Notation

Laplace transform,
§2.6
inverse Laplace

transform, §2.14

Borel
84.4a
Borel / BE summa-
tion operator, §4.4,
84.4f

usually, Borel plane
variable

transform,

formal expansion

Borel transform of
h(z)
asymptotic to, §1.1a

the positive integers,
integers, rationals,
real numbers, com-
plex numbers re-
spectively.

open right  half
complex-plane.
absolutely continu-
ous functions, [47]






Asymptotics and Borel
summability

CRC PRESS
Boca Raton  London  New York  Washington, D.C.






Contents

1 Introduction

1.1

Expansions and approximations . . .. ... ... ... ...
1.1a  Asymptotic expansions. . . . . . .. . ... ... ...
1.1b  Functions asymptotic to an expansion, in the sense of
Poincaré . . . . . ... oo
1.1c  Asymptotic power series . . . . . . . . ... ... ...
1.1d  Operations with asymptotic power series . . . . . . . .
1.1e Limitations of representation of functions by expansions
1.1f  Summation of a divergent series . . . ... ... ...

2 Review of some basic tools

2.1
2.2

The Phragmén-Lindel6f theorem . . . . . ... ... .....
Laplace and inverse Laplace transforms . . . ... ... ...
2.2a  Inverse Laplace space convolution . . . ... .. ...

3 Classical asymptotics

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Asymptotics of integrals: first results . . . . ... ... ...
3.1a  Discussion: Laplace’s method for solving linear ODEs
with coefficients linearinz . . .. ... ... .....
Laplace, stationary phase, saddle point methods and Watson’s
lemma . . ... L
The Laplace method . . . . . . ... ... .. .. .......
Watson’s lemma . . . . .. ...
3.4a  The Borel-Ritt lemma . . . . .. ... ... ... ...
3.4b  Laplace’s method revisited . . . . .. ... ... ...
Oscillatory integrals and the stationary phase method
3.5a  Stationary phase method . . . . ... ... ... ...
3.5b  Analytic integrands . . . . ...
3.5c Examples . . ... .. ...
Steepest descent method . . . . . .. ... ... ... .. ..
3.6a  Further discussion of steepest descent lines . . . . ..
3.6b  Reduction to Watson’s lemma . . . . .. .. ... ...
Application: Asymptotics of Taylor coefficients of analytic func-
tlons . ...
Banach spaces and the contractive mapping principle
3.8a  Fixed points and vector valued analytic functions . . .
3.8b  Choice of the contractivemap . . . . . ... ... ...

11
11
13

13
16
16
20
26

27
27
28
30

33
33

34

35
36
39
40
42
43
47
49
50
52
95
o7

60
63
65
66



3.9

3.10

3.11

Examples . . . . . ...
3.9a  Linear differential equations in Banach spaces . . . . .
3.9b A Puiseux series for the asymptotics of the Gamma
function . . . . . ..o L
3.9c The Gamma function . .. ... ... ... ......
3.9d  Linear meromorphic differential equations. Regular and
irregular singularities . . . . . . ... ... L.
3.9e  Spontaneous singularities: the Painlevé’s equation P; .
3.9f  Discussion: the Painlevé property. . . ... ... ...
3.9g  Irregular singularity of a nonlinear differential equation
3.9h  Proving the asymptotic behavior of solutions of nonlin-
ear ODEs: anexample . . . . . ... ... ... ....
3.9  Appendix: some computer algebra calculations . . . .
Singular perturbations . . . ... ... ... ... ...
3.10a Introduction to the WKB method . . . .. ... ...
3.10b Singularly perturbed Schréodinger equation. Setting and
heuristics . . . . . . ... ..o
3.10c Formal reexpansion and matching . . ... ... ...
3.10d The equation in the inner region; matching subregions
3.10e Outer region. Rigorous analysis . . . . ... ... ...
3.10f Inner region. Rigorous analysis . . . . ... ... ...
3.10g Matching . . . .. .. ... ..o L.
WKBonaPDE . ... ... . ... ... .. ... .

Analyzable functions and transseries

4.1

4.2

4.3

4.4

4.5

Analytic function theory as a toy model of the theory of ana-
lyzable functions . . . . ... ... oL oo
4.1a  Formal asymptotic power series . . . . . . . . ... ..
Transseries . . . . . . . . ...
4.2a  Remarks about the form of asymptotic expansions . .
4.2b  Construction of transseries: a first sketch . . . . . ..
4.2c  Examples of transseries solution: a nonlinear ODE . .
Solving equations in terms of Laplace transforms . . . . . . .
4.3a A second order ODE: the Painlevé equation Py . . . .
Borel transform, Borel summation . . . ... ... ... ...
4.4a  The Borel transform 5. . . . .. .. .. ... ... ..
4.4b  Definition of Borel summation and basic properties . .
4.4c  Further properties of Borel summation . . . . . . . ..
4.4d  Stokes phenomena and Laplace transforms: an example
4.4e  Nonlinear Stokes phenomena and formation of singular-
itles . . . .
4.4f  Limitations of classical Borel summation . . . . . . . .
Gevrey classes, least term truncation, and Borel summation
4.5a  Connection between Gevrey asymptotics and Borel sum-
mation . . . . ...

66
66

67
69

69
71
74
0]

76
7
7
7

79
81
82
82
85
87
87

89

89
91
99
99
99
103
104
109
110
110
111
112
115

118
119
120



4.6 Borel summation as analytic continuation . . . .. ... ... 125
4.7 Notes on Borel summation . . ... .. .. ... ... .... 125
4.7a  Choice of critical time . . . . . . ... .. ... .... 126

4.7b  Borel summation and differential and difference systems 128
4.8 Borel transform of the solutions of an example ODE, (4.55) . 128

4.9 Appendix : Rigorous construction of transseries . . . . . .. 129
4.9a  Abstracting from §4.2b . . . .. ... 129
4.9b  General logarithmic-free transseries . . . . . . . .. .. 141
4.9c¢  Inductive assumptions . . . . . .. ..o 141
4.9d Passing from step N tostep N+1 . . ... ... ... 143
4.9¢  General logarithmic-free transseries . . . . . . . .. .. 147
4.9f  Ecalle’s notation . . . . . ... ... ... .. ... . 147
4.9¢  The space T of general transseries . . . .. .. .. .. 148
Borel summability in differential equations 153
5.1 Convolutions revisited . . . . . ... ... L oL 153
5.1la  Spaces of sequences of functions . . . ... ... ... 155
5.2 Focusing spaces and algebras . . . . ... ... .. ... ... 156
5.3 Borel summation of the formal solutions to (4.54). . . . . .. 157
5.3a Borel summability of the asymptotic series solution . 157
5.3b  Borel summation of the transseries solution . . . . . . 158
5.3c  Analytic structure along R™ . . . . ... ... ... .. 160
54 General setting . . .. ... oL 161
5.5 Normalization procedures: an example . . .. .. ... ... 162
5.6 Further discussion of assumptions and normalization . . . . . 163
5.6a Nonresonance . . . . . ... .. ... ... ... .. 164
5.7 Overview of results . . . . . ... ... L. 164
5.8 Further notation . . . . ... ... ... ... L. 165
5.8a Regionsinthepplane . . . .. ... ... ... ... 165
58b  Orderingon N™ . . . ... ... ... ..., 166
5.8c  Analytic continuations between singularities . . . . . . 167
5.9 Analytic properties of Yy and resurgence . . ... ... ... 167
5.9a  Summability of the transseries . . .. ... ... ... 169
5.10 Outline of the proofs . . . . .. ... ... ... ... .... 170
5.10a  Summability of the transseries in nonsingular directions:
asketch . . .. ... . Lo oo 170
5.10b Higher terms of the transseries . . . . ... ... ... 173
5.11 Detailed proofs, for Re (1) < 0 and a one-parameter transseries
174
5.11la Comments . . . . . . . . . . .. 178
5.11b The convolution equation away from singular rays . . 178
5.11c Behavior of Yo(p) near p=1.. . ... ... ... ... 183
5.11d General solution of (5.88) on [0,14+¢ . ... ... .. 188
5.11e The solutions of (5.88) on [0,00) . . . .. .. ... .. 192

5.11f General L}, solution of the convolution equation . . . 194



5.11g Equations and properties of Yy and summation of the

transseries . . . . . ... ..o 194
5.11h Analytic structure, resurgence, averaging . . . . . . . 200
512 Appendix . . . . ... 205
5.12a AC(f xg) versus AC(f)«AC(g) . . . ... ... ... 205
5.12b Derivation of the equations for the transseries for gen-
eral ODEs. . . ... ... ... ... . ... 206
5.12¢  Appendix: formal diagonalization . . . . . . . . .. .. 208
5.13 Appendix: The C*-algebra of staircase distributions, Dy, , . 209
6 Asymptotic and transasymptotic matching; formation of sin-
gularities 219
6.0a  Transseries and singularities. Discussion . . . . . . . . 220
6.1 Transseries reexpansion and singularities. Abel’s equation. . 221
6.2 Determining the ¢ reexpansion in practice . . . . . . ... .. 223
6.3 Conditions for formation of singularities . . . . . .. ... .. 224
6.4 Abel’s equation, continued . . . .. ... ... ... .. ... 225
6.4a Singularitiesof Fy . . . . . ... ..., 227
6.5 Generalcase . . ... ... ... ... 230
6.5a Notation. . . . .. ... .. ... ... 0. 230
6.5b  The recursive system for ¥,,, . . ... ... ... ... 231
6.5¢c  General results and properties of the F,,, . . . . . .. 232
6.6 Further examples . . . .. ... ... ... .. ........ 234
6.6a  The Painlevé equation Py. . . . . ... ... .. ... 234
6.6b  The Painlevé equation Py . . . . . . . .. ... ... 239
7 Other classes of problems 241
7.1 Difference equations . . . . . ... ... 241
7.la Setting . . . . ... o 241
7.1b  Transseries for difference equations . . . . . ... ... 241
7.1c  Application: Extension of solutions of difference equa-
tions to the complex n plane . . . ... ... .. ... 242
7.1d  Extension of the Painlevé criterion to difference equa-
tions. . . ... 243
7.2 PDEs . . ... 243
7.2a  Example: regularizing the heat equation . . . . . . .. 244
7.2b  Higher order nonlinear systems of evolution PDEs . . 245
8 Other important tools and developments 247
8.1 Resurgence, bridge equations, alien calculus, moulds . . . . . 247
8.2 Multisummability . . . . ... ... 247
8.3 Hyperasymptotics . . . . . ... .. ... L. 248

References 251



Foreword

The field of asymptotics has evolved substantially in the last thirty years or
so; for instance relatively general tools have been developed to recover exact
solutions from formal expansions in relatively general settings. Many of these
new developments are still scattered in relatively specialized articles. The
present book is intended to provide a self-contained introduction to asymptotic
analysis (with some emphasis on methods needed in exponential asymptotics,
and on applications which are not part of usual asymptotics books, such
as asymptotics of Taylor coefficients), and to explain basic ideas, concepts
and methods of generalized Borel summability, transseries and exponential
asymptotics.

To provide a sense on how these latter methods are used in a systematic way,
general nonlinear ODEs near a generic irregular singular point are analyzed
in detail. The analysis of difference equations, PDEs and other types of prob-
lems, only superficially touched upon in this book, while certainly providing
a number of new challenges, is not radically different in spirit. Mastering the
basic techniques in the context of ODEs should provide most of the necessary
background to give a smoother access to the many existing articles on other
types of problems that are not covered at this introductory level.

The level of difficulty is uneven; sections marked with * are more difficult
and not crucial for following the rest of the material.

The book assumes standard knowledge of Real and Complex Analysis.
Chapters one through four, and parts of chapter five a and six are suitable
for use in a graduate or advanced undergraduate course. Most exercises are
meant to be relatively straightforward; more challenging exercises are marked
with ().

The book provides complete mathematical rigor, but it is written so that
many proofs can be omitted at a first reading.






Chapter 1

Introduction

1.1 Expansions and approximations

Classical asymptotic analysis studies the limiting behavior of functions
when singular points are approached. It shares with analytic function theory
the goal of providing a detailed description of functions, and it is distinguished
from it by the fact that the main focus is on singular behavior. Asymptotic
expansions provide increasingly better approximations as the special points
are approached yet they rarely converge to a function.

The asymptotic expansion of an analytic function at a regular point is
the same as its convergent Taylor series there. The local theory of analytic
functions at regular points is largely a theory of convergent power series.

We have —In(1 — z) = Y77, 2"/k; the behavior of the log near one is
transparent from the series, which also provides a practical way to calculate
In(1 — ) for small z. Likewise, to calculate z! := I'(1 + 2) = [~ e~ ‘t*dt for
small z we can use

00 4Nk Zk [e%s)
InT(1+42) = —’YZ“‘Z %, (lz| < 1), where (k) := Zj*k (1.1)
k=2 j=1

and v = 0.5772.. is the Euler constant (see Exercise 4.62 on p. 106). Thus,
for small z we have

L(1+2) =exp(—yz+7122%/12--+)

M
= exp (fyz +y (1)’“C(k)k1zk> (1+0(M)) (1.2)
k=2

where, as usual, f = O(z7) means that |z77 f| < C, for some C > 0, when z
is small.

I'(z) has a pole at z = 0; 2I'(2) = I'(1 + 2) is described by the convergent
power series

M
2(z) = exp(—vyz + Z E~L(=1)k¢(k) 2 k(1 + 0(zM 1Y) (1.3)
k=2

11



12 Asymptotics and Borel summability

This is a perfectly useful way of calculating I'(z) for small z.

