52 (iii) follows.

Note. In many cases the singularity of y is of the same type as the singu-
larity of F0. See §D for further comments.

In the following we will make rigorous these intuitive arguments and then
proceed to explore further properties and consequences.

D Further examples

Da PI.

Proposition 7.59 below shows, in (i), how the constant C beyond all orders
is associated to a truncated solution y(z) of PI for arg(z) = π (formula (7.60))
and gives the position of one array of poles zn of the solution associated to
C (formula (7.61)), and in (ii) provides uniform asymptotic expansion to all
orders of this solution in a sector centered on arg(z) = π and one array of
poles (except for small neighborhoods of these poles) in formula (7.63).

Proposition 7.59 (i) Let y be a solution of (4.82) such that y(z) ∼
√
−z/6

for large z with arg(z) = π. For any φ ∈ (π, π + 2
5π) the following limit

determines the constant C (which does not depend on φ in this range) in the
transseries ỹ of y:

lim
|z|→∞

arg(z)=φ

ξ(z)−1

√ 6
−z

y(z)−
∑

k≤|x(z)|

ỹ0;k

z5k/2

 = C (7.60)

(Note that the constants ỹ0;k do not depend on C). With this definition, if
C 6= 0, the function y has poles near the antistokes line arg(z) = π + 2

5π at
all points zn, where, for large n

zn = − (60πi)4/5

24

(
n

4
5 + iLnn

− 1
5 +

(
L2
n

8
− Ln

4π
+

109
600π2

)
n−

6
5

)
+O

(
(lnn)3

n
11
5

)
(7.61)
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5

50

FIGURE 7.2: Singularities on the boundary of Strans for (4.226). The
gray region lies in the projection on C of the Riemann surface where (7.29)
holds. The short dotted line is a generic cut delimiting a first Riemann sheet.
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with Ln = 1
5π ln

(
πiC2

72 n
)

, or, more compactly,

ξ(zn) = 12 +
327

(−24zn)5/4
+O(z−5/2

n ) (zn →∞) (7.62)

(ii) Let ε ∈ R+ and define

Z = {z : arg(z) >
3
5
π; |ξ(z)| < 1/ε; |ξ(z)− 12| > ε}

(the region starts at the antistokes line arg(z) = 3
5π and extends slightly beyond

the next antistokes line, arg(z) = 7
5π). If y ∼

√
−z/6 as |z| → ∞, arg(z) = π,

then for z ∈ Z we have

y ∼
√
−z
6

(
1− 1

8
√

6(−z)5/2
+
∞∑
k=0

30kHk(ξ)
(−24z)5k/4

)
(|z| → ∞, z ∈ Z) (7.63)

The functions Hk are rational, and H0(ξ) = ξ(ξ/12 − 1)−2. The expansion
(7.63) holds uniformly in the sector π−1 arg(z) ∈ (3/5, 7/5) and also on one of
its sides, where H0 becomes dominant, down to an o(1) distance of the actual
poles of y if z is large.

Proof. We prove the corresponding statements for the normal form (4.88).
To go back to the variables of (4.82) mere substitutions are needed, which we
omit.

Most of Proposition 7.59 is a direct consequence of Theorems 1 and 2. For
the one-parameter family of solutions which are small in the right half plane
we then have

h ∼
∞∑
k=0

x−kHk(ξ(x)) (7.64)

where ξ(x) = x−1/2e−x.
As in the first example we find Hk by substituting (7.64) in (4.88).

The equation of H0 is

ξ2H ′′0 + ξH ′0 = H0 +
1
2
H2

0

The general solution of this equation are the Weierstrass elliptic functions of
ln ξ, as expected from the general knowledge of the asymptotic behavior of
the Painlevé solutions (see [13]). For our special initial condition, H0 analytic
at zero and H0(ξ) = ξ(1 + o(1)), the solution is a degenerate elliptic function,
namely,
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H0(ξ) =
ξ

(ξ/12− 1)2

Important remark. One of the two free constants in the general solution
H1 is determined by the condition of analyticity at zero of H1 (this constant
multiplies terms in ln ξ). It is interesting to note that the remaining constant
is only determined in the next step, when solving the equation for H2! This
pattern is typical (see §Cb ).

Continuing this procedure we obtain successively:

H1 =
(

216 ξ + 210 ξ2 + 3 ξ3 − 1
60
ξ4

)
(ξ − 12)−3 (7.65)

H2 =
(

1458ξ + 5238ξ2 − 99
8
ξ3 − 211

30
ξ4 +

13
288

ξ5 +
ξ6

21600

)
(ξ − 12)−4

(7.66)

We omit the straightforward but quite lengthy inductive proof that all Hk

are rational functions of ξ. The reason the calculation is tedious is that
this property holds for (4.88) but not for its generic perturbations, and the
last potential obstruction to rationality, successfully overcome by (4.88), is at
k = 6. On the positive side, these calculations are algorithmic and are very
easy to carry out with the aid of a symbolic language program.

In the same way as in Example 1 one can show that the corresponding
singularities of h are double poles: all the terms of the corresponding asymp-
totic expansion of 1/h are analytic near the singularity of h! All this is again
straightforward, and lengthy because of the potential obstruction at k = 6.

Let ξs correspond to a zero of 1/h. To leading order, ξs = 12, by Theo-
rem 7.52 (iii). To find the next order in the expansion of ξs one substitutes
ξs = 12 +A/x+O(x−2), to obtain

1/h(ξs) =
(A− 109/10)2

123x2
+O(1/x3)

whence A = 109/10 (because 1/h is analytic at ξs) and we have

ξs = 12 +
109
10x

+O(x−2) (7.67)

Given a solution h, its constant C in ξ for which (7.64) holds can be cal-
culated from asymptotic information in any direction above the real line by
near least term truncation, namely

C = lim
x→∞

arg(x)=φ

exp(x)x1/2

h(x)−
∑
k≤|x|

h̃0,k

xk

 (7.68)
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0

100
y

–10
x

FIGURE 7.3: Poles of (4.88) for C = −12 (�) and C = 12 (+), calculated
via (7.67). The light circles are on the second line of poles for to C = −12.
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(this is a particular case of much more general formulas [24]) where
∑
k>0 h̃0,kx

−k

is the common asymptotic series of all solutions of (4.88) which are small in
the right half plane.

General comments. 1. The expansion scales, x and x−1/2e−x are crucial.
Only for this choice one obtains an expansion which is valid both in Strans
and near poles of (4.88). For instance, the more general second scale xae−x

introduces logarithmic singularities in Hj , except when a ∈ − 1
2 + Z. With

these logarithmic terms, the two scale expansion would only be valid in an
O(1) region in x, what is sometimes called a “patch at infinity”, instead of
more than a sector. Also, a ∈ − 1

2 − N introduces obligatory singularities at
ξ = 0 precluding the validity of the expansion in Strans. The case a ∈ − 1

2 +N
produces instead an expansion valid in Strans but not near poles. Indeed, the
substitution h(x) = g(x)/xn, n ∈ N has the effect of changing α to α + n in
the normal form. This in turn amounts to restricting the analysis to a region
far away from the poles, and then all Hj will be entire. In general we need
thus to make (by substitutions in (4.220)) a = α minimal compatible with
the assumptions (a1) and (a2), as this ensures the widest region of analysis.

Db The Painlevé equation P2

This equation reads:

y′′ = 2y3 + xy + α (7.69)

(Incidentally, this example also shows that for a given equation distinct solu-
tion manifolds associated to distinct asymptotic behaviors may lead to differ-
ent normalizations.) After the change of variables

x = (3t/2)2/3; y(x) = x−1(t h(t)− α)

one obtains the normal form equation

h′′ +
h′

t
−
(

1 +
24α2 + 1

9t2

)
h− 8

9
h3 +

8α
3t
h2 +

8(α3 − α)
9t3

= 0 (7.70)

and

λ1 = 1, α1 = −1/2; ξ =
e−t√
t

; ξ2F ′′0 + ξF ′0 = F0 +
8
9
F 3

0

The initial condition is (always): F0 analytic at 0 and F ′0(0) = 1. This implies

F0(ξ) =
ξ

1− ξ2/9

Distinct normalizations (and sets of solutions) are provided by

x = (At)2/3; y(x) = (At)1/3
(
w(t)−B +

α

2At

)
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if A2 = −9/8, B2 = −1/2. In this case,

w′′ +
w′

t
+ w

(
1 +

3Bα
tA
− 1− 6α2

9t2

)
w

−
(

3B − 3α
2tA

)
w2 + w3 +

1
9t2

(
B(1 + 6α2)− t−1α(α2 − 4)

)
(7.71)

so that

λ1 = 1, α1 = −1
2
− 3

2
Bα

A

implying

ξ2F ′′0 + ξF ′0 − F0 = 3BF 2
0 − F 3

0

and, with the same initial condition as above, we now have

F0 =
2ξ(1 +Bξ)
ξ2 + 2

The first normalization applies for the manifold of solutions such that y ∼
−αx (for α = 0 y is exponentially small and behaves like an Airy function)
while the second one corresponds to y ∼ −B − α

2 x
−3/2.