Now let us look at a function near an essential singularity, e.g. e
near z = 0. Of course, multiplication by a power of z does not remove the
singularity, and the Laurent series contains all negative powers of z:

o1z _ f: (=1 (1.4)

1P
4 jlz
Jj=0

—-1/z

Eq. (1.4) is fundamentally distinct from the first examples. This can be seen
by trying to calculate the function from its expansion for say, z = 10719: (1.1)
provides the desired value very quickly, while (1.4), also a convergent series,
is virtually unusable. Mathematically, we see that error bounds as in (1.2)
and (1.3) do not hold for (1.4). On the contrary, we have

M
efl/zf'z% >2M asz—0 (1.5)
7=0
where > means much larger than. The series (1.4) is convergent, but an-
tiasymptotic: the terms of the expansion get larger and larger as z — 0.
The function needs to be calculated there in a different way, and there are
certainly many good ways. Surprisingly perhaps, the exponential, together
with related functions such as log, sinz (and powers, since we prefer the no-
tation o to €™?) are the only ones that we need in order to represent many
complicated functions, asymptotically. This fact has been noted already by
Hardy, who wrote [35] “No function has yet presented itself in analysis the
laws of whose increase, in so far as they can be stated at all, cannot be stated,
so to say, in logarithmico-exponential terms”. This reflects some important
fact about the relation between asymptotic expansions and functions which
will be clarified in §4.9.

If we need to calculate T'(z) for very large x, the Taylor about one given
point would not work, since the radius of convergence is finite (due to poles
on R7). Instead we have Stirling’s series,

1 > ,
In(T'(z)) ~ (x —1/2)Inz — z + §1n(27r) + chac_ZjH, r — 400 (1.6)
j=1

where 2j(2j — 1)c; = Baj and {Byjy, ., = {1/6,—1/30,1/42...} are Bernoulli
numbers. This expansion is asymptotic as * — oo: successive terms get
smaller and smaller. Stopping at j = 3 we get I'(6) &~ 120.00000086 while
I'(6) = 120. Yet, the expansion in (1.6) cannot converge to In(I'(z)), and in
fact, it has to have zero radius of convergence, since In(I'(z)) is singular at all
2z € —N (why is this an argument?).

Unlike asymptotic expansions, convergent but antiasymptotic expansions
do not contain manifest, detailed information. Of course, this is not meant
to understate the value of convergent representations, nor to advocate for
uncontrolled approximations.
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1.1a Asymptotic expansions

An asymptotic expansion of a function f at a point tg, usually dependent
on the direction along which ty is approached, is a formal series' of simpler
functions fg,

F=S )
k=0

in which each successive term is much smaller than its predecessors. For
instance if the limiting point is ¢y, approached from above along the real line,
this requirement is written

frrr(t) = o(fi(t)) (or frra(t) < fu(t)) ast — tg (1.8)
meaning
Jim fis1 (8)/ f () = 0 (1.9)

We will often use the variable  when the limiting point is 400 and z when
the limiting point is zero.

1.1b  Functions asymptotic to an expansion, in the sense of
Poincaré

The relation f ~ f between an actual function and a formal expansion is
defined as a sequence of limits:

Definition 1.10 A function f is asymptotic to the formal series f ast — tg'

if
N ~ ~ ~
F) = fut) = £8) = M) = o(fn () (VN €N) (1.11)
k=0
Condition (1.11) can be written in a number of equivalent ways, useful in

applications.

Proposition 1.12 If f = o fi(t) is an asymptotic series as t — t3
and f is a function asymptotic to it, then the following characterizations are
equivalent to each other and to (1.9).

1That is, there are no convergence requirements. More precisely, formal series are sequences
of functions {fk}keNu{o}: written as infinite sums, with the operations defined as for con-
vergent series; see also §1.1c .
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()
F) =Y fu(®) = O(fn11(t)) (YN €N) (1.13)
where g(t) = O(h(t)) means limsup,_+ [9(t)/h(t)| < cc.
(ii)

N
)= > filt) = fxar(1+0(1)) (VN €N) (1.14)
k=0

(#ii) There is a function a : N+— N such that a(N) > N and

a(N)

Z felt) = O(fn11(t) (YN €N) (1.15)

This condition seems strictly weaker, but it is not. It allows us to use less
accurate estimates of remainders, provided we can do so to all orders.

PROOF  We only show (iii), the others being immediate. Let N € N. We

have
1 N
oD (f(t) - I;)fka))
) a(N)
) ka Z fN+1 @ (L16)

j=N+1

since in the last sum in (1.16) N, and thus the number of terms, is fixed, and
thus the sum converges to 1 as t — tg'.

Simple examples of asymptotic expansions are

2’3 (_1)n+1z2n+1

SinZNZ—E‘F...-Fw‘F"' (‘Z|—>O) (1.17)
3 1 n+1.2n+1
f(z):sinz—l—e_iwz—i;—l—...—i—((Q)nJrzl)!—|—-~-(z—>0+) (1.18)
1/z t
e—l/Z/ ?dt Zk!z’”l (z—0%) (1.19)
1 k=0

The series on the right side of (1.17) converges to sin z for any z € C and it
is asymptotic to it for small |z|. The series in the second example converges for
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any z € C but not to f. In the third example the series is nowhere convergent,
in short it is a divergent series. It can be obtained by repeated integration by
parts:

x 2eT — 1)le® z t
+iﬁhiuku+ﬁLgﬂi+cg+m/ ° _at (1.20)
1

e
| 2 3 " tnt1
with Cy, = —e > 7 j!. For the last term we have

Tt
/1 g

lim — =1 (1.21)
T—00 €

anrl
(by L'Hospital) and (1.19) follows.

Note 1.22 The constant C,, cannot be included in (1.19) using the definition
(1.11), since its contribution vanishes in any of the limits implicit in (1.11).

By a similar calculation,

T et = et e 2" nle®
bzl;MNﬁﬁ:;+P+?ﬁw+ﬁﬁ+mmxﬁ+wﬂ%)
and now, unlike the case of (1.17) versus (1.18) there is no obvious function
to prefer, insofar as asymptoticity goes, on the left side of the expansion.
Stirling’s formula (1.6) is another example of a divergent asymptotic ex-
pansion.

Remark 1.24 Asymptotic expansions cannot be added, in general. Other-
wise, since on the one hand f1 — fo = ff dse®/s = 3.0591..., and on the other
hand both f1 and fo are asymptotic to the same expansion, it would follow that
3.0591... ~ 0. This is one reason for considering, for restricted expansions, a
weaker asymptoticity condition, see §1.1c .

Examples of expansions that are not asymptotic are (1.4) for small z, or
— 4+ (xz— +00) (1.25)

k!
k=0

(because of the exponential term, this is not an ordered simple series satisfying
(1.8)). Note however expansion (1.25), does satisfy all requirements in the left
half plane, if we write e~ in the first position.

Remark 1.26 Sometimes we encounter expansions for large x of the form
sinz(1 + ayz™! + agx™2 + - ) which, while very useful, have to be under-
stood differently and we will discuss this question in §3.5¢ . They are not
asymptotic expansions in the sense above, since sinx can vanish. Usually the
approzimation itself fails near zeros of sin.
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1.1c Asymptotic power series

A special role is played by power series which are series of the form
N o0
S = chzk, z—0F (1.27)
k=0

With the transformation z =t — ¢y (or z = x71) the series can be centered at
to (or 400, respectively).

Definition 1.28 (Asymptotic power series) A function possesses an asymp-
totic power series as z — 0 if

N
f(z) =Y ez*=0(EVT) (YNEN) asz—0 (1.29)
k=0

Remark 1.30 An asymptotic series is not an asymptotic expansion in the
sense of Definition 1.10 and (1.29) is not a special case of (1.13) unless all ¢
are nonzero.

The asymptotic power series at zero in R of e
However, the asymptotic expansion, or behavior, of e
Z€ro.

2, .
—1/2" ig the zero series.

-1/ cannot be just

1.1d Operations with asymptotic power series

Addition and multiplication of asymptotic power series are defined as in
the convergent case:

oo

A i erz® + B i dpz* = (Ack + Bdy)2"*
k=0 k=0

k=0

k=0 \j=0

Remark 1.31 If the series f is convergent and f is its sum, f =Y 1o, cp 2",
(note the ambiguity of the sum notation), then f ~ f.

The proof follows directly from the definition of convergence.
The proof of the following lemma is immediate:

Lemma 1.32 (Algebraic properties of asymptoticity to a power series)
Iff~f= 0 ckz® and g~ g =>pediz" then

(i) Af + Bg ~ Af + Bj

(it) fg~ fg
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Corollary 1.33 (Uniqueness of the asymptotic series to a function)
If f(2) ~ Y pegcrz® as z — 0 then the cx are unique.

PROOF Indeed, if f ~ Y77 cxz¥ and f ~ Y77 dyz", then, by Lemma 1.32
we have 0 ~ Z;‘;O(ck — dy)2* which implies, inductively, that c; = dj, for all

k. I

Algebraic operations with asymptotic serieés are limited too. Division of
asymptotic series is not always possible. e=1/*" ~ 0 in R while 1/ exp(—1/22)
has no asymptotic series at zero.

1.1d .1 Integration and differentiation of asymptotic power series.

Asymptotic relations can be integrated termwise as Proposition 1.34 below
shows.

Proposition 1.34 Assume f is integrable near z =0 and that

F) ~ fz) =) e
k=0

Then
+1
CkZ
[, s [ 7=
= kE+1
PROOF  This follows from the fact that [ o(s")ds = o(z"*!) as it can
be seen by straightforward inequalities. I

Differentiation is a different issue. Many simple examples show that as sy mp-
totic series cannot be freely differentiated. For instance e~1/%” sinel/z" ~ 0
as z — 0 on R, but the derivative is unbounded.

Asymptotic power series of analytic functions can be differentiated if they
hold in a region which is not too rapidly shrinking. Such a region is often a
sector or strip in C, but can be allowed to be thinner.

1.1d .2 Asymptotics in regions in C

Proposition 1.35 Let M > 0 and assume f(x) is analytic in the region
S, = {z:|z| > R,|Im (z)| < a|Re (z)|}, and
o0
x) ~ chx*k as x| — oo
k=0

in any subregion of the form Sy, with a’ < a.
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Then

o0
@)~y (kep)a
k=0
as |x| — oo in any subregion of the form S, with o’ < a.

PROOF Here, Proposition 1.12 (iii) will come in handy. Let N > 2M +2.
By the analyticity and asymptoticity assumptions, there is some constant C'
such that |f(z) — ZIJCV:O ckr k| < Clz|= in Sy (a’ < a). Let a” < a’; then
the points x such that [Im (x)| < a” are contained in S,/ , together with a disk
around them of radius (a’ — a”)|z|~™ /2 if z is large enough. We have

N
(@) =Y (ke
k=

0

N
% 7{:(5 — )72 (f(s) - ];)cksk> ds

4C _
_m|$|zM|x| N (1.36)

and the result follows. I

Exercise 1.37 Consider the following integral related to the error function
F(z)= ezfz/ s72e7 " ds
0

It is clear that the integral converges at the origin, if the origin is approached
through real values (see also the change of variable below); thus we define the
integral to z € C as being taken on a curve v with 4/(0) > 0, and extend F by
F(0) = 0. The resulting function is analytic in C\ 0, see Exercise 3.8 below.

What about the behavior at z = 07 It depends on the direction in which 0
is approached! Substituting z = 1/x and s = 1/t we get

E(x) = em2/ e dt =: ge“ﬁerfe(x) (1.38)

Check that if f(x) is continuous on [0,1] and differentiable on (0,1) and
f'(x) — L as = | 0, then f is differentiable to the right at zero and this
derivative equals L. Use this fact, Proposition 1.35 and induction to show
that the Taylor series at 01 of F'(z) is indeed given by (3.7).

Formal and actual solutions.

Few calculational methods have longer history than successive approxima-
tion. Suppose € is small and we want to solve the equation y—4° = €. Looking
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first for a small solution, we see that y° < y and then, writing

y=c+y° (1.39)
as a first approximation, we have

ymy=e (1.40)
We can use y = y; in (1.39) to improve in accuracy over (1.40):

Yo=€+e

and further
5\5
Yz = €+ (e + € )

Repeating this procedure indefinitely, the right side becomes
€+ € + 5¢” + 35¢ + 285¢!7 + 25306 + - - (1.41)

Exercise 1.42 Show that this series converges for |e| < 4-57°/4. (Hint: one
way is to use implicit function theorem.)

Regular differential equations can be locally solved much in the same way.
Consider the Painlevé equation

y":y2+z

near z = 0 with y(0) = yo and y'(0) = y; small. If y is small like some power
of z, then " is far larger than y? and then, to leading approximation,

1

Yy =z
and
2

z
y=yo+y1z+§

We can substitute this back into the equation and get a better approxima-
tion of the solution, and if we repeat the procedure indefinitely, we get the
actual solution of the problem (since, as it follows from the general theory of
differential equations, the solution is analytic).

Let us look at the equation
ff—f=2"" z—+c (1.43)

If f is small like an inverse power of z, then f’ should be even smaller, and
we can apply again successive approximations to the equation written in the
form

f=at—f (1.44)
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To leading order f ~ f; = 1/, we then have f ~ f, = 1/x — 1/2? and now
if we repeat the procedure indefinitely we get

1 1 2 6 (=1)™n!

N57ﬁ+ﬁiﬁ+.”77x"+l 4. (1.45)
Something must have gone wrong here. We do not get a solution (in any
obvious meaning) to the problem: for no value of x is this series convergent.
What distinguishes the first two examples from the last one? In the first
two, the next approximation was obtained from the previous one by algebraic
operations and integration. These processes are regular, and they produce,
at least under some restrictions on the variables, convergent expansions. We
have, e.g., ffx = z"/n!. But in the last example, we iterated upon
differentiation a regularity-reducing operation. We have (1/z)") = n!/z"*1,

1.1e Limitations of representation of functions by expan-
sions

Prompted by the need to eliminate apparent paradoxes, mathematics has
been formulated in a precise language with a well defined set of axioms [55],
[52] within set theory. In this language, a function is defined as a set of ordered
pairs (z,y) 2 such that for every x there is only one pair with x as the first
element. All this can be written precisely and it is certainly foundationally
satisfactory, since it uses arguably more primitive objects: sets.

A tiny subset of these general functions can arise as unique solutions to
well defined problems, however. Indeed, on the one hand it is known that
there is no specific way to distinguish two arbitrary functions based on their
intrinsic properties alone3. On the other hand, a function which is known to
be the unique solution to a specific problem can a fortiori be distinguished
from any other function. By the same argument, clearly it cannot be possible
to represent general functions by constructive expansions.

In some sense, most functions just exist in an unknowable realm, and only
their collective presence has mathematical consequences. We can usefully
restrict the study of functions to those which do arise in specific problems,
and hope that they have, in general, better properties than arbitrary ones. For
instance, solutions of specific equations, such as systems of linear or nonlinear
ODEs or difference equations with meromorphic coefficients, near a regular or
singular point, can be described completely in terms of their expansion at such
a point (more precisely, they are completely described by their transseries, a
generalization of series described later).

2Here x,y are themselves sets, and (z,y) := {z, {z,y}}; z is in the domain of the function
and y is in its range.

3More precisely, in order to select one function out of an arbitrary, unordered pair of func-
tions, some form of the aziom of choice [52] is needed.
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Conversely, we can write formal expansions without a natural function coun-
terpart. The formal expression

> ! r¢Q (1.46)

qux—l—q

(true, this is not an asymptotic series whatever x is) cannot have a noncon-
stant, meaningful sum, since the expression is formally g—periodic for any
q € Q and the sum should preserve this basic feature. Nonconstant functions
with arbitrarily small periods are not Lebesgue measurable [47]. Since it is
known that existence of nonmeasurable functions can proved only by using
some form of the axiom of choice, no definable (such as “the sum of (1.46)”)
nonmeasurable function can be exhibited.

A good correspondence between functions and expansions is possible only
by carefully restricting both. We will restrict the analysis to functions and
expansions arising in differential or difference equations, and some few other
concrete problems.

*

Convergent series relate to their sums in a relations-preserving way. Can we
associate to a divergent series a unique function by some generalized property-
preserving summation process? The answer is no in general, as we have seen,
and yes in many practical cases. Exploring this question will carry us through
a number of interesting questions.

*

In [33], Euler investigated the question of the possible sum of the formal

series s =1—2+46 —244120---, in fact extended to

f= ik!(—z)k“, z2>0 (1.47)
k=0

In effect, Euler notes that f satisfies the equation
2,/
=y +y==z (1.48)

and thus f = e'/*Ei(—1/z) + Ce!/* (see Fig. 1.1), for some C, where C must
vanish since the series is formally small as z — 0T. Then, f = e!/*Ei(—1/z),
and in particular s = eEi(—1). What does this argument show? At the very
least, it proves that if there is a summation process capable of summing (1.47)
to a function, in a way compatible with basic operations and properties, the
function can only be e!/*Ei(—1/z). In this sense, the sum is independent of
the summation method.

Factorially divergent were already widely used at the turn of the 19th cen-
tury for very precise astronomical calculations. As the variable, say 1/z,
becomes small, the first few terms of the expansion should provide a good ap-
proximation of the function. Taking for instance x = 100 and 5 terms in the
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FIGURE 1.1: L. Euler, De seriebus divergentibus, Novi Commentarii
Academiae Scientiarum Petropolitanae (1754/55) 1760, p. 220
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asymptotic expansions (1.20) and (1.23) we get the value 2.715552711 - 104!
for both f1(100) = 2.715552745 . ..-10* and f»(100) = f1(100) — 3.05911 - - - .
However, in using divergent series, there is a threshold in the accuracy of
approximation, as it can be seen by comparing (1.20) and (1.23).

The two functions differ by a constant, which is exponentially smaller than
each of them. The expected relative error cannot be better than exponentially
small, at least for one of them. As we shall see, exponentially small relative
errors (that is, absolute errors of order one) can be, for both of them, achieved
by truncating the series at an optimal number of terms, dependent on x (op-
timal truncation), see Note 4.134 below. The absolute error in calculating
f3(z) :=FEi(z) by optimal truncations is even smaller, of order z~1/2. Still, for
fixed z, in such a calculation there is a built-in ultimate error, a final nonzero
distance between the series and the function we want to calculate.

Cauchy [14] proved that optimal truncation in Stirling’s formula gives errors
of the order of magnitude of the least term, exponentially small relative to the
function calculated. Stokes refined Cauchy summation to the least term, and
discovered the “Stokes phenomenon”: the behavior of a function described by
a divergent series must change qualitatively as the direction in C varies, and
furthermore, the change is first (barely) visible at what we now call Stokes
lines.

But a general procedure of “true” summation was absent at the time. Abel,
discoverer of a number of summation procedures of divergent series, labeled
divergent series “an invention of the devil”.

Later, the view of divergent series as somehow linked to specific functions
and encoding their properties was abandoned (together with the concept of
functions as specific rules). This view was replaced by the rigorous notion of
an asymptotic series, associated instead to a vast family of functions via the
rigorous Poincaré definition 1.10, which is precise and general, but specificity
is lost even in simple cases.

Some elements of Ecalle’s theory

In the 80’s by Ecalle discovered a vast class of functions, closed under
usual operations (algebraic ones, differentiation, composition, integration and
function inversion) whose properties are, at least in principle, easy to analyze:
the analyzable functions. Analyzable functions are in a one-to-one isomorphic
correspondence with generalized summable expansions, transseries.

What is the closure of simple functions under the operations listed? That
is not easy to see if we attempt to construct the closure on the function side.
Let’s see what happens by repeated application of two operations, taking the
reciprocal and integration.

/ B 1 S

1 — 2z — 275 — Inx
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and In z is not expressible in terms of powers, and so it has to be taken as a
primitive object. Further,

1
Inz —>1——> — (1.49)

and, within functions we would need to include the last integral as yet an-
other primitive object, since the integral is nonelementary, and in particular
it cannot be expressed as a finite combination of powers and logs. In this way,
we generate an endless list of new objects.

Transseries. The way to obtain analyzable functions was in fact to first
construct transseries, the closure of formal series under operations, which
turns out to be a far more manageable task, and then find a general, well-
behaved, summation procedure.

Transseries are surprisingly simple. They consists, roughly, in all formally
asymptotic expansions in terms of powers, exponentials and logs, of ordinal
length, with coefficients which have at most power-of-factorial growth. For in-
stance, as * — 00, integrations by parts in (1.49), formally repeated infinitely
many times, yields

1 = k!
Inz x; (In z)k+1

(a divergent expansion). Other examples are:

o 00
ee‘r+12 4e k'(lnx)k +efxln:r Z k‘22k

—= I — +00
zk rk/3
k=0 k=-1

o0 oo c

_ kl
DL PO

xk

k=0 Jj=0

Note how the terms are ordered decreasingly, with respect to > (far greater
than) from left to right. Transseries are constructed so that they are finitely
generated, that is they are effectively (multi)series in a finite number of “bricks”
(transmonomials), simpler combinations of exponentials powers and logs. The
generators in the first and third transseries are 1/ and e~*. Transseries con-
tain, order by order, manifest asymptotic information.

Transseries, as constructed by Ecalle, are the closure of series under a num-
ber of operations, including

(i) Algebraic operations: addition, multiplication and their inverses.

(ii) Differentiation and integration.

(iii) Composition and functional inversion.

However, operations (i), (ii) and (iii) are far from sufficient; for instance
differential equations cannot be solved through (i)-(iii). Indeed, most ODEs
cannot be solved by quadratures, i.e. by finite combinations of integrals of



Introduction 25

simple functions, but by limits of these operations. Limits though are not
easily accommodated in the construction. Instead we can allow for

(iv) Solution of fixed point problems of formally contractive mappings, see
§3.8.

Operation (iv) was introduced by abstracting from the way problems with
a small parameter ¢ are solved by successive approximations.

Proposition. Transseries are closed under (i)—(iv).

This will be shown in §4 and §4.9; it means many problems can be solved
within transseries. It seems unlikely though that even with the addition (iv)
do we obtain all that is needed to solve asymptotic problems; more needs to
be understood.

Analyzable functions. To establish a one-to-one isomorphic correspon-
dence between a class of transseries and functions, Ecalle also vastly general-
ized Borel summation.

Borel-Ecalle-(BE) summation extends usual summation, it does not depend
on how the transseries was obtained, and it is a perfect isomorphism between
expansions and functions. The sum of an BE summable transseries is, by
definition an analyzable function.

BE summable transseries are known to be closed under operations (i)—(iii)
but not yet (iv). BE summability has been shown to apply generic systems of
linear or nonlinear ODEs, PDEs (including the Schrédinger equation, Navier-
Stokes) etc, Quantum Field Theory, KAM and so on. Some concrete theorems
will be given later.

The representation by transseries is effective, the function associated to a
transseries closely following the behavior expressed in the successive, ordered,
terms of its transseries.

Determining the transseries of a function f is the “analysis” of f, and
transseriable functions are “analyzable 7, while the opposite process, recon-
struction by BE summation of a function from its transseries is known as
“synthesis”. We have the following diagram

’ Convergent series‘ — | Summation | — ’Analytic functions‘

S R 0O S == 0
SEE 2 T EE 2
2 Eag 2 Ea9
g ‘e g 5 Yo Z
S S
= @ s @
=] =]

W w

|

Transseries‘ — ’E—B Summation‘ — ’Analyzable functions‘

4The small parameter could be the independent variable itself.
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This is the only known way to close functions under the listed operations.

1.1f Summation of a divergent series

nl = / e Mt dt
0
in (1.45), it becomes

> — —tyn _—n—1 * e—np
e "t"x dt :/ dp (1.50)
/0 T;) o l+p

provided we can interchange summation and integration, and sum the geo-
metric series to 1/(1 + p) for all values of p, not only for |p| < 1.

Upon closer examination, we see that another way to view the formal cal-
culation leading to (1.50) is to say that we first performed a term-by-term
inverse Laplace transform (cf. §2.2) of the series (the inverse Laplace trans-
form of nlz="~! being p"), summed the p-series for small p (to (1 +p)~1)
analytically continued this sum on the whole of RT and then took the Laplace
transform of this result. Up to analytic continuations and ordinary convergent
summations, what has been done in fact is the combination Laplace inverse-
Laplace transform, which is the identity. In this sense, the emergent function
should inherit the (many) formal properties that are preserved by analytic
continuation and convergent summation. In particular, (1.50) is a solution
of (1.43). The steps we have just described define Borel summation , which
applies precisely when the above steps succeed.

If we write
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Review of some basic tools

2.1 The Phragmén-Lindel6f theorem

This result is very useful in obtaining information about the size of a func-
tion in a sector, when the only information available is on the edges. There
are other formulations, specific other unbounded regions, such as strips and
half-strips. We use the following setting.

Theorem 2.1 (Phragmén-Lindel6f) Let U be the open sector between two
rays from the origin, forming an angle w/B3, > 1/2. Assume f is analytic in
U, and continuous on its closure, and for some C1,C2, M > 0 and « € (0, 5)
it satisfies the estimates

1f(2)| < CLe®F", 2 eU; |f(2)| < M; zedU (2.2)

Then
lf() < M; z€U (2.3)

PROOF By a rotation we can make U = {z : 2| arg z| < 7/3}. Making
a cut in the complement of U we can define an analytic branch of the log
in U and, with it, an analytic branch of z%. By taking fi(z) = f(2'/%), we
can assume without loss of generality that 5 = 1 and a € (0,1) and then
U={z:]argz| <7/2}. Let & € (a,1) and consider the analytic function

e f(2) (2.4)
Since \e’c2za/| < 1in U (check) and |6*C2za/+022a| — 0 as |z| — oo on the
half circle |z| = R,Rez > 0 (check), the usual maximum modulus principle
completes the proof.
Exercise 2.5 Assume f is entire, |f(2)| < Ciel®*| in C and |f(2)] < Ce~

in a sector of opening more than w. Show that f is identically zero. (A similar
statement holds under much weaker assumptions, see Ezercise 2.28.)

27



28 Asymptotics and Borel summability

2.2 Laplace and inverse Laplace transforms
Let F € LY(R*) (|F| is integrable on [0,0)). Then the Laplace transform

LF = /000 e P*F(p)dp (2.6)

is analytic in H and continuous in its closure, H. (Obviously, we could allow
Fe~lelP ¢ L1 and then LF exists for Re 2 > |al.)

Proposition 2.7 If F € L*(R") then LF is analytic H and continuous on
the imaginary axis OH, and L{F}(z) — 0 as x — oo in H.

Proof. Continuity and analyticity are preserved by integration against a finite
measure (F(p)dp). Equivalently, these properties follow by dominated con-
vergence! =, as € — 0, of [ e™*P(e~* — 1)F(p)dp and of [;~ e™"P(e P —
1)e~1F(p)dp respectively, the last integral for Re (x) > 0. The stated limit
also follows easily from dominated convergence, if |arg(z) £ 7/2| > 4; the
general case follows from the case |arg(z)| = 7/2 which is a consequence of
the Riemann-Lebesgue lemma, see Proposition 3.55 below. O

Remark 2.8 Extending F on R™ by zero and using the continuity in z proved
in Proposition 2.7, we have L{F}(it) = [~ e "'F(p)dp = FF. In this sense,

the Laplace transform can be identified with the (analytic continuation of)
the Fourier transform, restricted to functions vanishing on a half-line.

First inversion formula.
Let H denote the space of analytic functions in H.

Proposition 2.9 (i) £: L'(RT) — H and ||L{F}||ec < ||F]1-
(ii) £ : L' — L(LY) is invertible, and the inverse is given by

F(x) = FH{L{F}(it)} () (2.10)
for ( x € RT) where F is the Fourier transform.

PROOF Part (i) is immediate, since |e™®P| < 1. (ii) follows from Re-
mark 2.8.

Lemma 2.11 (Uniqueness) Assume F € L*(R") and LF =0 for a set of
x with an accumulation point. Then F =0 a.e.

ISee e.g. [47]. Essentially, if the functions |f,| € L' are bounded uniformly in n by g € L'
and they converge pointwise (except possibly on a set of measure zero), then lim f,, € L!

and lim [ fn, = [lim fn.
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PROOF By analyticity, LF' = 0 in H. The rest follows from Proposi-
tion 2.9.

Second inversion formula.

Analytic functions in H with sufficient decay can be written as Laplace trans-
forms.