Chapter 8

Appendix

A Rigorous construction of transseries

Aa Abstracting from §4.2b

1. Let (G, ·,�) be a finitely generated, totally ordered (any two elements
are comparable) abelian group, with generators µ1, µ2, ...µn, such that
� is compatible with the group operations, that is, g1 � g2 and g3 � g4

implies g1g3 � g2g4, and such that 1 � µ1 � · · · � µn. This is the
case when µi are transmonomials of level zero.

2. We write µk = µk := µk1
1 · · ·µknn .

Lemma 8.1 Consider the partial order relation that we introduced be-
fore on Zn, k > m iff ki ≥ mi for all i = 1, 2, ..., n and at least for some
j we have kj > mj. If B ⊂ A = {k ∈ Zn : k ≥ m}, then there is no
infinite nonascending chain in B. That, is there is no infinite sequence
in B, bn 6= bm for n 6= m, and bn+1 6> bn for all n.

Proof. Assume there is an infinite nonascending sequence, {k(m)}m∈N.
Then at least for some i ∈ {1, 2, ..., n} the sequence {ki(m)}m∈N must
have infinitely many distinct elements. Since the ki(m) are bounded
below, then the set {ki(m)}m∈N is unbounded above, and we can extract
a strictly increasing subsequence {ki(ml)}l∈N. We now take the sequence
{k(ml)}l∈N. At least for some j 6= i the set kj(ml) needs to have
infinitely many elements too. Indeed if the sets {kj(ml); j 6= i} are finite,
we can split {k(ml)}l∈N into a finite set of subsequences, in each of which
all kj(ml), j 6= i, are constant while ki is strictly increasing. But every
such subsequence would be strictly decreasing, which is impossible. By
finite induction we can extract a subsequence {k(mt)}t∈N of k(m)}m∈N
in which all kl(mt) are increasing, a contradiction.

Remark. This is a particular, much easier result of Kruskal’s tree
theorem. which we briefly mention here. A relation is well-founded if
and only if it contains no countable infinite descending sequence {xj}∈N
of elements of X such that xn+1Rxn for every n ∈ N. The relation R is a

223
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quasiorder if it is reflexive and transitive. Well-quasi-ordering is a well-
founded quasi-ordering such that that there is no sequence {xj}∈N with
xi 6≤ xj∀i < j. A tree is a collection of vertices in which any two vertices
are connected by exactly one line. J. Kruskal’s tree theorem states that
the set of finite trees over a well-quasi-ordered set is well-quasi-ordered.

3. Exercises. (1) Show that the equation k1 +k2 = l has only finitely many
solutions in the set {k : k ≥m}.
(2) Show that for any l ∈ Rn there can only be finitely many p ∈ N and
kj ∈ Rn, j = 1, ..., p such that k1 + k2 + · · ·kp = l.

Corollary 8.2 For any set B ⊂ A = {k ∈ Zn : k ≥ m} there is a set
B1 = mag(B) with finitely many elements, such that ∀b ∈ B \ B1

there exists b1 ∈ B1 such that b1 < b.

Consider the set of all elements which not greater than other elements
of B, B1 = {b1 ∈ B|b 6= b1 ⇒ b 6> b1}. In particular, no two elements
of B1 can be compared with each-other. But then, by Lemma 8.1 this
set cannot be infinite since it would contain an infinite non-ascending
chain.

Now, if b ∈ B \ B1, then by definition there is a b′ > b in B. If b′ ∈ B1

there is nothing to prove. Otherwise there is a b′′ > b′ in B. Eventually
some b(k) must belong to B1, finishing the proof, otherwise b < b′ < ...
would form an infinite nonascending chain.

Corollary 8.3 For any set B ⊂ A = {k ∈ Zn : k ≥ m} there is a set
Mag(B) with finitely many elements, such that ∀b ∈ B \B1 there exists
b1 ∈ B1 such that b1 < b.

4. For any m ∈ Zn and any set B ⊂ {k|k ≥ m}, the set A = {µk|k ∈ B}
has a largest element with respect to >. Indeed, if such was not the case,
then we would be able to construct an infinitely ascending sequence.

Lemma 8.4 No set of elements of µk ∈ G such that k ≥m can contain
an infinitely ascending chain, that is a sequence of the form

g1 � g2 � · · ·

Proof. For such a sequence, the corresponding k would be strictly
nonascending, in contradiction with Lemma 8.1.

5. It follows that for any m every B ⊂ Am = {g ∈ G|g = µk; k ≥m} is well
ordered (every subset has a largest element) and thus B can be indexed
by ordinals. By this we mean that there exists a set of ordinals Ω (or,
which is the same, an ordinal) which is in one-to-one correspondence
with B and gβ � gβ′ if β > β′.



Appendix 225

6. If A is as in 4, and if g ∈ G has a successor in A, that is, there is a
g̃ ∈ A, g � g̃ then it has an immediate successor, the largest element
in the subset of A consisting of all elements less than g. There may
not be an immediate predecessor though, as is the case of e−x in A1 =
{x−n, n ∈ N}∪{e−x}. Note also that, although e−x has infinitely many
predecessors, there is no infinite ascending chain in A1.

Lemma 8.5 For any g ∈ G, and m ∈ Zn, there exist finitely many
(distinct) k ≥m such that µk = g.

Proof. Assume the contrary. Then for at least one i, say i = 1 there are
infinitely many ki in the set of (k)i such that µk = g. As in Lemma 8.12,
we can extract a strictly increasing subsequence. But then, along it,
µk2

1 · · ·µknn would form an infinite strictly ascending sequence, a contra-
diction.

Proof: Exercise.

7. For any coefficients ck ∈ R, consider the formal multiseries, which we
shall call transseries over G,

T =
∑

k∈Zn;k≥M

ckµk (8.6)

Transseries actually needed in analysis are constructed in the sequel,
with a particular inductive definition of generators µk.

8. More generally a transseries over G is a sum which can be written in
the form (8.6) for some (fixed) n ∈ N and for some some choice of
generators µk, k ∈ Zn.

9. The fact that a transseries s is small does not mean that the correspond-
ing µk have positive k; s could contain terms such as xe−x of x

√
2x−2

etc.). But positiveness can be arranged by a suitable choice of generators
as follows from the next result.

10. Note It is important that a transseries is defined over a set of the form
Am. For instance, in the group G with two generators x−1 and x−

√
2 an

expression of the form ∑
{(m,n)∈Z2|m

√
2+n>0}

x−m
√

2−n (8.7)

is not acceptable. The behavior of a function whose “asymptotic expan-
sion” is given by (8.7) is not at all manifest.
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Exercise 8.8 Consider the numbers the form m
√

2+n, where m,n ∈ Z.
It can be shown, for instance using continued fractions, that one can
choose a subsequence from this set such that sn ↑ 1. Show that

∑
n x
−sn

is not a transseries over any group of monomials of order zero.

Expressions similar to the one in the exercise do appear in some problems
in discrete dynamics. The very fact that transseries are closed under
many operations, including solutions of ODEs, shows that such functions
are “highly transcendental”.

11. Given m ∈ Zn and g ∈ G, the set Sg = {k|µk = g} contains, by
Lemma 8.5 finitely many elements (possibly none). Thus the constant
d(g) =

∑
k∈Sg ck is well defined. By 4 there is a largest g = g1 in the

set {µk|d(g) 6= 0}, unless all coefficients are zero. We call this g1 the
magnitude of T , g1 = mag(T ), and we write dom(T ) = d(g1)g1 = d1g1.

12. By 5, the set {g = µk|k ≥m} can be indexed by ordinals, and we write

T =
∑
β∈Ω

dβgβ (8.9)

where gβ � gβ′ if β > β′. By convention, the first element in (8.9),
d1g1 6= 0.

Convention. To simplify the notation and terminology, we will say,
with some abuse of language, that a group element gβ appearing in
(8.9) belongs to T .

Whenever convenient, we can also select the elements of dβgβ in T with
nonzero coefficients. As a subset of a well ordered set, it is well ordered
too, by a set of ordinals Ω̃ ⊂ Ω and write

T =
∑
β∈Ω̃

dβgβ (8.10)

where all dβ are nonzero.

13. Notation To simplify the exposition we will denote by Am the set
{µk|k ≥m}, Km = {k|k ≥m} and TAm the set of transseries over Am.

14. Any transseries can be written in the form

T = L+ c+ s =
∑

β∈Ω;gβ�1

dβgβ + c+
∑

β∈Ω;gβ�1

dβgβ (8.11)

where L is called a purely large transseries, c is a constant and s is called
a small transseries.