Proposition 2.12 (i) Assume [ is analytic in an open sector Hs := {x :
|arg(z)| < 7/2+ 6}, & > 0 and is continuous on OHs, and that for some
K >0 and any x € Hs we have

[f(@)] < K(ja* +1)7 (2.13)
Then L1 f is well defined by

+io0

F=r'f= 2%/ dt el f(t) (2.14)

—1i00
and

/0 T dpe P E(p) = LL7f = f(a)

In addition ||L7H{f}|eo < K/2 and L7H{f} — 0 as p — 0.
(ii) If § > 0 then F = L™ f is analytic in the sector S = {p # 0 : | arg(p)| <
0}. In addition, supg |F| < K7 and F(p) - 0 asp — oo in S.

PROOF
(1) We have

> d —px > id ips - — > id - > d —px ips 2.
/0 pe [mz sePof(is) v/ooz sf(zs)/o pe Pre (2.15)
= - (2)(z — 2)"tdz = 27if(2) (2.16)

—1i00

where we applied Fubini’s theorem? and then pushed the contour of inte-
gration past x to infinity. The norm is obtained by majorizing |feP*| by
K(Ja?| + 1)1,

(ii) We have for any ¢’ < 4, by (2.13),

2This theorem addresses commutation of orders of integration, see [47]. Essentially, if

feL'(AxB),then [y, pf= [y pf=[5[sf
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/Z ds e f(s) = (/OOO +/Oioo> ds P f(s)
_ ( / OO i / °°> dse f(s) (217)

Given the exponential decay of the integrand, analyticity in (2.17) is clear.
For (ii) we note that (i) applies in U ¢Hy. O
[67]<6
Many cases can be reduced to (2.13) after transformations. For instance
if g = Z;il ajz=% + f(x), with k; > 0 and f satisfies the other assump-
tions above, then g is inverse Laplace transformable since g — f is explicitly
transformable. .

Proposition 2.18 Let F be analytic in the open sector S, = {¢"RT : ¢ €
(=0,0)} and such that |F(|z|e*?)| < g(|z|) € L'0,00). Then f = LF is
analytic in the sector S, = {x : |arg(z)] < 7/2 + 6} and f(x) — 0 as
|z] — oo, arg(x) =0 € (—7/2 — 6, 7/2 + ).

PROOF Because of the analyticity of F' and the decay conditions for large

p, the path of Laplace integration can be rotated by any angle ¢ € (—4,9)
without changing (LF)(z) (see also §4.4d ). This means Proposition 2.7 ap-
plies in U|¢,|<5ei¢H.

Note that without further assumptions on LF', F' is not necessarily analytic
at p=0.

2.2a Inverse Laplace space convolution

If f and ¢ satisfy the assumptions of Proposition 2.12 then so does fg and
we have

L7 fg= (L7 )*(L7g) (2.19)
where

P
(F *Q)(p) := / F(s)G(p — s)ds (2.20)
0
This formula is easily checked by taking the Laplace transform of (2.20) and
justifying the change of variables p; = s,ps = p — s.

Note that L(pF) = (LF)".

We can draw interesting conclusions about F' from the rate of decay of LF
alone.
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Proposition 2.21 (Lower bound on decay rates of Laplace transforms)
Assume F € LY*(R") and for some € > 0 we have

LF(x)=0(e™") as x— +00 (2.22)

Then F =0 on [0,€].

PROOF We write
/000 e P*F(p)dp = /0€ e P*F(p)dp + /OO e P*F(p)dp (2.23)
we note that
[ e rwas] < e [T iFwl < e Fl =0 @20
Therefore
g(x) = /06 e P"F(p)dp =0(e™ ") as = — +00 (2.25)

The function g is entire (check). Let h(z) = e**g(x). Then h is entire and
uniformly bounded for z € R (since by assumption, for some zy and all x > xg
we have h < C and by continuity max |h| < co on [0, zg]). The function h is
bounded in C by Ce?I#l| for some C' > 0, and it is manifestly bounded by
|F||1 for z € iR. By Phragmén-Lindelof (first applied in the first quadrant
and then in the fourth quadrant, with 3 = 2,a = 1) h is bounded in H. Now,
for x = —s < 0 we have

e [Cerran < [ 1Fe) <171, (2:26)
0 0

Once more by Phragmén-Lindel6f (again applied twice) h, is bounded in the
closed left half plane thus bounded in C, and it is therefore a constant. But,
by the Riemann-Lebesgue lemma, h — 0 for x = i¢s when s — +o0. Thus
g =h =0. Noting that g = LX|o qF the result follows from (2.11). I

Corollary 2.27 Assume F € L' and LF = O(e %) as * — +oo for all
A>0. Then F = 0.

PROOF  This is straightforward. I

As we see, uniqueness of the Laplace transform can be reduced to estimates.

Exercise 2.28 (*) Assume f is analytic for |z| > z¢ in a sector S of opening
more than © and that |f(2)| < Ce™*l in S, or that f is bounded in S and
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|f(2)] < Ce=Re ) jf Re(2) > 2o . Show that f is identically zero. Compare
with Exercise 2.5.

(Hint: take a suitable inverse Laplace transform of f and show that it is

analytic in the unit disk and in some sector. Find a ray in the unit disk along
which L~ f vanishes.)

See also Example 2 in §3.6.
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Classical asymptotics

3.1 Asymptotics of integrals: first results

Example: Integration by parts and elementary truncation to the
least term. A solution of the differential equation

F—2f+1=0 (3.1)

is related to the the complementary error function:

E(z) = e’ / e~ ds = geﬁerfc(x) (3.2)

Let us find the asymptotic behavior of F(z) for x — 4o00. One very simple
technique is integration by parts, done in a way in which the integrated terms
become successively smaller. A decomposition is sought such that in the
identity fdg = d(fg) — gdf we have gdf < fdg in the region of interest. Note
that there is no manifest perfect derivative in the 1ntegrand but we can create
a suitable one by writing e~ ds = —(2s)"1d(e=*").

2 2 2 2
1 e’ xS 1 1 3e” eS8
E - 7d = — = — _— 7d = ...

(z) = 20 2 J, &2 T % 4B + 4 /3L s
ol e N i RS
P 2/m  x2ktl VT o

On the other hand, we have, by L’Hospital

0o —g2 2\ L
e’ e " 1
(/L S ds) <x2m+1> — 588700 (3.4)

and the last term in (3.3) is O(z=2™~1). It is also clear that the remainder
in (3.3) is alternating and thus

L (—1D)F Dk + ) O (—1)ED(k+3)
Z NG $2k+1 = Z NG x2k+1 (3.5)
k=0 k=0

33
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if m is even.

Remark 3.6 In Ezxercise 1.37, we conclude F(z) has a Taylor series that at
zero,

P =30 Shrge Dz (37)
= VT

and F(z) is C* on R and analytic away from zero.

Exercise 3.8 Show that z = 0 is an isolated singularity of F(z). Using Re-
mark 1.31, show that F' is unbounded as 0 is approached along some directions
in the complex plane.

Exercise 3.9 Given z, find m = m(z) so that the accuracy in approximating
E(x) by truncated series, see (3.5), is highest. Show that this m is (approx-
imately) the one that minimizes the m-th term of the series for the given x
(“least term”). For x = 10 the relative error in calculating E(z) in this way
is about 5.3 - 10742% (check).

Notes. (1) The series (3.7) is not related in any immediate way to the
Laurent series of F' at 0. Laurent series converge. Think carefully about this
distinction and why the positive index coefficients of the Laurent series and
the coefficients of (3.7) do not coincide.

(2) The rate of convergence of the Laurent series of F' is slower as 0 is
approached, quickly becoming numerically useless. By contrast, the precision
gotten from (3.5) for z = 1/ = 0.1 is exceptionally good. However, of course
the series used in (3.5) are divergent and cannot be used to calculate F' ezactly
z # 0, as explained in §1.1e .

3.1a  Discussion: Laplace’s method for solving linear ODEs
with coefficients linear in z

Equations of the form

> (arz +b)y*) =0 (3.10)
k=0
can be solved through explicit integral representations of the form

/Ce_”’F(p)dp (3.11)

with F' expressible by quadratures and where C is a contour in C, which has
to be chosen subject to the following conditions:

e The integral (3.11) should be convergent, together with sufficiently many
z-derivatives, and not identically zero.
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e The function e~ *P F(p) should vanish with sufficiently many derivatives
at the endpoints, or more generally, the contributions from the endpoints
when integrating by parts should cancel out.

Then it is clear that the equation satisfied by F' is first order linear homoge-
neous, and then it can be solved by quadratures. It is not very difficult to
analyze this method in general, but this would be beyond the purpose of this
course. We illustrate the method on Airy’s equation

y' =y (3.12)
Under the restrictions above we can check that F' satisfies the equation
p’F = F' (3.13)

Then F = exp(p®/3) and we get a solution in the form

/3

Ai(x) L/ e~ P’ 3y (3.14)

211 coe—Ti/3

along some curve that crosse the real line. It is easy to check the restrictions
for x € R, except for the fact that the integral is not identically zero. We
can achieve this at the same time as finding the asymptotic behavior of the Ai
function. Solutions of differential or difference equations can be represented
in the form

b
F(z) = / e®90) f(s)ds (3.15)

with simpler g and f in wider generality, as it will become clear in later
chapters.

3.2 Laplace, stationary phase, saddle point methods and
Watson’s lemma

These deal with the behavior for large x of integrals of the form (3.15). We
distinguish three particular cases: (1) The case where all parameters are real
(addressed by the so-called Laplace method); (2) The case where everything
is real except for x which is purely imaginary (stationary phase method) and
(3) The case when f and g are analytic (steepest descent method-or saddle
point method). In this latter case, the integral may also come as a contour
integral along some path. In many cases, all three types of problems can be
brought to a canonical form, to which Watson’s lemma applies.
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3.3 The Laplace method

Even when very little regularity can be assumed about the functions, we can
still infer something about the large = behavior of (3.15).

Proposition 3.16 If f(s) € L>([a,b]) then

b 1/x
lim / ) ds — el fllss
T—400 a

PROOF This is simply the fact that || f|l» — ||f|loc [47]- See also the note
below.

Note. The intuitive idea in estimating this kind of integrals is that if x is
large and g has a unique absolute maximum, the absolute maximum in s of
o(x;s) = exp(zg(s)) exceeds, for large x, by a large amount the value of ¢ at
any point neighboring point. Then the contribution of the integral outside a
tiny neighborhood of the maximum point is negligible.

In a neighborhood of the maximum point, both f and g are very well
approximated by their local expansion. For example, assume the absolute
maximum is at the left end, x = 0 and we have f(0) # 0 and ¢’(0) = —a < 0.
Then,

/ ef”g(s)f(s)ds%/ 90 =as £(0)ds

0 0

o0
1
~ f(0)e®9©) / e s ds = £(0)e"9) — (3.17)
0 ax
Watson’s lemma, proved in the sequel, is perhaps the ideal way to make the
previous argument rigorous, but for the moment we just convert the approx-
imate reasoning into a proof following the same line of reasoning.

Proposition 3.18 (the case when g is mazimum at one endpoint). Assume
[ is continuous on [a,b], f(a) # 0, g is in C'la,b] and ¢ < —a < 0 on [a,b].
Then

b

f(a)ers@
Iz :z/ f(s)e® ) ds = (14 0(1 xr — 400 3.19

100 @ o) @) (319
Note: Since the derivative of g enters in the final result, regularity is clearly
needed.

PROOF Without loss of generality, we may assume a = 0, b = 1, f(0) > 0.
Let € be small enough and choose § such that if z < § we have |f(z)—f(0)] < e
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and |¢'(x) — ¢'(0)] < e. We write
1 5 1
/ f(s)e™9®) ds = / f(s5)e™ds —l—/ f(s)e™9)ds (3.20)
0 0 s
the last integral in (3.20) is bounded by
1
/ F(5)e™9) ds < | ]| we™2® (a8 =5(0) (3.21)
s
For the middle integral in (3.20) we have
s 5 )
[ rends < )+ o) [ elroaomady,
0 0

e £(0) + ¢
z g'(0)+e

[1 - e15<9’<0>+5>} (3.22)
Combining these estimates, as * — co we thus obtain

1
0)+e
lim su ace_xg(o)/ 5)e9) ds < —L 3.23
msup [ pers s < — ST (323)
A lower bound is obtained in a similar way. Since € is arbitrary, the result

follows.

When the maximum of g is reached inside the interval of integration, sharp
estimates require even more regularity.

2 717 1]

Proposition 3.24 (Interior maximum) Assume f € C[—1,1], g € C*|
y f(0) >

) g
has a unique absolute maximum (say at x = 0) and that f(0) # 0 (sa
0) and ¢"”(0) < 0. Then

1
$)e®9) ds = _ ¢®9(0) 0 T — +00 .
| e s = R 10O (14 0l1) (@ = ) (325

PROOF The proof is similar to the previous one. Let ¢ be small enough
and let 6 be such that |s| < § implies |g”(s)—g”(0)| < e and also | f(s)—f(0)| <
€. We write

1 s
/ e®9) f(s)ds = / e f(s)ds + / e f(s)ds (3.26)
-1 -6 |s|>6

The last term will not contribute in the limit since by our assumptions for

some « > 0 and |s| > § we have g(s) — g(0) < —a < 0 and thus

e 90 /z ™) f(s)ds < 2V || f||lsoe ™™ — 0 as & — oo (3.27)
[s|>o
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On the other hand,

é 1
| e psas < (1) + ) [ e oy,

—d —0
< (£(0) + ) / T 03 Okt gy - [ 2T

€ exg(O)
. 7o) —q D)

(3.28)

An inequality in the opposite direction follows in the same way, replacing <
with > and e with —e in the first line of (3.28), and then noting that

I e’ ds
foo zs? g

—1 asz — o0 (3.29)

I

M

as can be seen by changing variables to u = sz~ 2.

With appropriate decay conditions, the interval of integration does not have
to be compact. For instance, let J C R be an interval (finite or not) and
[a,b] C J.