Note that L, c and s are transseries since, for instance, the set {β ∈
Ω; gβ � 1} is a subset of ordinals, thus an ordinal itself.
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Lemma 8.12 If G is finitely generated, if Am ⊂ G and s is a small
transseries over Am we can always assume, for an n ≥ n′ that the
generators νk, k ∈ Zn′ are such that for all νk′ ∈ s we have k′ > 0.

s =
∑
k≥m

µkck =
∑
β∈Ω̃

dβgβ =
∑
k′>0

νk′c
′
k′ (8.13)

Proof. In the first sum on the left side we can retain only the set of
indices I such that k ∈ I ⇒ µk = gβ has nonzero coefficient dβ . In
particular, since all gβ � 1, we have µk � 1 ∀k ∈ I. Let I1 = Mag(I).
We adjoin to the generators of G all the νk′ = µk with k′ ∈ I1. The new
set of generators is still finite and for all k ∈ I there is a k′ ∈ Mag(I)
such that k ≥ k′ and µk can be written in the form ν1

k′µl where all
l ≥ 0.

Remark. After the construction, generally, there will be nontrivial
relations between the generators. But nowhere do we assume that gen-
erators are relation-free, so this creates no difficulty.

15. An algebra over G can be defined as follows. Let A and Ã be well or-
dered sets in Ω. The set of pairs (β, β̃) ∈ A× Ã is well ordered (check!).
For every g, the equation gβ · gβ̃ = g has finitely many solutions. In-
deed, otherwise there would be an infinite sequence of gβ which cannot
be ascending, thus there is a subsequence of them which is strictly de-
scending. But then, along that sequence, gβ̃ would be strictly ascending;
then the set of corresponding ordinals β̃ would form an infinite strictly
descending chain, which is impossible. Thus, in

T · T̃ :=
∑

γ∈A×Ã

gγ
∑

gβ ·gβ̃=gγ

dβdβ̃ (8.14)

the inner sum contains finitely many terms.

16. We denote be TG the algebra of transseries over G. TG is a commutative
algebra with respect to (+, ·). We will see in the sequel that TG is in
fact a field. We make it an ordered algebra by writing

T1 � T2 ⇔ mag(T1)� mag(T2) (8.15)

and writing
T > 0⇔ dom(T ) > 0 (8.16)

17. Product form. With the convention dom(0) = 0, any transseries can
be written in the form

T = dom(T )(1 + s) (8.17)

where s is small (check).
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18. Embeddings. If G1 ⊂ G, we write that TG1 ⊂ TG in the natural way.

19. Topology on TG . We consider a sequence of transseries over a common
set Am of elements of G, indexed by the ordinal Ω.

{T [j]}j∈N; T [j] =
∑
β∈β

d
[j]
β g

[j]
β

Definition. We say that T [j] → 0 as j →∞ if for any β ∈ Ω there is a
j(β) such that the coefficient d[j]

β = 0 for all if j > j(β).

Thus the transseries T [j] must be eventually depleted of all coefficients.
This aspect is very important. The mere fact that dom(S) → 0 does
not suffice. Indeed the sequence

∑
k>j x

−k + je−x, though “rapidly
decreasing” is not convergent according to the definition, and probably
should not be considered convergent in any reasonable topology.

20. Equivalently, the sequence T [j] → 0 is convergent if there is a represen-
tation such that

T [j] =
∑
k≥m

c
[j]
k µk (8.18)

and in the sum µk = g has only one solution (we know that such a
choice is possible), and min{|k1|+ · · ·+ |kn| : c[j]k 6= 0} → 0 as j →∞.

21. Let µ1, ..., µn be any generators for G, m ∈ Zd, as in 5 and Tj ∈ TAm

a sequence of transseries. Let Nj := min{k1 + ... + kn|µp1
1 · · ·µpnn ∈

Tj}. Note that we can write min since, by Lemma 8.1, the minimum
value is attained (check this!). If Nj → ∞ then Tj → 0. Indeed, if
this was not the case, then there would exist a gβ such that gβ ∈ Tj
with dβ 6= 0 for infinitely many j. Since Nj → ∞ there is a sequence
µk ∈ Am such that k1 + ... + kn → ∞ and µk = gβ . This would yield
an infinite set of solutions of µk = gβ in Am, which is not possible. The
function max{e−|k1|+···+|kn| :

∑
µk=g ck 6= 0} is a semimetric (it satisfies

all properties of the metric except the triangle inequality) which induces
the same topology.

More generally, transseries are a subset of functions f defined on G with
real values and for which there exists a k0(f) = k0 such that f(gk) = 0
for all k < k0. On these functions we can define a topology by writing
f [j] → 0 if there exists k0(f [j]) does not depend on j and for any gβ
there is an N we have f [n](gβ) = 0 for all n > N and such . The first
restriction is imposed to disallow, say, the convergence of xn to zero,
which would not be compatible with a good structure of transseries.
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22. This topology is metrizable. For example we can proceed as follows.
Let Am be the common set over which the transseries are defined. The
elements of G are countable. We choose any counting on Am. We then
identify transseries over Am with the space F of real-valued functions
defined on the natural numbers. We define d(f, g) = 1/n where n is
the least integer such that f(n) 6= g(n) and d(f, f) = 0. The only
property that needs to be checked is the triangle inequality. Let h ∈ F .
If d(g, h) ≥ 1/n, then clearly d(f, g) ≤ d(f, h) + d(h, g). If d(g, h) < 1/n
then d(f, h) = 1/n and the inequality holds too.

23. The topology cannot come from a norm, since in general anµ 6→ 0 as
an → 0.

24. We also note that the topology is not compatible with the order relation.
For example sn = x−n + e−x → e−x as n → ∞, sn � e−

√
x for all n

while e−x 6� e−
√
x. The same argument shows that there is no distance

compatible with the order relation.

25. In some sense, there is no “good” topology compatible with the order
relation �. Indeed, if there was one, then the sequences sn = x−n and
tn = x−n + e−x which are interlaced in the order relation should have
the same limit, but then addition would be discontinuous1.

26. Giving up compatibility with asymptotic order allows us to ensure con-
tinuity of most operations of interest.

Exercise. Show that a Cauchy sequence in TAm , is convergent, and TAm

is a topological algebra.

27. If G is finitely generated, then for any small transseries

s =
∑

β∈Ω:gβ�1

dβgβ (8.19)

we have sj → 0 as j →∞.

Proof. Indeed, by Lemma 8.12 we may assume that the generators of G,
µ1, ..., µn, are chosen such that all k > 0 in s. Let g ∈ G. The terms oc-

curring in the formal sum of sj are of the form const.µ
l11+...+lj1
1 · · ·µl

1
n+···ljn
n

where lsm ≥ 0 and at least one lsj > 0. Therefore l11 + ... + lj1 → ∞ and∑
l=1..M sl → 0 by 21 for any j,M →∞.

As a side remark, finite generation is not needed at this point. More
generally, let A ⊂ G be well ordered. It follows from J. Kruskal’s theorem
that the set Ã ⊃ A of all products of elements of A is also well quasi-
ordered.

1This example was pointed out by G. Edgar.
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Note 8.20 The sum
∑∞
k=0 cks

k might belong to a space of transseries
defined over a larger, but still finite, number of generators. For instance,
if

1
xex + 1

=
1

xex(1 + xe−x)
=
e−x

x

∞∑
j=0

(−1)jxje−jx (8.21)

then the generators of (8.21) can be taken to be x−1, e−x, xe−x but
certainly cannot stay e−x, x−1 since then the power of x−1 would be
unbounded below.

28. In particular if f(µ) :=
∑∞
k=0 ckµ

k is a formal series and s is a small
transseries, then

f(s) :=
∞∑
k=0

cks
k (8.22)

is well defined.

Exercise 8.23 Show that f is continuous, in the sense that s[n] → 0
implies f(s)→ c0.

29. If T1 � T2, T3 � T1 and T4 � T2 then T1 + T3 � T2 + T4. Indeed,
mag(T1 + T3)=mag(T1) and mag(T2 + T4)=mag(T2).

30. It is easily checked that (1 + s) · 1/(1 + s) = 1, where

1
1 + s

:=
∑
j≥0

(−1)jsj (8.24)

More generally we define

(1 + s)a = 1 + a s+
a(a− 1)

2
+ · · ·

31. Writing S = dom(S)(1 + s) we define S−1 = dom(S)−1(1 + s)−1.

32. if µr is defined for a real r (this will be the case for the power-exponential
transseries), then we then adjoin µr to G and define

T r := dr1g
r
1(1 + s)r

33. If µj 7→ µ′j is a “derivation” defined from the generators µj into TG ,
where we assume that derivation is compatible with the relations be-
tween the generators, we can extend it by (g1g2)′ = g′1g2 + g1g

′
2, 1′ = 0

to the whole of G and by linearity to TG ,(∑
k∈Zn

ckµk

)′
=

n∑
j=1

µ′j
∑
k∈Zn

kjckµ
k1
1 · · ·µ

kj−1
j (8.25)
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and the latter sum is a well defined finite sum of transseries.

Exercise. Show that with these operations, TG is a differential field.

34. If s is a small series, we define

es =
∑
k≥0

sk

k!
(8.26)

Exercise. Show that es has the usual properties with respect to multipli-
cation and differentiation.

35. Transseries are limits of finite sums. We let m ∈ Zn and Mp =
(p, p, ..., p) ∈ Nn. Note that

Tp :=
∑

gβ=µk;m≤k≤Mp;β∈Ω

dβgβ →
p→∞

∑
β∈Ω

dβgβ

Indeed, it can be checked that d(Tp, T )→ 0 as p→∞.

36. More generally, let G be finitely generated and k0 ∈ Z. Assume sk → 0
as k→∞. Then, for any sequence of real numbers ck, the sequence∑

k0≤k≤Mp

cksk (8.27)

where Mp = (p, ..., p), p ∈ N is Cauchy and the limit

lim
p→∞

∑
k0≤k≤Mp

cksk (8.28)

is well defined. In particular, for a given transseries

T / s =
∑

dksk (8.29)

we define the transcomposition

T / s =
∑
k≥k0

dksk (8.30)

37. As an example of transcomposition, we see that transseries are closed
under right pseudo-composition with large (not necessarily purely large)
transseries T = Ti; i = 1, 2, ..., n by

T1(1/T) =
∑
k≥m

ckT−k (8.31)
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if
T1 =

∑
k≥m

ckµ
k

(cf. 27) We should mention that at this level of abstractness pseudo-
composition may not behave as a composition, for instance it may not
be compatible with chain rule in differentiation.

38. Contractive operators Contractivity is usually defined in relation to
a metric, but given a topology, contractivity depends on the metric
while convergence does not. There is apparently no natural metric on
transseries.

Definition 8.32 Let first J be a linear operator from TAm or from one
of its subspaces, to Ak,

JT = J
∑
k≥m

ckµk =
∑
k≥m

ckJµk (8.33)

Then J is called asymptotically contractive on Ãm if

Jµj =
∑
p>0

cpµj+p (8.34)

Remark 8.35 Contractivity depends on the set of generators.

Remark 8.36 It can be checked that contractivity holds if

Jµj =
∑
p>0

cpµj+p(1 + sj) (8.37)

where sj are small transseries.

Exercise 8.38 Check that for any µj we have

sup
p>0

n+p∑
k=n

Jkµj → 0

as n→∞.

We then have
JT =

∑
k≥m

Jµk (8.39)
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Definition 8.40 The linear or nonlinear operator J is (asymptotically)
contractive in the set A ⊂ Am if J : A 7→ A and the following condition
holds. Let T1 and T2 in A be arbitrary and let

T1 − T2 =
∑
k≥m

ckµk (8.41)

Then

J(T1)− J(T2) =
∑
k≥m

c′kµk+pk
(1 + sk) (8.42)

where pk > 0 and sk are small.

Remark 8.43 The sum of asymptotically contractive operators is con-
tractive; the composition of contractive operators, whenever defined, is
contractive.

Theorem 8.44 (i) If J is linear and contractive on TAm then for any
T0 ∈ TAm the fixed point equation T = JT + T0 has a unique solution
T ∈ TAm .

(ii) In general, if A ⊂ Am is closed and J : A 7→ A is a (linear or non-
linear) contractive operator on A, then T = J(T ) has a unique solution
is A.

PROOF For (ii) we define the sequence Tn+1 = J(Tn) is convergent
since for some coefficients cj,k we have

Jq(T )− J(T ) =
∑
k≥m

cj,kµk+qpk
→ 0

as q →∞. Uniqueness is immediate.

39. When working with transseries we often encounter this fixed point prob-
lem in the form X = Y +N (X), where Y is given, X is the unknown
Y is given, and N is “small”.

Exercise. Show the existence of a unique inverse of (1 + s) where s is a
small transseries, by showing that the equation T = 1−sT is contractive.

40. For example ∂ is contractive on transseries of level zero. This is clear
since in every monomial the power of x decreases by one. But note that
∂ is not contractive anymore if we add “terms beyond all orders”, e.g.,
(e−x

2
)′ = −2xe−x

2 � e−x
2
.
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We cannot expect any contractivity of ∂ in general, since if y1 is the
level zero solution of T = 1/x− T ′ then T + Ce−x is a solution for any
C so uniqueness fails.

This is one reason the WKB method works near irregular singularities,
where exponential behavior is likely, and naive approximations don’t.

41. We take the union

T =
⋃
G
TG

with the natural embeddings. It can be easily checked that T is a
differential field too. The topology is that of inductive limit, namely a
sequence of transseries converges if they all belong to some TG and they
converge there.

42. One can check that algebraic operations, exponentiation, composition
with functions for which composition is defined, are continuous wherever
the functions are “C∞”.

Exercise 8.45 Let T ∈ Am. Show that the set {T1 ∈ Am|T1 � T} is closed.

Ab General logarithmic-free transseries

Ac Assumption on the inductive step

1. We have already constructed transseries of level zero. Transseries of any
level are constructed inductively, level by level.

Since we have already studied the properties of abstract multiseries, the
construction is relatively simple, all we have to do is essentially watch
for consistency of the definitions at each level.

2. Assume finitely generated transseries of level at most n have already
been constructed. We assume a number of properties, and then build
level n+ 1 transseries and show that these properties are conserved.

(a) Transmonomials µj of order at most N are totally ordered, with
respect to two order relations, � and <. Multiplication is defined
on the transmonomials, it is commutative and compatible with the
order relations.

(b) For a set of n small transmonomials, a transseries of level at most
N is defined as expression of the form (8.6).
It follows that the set {g = µk|k ≥ m} can be indexed by or-
dinals, and we can write the transseries in the form (8.9). The
decomposition 8.11 then applies.
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It also follows that two transseries are equal iff their corresponding
dβ coincide.
The ordering relation on transseries of level N is defined as before,
T � 1 if, by definition g1 � 1 and T > 0 iff d1 > 0.
Transseries of level at most N are defined as the union of all TAm

where Am is as before.

(c) A transmonomial or order at most N is of the form xaeL where L
is a purely large or null transseries of level N −1, and eL is defined
recursively. There are no transseries of level −1, so for N = 1 we
take L = 0.
Exercise. Show that any transmonomial is of the form xaeL1eL2 · · · eLj
where Lj are of order exactly j meaning that they are of order j
but not of lower order.

(d) For any transmonomial, (xaeL)r is defined as xarerL where the
ingredients have already been defined. It may be a adjoined to
the generators of G and then, as in the previous section, T r is well
defined.

(e) By definition, xaeL = eLxa and xa1eL1xa2eL2 = xa1+a2eL1+L2 .
Furthermore eL1 � xaeL2 for any a if L1 > 0 is a purely large
transseries of level strictly higher than the level of L2.

(f) There is a differentiation with the usual properties on the gener-
ators, compatible with the group structure and equivalences. We
have (xaeL)′ = axa−1xL+xaL′eL where L′ is a (finitely generated)
transseries of level at most N − 1.
We define

T ′ =
∑

k∈Zn;k≥M

ck
[
(x−k·α)′e−L·β + x−k·α(e−L·β)′

]
(8.46)

where, according to the definition of differentiation, (8.46) is a finite
sum of products of transseries of level at most N .
We have T ′ = 0 iff T = const. If dom(T1,2) 6= const., then T1 � T2

implies T ′1 � T ′2.

3. It can be checked by induction that T > 0, T � 1 implies T ′ > 0. In
this sense, differentiation is compatible with the order relations.

4. It can then be checked that differentiation has the usual properties.

5. if c is a constant, then ec is a constant, the usual exponential of c, and
if L+ c+ s is the decomposition of a transseries of level N − 1 we write
eL+c+s = eLeces where es is reexpanded according to formula (8.26) and
the result is a transseries of level N .
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We convene to write eT , for any T transseries of level at most N only
in this reexpanded form.

Then it is always the case that eT = T1e
L2 where T1 and L2 are

transseries of level N − 1 and L2 is purely large or zero. The transseries
eT is finitely generated, with generators e−L1 , if L1 > 0 or eL1 other-
wise, together with all the generators of L1.

Sometimes it is convenient to adjoin to the generators of T all the gen-
erators in the exponents of the transmonomials in T , and then the gen-
erators in exponents in the exponents of the transmonomials in T etc.
Of course, this process is finite, and we end up with a finite number of
generators, which we will call the complete set of generators of T .

6. This defines the exponential of any transseries of level at most N − 1
if L 6= 0 and the exponential of any transseries of level at most N if
L = 0. We can check that eT1 = eT2 iff T1 = T2.