Proposition 3.30 (Interior mazimum, noncompact interval) Assume f €
Cla,b] N L**(J), g € C?[a,b] has a unique absolute mazimum at x = ¢ and
that f(c) # 0 and g"(c) < 0. Assume further that g is measurable in J and
gle) — g(s) = a+h(s) where a >0, h(s) >0 on J\[a,b] and e="*) € L1(]).
Then,

B
/ f(s)em9()ds — L f@)e®9(1+0(1) (z— +o0)  (3.31)
A z|g” (c)]

PROOF This case reduces to the compact interval case by noting that

e / ¢79) f(5)ds

J\[a,b]

< Ve [ s
J
< Const/re ™ —0asz — oo (3.32)

0

Example. We see that the last proposition applies to the Gamma function by
writing

o0 o0
n! = / et dt = p" Tt / en(mstns) g (3.33)
0 0

whence we get Stirling’s formula

n! = 277n(%>n(1+0(1)); n — 400
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3.4 Watson’s lemma

In view of the wide applicability of BE summability as we shall see later,
solutions to many problems admit representations as Laplace transforms

(LF) (z) == / e *PF(p)dp (3.34)
0
For the error function note that

o0 2 o0 2 2 x 2 o0 67121}
e % ds= a:/ e P du=—-e" / dp
/z 1 2 o vp+1

For the Gamma function, writing [~ = fol + /7 in (3.33) we can make the
substitution ¢ — In¢ = p in each integral and obtain (see §3.9¢ )

oo
nl = n”“e*”/ e "PG(p)dp
0

Watson’s lemma provides the asymptotic series at infinity of (LF)(z) in terms
of the asymptotic series of F'(p) at zero.

Lemma 3.35 (Watson’s lemma) Let ' € L*(R") and assume F(p) ~
Yono ek P21 as p — 0F for some constants B; with Re (3;) > 0, i =1,2.
Then, for a < oo,

flz) = /0 e~ P F(p)dp ~ chr(kﬂ1 + By)a O

k=0
along any ray p in H.

Remark 3.36 (i) Clearly, the asymptotic formula holds if fooo is replaced by
foa, a > 0, since we can always extend F' and the integral by zero for z > a.
(ii) The presence of I'(k3; + 32) makes the x series often divergent even when
F is analytic at zero. However, the asymptotic series of f is still the term-by-
term Laplace transform of the series of F' at zero, whether a is finite or not
or the series converges or not. This freedom in choosing a shows that some
information is lost.

PROOF Induction, using the conclusion of Lemma 3.37 below. O I

Lemma 3.37 Let F € L'(RY), x = pe'®, p > 0, ¢ € (—7/2,7/2) and
assume
F(p)~p” asp— 0"
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with Re (8) > —1. Then

/000 F(p)e P*dp ~T(8 + Dz P71 (p— o)

PROOF If U(p) = p PF(p) we have lim, o U(p) = 1. Let X4 be the
characteristic function of the set A and ¢ = arg(z). We choose C and a
positive so that |F(p)| < C|p”| on [0,a]. Since

/ F<p>ep$dp\ <P, (3.38)

we have by dominated convergence, and after the change of variable s = p/|z|,

> —px 7 > _get?
xﬂH/ F(p)e P*dp =e¢<ﬁ+1>/ sPU(s/]%))X (0,01 (8/]%)e™*¢ " ds
0 0

+O(|z]P*te ) S T(B41) (Jz| — o) (3.39)

0

3.4a  The Borel-Ritt lemma

Any asymptotic series at infinity is the asymptotic series in a half plane of
some (vastly many in fact) entire functions. First a weaker result.

Proposition 3.40 Let f(z) = > neo axz® be a power series. There exists a
function f such that f(z) ~ f(z) as z — 0.

PROOF The following elementary line of proof is reminiscent of optimal
truncation of series. By Remark 1.31 we can assume, without loss of generality,
that the series has zero radius of convergence. Let zg > 0 be small enough and
for every z, |z| < 29, define N(z) = max{N :V n < N, |a,2"/?| <27". We
have N(z) < oo, otherwise, by Abel’s theorem, the series would have nonzero
radius of convergence. Noting that for any n we have nln |z|] — —oco as |z| — 0
it follows that N(z) is nonincreasing as |z| decreases and that N(z) — oo as
z — 0. Consider

Let N be given and choose zy; |znx| < 1 such that N(zx) > N. For |z| < |zn]|
we have N(z) > N(zy) > N and thus

N
|f(z) - Z an2"
n=0

N(z) NG _
_ Z anz"| < Z |Z]/2|27j < |Z‘N/2+1/2
n=N+1 J=N+1
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Using Lemma 1.12, the proof follows. I

The function f is certainly not unique. Given a power series there are many
functions asymptotic to it. Indeed there are many functions asymptotic to the
(identically) zero power series at zero, in any sectorial punctured neighborhood
of zero in the complex plane, and even on the Riemann surface of the log on
C\ {0}, e.g. e=*"""" has this property in a sector of width 2n.

Lemma 3.41 (Borel-Ritt) Given a formal power series f = > peo ST
there exists an entire function f(x), of exponential order one (see proof below),
which is asymptotic to f in H, i.e., if p € (—m/2,7/2) then

)~ f asx = ew, — +00
f(@)~ f p p

PROOF  Let =37, ﬁpk’l, let F(p) be a function asymptotic to
F as in Proposition 3.40. Then clearly the function

f(x):/o e *PF(p)dp

is entire, bounded by Const.e/®! i.e. the exponential order is one, and, by
Watson’s lemma it has the desired properties.

Exercises.

(1) How can this method be modified to give a function analytic in a sector
of opening 27n for an arbitrary fixed n which is asymptotic to f ?

(2) Assume F' is bounded on [0, 1] and has an asymptotic expansion F'(t) ~
Seocktt as t — 0. Let f(z) = fol e " F(p)dp (a) Find necessary and
sufficient conditions on F' such that f , the asymptotic power series of f for
large positive z, is a convergent series for |z| > R > 0. (b) Assume that f
converges to f. Show that f is zero.

(c) Show that in case (a) if F' is analytic in a neighborhood of [0, 1] then
f=7f+e*f where f; is convergent for |x| > R > 0.

(3) The width of the sector in Proposition 3.41 cannot be extended to more
than a half plane: Show that if f is entire, of exponential order one, and
bounded in a sector of opening exceeding 7 then it is constant. (This follows
immediately from the Phragmén-Lindelof principle; an alternative proof can
be derived from elementary properties of Fourier transforms and contour de-
formation.) The exponential order has to play a role in the proof: check that
the function [, e=P*=" dp is bounded for arg(z) € (—2F, 2%). How wide can
such a sector be made?
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3.4b  Laplace’s method revisited

(i) Absolute maximum at left endpoint with nonvanishing deriva-
tive.

Proposition 3.42 Let g be analytic (smooth) on [a,b] where ¢ < —a < 0.
Then the problem of finding the large x behavior of F in (3.15) is analyti-
cally (respectively smoothly) conjugated to the canonical problem of the large
x behavior of

g(b) g(a)—g(b)
/ " H(s)ds = 9@ / e ™H(g(a) —u)du (3.43)
g(a) 0

with H(s) = f(¢(s))#'(s).

This just means that we can transform to (3.43) by analytic (smooth) changes
of variable; in this case, the change is g(s) = u, ¢ = g~!. The proof of
smoothness is immediate, and we leave it to the reader. Note that we have
not required that f(0) # 0 anymore. If H is smooth and some derivative at
zero is nonzero, Watson’s lemma clearly provides the asymptotic expansion
of the last integral in (3.43). The asymptotic series is dual, as in Lemma 3.35
to the series of H at g(a).

(ii) Absolute maximum at an interior point with nonvanishing sec-
ond derivative.

Proposition 3.44 Let g be analytic (smooth) on the interval a < 0 < b,
a < b, where ¢ < —a < 0 and assume g(0) = 0. Then the problem of find-
ing the large x behavior of F in (3.15) is analytically (respectively smoothly)
conjugated to the canonical problem of the large x behavior of

/\/ l9(0)] .2

1 [—le(a)l L L 1 [la®l L L
= —5/ e‘”H(—vi)v_fdv—i—g/ e ™ H(w2)v 2dv (3.45)
0 0

with H(s) = f(p(s))
representation. If g,

©'(s), ©*(s) = —g(u); Watson’s lemma applies to the last
f€C*, then p € CF~! and H € C+~2.

PROOF Note that near zero we have g = —s2h(s) where h(0) = 1.
Thus /% is well defined and analytic (smooth) near zero; we choose the usual
branch and note that the implicit function theorem applies to the equation
5v/h(s) = u throughout [a, b]. The rest is left to the reader. I

Exercise 3.46 Assume H € C* and a > 0. Show that the asymptotic be-
havior of

/a efMQH(u)du (3.47)

—a
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18 given by

21) w2l —zu? @) (o 11
Z 2l'/ e du = Z F H (0)x~ (3.48)

(This is a formal series, not expected to converge, in general.) In other words,
the classical asymptotic series is obtained by formal expansion of H at the crit-
ical point x = 0 and termuwise integration, extending the limits of integration
to infinity and odd terms do not contribute, by symmetry. The value of “a”
does not enter the formula, so once more, information is lost.

Exercise 3.49 Generalize (3.25) to the case when g € C*[—1,1] and the first
three derivatives vanish at the unique point of absolute maximum, s = 0.

Exercise 3.50 * Consider the problem (3.19) with f and g smooth and take

= 0 for simplicity. Show that the asymptotic expansion of the integral
equals the one obtained by the following formal procedure: we expand f and
g in Taylor series at zero, replace f in the mtegml by its Taylor series,
keep ng'(0) in the exponent, reexpand end” ()% /24 in series in s, and in-
tegrate the resulting series term by term. The contribution of a term cs™ 1is
c(g'(0))~™ tml fammt

Exercise 3.51 (*) Consider now the inner mazimum problem in the form
(3.25), with f and g smooth at zero. Formulate and prove a procedure similar
to the one in the previous problem. Odd terms give zero contribution. An even
power cs®™ gives rise to a contribution c2™ /2T (m+1/2)(¢g"(0)) "™~/ 2g=m=1/2,

Exercise 3.52 (*) Use Exercise (3.50) to show that the Taylor coefficients

of the inverse function ¢~ can be obtained from the Taylor coefficients of ¢

in the following way. Assume ¢'(0) = 1. We let P,(z), a polynomial in x, be

the n—th asymptotz’c coefficient of e¥*@/Y) as y — co. The desired coefficient
'fo n+1 )dl‘

Remark 3.53 There is a relatively explicit function inversion formula, first
found by Lagrange, and generalized in a number of ways. It is often called the
Lagrange-Biirmann inversion formula [34]. Tt applies to analytic functions f
with nonvanishing derivative at the relevant point, and it now can be shown
by elementary complex analysis means:

o0

F71(2) = ' (20) +chf:n 11 (w E )> ‘w:ffl(%)(z_n%)n (3.54)

fw) — 2o

3.5 Oscillatory integrals and the stationary phase method

In this setting, an integral of a function against a rapidly oscillating expo-
nential becomes small as the frequency of oscillation increases. Again we first
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look at the case where there is minimal regularity; the following is a version
of the Riemann—Lebesgue lemma.

Proposition 3.55 Assume f € L'[0,27]. Then fo% e f(t)dt — 0 as x —
+o00. A similar statement holds in L*(R).

It is enough to show the result on a set which is dense ! in L. Since trigono-
metric polynomials are dense in the continuous functions on a compact set 2,
say in C[0,27] in the sup norm, and thus in L'[0,27], it suffices to look at
trigonometric polynomials, thus (by linearity), at e?** for fixed k; the latter
integral can be expressed explicitly and gives

2
/ el®sgtks go — O(:)j_l) for large x. m
0

No rate of decay of the integral in the Proposition follows without further
knowledge about the regularity of f. With some regularity we have the fol-
lowing characterization.

Proposition 3.56 For n € (0,1] let the C"[0,1] be the Hélder continuous

functions of order n on [0,1], i.e., the functions with the property that there

is some C' such that for all z,z’ € [0,1] we have |f(z) — f(z)] < Clz — 2'|".
(i) We have

1
fecC"o,1] = < §C’7r’7x777 +0(z7') as * — o0 (3.57)

1 .
/ f(s)e'™%ds
0

(ii) If f € LY(R) and |z|"f(x) € L*(R) with n € (0,1], then its Fourier
transform f = [7_ f(s)e™™*ds is in C"(R).

(iii) Let f € L'(R). If 2"f € LY(R) with n € N then f is n — 1 times
differentiable, with the n — 1th derivative Lipschitz continuous. If eldelf ¢
LY(R) then f extends analytically in a strip of width |A| centered on R.

PROOF (i) We have as  — oo (| -| denotes the integer part)

LA set of functions f, which, collectively, are arbitrarily close to any function in L!. Using
such a set we can write

27 27 27
eizt — eizt — fn eizt .
/0 @yt /0 (F(&) — fu())dt + /0 Fa(t)dt

and the last two integrals can be made arbitrarily small.

20ne can associate the density of trigonometric polynomials with approximation of func-
tions by Fourier series.
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1
f(s)e*sds| =
)
2% -1 (2j+1)ma~? _ (2j+2)ma 1 _
Z / f(s)e”sds—k/ f(s)e™ds || +O(x™1)
j=0 2jmz—1 (2j+1) w1
Lz =1 (2j4+1)ma? _
- Z / (f(s)—f(s—l—ﬂ/x))emsds —|—O(x_1)
=0 2jmx—1
Lz T\ T 1
< IV D < Zopng -1 .
< 2 C(x) <0 0@ (3.58)

(ii) We see that

f( iTs _611.5 ‘ nf ‘dx
(s —s") (xs —xs' )"

- |7 ] <
- (3.59)

is bounded. Indeed, by elementary geometry we see that for |¢p1 — ¢o| < 7 we
have

| exp(ign) — exp(ige)| < [d1 — d2| < |P1 — 2" (3.60)
while for |¢1 — ¢2| > 7 we see that

|exp(ig1) — exp(iga)| < 2 < 2[¢1 — dof”

(iii) Follows in the same way as (ii), using dominated convergence. I

Exercise 3.61 Complete the details of this proof. Show that for anyn € (0,1]
and all ¢y 2 € R we have |exp(ig1) — exp(iga)| < V2|p1 — ¢2|".

Note. In Laplace type integrals Watson’s lemma implies that it suffices for a
function to be continuous to ensure an O(z 1) decay of the integral whereas
in Fourier-like integrals, the considerably weaker decay (3.57) is optimal as
seen in the exercise below.