7. If all transseries of level N are written in the canonical form (8.9)
then T1 = T2 iff all gβ at all levels have exactly the same coefficients.
Transseries, in this way, have a unique representation in a strong sense.

8. The space of transseries of level N , T [N ], is defined as the union of all
spaces of transseries over finitely generated groups of transmonomials
of level N .

T [N ] =
⋃
GN

TGN

with the inductive limit topology.

9. The abstract theory of transseries we have developed in the previous
section applies. In particular the definition 1/(1 − s) =

∑
j s
j 1/T =

1/ dom(T )(1 + s)−1 and transseries of level N form a differential field
closed under the contractive mappings.

10. Note that transseries of order N are closed under the contractive map-
ping principle.

Ad Passing from step N to step N + 1

1. We now proceed in defining transseries of level at most N + 1. We have
to check that the construction preserves the properties in §Ac .

2. For any purely large transseries of level N we define xaeL to equal the
already defined transmonomial of order N . If L is a (finitely generated)
purely large transseries of level exactly N we define a new primitive
object, xaeL, a transmonomial of order N + 1, with the properties

(a) e0 = 1.
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(b) xaeL = eLxa.

(c) xa1eL1xa2eL2 = xa1+a2eL1+L2 .

(d) If L > 0 is a purely large transseries of level exactly N then we
have eL � xa for any a.
Exercise. Show that if L1 and L1 are purely large transseries and
the level of L1 strictly exceeds the level of L2, then eL1 � xaeL2

for any a.

Note that L1 ± L2 may be of lower level but it is either purely large or
else zero; L1L2 is purely large.

Note 8.47 At this stage, no meaning is given to eL, or even to ex; they
are treated as primitives. There are possibly many models of this con-
struction. We will interpret many of them later by finding an extended
isomorphism between a family of transseries and a set of functions. Then
ex would correspond to the usual exponential, convergent multiseries
will correspond to their sums etc. Finite generation would play a role
throughout that process, and “good” transseries come as solutions of
well defined classes of problems, with “coefficients“ which are them-
selves “good” transseries. We will have (1− 1/x)−1 =

∑
j x
−j but also

selected divergent series will have a meaning, e.g. ex
∑∞
k=0 n!/xn+1 =

PV
∫ x
−∞ t−1etdt The latter transseries, and its associated sum solve

f ′+ f = 1/x. But it is not to be expected to have a summation process
that applies to all series.

3. If α > 0 and L is a positive transseries of level N we define a generator of
order N to be µ = x−αe−L. We choose a number of generators µ1, ..., µn,
and define the abelian multiplicative group generated by them, with the
multiplication rule just defined. We can check that G is a totally ordered,
of course finitely generated, abelian group, and that the order relation
is compatible with the group structure.

4. We can now define transseries over G = G[N+1] as in §A.

5. We define transseries of order N + 1 to be the union over all TG[N+1] ,
with the natural embeddings. We denote these transseries by T [N+1].

6. Compatibility of differentiation with the order relation. We have already
assumed that this is the case for transseries of level at most N . (i) We
first show that it holds for transmonomials of level N+1. If L1−L2 is a
positive transseries, then (xaeL1)′ � (xbeL2)′ follows directly from the
formula of differentiation, the fact that eL1−L2 is large and the induction
hypothesis. If L1 = L2 then a > b and the property follows from the
fact that L1 is either zero, or else L � xβ for some β > 0 for some
positive β (check!).
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(ii) For the general case we note that∑
β

dβµβ

′ =
∑
β

dβµ
′
β

and µ′β1
� µ′β2

if β1 > β2. Then dom(T )′ = ( dom(T ))′ and the prop-
erty follows.

7. Differentiation is continuous. Indeed, if T [m] → 0,

T [m] =
∑
k≥m

c
[m]
k xk·ae−k·L → 0 as m→∞

where the transseries L1, ..., Ln are purely large, then

(T [m])′ =
1
x

∑
k≥m

(k · a c[m]
k )xk·ae−k·L−L′ ·

∑
k≥m

(kc[m]
k )xk·ae−k·L

and the rest follows from continuity of multiplication and the definition
of convergence.

8. Therefore, if a property of differentiation holds for finite sums of trans-
monomials, then it holds for transseries.

9. By direct calculation, if µ1, µ2 are transmonomials of order N + 1 then
(µ1µ2)′= µ′1µ2 + µ1µ

′
2. Then, one can check by usual induction, the

product rule holds for finite sums of transmonomials. Using 8 the prod-
uct rule follows for general transseries.

Ad .1 Composition

10. Composition to the right with a large (not necessarily purely large)
transseries T of level m is defined as follows.

The power of a transseries T = xaeL(1+s) is defined by T p = xapepL(1+
s)p, where the last expression is well defined and (T p)′ = pT ′T p−1

(check).

The exponential of a transseries is defined, inductively, in the following
way.

T = L+ c+ s⇒ eT = eLeces = SeLec (8.48)

where S is given in (8.26).

A general exponential-free transseries of level zero has the form

T0 =
∑
k≥m

ckx
−k·α (8.49)
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where (α1, ..., αn) ∈ R+n for some n.

Then we take T = (Tα1 , ..., Tαn) and define T0(1/T ) by (8.31); T0(1/T )
has level m. If the sum (8.49) contains finitely many terms, it is clear
that [T0(1/T )]′ = T ′0(1/T )T ′. By continuity, this is true for a general
T0 of level zero.

11. Assume that composition with T has been defined for all transseries of
level N . It is assumed that this composition is a transseries of level
N + m. Then L(T ) = L1 + c1 + s1 (it is easily seen that L(T ) is not
necessarily purely large). Then

(xaeL) ◦ (T ) := T aeL(T ) = xb(1 + s1(T ))eL1(T ) (8.50)

where L1(T ) is purely large. Since L1 has level N+m, then (xaeL)◦(T )
has level N +m+ 1. We have (eL1)′ = L′1e

L1 and the chain rule follows
by induction and from the sum and product rules.

Exercise 8.51 If T [n] is a sequence of transseries, then eT
[n]

is a not
necessarily a valid sequence of transseries. But if it is, then there is
an L0 such that L[n] = L0 for all large n. If eT

[n]
is a sequence of

transseries and T [n] → 0, then eT
[n] → 1.

12. The exponential is continuous. This follows from the Exercise 8.51 and
Exercise 8.23.

13. Take now a general transseries of level N + 1 and write T = xaeL(1 + s)

t =
∑
k≥m

x−k·αe−k·l (8.52)

Then t(T ) is well defined as the limit of the following finite sum with
generators x−|aαj |, x−αje−lj(T ), e−lj(T ); , j = 1, ..., n:

t(T ) =
∑

Mp≥k≥m

x−a(k·α)e−k·l1(T )(1 + s(T )) (8.53)

14. The chain rule holds by continuity.

15. The general theory we developed in §A applies and guarantees that the
properties listed in §Ac hold (check!).

Ad .2 Small transseries as infinitesimals; expansions beyond
all orders

16. Let T be a transseries of level N over G and dx a small transseries with
dominance e−L where L is a positive large transseries of level N + p,
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p > 0. Then (T (x + dx) − T (x))/dx = T ′(x) + s(T ) where s(T ) is a
small transseries of level N + p.
The proof is by induction on the level. By linearity and continuity it is
enough to prove the statement for transmonomials. We have

(x+ dx)ae−L1(x+dx) = xa(1 + dx/x)aeL1(x)+L′1(x)dx+s(L)

where L′1dx is a small transseries (since L1e
−L is small) and s(L1) is of

level N + p. The claim follows after reexpansion of the two terms in the
product. Note that dx must be far less than all terms in T ; dx � 1 is
not enough.

Exercise 8.54 Show that, under the same assumptions that

T (x+ dx) =
∞∑
j=0

T (n)(x)
dxn

n!
(8.55)

In this sense, transseries behave like analytic functions.

Ad .3 An inequality helpful in WKB analysis.

Proposition 8.56 If L � 1 then L′′ � (L′)2 (or, which is the same, L′ �
L2).

PROOF If L = xaeL1 where L1 6= 0 then L1 is purely large, then the
dominance of L′ is of the form xbeL1 , whereas the dominance of L is of the
form xae2L1 and the property is obvious. If L1 = 0 the property is obvious as
well.

In WKB analysis this result is mostly used in the form (8.58 below.

Exercise 8.57 Show that if T � 1, T positive or negative, we have

dom[(eT )(n)] = dom[(T ′)neT ] (8.58)

Ae General logarithmic-free transseries

These are simply defined as

Te =
⋃
N∈N
T [N ] (8.59)

with the natural embeddings.
The general theory we developed in §A applies to Te as well. Since any

transseries belongs to some level, any finite number of them share some level.
There are no operations defined which involve infinitely many levels, because
they would involve infinitely many generators. Then, the properties listed in
§Ac hold in Te (check!).
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Af Écalle’s notation

• —small transmonomial.

• —large transmonomial.

• —any transmonomial, large or small.

• —small transseries.

• —large transseries.

• —any transseries, small or large.

Af .1 Further properties of transseries

Definition. The level l(T ) of T is n if T ∈ T [n] and T 6∈ T [n−1].

Af .2 Further properties of differentiation

We denote D = d
dx

Corollary 8.60 We have DT = 0 ⇐⇒ T = Const.

PROOF We have to show that if T = L + s 6= 0 then T ′ 6= 0. If L 6= 0
then for some β > 0 we have L+ s� xβ + s and then L′ + s′ � xβ−1 6= 0. If
instead L = 0 then (1/T ) = L1 + s1 + c and we see that (L1 + s1)′ = 0 which,
by the above, implies L1 = 0 which gives 1/s = s1, a contradiction.

Proposition 8.61 Assume T = L or T = s. Then:
(i) If l( mag(T )) ≥ 1 then l( mag(T−1T ′)) < l( mag(T )).
(ii) dom(T ′) = dom(T )′(1 + s).

PROOF Straightforward induction.

Af .3 Transseries with complex coefficients

Complex transseries TC are constructed in a similar way as real transseries,
replacing everywhere L1 > L2 by <L1 > <L2. Thus there is only one order
relation in TC, �. Difficulties arise when exponentiating transseries whose
dominant term is imaginary. Operations with complex transseries are then
limited. We will only use complex transseries in contexts that will prevent
these difficulties.

Af .4 Differential systems in Te
The theory of differential equations in Te is similar in many ways to the

corresponding theory for functions.
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Example. The general solution of the differential equation

f ′ + f = 1/x (8.62)

in Te (for x→ +∞) is T (x;C) =
∑∞
k=0 k!x−k + Ce−x = T (x; 0) + Ce−x.

The particular solution T (x; 0) is the unique solution of the equation f =
1/x−Df which is manifestly contractive in the space of level zero transseries.

Indeed, the fact that T (x;C) is a solution follows immediately from the
definition of the operations in Te and the fact that e−x is a solution of the
homogeneous equation.

To show uniqueness, assume T1 satisfies (8.62). Then T2 = T1 − T (x; 0) is
a solution of DT + T = 0. Then T2 = exT satisfies DT2 = 0 i.e., T2 = Const.

Ag The space T of general transseries

We define

logn(x) = log log ... log(x)︸ ︷︷ ︸
n times

(8.63)

expn(x) = exp exp ... exp(x)︸ ︷︷ ︸
n times

(8.64)

(8.65)

with the convention exp0(x) = log0(x) = x.
We write exp(log x) = x and then any log-free transseries can be written as
T (x) = T ◦ expn(logn(x)). This defines right composition with logn in this
trivial case, as T1 ◦ logn(x)) = (T ◦ expn) ◦ logn(x) := T (x).

More generally, we define T , the space of general transseries , as a set of
formal compositions

T = {T ◦ logn : T ∈ Te}

with the algebraic operations and inequalities (symbolized below by �) inher-

ited from
≈
T by

(T1 ◦ logn)� (T2 ◦ logn+k) = [(T1 ◦ expk)� T2] ◦ logn+k (8.66)

and using (8.66), differentiation is defined by

D(T ◦ logn) = x−1

[
(
n−1∏
k=1

logk)−1

]
(DT ) ◦ logn
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Proposition 8.67 T is an ordered differential field, closed under restricted
composition.

PROOF Exercise.

The logarithm of a transseries. This is defined by first considering the case
when T ∈ Te and then taking right composition with iterated logs.

If T = cmag(T )(1 + s) = cxaeL(1 + s) then we define

log(T ) = log( mag(T ))+log c+log(1+s) = a log x+L+log c+log(1+s) (8.68)

where log c is the usual log, log(1 + s) is defined by expansion which we know
is well defined on small transseries.

1. If L� 1 is large, then logL� 1 and if s� 1, then log s� 1.

Ag .1 Restricted composition

Proposition 8.69 T is closed under integration.

PROOF The idea behind the construction of D−1 is the following: we
first find an invertible operator J which is to leading order D−1; then the
equation for the correction will be contractive. Let T =

∑
k≥k0

µk ◦ logn. To
unify the treatment, it is convenient to use the identity∫

x

T (s)ds =
∫

logn+2(x)

(
T ◦ expn+2

)
(t)

∏
j≤n+1

expj(t)dt =
∫

logn+2(x)

T1(t)dt

where the last integrand, T1(t) is a log-free transseries and moreover

T1(t) =
∑
k≥k0

ckµ
k1
1 · · ·µ

kM
M =

∑
k≥k0

cke
−k1L1−...−kMLM

The case k = 0 is trivial and it thus suffices to find ∂−1e±L, where n = l(L) ≥
1 where L > 0. We analyse the case ∂−1e±L, the other one being similar.
Then L � xm for any m and thus also ∂L � xm for all m. Therefore, since
∂e−L = −(∂L)e−L we expect that dom(∂−1e−L) = −(∂L)−1e−L and we look
for a ∆ so that

∂−1e−L = −e
−L

∂L
(1 + ∆) (8.70)

Then ∆ should satisfy the equation

∆ = − ∂2L

(∂L)2
− ∂2L

(∂L)2
∆ + (∂L)−1∂∆ (8.71)

Since s1 = 1/L′ and s2 = L′′/(L′)2 are small, by Lemma 8.12, there is a set
of generators in which all the magnitudes of s1,2 are of the form µk with k > 0.
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By Proposition 8.56 and Exercise 8.45, (8.71) is contractive and has a unique
solution in the space of transseries with the complete set of generators of L
and x−1 and ∆� L and the generators constructed above. For the last term,
note that if ∆ =

∑
cωe
−Lω and L = eL1 , then ∆′/L′ =

∑
cωL

′
ωe
−Lωe−L1

and L′ωe
−L = µω � 1.

1. Since the equation is contractive, it follows that mag(∆) = mag(L′′/L′2).

In the following we also use the notation ∂T = T ′ and we write P for the
antiderivative ∂−1 constructed above.

Proposition 8.72 P is an antiderivative without constant terms, i.e,

PT = L+ s

PROOF This follows from the fact that Pe−L � 1 while P (eL) is purely
large, since all small terms are of lower level. Check!

Proposition 8.73 We have

P(T1 + T2) = PT1 + PT2

(PT )′ = T ; PT ′ = T0

P(T1T
′
2) = (T1T2)0 − P(T ′1T2)

T1 � T2 =⇒ PT1 � PT2

T > 0 and T � 1 =⇒ PT > 0
(8.74)

where

T =
∑
k≥k0

ckµ
k =⇒ T0 =

∑
k≥k0;k6=0

ckµ
k

PROOF Exercise.

There exists only one P with the properties (8.74), for any two would differ
by a constant.

Remark 8.75 Let s0 ∈ T . The operators defined by

J1(T ) = P(e−x(Const.+ s0)T (x)) (8.76)

J2(T ) = e±xxσP(x−2x−σe∓x(Const.+ s0)T (x)) (8.77)

are contractive on T .
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PROOF For (8.76) it is enough to show contractivity of P(e−x·). If we
assume the contrary, that T ′ 6� Te−x it follows that log T 6� 1. We know
that if log T is small then mag(T ) = c, c constant. But if mag(T ) = c then
the property is immediate. The proof of (8.76) is very similar.

B The C∗–algebra D′m,ν
Let D be the space of test functions (compactly supported C∞ functions on
(0,∞)) and D(0, x) be the test functions on (0, x).

We say that f ∈ D′ is a staircase distribution if for any k = 0, 1, 2, ... there
is an L1 function on [0, k+1] so that f = F

(km)
k (in the sense of distributions)

when restricted to D(0, k + 1) or

Fk := Pmkf ∈ L1(0, k + 1) (8.78)

(since f ∈ L1
loc[0, 1−ε] and Pf is well defined, [20]). With this choice we have

Fk+1 = PmFk on [0, k] and F
(j)
k (0) = 0 for j ≤ mk − 1 (8.79)

We denote these distributions byD′m (D′m(0, k) respectively, when restricted
to D(0, k)) and observe that

⋃
m>0D′m ⊃ S′, the distributions of slow growth.