Exercise 3.62 (*) (a) Consider the function f given by the lacunary trigono-
metric series f(2) =3 1 _on nen k~meikz n € (0,1). Show that f € C"[0,27].
One way is to write ¢1 2 as a12277, use the first inequality in (3.60) to esti-
mate the terms in f(¢1) — f(¢2) with n < p and the simple bound 2/k" for
n > p. Then it is seen that fo% e~ f(s)ds = 2rk™" and the decay of the
Fourier transform is exactly given by (3.57).

(b) Use Proposition 3.56 and the result in Exercise 3.62 to show that the
function f(t) = > ) _on pen k~"tF analytic in the open unit disk, has no
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analytic continuation across the unit circle, that is, the unit circle is a barrier
of singularities for f.

Note 3.63 Dense non-differentiability is the only way one can get poor decay,
see also Exercise 3.71.

Notes. In part (i), compactness of the interval is crucial. In fact, the Fourier
transform of an L?(IR) entire function may not necessarily decrease pointwise.
Indeed, the function f(x) =1 on the interval [n,n + e‘”Q] for n € N and zero
otherwise is in L' (R)NL2(R) and further has the property that el4?| f € L1(R)
for any A € R, and thus T_lf is entire. Thus f is the Fourier transform
of an entire function, it equals F~'f a.e., and nevertheless it does not decay
pointwise as x — oo. Evidently the issue here is poor behavior of f at infinity,
otherwise integration by parts would show decay.

Proposition 3.64 Assume f € C"[a,b]. Then we have

b n n
/ e f(t)dt = '™ Z cpr P 4 el Z drx™F +o(z™™)
a k=1 k=1

b
+o(z™") (3.65)

a

S (1O

i (iz)?

n_lf("‘”(t))

(iz)"

PROOF This follows by integration by parts and the Riemann-Lebesgue
lemma since

b

b 1xt _ _ixt @ _ f/(t) _1\n—1 f(n_l)(t)
/a e f(t)dt = e ( - + ..+ (=1 T )
(

_1)n ’ (n) eizt
o / FM@B)eintar (3.66)

a

+

I

Corollary 3.67 (1) Assume f € C™[0,2n] is periodic with period 2w. Then
02” f()e™t = o(n=™) for any m >0 as n — +oo,n € Z.
(2) Assume f € C§°la,b], a smooth function which vanishes with all deriva-
tives at the endpoints; then f(x) = f; f(t)eit = o(z™™) for any m > 0 as
T — +00.

Exercise 3.68 Show that if f is analytic in a neighborhood of [a, b] but not
entire, then both series in (3.65) have zero radius of convergence.
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Exercise 3.69 In Corollary 3.67 (2) show that limsup, . e®l|f(z)] = oo
for any € > 0 unless f = 0.

Exercise 3.70 For smooth f, the interior of the interval does not contribute
because of cancellations: rework the argument in the proof of Proposition 3.56
under smoothness assumptions. If we write f(s+w/z) = f(s)+ f/(s)(n/x) +
5/ (c)(m/x)?* cancellation is manifest.

Exercise 3.71 Show that if f is piecewise differentiable and the derivative
is in L', then the Fourier transform is O(z~1).

3.5 .1 Oscillatory integrals with monotonic phase

Proposition 3.72 Let the real valued functions f € C™[a,b] and g € C™+1]a, b]
and assume g' # 0 on [a,b]. Then

b m m
/ (e Odt = 9@ 3 ek 4 990 3 dyrF 4 o(x=™)  (3.73)
@ k=1 k=1

as x — +oo, where the coefficients ¢, and dy can be computed by Taylor
expanding f and g at the endpoints of the interval of integration.

This essentially follows from Proposition 3.42, since the problem is amenable
by smooth transformations to the setting of Proposition 3.64. Carry out the
details.

3.5a Stationary phase method

In general, the asymptotic behavior of oscillatory integrals of the form (3.73)
comes from:

e endpoints;
e stationary points;
e singularities of f or g.

We consider now the case when g(s) has a stationary point inside the in-
terval [a,b]. Then, the main contribution to the integral on the lhs of (3.73)
comes from a neighborhood of the stationary point of g since around that
point the oscillations that make the integral small are less rapid.

We have the following result:

Proposition 3.74 Assume f,g are real valued C*[a,b] functions and that
g'(¢) =0 g"(x) #0 on [a,b]. Then for any m € N we have
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b 2m
/ f(s)eixg(s)ds — ei:cg(c) Z ckx_k/Q

k=1

+ eiw9(a) Z dpzF 4 eir9(®) Z err P+ o(z™™) (3.75)
k=1 k=1

for large x, where the coefficients of the expansion can be calculated by Taylor
expansion around a,b and c of the integrand as follows from the proof. In
particular, we have

PROOF  Again, by smooth changes of variables, the problem is amenable
to the problem of the behavior of
J= [ Hue"™ du (3.76)

—a

which is given, as we will see in a moment, by

. in/4
. tooe H®F(— )
J ~ E (e”az/ 7];‘ 9 (u+ a)kemﬂdu
k>0 —a
iooe’™/4 icoe’™/%
. H(k) - Hk) (o )
—6”’“2 / (a’) (’U, _ a)kezluz du + / ( )u2kezxu2du
a k! ooe—insa 2k

(3.77)

in the sense that J minus a finite number of terms of the series is small on
the scale of the last term kept.

For a conveniently small € we break the integral and are left with estimating
the three integrals

—€ €

J1 = H(u)eimzdu; J3:/ H(u)eimzdu; Jo = H(u)eimzdu

—a —€

By smooth changes of variables, J; turns into

/ Hy(v)e™dv (3.78)

2
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where H, H; are smooth. Proposition 3.64 applies to the integral (3.78); Js
is treated similarly. For the second integral we write

"o HqHE Q) [€ )
T STy
1=0 —e

€ 62
:/ um+1e”“2F(u)du:/ vm;lFl(v)ei”du (3.79)
—€ 0

where F is smooth. We can integrate by parts m/2 times in the last inte-
gral. Thus, combining the results from the two cases, we see that J has an
asymptotic series in powers of 2'/2. Since there exists an asymptotic series,
we know it is unique. Then, the series of J cannot of course depend on an
arbitrarily chosen parameter €. Thus, we do not need to keep any endpoint
terms at +e: they cancel out.

Note It is easy to see that in the settings of Watson’s lemma and of Propo-
sitions 3.64, 3.72 and 3.74 the asymptotic expansions are differentiable, in
the sense that the integral transforms are differentiable and their derivative
is asymptotic to the formal derivative of the associated expansion.

3.5b  Analytic integrands

In this case, contour deformation is used to transform oscillatory exponen-
tials into decaying ones. A classical result in this direction is the following.

Proposition 3.80 (Fourier coefficients of analytic functions) Assume f
is periodic of period 27, analytic in the strip {z : |Im (2)| < R} and contin-
uous in its closure. Then the Fourier coefficients c, = (2m)1 fo% et f(t)dt
are o(e~I™MB) for large |n|. Conversely, if ¢, = o(e™ ™%, then f is analytic
in the given strip.

PROOF We take n > 0, the opposite case being very similar. By analyt-
icity we have

27 iR 1R4-27 2m+iR
nt o wnt nt o wnt
/0 e F(t)dt = /O et F(t)dt + / e (t)dt / et £ (1) dt

R 27

The first and last integrals on the rhs cancel by periodicity while the middle
one equals

2m
67"3/ e f(s+iR)ds = o(e” ") as n — oo
0

The converse is straightforward. I
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3.5¢  Examples
Ezample 1. Consider the problem of finding the asymptotic behavior of the

integral
™ —int ™
I(n):/ Y ::/ F(t)dt

—T —T

as n — o0o. We see by Corollary 3.67 that J = o(z™™) for any m € N.
Proposition 3.80 tells us more, namely that the integral is exponentially small.
But both methods only give us upper bounds for the decay, and no precise
estimates.

In this simple example however we could simply expand convergently the
integrand and use dominated convergence:

77,nt
/ 2_6,“5 / 22]617””]0 Z/ 2k:171tn k) _ Y

T k=0

In case n < 0 we get I(n) = 0. If we have = ¢ N instead of n we could try
same, but in this case we end up with

7k71

00
727TZ£E _ §
xr —
=0

which needs further work to extract an asymptotic behavior in z.

We can alternatively apply a more general method to estimate the integral,
using deformation of contour. The point is to try to express J in terms of
integrals along paths of constant phase of e =™, Then Watson’s lemma would
be applicable. Note that F' is analytic in C\ {—iln2 + 2kn}cz and mero-
morphic in C. Furthermore, as N — oo we have F(t —ilN) — 0 exponentially
fast. This allows us to push the contour of integration down, in the following
way. We have

?{ F(t)dt = 2mi Res (F(t);t = —iln 2) = —m2"
C

where the contour C of integration is an anticlockwise rectangle with vertices
—m,m,—iN + 7w, —iN — 7 with N > In2. As N — oo the integral over the
segment from —iN + 7 to —iN — 7 goes to zero exponentially fast, and we

find that
/ F(t)dt = / F(t)dt — / F(t)dt+ 727"

—ZIs

ds+m27"

I(z) = —i(e™™ —e™"*T) /OO ¢ ds+7m27" = 2sinnx /00 c
0o 24e 0o 24e
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Watson’s lemma now applies and we have

/Oo e s d 1 1 1 n 1 n 5 7 "
S~ — — — — -

0 2+es 3x 922 27x3 2Tzt 8la® 2436

and thus

1e) ~ 2 11 L1, 5 7
~ 2sin — - — —
) eI B T 022 T 9743 " 2742 ' 8125 24316

+ ) (3.81)

whenever the prefactor in front of the series is not too small. More generally,
the difference between I(x) and the m-th truncate of the expansion is o(z~™).
Or, the function on the left hand side can be decomposed in two functions
using Euler’s formula, each of which has a nonvanishing asymptotic expansion.
This is the way to interpret similar asymptotic expansions, which often occur
in the theory of special functions, when the expansions involve trigonometric
functions. But none of these characterizations tells us what happens when
the prefactor is small. Does the function vanish when sinmz = 0?7 Not for
2 > 0. Another reason to be careful with relations of the type (3.81).

Exercise 3.82 Make use of the results in this section to find the behavior as
y — +oo of

o0 k

a
> i (lal < 1)
k:Oy—Hc

3.5c .1 Note on exponentially small terms

In our case we have more information: if we add the term 72~% to the
expansion and write

1 1 1 1 5 7

3z 022 2725 9744 T 8145 24326

I(x) ~ 2sinmz ( + ) + 727"

(3.83)
then the expansion is valid when x — +oo along the positive integers, a rather
trivial case since only 7277 survives. But we have trouble interpreting the
expansion (3.83) when z is not an integer! The expression (3.83) is not of
the form (1.7) nor can we extend the definition to allow for 7277 since 2% is
asymptotically smaller than any term of the series, and no number of limits
as in Definition 1.10 would reveal it. We cannot subtract the whole series
preceding the exponential from I(z) to see “what is left”, since the series has
zero radius of convergence. (The k-th coefficient is, by Watson’s lemma, k!
times the corresponding Maclaurin coefficient of the function (2 + €*)~! and
this function is not entire.)

We may nevertheless have the feeling that (3.83) is correct “somehow”.
Indeed it is, in the sense that (3.83) is the complete transseries of J, as it will

become clear after we study more carefully BE summability.
*
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3.6 Steepest descent method

Consider the problem of finding the large x behavior of an integral of the
form

/ f(s)elg(s)ds (3.84)
c

where ¢ is analytic and f is meromorphic (more general singularities can be
allowed) in a domain in the complex plane containing the contour C' and x is
a large parameter.

As in the Example 1 on p. 50, the key idea is to use deformation of contour
to bring the integral to one which is suitable to the application of the Laplace
method. We can assume without loss of generality that z is real and positive.

(A) Let g = u + v and let us first look at the simple case where C’ is a
curve such that v = K is constant along it. Then

1
F(5)er9C)ds = e [ f(s)er)ds = ik / Fr)er OOy (1)t
c’ c’ 0

is in a form suitable for Laplace’s method.

The method of steepest descent consists in using the meromorphicity of
f, analyticity of ¢ to deform the contour of integration such that modulo
residues, the original integral can be written as a sum of integrals of the type
C’ mentioned. The name steepest descent comes from the following remark.
The lines of v =constant are perpendicular to the direction of Vv. As a
consequence of the Cauchy-Riemann equations we have Vu - Vv = 0 and thus
the lines v =constant are lines of steepest variation of u therefore of |e®9(*)],
On the other hand, the best way to control the integral is to go along the
descent direction. The direction of steepest descent of w is parallel to —Vu.
Thus the steepest descent lines are the integral curves of the ODE system

We first look at some examples, and then discuss the method in more gener-
ality.
Ezample 1. The Bessel function Jy(€) can be written as %Re I, where

/2
I= / elscostyy (3.86)
—m/2

Suppose we would like to find the behavior of Jy(§) as £ — +o0. It is conve-

nient to find the steepest descent lines by plotting the phase portrait of the
flow (3.85), which in our case is

T = —cosxsinhy; y = —sinxcoshy (3.87)
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and which is easy to analyze by standard ODE means. Consequently, we write

—m/24i00 ) m/2—ico
I = / 615 cos tdt + / elﬁ cos tdt + / €z§ cos tdt (388)
—7/2 ¥ w/2

as shown in Fig 3.1.

All the curves involved in this decomposition of I are lines of constant imag-
inary part of the exponent, and the ordinary Laplace method can be applied
to find their asymptotic behavior for £ — 400 (note also that the integral
along the curve =, called Sommerfeld contour, is the only one contributing
to Jp, the other two being purely imaginary, as it can be checked by making
the changes of variable t = —m/2 £ is). Then, the main contribution to the
integral comes from the point along v where the real part of the exponent is
maximum, that is z = 0. We then expand cost =1 —t2/2 + t*/4! 4 - .. keep
the first two terms in the exponent and expand the rest out:

/ ei6cost p , oim / e—i§t2/2(1 + i§t4/4! R )dt
Y v
coe /4
N / eTEE2(1 gt Al 4 )t (3.89)

coedin/4

and integrate term by term. Justifying this rigorously would amount to re-
doing parts of the proofs of theorems we have already dealt with. Whenever
possible, Watson’s lemma is a shortcut, often providing more information as
well. We will use it for (3.86) in Example 4.