The inclusion is strict since any element of S′ is of finite order.
Let f ∈ L1. Taking F = Pjf ∈ Cj we have, by integration by parts and

noting that the boundary terms vanish,

(F ∗ F )(p) =
∫ p

0

F (s)F (p− s)ds =
∫ p

0

F (j)(s)PjF (p− s) (8.80)

so that F ∗ F ∈ C2j and

(F ∗ F )(2j) = f ∗ f (8.81)

This motivates the following definition: for f, f̃ ∈ D′m let

f ∗ f̃ := (Fk ∗ F̃k)(2km) in D′(0, k + 1) (8.82)

We first check that the definition is consistent in the sense that

(Fk+1 ∗ Fk+1)(2m(k+1)) = (Fk ∗ Fk)(2mk)
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on D(0, k+ 1). For p < k+ 1 integrating by parts and using (8.79) we obtain

d2m(k+1)

dp2m(k+1)

∫ p

0

Fk(s)P2mF̃k(p− s)ds =
d2mk

dp2mk

∫ p

0

Fk(s)F̃k(p− s)ds(8.83)

(8.84)

The same argument shows that the definition is compatible with the embed-
ding of D′m in D′m′ with m′ > m. Convolution is commutative and associative:
with f, g, h ∈ D′m and identifying (f ∗ g) and h by the natural inclusion with
elements in D′2m we obtain (f ∗ g) ∗ h = ((F ∗G) ∗H)(4mk) = f ∗ (g ∗ h).

The following staircase decomposition exists in D′m.

Lemma 8.85 . For each f ∈ D′m there is a unique sequence {∆i}i=0,1,.. such
that ∆i ∈ L1(R+), ∆i = ∆iχ[i,i+1] and

f =
∞∑
i=0

∆(mi)
i (8.86)

Also (cf. (8.79)),

Fi =
∑
j≤i

Pm(i−j)∆i on [0, i+ 1) (8.87)

Note that the infinite sum is D′−convergent since for a given test function
only a finite number of distributions are nonzero.

Proof
We start by showing (8.87). For i = 0 we take ∆0 = F0χ[0, 1] (where F0χ[0, 1]
:= φ 7→

∫ 1

0
F0(s)φ(s)ds). Assuming (8.87) holds for i < n we simply note that

∆n := χ[0,n+1]

Fn − ∑
j≤n−1

Pm(n−j)∆j


= χ[0,n+1]

(
Fn − Pm(Fn−1χ[0,n])

)
= χ[n,n+1]

(
Fn − Pm(Fn−1χ[0,n])

)
(8.88)

(with χ[n,∞]Fn defined in the same way as F0χ[0, 1] above) has, by the induc-
tion hypothesis and (8.79) the required properties. Relation (8.86) is immedi-
ate. It remains to show uniqueness. Assuming (8.86) holds for the sequences
∆i, ∆̃i and restricting f to D(0, 1) we see that ∆0 = ∆̃0. Assuming ∆i = ∆̃i

for i < n we then have ∆(mn)
n = ∆̃(mn)

n on D(0, n + 1). It follows ([20]) that
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∆n(x) = ∆̃n(x)+P (x) on [0, n+1) where P is a polynomial (of degree < mn).
Since by definition ∆n(x) = ∆̃n(x) = 0 for x < n we have ∆n = ∆̃n(x).

The expression (8.82) hints to decrease in regularity, but this is not the
case. In fact, we check that the regularity of convolution is not worse than
that of its arguments.

Remark 8.89

(· ∗ ·) : Dn 7→ Dn (8.90)

Since

χ[a,b] ∗ χ[a′,b′] =
(
χ[a,b] ∗ χ[a′,b′]

)
χ[a+a′,b+b′] (8.91)

we have

F ∗ F̃ =
∑

j+k≤bpc

Pm(i−j)∆j ∗ Pm(i−k)∆̃k =
∑

j+k≤bpc

∆j ∗ Pm(2i−j−k)∆̃k

(8.92)

which is manifestly in C2mi−m(j+k)[0, p) ⊂ C2mi−mbpc[0, p).

B .2 Norms on D′m
For f ∈ D′m define

‖f‖ν,m := cm

∞∑
i=0

νim‖∆i‖L1
ν

(8.93)

(the constant cm, immaterial for the moment, is defined in (8.106). When
no confusion is possible we will simply write ‖f‖ν for ‖f‖ν,m and ‖∆‖ν for
‖∆i‖L1

ν
(no other norm is used for the ∆’s). Let D′m,ν be the distributions

in D′m such that ‖f ||ν <∞.

Remark 8.94 ‖ · ‖ν is a norm on D′m,ν .

If ‖f‖ν = 0 for all i, then ∆i = 0 whence f = 0. In view of Lemma 8.85 we
have ‖0‖ν = 0. All the other properties are immediate.

Remark 8.95 D′m,ν is a Banach space. The topology given by ‖·‖ν on D′m,ν
is stronger than the topology inherited from D′.
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Proof. If we let D′m,ν(k, k + 1) be the subset of D′m,ν where all ∆i = 0
except for i = k, with the norm (8.93), we have

D′m,ν =
∞⊕
k=0

D′m,ν(k, k + 1) (8.96)

and we only need to check completeness of each D′m,ν(k, k + 1) which is im-
mediate: on L1[k, k + 1], ‖ · ‖ν is equivalent to the usual L1 norm and thus
if fn ∈ D′m,ν(k, k + 1) is a Cauchy sequence then ∆k,n

Lν→ ∆k (whence weak

convergence) and fn
D′m,ν(k,k+1)
→ f where f = ∆(mk)

k .

Lemma 8.97 The space D′m,ν is a C∗ algebra with respect to convolution.

Proof. Let f, f̃ ∈ D′m,ν with

f =
∞∑
i=0

∆(mi)
i , f̃ =

∞∑
i=0

∆̃(mi)
i

Then

f ∗ f̃ =
∞∑

i,j=0

∆(mi)
i ∗ ∆̃(mj)

j =
∞∑

i,j=0

(
∆i ∗ ∆̃j

)m(i+j)

(8.98)

and the support of ∆i∗∆̃j is in [i+j, i+j+2] i.e. ∆i∗∆̃j = χ[i+j,i+j+2]∆i∗∆̃j .

We first evaluate the norm in D′m,ν of the terms
(

∆i ∗ ∆̃j

)m(i+j)

.

I. Decomposition formula. Let f = F (mk) ∈ D′(R+), where F ∈ L1(R+),
and F is supported in [k, k + 2] i.e., F = χ[k,k+2]F (k ≥ 0). Then f ∈ D′m
and the decomposition of f (cf. (8.86)) has the terms:

∆0 = ∆1 = ... = ∆k−1 = 0 , ∆k = χ[k,k+1]F (8.99)

and

∆k+n = χ[k+n,k+n+1]Gn, where Gn = Pm
(
χ[k+n,∞)Gn−1

)
, G0 = F

(8.100)
Proof of Decomposition Formula. We use first line of (2.98) of the paper

∆j = χ[j,j+1]

(
Fj −

j−1∑
i=0

Pm(j−i)∆i

)
(8.101)

where, in our case, Fk = F, Fk+1 = PmF, ..., Fk+n = PmnF, ....
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The relations (8.99) follow directly from (8.101). Formula (8.100) is shown
by induction on n. For n = 1 we have

∆k+1 = χ[k+1,k+2] (Pm F − Pm∆k)

= χ[k+1,k+2]P
m
(
χ[k,∞)F − χ[k,k+1]F

)
= χ[k+1,k+2]P

m
(
χ[k+1,∞)F

)
Assume (8.100) holds for ∆k+j , j ≤ n−1. Using (8.101), with χ = χ[k+n,k+n+1]

we have

∆k+n = χ

(
PmnF −

n−1∑
i=k

Pm(n−i)∆i

)
= χPm (Gn−1 −∆n−1)

= χPm
(
χ[k+n−1,∞)Gn−1 − χ[k+n−1,k+n]Gn−1

)
= χPm

(
χ[k+n,∞)Gn−1

)
II. Estimating ∆k+n. For f as in I, we have

||∆k+1||ν ≤ ν−m||F ||ν , ||∆k+2||ν ≤ ν−2m||F ||ν (8.102)

and, for n ≥ 3

||∆k+n||ν ≤ e2ν−nν(n− 1)nm−1 1
(nm− 1)!

||F ||ν (8.103)

Proof of estimates of ∆k+n.
(A) Case n = 1.

||∆k+1||ν ≤
∫ k+2

k+1

dt e−νtPm
(
χ[k+1,∞)|F |

)
(t)

=
∫ k+2

k+1

dt e−νt
∫ t

k+1

ds1

∫ s1

k+1

ds2 ...

∫ sm−1

k+1

dsm|F (sm)|

≤
∫ k+2

k+1

dsm|F (sm)|
∫ ∞
sm

dsm−1 ...

∫ ∞
s2

ds1

∫ ∞
s1

dt e−νt

=
∫ k+2

k+1

dsm|F (sm)|e−νsmν−m ≤ ν−m||F ||ν (8.104)

(B) Case n = 2:

||∆k+1||ν ≤
∫ k+3

k+2

dt e−νtPm
(
χ[k+2,∞)P

m
(
χ[k+1,∞)|F |

))
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=
∫ k+3

k+2

dt e−νt
∫ t

k+2

dt1

∫ t1

k+2

dt2 ...

∫ tm−1

k+2

dtm

∫ tm

k+1

ds1

∫ s1

k+1

ds2 ...

∫ sm−1

k+1

dsm|F (sm)|

≤
∫ k+3

k+2

dsm|F (sm)|
∫ ∞
sm

dsm−1 ...

∫ ∞
s2

ds1

∫ ∞
max{s1,k+2}

dtm

∫ ∞
tm

dtm−1 ...

∫ ∞
t1

dt e−νt

=
∫ k+3

k+2

dsm|F (sm)|
∫ ∞
sm

dsm−1 ...

∫ ∞
s2

ds1e
−νmax{s1,k+2}ν−m−1

≤
∫ k+3

k+2

dsm|F (sm)|
∫ ∞
sm

dsm−1 ...

∫ ∞
s3

ds2e
−νs2ν−m−2 =

∫ k+3

k+2

dsm|F (sm)|e−νsmν−2m

(C) Case n ≥ 3. We first estimate G2, ..., Gn:

|G2(t)| ≤ Pm
(
χ[k+2,∞)P

m
(
χ[k+1,∞)|F |

))
(t)

=
∫ t

k+2

dt1

∫ t1

k+2

dt2 ...

∫ tm−1

k+2

dtm

∫ tm

k+1

ds1

∫ s1

k+1

ds2 ...

∫ sm−1

k+1

dsm|F (sm)|

and using the inequality

|F (sm)| = |F (sm)|χ[k,k+2](sm) ≤ |F (sm)|e−νsmeν(k+2)

we get

|G2(t)| ≤ eν(k+2)||F ||ν
∫ t

k+1

dt1

∫ t1

k+1

dt2 ...

∫ tm−1

k+1

dtm

∫ tm

k+1

ds1

∫ s1

k+1

ds2 ...

∫ sm−2

k+1

dsm−1

= eν(k+2)||F ||ν(t− k − 1)2m−1 1
(2m− 1)!

The estimate of G2 is used for bounding G3:

|G3(t)| ≤ Pm
(
χ[k+3,∞)|G2|

)
≤ Pm

(
χ[k+1,∞)|G2|

)
≤ eν(k+2)||F ||ν(t− k − 1)3m−1 1

(3m− 1)!

and similarly (by induction)

|Gn(t)| ≤ eν(k+2)||F ||ν(t− k − 1)nm−1 1
(nm− 1)!
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Then

||∆k+n||ν ≤ eν(k+2)||F ||ν
1

(nm− 1)!

∫ k+n+1

k+n

dt e−νt(t− k − 1)nm−1

and, for ν ≥ m the integrand is decreasing, and the inequality (8.103) follows.
III. Final Estimate. Let ν0 > m be fixed. For f as in I, we have for any
ν > ν0,

||f || ≤ cmνkm||F ||ν (8.105)

for some cm, if ν > ν0 > m.
Proof of Final Estimate

||f || =
∑
n≥0

νkm+kn||∆k+n||ν ≤ νkm||F ||ν

3 +
∑
n≥3

νnme2ν−nν (n− 1)nm−1

(nm− 1)!


and, using n− 1 ≤ (mn− 1)/m and a crude Stirling estimate we obtain

||f || ≤ νkm||F ||ν

3 +me2ν−1
∑
n≥3

(
em−ννm/mm

)n ≤ cmνkm||F ||ν (8.106)

Thus (8.105) is proven for ν > ν0 > m.
End of the proof. From (8.98) and (8.105) we get

||f ∗ f̃ || ≤
∞∑

i,j=0

||
(

∆i ∗ ∆̃j

)m(i+j)

||

≤
∞∑

i,j=0

c2mν
m(i+j)||∆i ∗ ∆̃j ||ν ≤ c2m

∞∑
i,j=0

νm(i+j)||∆i||ν ||∆̃j ||ν = c2m||f || ||f̃ ||

Remark 8.107 Let f ∈ D′m,ν for some ν > ν0 where νm0 = eν0 . Then
f ∈ D′m,ν′ for all ν′ > ν and furthermore,

‖f‖ν ↓ 0 as ν ↑ ∞ (8.108)

Proof. We have

νmk
∫ k+1

k

|∆k(s)|e−νsds = (νme−ν)k
∫ 1

0

|∆k(s+ k)|e−νsds (8.109)

which is decreasing in ν. The rest follows from the monotone convergence
theorem.
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B .3 Embedding of L1
ν in D′m

Lemma 8.110 i) Let f ∈ L1
ν0

(cf. Remark 8.107). Then f ∈ D′m,ν for all
ν > ν0.

ii) D(R+\N) ∩ L1
ν(R+) is dense in Dm,ν with respect to the norm ‖‖ν .

Proof.
Note that if for some ν0 we have f ∈ L1

ν0
(R+) then

∫ p

0

|f(s)|ds ≤ eν0p

∫ p

0

|f(s)|e−ν0sds ≤ eν0p‖f‖ν0 (8.111)

to which, application of Pk−1 yields

Pk|f | ≤ ν−k+1
0 eν0p‖f‖ν0 (8.112)

Also, Pχ[n,∞)e
ν0p ≤ ν0

−1χ[n,∞)e
ν0p so that

Pmχ[n,∞)e
ν0p ≤ ν0

−mχ[n,∞)e
ν0p (8.113)

so that, by (8.88) (where now Fn and χ[n,∞]Fn are in L1
loc(0, n+ 1)) we have

for n > 1,

|∆n| ≤ ‖f‖ν0eν0pν0
1−mnχ[n,n+1] (8.114)

Let now ν be large enough. We have

∞∑
n=2

νmn
∫ ∞

0

|∆n|e−νpdp ≤ ν0‖f‖ν0

∞∑
n=2

∫ n+1

n

e−(ν−ν0)p

(
ν

ν0

)p
dp

=
e−2(ν−ν0−ln(ν/ν0))

ν − ν0 − ln(ν/ν0)
ν0‖f‖ν0 (8.115)

For n = 0 we simply have ‖∆0‖ ≤ ‖f‖, while for n = 1 we write

‖∆1‖ν ≤ ‖1∗(m−1) ∗ |f |‖ν ≤ νm−1‖f‖ν (8.116)

Combining the estimates above, the proof of (i) is complete. To show (ii),
let f ∈ D′m,ν and let kε be such that cm

∑∞
i=kε

νim‖∆i‖ν < ε. For each
i ≤ kε we take a function δi in D(i, i+ 1) such that ‖δi −∆i‖ν < ε2−i. Then
‖f −

∑kε
i=0 δ

(mi)
i ‖m,ν < 2ε.

Proof of continuity of f(p) 7→ pf(p). If f(p) =
∑∞
k=0 ∆(mk)

k then pf =∑∞
k=0(p∆k)(mk)−

∑∞
k=0mkP(∆(mk)

k )=
∑∞
k=0(p∆(mk)

k )−1∗
∑∞
k=0(mk∆k)(mk).

The rest is obvious from continuity of convolution, the embedding shown
above and the definition of the norms.
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C Useful formulas

A straightforward computation shows that

B
(

1
xn

)
=
pn−1

Γ(n)
or L(pn) =

Γ(n+ 1)
xn+1

(8.117)

pq ∗ pr =
Γ(q + 1)Γ(r + 1)

Γ(q + r + 2)
pq+r+1 (8.118)

Also, with f1,2(p) := p 7→ H(p− k1,2)g1,2(p− k1,2) we have(
f1 ∗ f2

)
(p) = H(p− k1 − k2)

(
g1 ∗ g2

)
(p− k1 − k2) (8.119)

D Appendix

Maple 11 iteration to find the first few terms in the asymptotic series solu-
tion of y′ + y = x−1 + y3 + xy5 as x → ∞; “%” is Maple shortcut for “the
previous expression”. The input line following Eq. (4) is copied and pasted
without change. In practice one would instead return to the line after Eq. (4)
and re-run it as many times as needed. Of course, a do loop can be easily
implemented, but there is no point in that unless a very high number of terms
is needed.
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d1:=y(x) = −(diff(y(x), x))+1/x+y(x)^3+x*y(x)^5;

rs:=rhs(d1);

subs(y(x)=0,rs):asympt(%,x,8);

subs(y(x)=%,rs):asympt(%,x,8):sort(%,x);

subs(y(x)=%,rs):asympt(%,x,8): sort(%,x);

subs(y(x)=%,rs):asympt(%,x,8): sort(%,x);

subs(y(x)=%,rs):asympt(%,x,8): sort(%,x);

subs(y(x)=%,rs):asympt(%,x,8): sort(%,x);

subs(y(x)=%,rs):asympt(%,x,8): sort(%,x);

FIGURE 8.1: Maple 11 output in solving y′ + y = x−1 + y3 + xy5 by
asymptotic power series.
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