*

Example 2. We know by Watson’s lemma that for a function F' which has a
nontrivial power series at zero, LF = fooo e *PF(p)dp decreases algebraically
as r — oo. We also know by Proposition 2.21 that regardless of FF # 0 €

L', LF cannot decrease superexponentially. What happens if F' has a rapid
oscillation near zero? Consider for x — +o0o the integral

I:= / e P cos(1/p)dp (3.90)
0
It is convenient to write
I=Re / e e Pdp = Re I (3.91)
0

To bring this problem to the steepest descent setting, we make the substitu-
tion p = ¢/+/x. Then I; becomes

I, = x—l/Q/ e_ﬁ(“_i/t)e_i/pdp (3.92)
0
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FIGURE 3.1: Relevant contours for J,
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1.4

1.2
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FIGURE 3.2: Constant phase lines for ¢ + i/t passing through the saddle
point t = ﬂ

The constant imaginary part lines of interest now are those of the function
t 4+ i/t. This function has saddle points at (t 4 i/t)’ = 0 i.e. t = £v/i. We
see that t = /i = t( is a maximum point for —Re g := —Re (¢ + i/t) and the
main contribution to the integral is from this point. We have, near t = tg
g=g(to) + 39" (to)(t —to)?> + -+ and thus

. 00 1 4
I ~ a:‘l/?e—ﬂ““)ﬁ/ exp {(—2 + ;) V2 (t — to)z] (3.93)

and the behavior of the integral is, roughly, e V7, decaying faster than powers
of x but slower than exponentially. The calculation can be justified mimicking
the reasoning in Proposition 3.24. But this integral too can be brought to a
form suitable for Watson’s lemma.

Exercise 3.94 Finish the calculations in this example.

*3.6a  Further discussion of steepest descent lines

Assume for simplicity that g is nonconstant entire and f is meromorphic. We
can let the points on the curve C' = (xo(7),y0(7)); T € [0,1] evolve with
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FIGURE 3.3: Steepest descent lines for Re [i cos(z + iy)]

(3.85) keeping the endpoints fixed. More precisely, at time ¢ consider the
curve t — C(t) = C1 U C2 U C5 where C1 = (x(s, 20(0)),y(s,90(0)); s €[0,¢),
Cy = x(t,zo(7)),y(t,yo(7)), 7 € (0,1)) and C5 = (x(s,z0(1)),y(s,yo(1)); s €
[0,t). Clearly, if no poles of f are crossed,

/ f(s)e™9) ds = f(s)e®)ds (3.95)
c c)

We can see that z(t,zo(7)) = (z(¢,20(7)),y(t, zo(7))) has a limit as ¢ — oo
on the Riemann sphere, since u is strictly decreasing along the flow:

%u(w(t), y(t)) =—uZ — uz (3.96)

There can be no closed curves along which v = K =const. or otherwise we
would have v = K since v is harmonic. Thus steepest descent lines extend to
infinity. They may pass through saddle points of u (and g: Vu=0= ¢ =0)
where their direction can change non-smoothly. These are equilibrium points
of the flow (3.85).

Define S as the smallest forward invariant set with respect to the evolution
(3.85) which contains (z0(0),y0(0)), all the limits in C of z(¢,x0(7)) and the
descent lines originating at these points. The set S is a union of steepest



Classical asymptotics 57

descent curves of u, & = U7_;C; and, if s; are poles of f crossed by the curve

C(t) we have, under suitable convergence assumptions?,

n'<n

/f(s)e‘”g(s)ds: Z/ f(s)emg(s)ds+27riZRes(f(s)e””g(S))S:sj (3.97)
c = Jen 5

and the situation described in (A) above has been achieved.
One can allow for branch points of f, each of which adds a contributions of
the form

/ 5f(s)e™)ds
c

where C' is a cut starting at the branch point of f, along a line of steepest
descent of g, and ¢ f(s) is the jump across the cut of f.

3.6b Reduction to Watson’s lemma

It is often more convenient to proceed as follows.

We may assume we are dealing with a simple smooth curve. We assume
g’ # 0 at the endpoints (the case of vanishing derivative is illustrated shortly
on an example). Then, possibly after an appropriate small deformation of C'
we have ¢’ # 0 along the path of integration C' and g is invertible in a small
enough neighborhood D of C. We make the change of variable g(s) = —7
and note that the image of C' is smooth and has at most finitely many self-
intersections. We can break this curve into piecewise smooth, simple curves.
If the pieces are small enough, they are homotopic (see footnote on p. 165)
to straight lines; we get

N Cn+1
3 / F(s(7)) e_”%dT (3.98)
n=1"¢n

We calculate each integral in the sum separately. Without loss of generality
we take n =1, ¢y =0 and ¢y = i:

L = /Ozf(s(r))e_”s’(T)dT (3.99)

3Convergence assumptions are required, as can be seen by applying the described procedure
to very simple integral
/ ' e “dz
0
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The lines of steepest descent for I; are horizontal, towards +o0o. Assuming
suitable analyticity and growth conditions and letting H(7) = f(s(7))s'(7)
we get that I; equals

dj+oo
—2mi ) Res (H(T)e_m—)s:sj +) /d SH(m)e *"dr (3.100)

i i

where the residues come from poles of H in the strip S = {z+iy:z >0,y €
[0,1]}, while d; are branch points of H in S, assumed integrable, and éH
denotes the jump of H across the branch cut. If more convenient, one can
alternatively subdivide C' such that ¢’ is nonzero on the (open) subintervals.
Ezample 4. In the integral (3.86) we have, using the substitution cost = i,

/ " ey / T ety Ty R
et = 2 et = —21 T=2i T
—n/2 0 —i V1472 o V1472
—i+00 —&T 00 —&T oS —&s
e e . e
—2i —d7 = 2i/ —d7 — 21’615/ —ds
i V1472 0o V1+72 0 V—2is+ s?
(3.101)

to which Watson’s lemma applies.
Exercise. Find the asymptotic behavior for large x of

1 iTs
e
—d
/,1 s2+1 ’

*
The integral in (3.14) can be brought to Watson’s lemma setting by simple
changes of variables. First we put p = ¢/x and get
1 0087”;/3
Ai(z) = —,xl/Z/ e a=a*/3) g (3.102)
i

27 coe—T/3

We see that (¢ — ¢®/3) =1 —¢? =0 iff ¢ = 1. We now choose the contour
of integration to pass through ¢ = 1. It is natural to substitute ¢ = 1+ z and
then the integral becomes

67%303/2%1/2 0 Ooem'/s
Ai() = ————| / e gy / eme M g
0

2m coe—mi/3
(3.103)
Along each path, the equation 22 +23/3 = s has a unique well defined solution
21,2(s) where we choose arg(z;) — 7/2, as s — 0%. As z; — 00e™/? we have
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s — oo tangent to RT. We can homotopically deform the contour and write

6_2/3$3/2$1/2 > 3/2dz1 ° 3/2 dzo
Ai = 7[ T —ds — T —=d } 3.104
i() o /0 ¢ ds /0 ¢ s %) (6108

where the analysis proceeds as in the Gamma function case, inverting z?+23 /2
near zero and calculating the expansion to any number of orders.

Exercise 3.105 (*) Complete the details of the analysis and show that

2, 3/2

Ai(z) T3P (140(1) (z— 400) (3.106)

1
RPN
§3.9b .

Again, once we know that an asymptotic series exists, and it is differentiable
(by Watson’s lemma), to obtain the first few terms of the asymptotic series
it is easier to deal directly with the differential equation, see also [6], pp.
101. We can proceed as follows. The expansion is not a power series, but its
logarithmic derivative is. We then substitute y(z) = e*(*) in the equation (a
simple instance of the WKB method, discussed later), we get (w')? +w” = x,
and for a power series we expect w” < (w’)? (check that this would be true
if w is a differentiable asymptotic power series; see also p. 146 and 140), and

set the iteration scheme
(W)nt1 = —y/z = (wy, 1)

Then,
1 5 15 1105
I o Y ,.—=5/2 Y -4 711/27...
e i i TR 617 T 2018"
It follows that
Py 5 s 385 5 85085 g
~ ‘. 1- 2 299 _ .
y~ Const.cs ( 87 T 608" 663552 "

and the constant is obtained by comparing to (3.106).
The Bessel equation is

22y +ay + (@2 -1y =0 (3.107)

For v =20
" +y +xy=0 (3.108)

to which Laplace’s method applies. We get

PY) —pY +Y' =0 =Y =C(p*+1)"1/2 (3.109)
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We get solutions by taking contours from +o0, around a singularity and back
to infinity in
/ <7 4 (3.110)
—dp )
cvVp?+1
or around both branch points.

Exercise 3.111 (*) Find the relations between these integrals (we know that
there are exactly two linearly independent solutions to (3.108)).

To find the asymptotic behavior of an integral starting at oo + i — i€, going
around xz = ¢ and then to co 4 ¢ + i€, we note that this integral equals

oco+1 —xp [e'¢) —xs

X e
————dp=2e"" ——ds
i Vp?+1 P o Vs%+2is
: 1—7 1142 9 1—1
Nezzﬁ[

7 TRer Tmen T (3.112)

by Watson’s lemma.

Exercise 3.113 (*) Using the binomial formula, find the general term in the
expansion (3.112).

3.7 Application: Asymptotics of Taylor coefficients of
analytic functions

There is dual relation between the behavior of the Taylor coefficients of an
analytic function and the structure of its singularities in the complex plane.
There exist very general results, with mild assumptions on the coefficients,
and these are known as Tauberian/Abelian theorems [53]

We will study a few examples in which detailed information about the
singularities is known, and then complete asymptotics of the coefficients can
be found.

Proposition 3.114 Assume f is analytic in the open disk of radius R + €
with N cuts at z, = Re'" towards infinity, and in a neighborhood of z, f has
a convergent Puiseux series (“convergent” can be replaced with “asymptotic”,
see Note 3.116 below) 4

n] [n] n n
F(2) = (2 = z) AP (2) + 4 (2= 2)P7 AR (2) 4+ Al ()

4 A convergent series in terms of integer or noninteger powers of the z — zn},
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where A[ln], e A7[Z]+1 are analytic in a neighborhood of z = 2, (and we can
assume 61[71] ¢ NU{0}). With ¢ = f*)(0)/k!, we have

N oo [ oo ]
o p—k —ike EPIOEEE I —pl_q Cjim
e~ RTEY “ etk | Aty etk > 5 (3.115)
=1 =0 J=0
[n]

where the coeflicients ¢

J.m can be calculated from the Taylor coefficients of the

functions A[ln], e A[ﬁ], and conversely, this asymptotic expansion determines
the functions A[ln] o Al

Note 3.116 We can relax the condition of convergence of the Puiseux se-
ries, replacing it with a condition of asymptoticity, where the Ag-k] become
integer power series, with a slight modification of the proof: an arbitrary but
finite numbers of terms of the asymptotic series are subtracted out and the

contribution of the remainder is estimated straightforwardly.

PROOF We have

1 (s) d

Cr = —
2w ) sk+1

where the contour is a small circle around the origin. This contour can be
deformed, by assumption, to the dotted contour in the figure. The integral
around the circle of radius R + € can be estimated by

(s)

and does not participate in the series (3.115), since it is smaller than R™*
times any power of k, as kK — oo. Now the contribution from each singularity
is of the form

1

% S Hf”OO(R"'G)ikil = 0((R—|—6)7k71)

1 (s)

21 B, Sk+1

ds

where B; is an open dotted box around the branch cut at Re’® as in the
figure, so it is enough to determine the contribution of one of them, say z;.
By the substitution fi(z) = f(Re®12), we reduce ourselves to the case R = 1,
¢ = 0. We omit for simplicity the superscript “[”.

The integral along B; is a sum of integrals of the form

1

— —1)PA(s)s*1d 3.117
i (5 1A ds (3.117)
We can restrict ourselves to the case when ( is not an integer, the other case
being calculable by residues.
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FIGURE 3.4: Deformation of the Cauchy contour.

Assume first that (i) Re () > —1. We then have

1

; 1+e€
(S — 1)ﬁA(5)37k71d3 _ _emﬂw/ " (5 _ I)BA(S)kafldS
1

2mi Jo s
(3.118)
with the branch choice In(s —1) > 0 for s € (1,00). It is convenient to change
variables to s = e*. The rhs of (3.118) becomes

e In(1+e€) v _ 1 B
_ o S(T) / o’ <€ > Ae)e kv dy (3.119)
0

™ u

where A(e") and [u~!(e* — 1)} are analytic at u = 0, the assumptions of
Watson’s lemma are satisfied and we thus have

/C(s — 1P A(s)sF M ds ~ KOS k% (3.120)
§=0

where the d; can be calculated straightforwardly from the Taylor coefficients
of A[u=!(e* —1)]?. The proof when Re 8 < —1 is by induction. Assume that
(3.120) holds for all for Re (8) > —m with 1 < my < m. One integration by
parts gives
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(s — 1)8+1

k-1
) A(s)s™" e

/ (s —1)PA(s)s *lds =
c

1 s—1)PTHA(s)s F 1 ds = P
T L= DA s = O((R+ )
ek [ a2 - i [ st as

(3.121)

By assumption, (3.120) applies with 5 + 1 < § to both integrals in the last
sum and the proof is easily completed.

Exercise 3.122 (*) Carry out the details of the argument sketched in Note
3.116.

3.7 .1 Finding the location of singularities from the leading asymp-
totic expansion of Taylor coefficients

Exercise 3.123 Assume that the Maclaurin coefficients ¢, of f at zero have
the asymptotic behavior ¢, = an™2? +O(n=3). It is clear that f is singular on
the unit circle. Show that one singularity is necessarily placed at z = 1. Hint:
Consider the function g(z) = f' —a) ;- , n~'2""!. Show that g is bounded
at z =1 while Y77, n=12""! is not.

3.8 Banach spaces and the contractive mapping princi-
ple

In rigorously proving asymptotic results about solutions of various prob-
lems, where the solution is not given in closed form, the contractive mapping
principle is a handy tool. Once an asymptotic expansion solution has been
found, if we use a truncated expansion as a quasi-solution, the remainder
should be small. As a result, the complete problem becomes one to which
the truncation is an exact solution modulo small errors (usually involving the
unknown function). Therefore, most often, asymptoticity can be shown rigor-
ously by rewriting this latter equation as a fixed point problem of an operator
which is the identity plus a correction of tiny norm. Some general guidelines
on how to construct this operator are discussed in §3.8b . It is desirable to go
through the rigorous proof, whenever possible — this should be straightforward
when the asymptotic solution has been correctly found—, one reason being that
this quickly signals errors such as omitting important terms, or exiting the
region of asymptoticity. We discuss, for completeness, a few basic features of
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Banach spaces. There is a vast literature on the subject; see e.g. [43]. Famil-
iar examples of Banach spaces are the n-dimensional euclidian vector spaces
R™. A norm exists in a Banach space, which has the essential properties of a
length: scaling, positivity except for the zero vector which has length zero and
the triangle inequality (the sum of the lengths of the sides of a triangle is no
less than the length of the third one). Once we have a norm, we can define lim-
its, by reducing the notion to that in R: z,, — z iff ||z — z,|| — 0. A normed
vector space B is a Banach space if it is complete, that is every sequence with
the property ||z, — || — 0 uniformly in n,m (a Cauchy sequence) has a
limit in B. Note that R™ can be thought of as the space of functions defined on
the set of integers {1,2,...,n}. If the domain contains infinitely many points,
then the Banach space is usually infinite-dimensional. An example is L>°[0, 1],
the space of bounded functions on [0, 1] with the norm || f[| = supjo 41 [f]. A
function L between two Banach spaces which is linear, L(x + y) = Lz + Ly,
is bounded (-or continuous) if ||L[| := supj, =1 [|[Lz| < co. Assume B is a
Banach space and that S is a closed subset of B. In the induced topology (i.e,
in the same norm), S is a complete normed space. Assume M : S +— B is a
(linear or nonlinear) operator with the property that for any x,y € S we have

[M(y) = M(@)[| < Ally — ]| (3.124)

with A < 1. Such operators are called contractive. Note that if M is linear,
this just means that the norm of M is less than one.

Theorem 3.125 Assume M : S — S, where S is a closed subset of B is a
contractive mapping. Then the equation

x = M(x) (3.126)

has a unique solution in S.

PROOF  Consider the sequence {z;}; € N defined recursively by

To=1x9 €S (3.127)
Ir1 = M((Eo)
T = M(z;))
We see that
2542 — zjq1 ]l = M (211) = M(@)I| < Mjn — 5] < - < Mlay — o
(3.128)
Thus,

s 4pv2 = zipall < (V742 Yoy = ol < 2 flor — ol (3.129)

bY,
1-A
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and z; is a Cauchy sequence, and it thus converges, say to z. Since by (3.124)
M is continuous, passing the equation for ;4 in (3.127) to the limit j — oo
we get

2= M(z) (3.130)

that is existence of a solution of (3.126). For uniqueness, note that if  and
a2’ are two solutions of (3.126), by subtracting their equations we get

[ —a[| = [M(z) = M(&")]| < Mz — 2| (3.131)
implying ||z — 2'|| = 0, since A < 1. I

Note 3.132 Note that contractivity and therefore existence of a solution of a
fixed point problem depends on the norm. An adapted norm needs to be chosen
for this approach to give results.

Exercise 3.133 Show that if L is a linear operator from the Banach space B
into itself and ||L|| < 1 then I — L is invertible, that is x — Lx = y has always
a unique solution x € B. “Conversely”, assuming that I — L is not invertible,
then in whatever norm || - ||« we choose to make the same B a Banach space,
we must have |L||x > 1 (why?).

3.8a Fixed points and vector valued analytic functions

A theory of analytic functions from a Banach space to itself can be con-
structed by almost exactly following the usual construction of analytic func-
tions. For the construction to work, we need the usual vector space operations
and a topology in which they are continuous. In a Banach algebra setting ® —
multiplication is continuous, in the sense that || f-g|| < ||f]/|g||. We can define
a derivative in the usual way, by writing F(f+eg) = F(f)+eL;g+o(e),e € C
small, where Ly =: 0¢F is a linear operator, define an integral in the usual
way, as a limit of a sum, or using appropriately generalized measure theory.
Cauchy’s formula is valid for complex-differentiable (analytic) functions. A
detailed presentation is found in [27] and [36], but the basic facts are simple
enough for the reader to redo the necessary proofs. An immediate recasting
of the contractive mapping principle is that

Remark 3.134 In the context of Theorem 3.125 we have, equivalently: If
N 8% — S is analytic in [ and [|0sN|| < X < 1 for f,g in S, then the
equation f =N (f,g), where |0;N|| <X <1 in S has a unique fized point in
S.

5A Banach algebra is a Banach space of functions endowed with multiplication which is
distributive, associative and continuous in the Banach norm.
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Indeed, if ||h|| = 6 we have h = dhy with ||h]| =1

‘w(g,fﬂhl)Hdt <\

§
ING.s 0 - N Dl < [ |15

The implicit function theorem could be restated abstractly in a similar setting.

3.8b

Choice of the contractive map

An equation can be rewritten in a number of equivalent ways. In solving

an asymptotic problem, as a general guidelines we mention:

e The final operator N should not contain derivatives (of highest order),

small differences, or other operations poorly behaved with respect to
asymptotics, and it should only depend on the sought-for solution in a
formally negligible way. The latter condition should be, in a first stage,
checked for consistency: the discarded terms, calculated using the first
order approximation, should indeed turn out to be small.

To obtain an equation where the discarded part is manifestly small it
often helps to write the sought-for solution as the sum of the first few
terms of the approximation, plus an exact remainder, say 6. The equa-
tion for ¢ is usually more contractive. It also becomes, up to small
corrections, linear.

The norms should reflect as well as possible the expected growth/decay
tendency of the solution itself and the spaces are spaces where this
solution lives.

All freedom in the solution has been accounted for, that is, the final
equation is expected to have a unique solution.

Note 3.135 The contractive mapping and implicit function results above are
trivially equivalent, and the difficulty in proving an asymptotic result virtually
never lies here, but in finding the contractive reformulation, and the adequate
spaces and norms.

3.9 Examples

3.9a

Linear differential equations in Banach spaces

Consider the equation

Y'(t)=L({t)Y; Y(0)=Yy (3.136)
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in a Banach space X, where L(¢) : X — X is linear, norm continuous in ¢ and

uniformly bounded,

L(t)|| < L 3.137
ma [L(1)] (3.157)

Then the problem (3.136) has a global solution on [0,00) and ||Y]|(¥) <
Cee(L—&-e)t.

PROOF By comparison with the case when X = R, the natural growth is
indeed Celt, so we rewrite (3.136) as an integral equation, in a space where the
norm reflects this possible growth. Consider the space of continuous functions
Y :[0,00) — B in the norm

[Y]lso = sup e "Xy (1) (3.138)
t€[0,00)

with A < 1 and the auxiliary equation
t
Y(t) =Y Jr/ L(s)Y(s)ds (3.139)
0
which is well defined on B and is contractive there since

t t
P [ LY (s)as| < Lt [ B Y o pds = AV (3140)
0

0

I

3.9b A Puiseux series for the asymptotics of the Gamma
function

We choose a simple example which can be dealt with in a good number
of other ways, yet containing some features of more complicated singular
problems. Suppose we need to find the solutions of the equation z —Inx =t
for t (and z) close to 1. The implicit function theorem does not apply to
F(z,t) =x —Inz —t at (1,1). We then attempt to find a simpler equation
that approximates well the given one in the singular regime, that is we look
for asymptotic simplification, and then we try to present the full problem as
a perturbation of the approximate one. We write x = 1+ 2,t = 1+ s, expand
the left side in series for small z, and retain only the first nonzero term. The
result is 22/2 ~ s. There are two solutions, thus effectively two different
problems when s is small. Keeping all terms, we treat the cubic and higher
powers of z as corrections. We look at one choice of sign, the other one being
very similar, and write

223 2% 27°
z =
3 2 5

1/2
25+++-~> = (25 +€(2))"/? (3.141)
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where €(z) is expected to be small. We then have

2= (25+0(:%)"* = (25 + 0(53/2))1/2 (3.142)
hence
5 1/2 4\/§ 1/2
z= <2s + [(23)1/2 + 0(53/2)} /3) = (23 + 753/2 +0(s?)
(3.143)

and further,

18 135

(3.144)
etc., where in fact the emerging series converges, as shown in the Exer-
cise 3.146 below. Here z should be close to v/2s; we set s = w?/2 and z = wZ
and get

1/2
4v/2 2s? 2 2 2s?
2= (23 + Tfs?’/z’ -5 0(35/2)> - \/2s+§+£s3/2—i+0(s5/2)

2 1 2 1/2
Z = (1 + ngi” - §w2Z4 + gw3Z5 + - ) (3.145)
Exercise 3.146 Show that if € is small enough, then (3.145) is contractive
in the sup norm in a ball of radius € centered at 1 in the space of functions Z
analytic in w for |w| < €. Show thus that z is analytic in /s for small s.

Once the behavior of the solutions has been clarified, we may sometimes
gain in simplicity, or more global information, by returning to the implicit
function theorem, but properly applied. Which one is better depends on
the problem and on taste. The contraction mapping principle is often more
natural, especially when the topology, suggested by the problem itself, is not
one of the common ones. We take t = 72/2 and write 22/2 + (z — In(1 + 2) —
22/2) =: 22/2(1 + 2¢(2)) = 7%/2 and (differentiating z¢, reintegrating and
changing variables) we get

U 524y
21— zp(z) = +1; ¢(2) = /o od (3.147)

1+ z0

with the usual choice of branch for the square root. The implicit function
theorem clearly applies, at (0,0), to the functions F(z,w) := z4/1 — z¢(2)
+w. The first few terms of the series are easily found from the fixed point
equation by repeated iteration, as in §3.9g ,

1 1, V2, 13 ,
= 42 Y= 0 14
z ﬂ7+ 57 7 +43207 + (3.148)
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3.9¢c The Gamma function

We start from the representation
o0 o0
n! :/ the tdt = n"'H/ e nsIng) g (3.149)
0 0

We can now use the results in §3.9b and Watson’s lemma to find the behavior
of n!l. With s =1+ 2,2 —In(1 + 2) = v?, dz = F(u)du we have

4 2 8 2 8
Flu)=vV2+ -u+ ——u? — — >+ w4+ ——u— - 3.150
() = V24 gut St = e o g (3.150)
Exercise 3.151 (*) Note the pattern of signs: + + — — ---. Show that this

pattern continues indefinitely.

We have, using Exercise 3.46,

) 00 2
0 —o0

or

11 139
Lo V2rnnte (14 —— - 1
Ve ( T 12 T 28807~ 5isd0ns ) (3.153)

3.9d Linear meromorphic differential equations. Regular
and irregular singularities

A linear meromorphic m-th order differential equation has the canonical
form

y™ 4 B, 1 (2)y™ Y + ... + Bo(z)y = B(x) (3.154)

where the coefficients B;(x) are meromorphic near zo. We note first that any
equation of the form (3.154) can be brought to a homogeneous meromorphic
of order n =m+1

y™ 4 Cpy (2)y ™Y 4 4 Co(z)y = 0 (3.155)

by applying B(x)%ﬁ to (3.154). We want to look at the possible singu-
larities of the solutions y(z) of this equation. Note first that by the general
theory of linear differential equations (or by a simple fixed point argument)
if all coefficients are analytic at a point zg then the general solution is also
analytic. Such a point is called regular point. Solutions of linear ODEs can
only be singular because of singularities of the equation.

The main distinction is made with respect to the type of local solutions,
whether they can be expressed as convergent asymptotic series (regular sin-
gularity) or not (irregular one).
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Theorem 3.156 (Frobenius) If near the point x = x the coefficients C,,_;,
j=1,...n can be written as (x—xo) 7 A,,—;(x) where A,_; are analytic, then
there is a fundamental system of solutions in the form of convergent Frobenius
series:

N,
Ym(x) = (x = 20)™ Y_(In(w — 20))’ Bjim () (3.157)
j=0
where Bj,y, are analytic in an open disk centered at xo with radius equal to the
distance from xo to the first singularity of A;. The powers Ty, are solutions
of the indicial equation
r(r=1)--(r—n+1)+ A, 1(xo)r(r—=1)---(r—=n+2)+...4+ Ag(xo) =0
Furthermore, logs appear only in the resonant case, when two (or more) char-
acteristic roots ., differ by an integer.

A straightforward way to prove the theorem is by induction on n. We can
take g = 0. Let rj; be one of the indicial equation solutions. A transfor-
mation of the type y = 2™ f reduces the equation (3.155) to an equation of
the same type, but where one characteristic root is zero. One can show that
there is an analytic solution f; of this equation by inserting a power series,
identifying the coefficients and estimating the growth of the coefficients. The
substitution f = fo [ g(s)ds gives an equation for g which is of the same type
as (3.155) but of order n — 1. This completes the induction step. For n =1,
the result is trivial.

We will not go into the details of the general case but instead we illustrate
the approach on the simple equation

z(x—1)y" +y=0 (3.158)

around ¢ = 0. The indicial equation is r(r — 1) = 0 (a resonant case).
Substituting yo = Y ro g cxz® in the equation and identifying the powers of x
yields the recurrence

k*—k+1

k(k+1)
with ¢y = 0 and ¢; arbitrary. By linearity we may take ¢; = 1 and by induction
we see that 0 < ¢ < 1. Thus the power series has radius of convergence at
least 1. The radius of convergence is in fact exactly one as it can be seen
applying the ratio test and using (3.159); the series converges exactly up to
the nearest singularity of (3.158).

Cr4+1 = Ck (3.159)

Exercise 3.160 What is the asymptotic behavior of ¢ as k — oo?

We let yo = yo [ g(s)ds and get for g the equation

/

g +2%5=0 (3.161)
Yo
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and, by the previous discussion, 2y /yo = 2/x + A(z) with A(z) is analytic.

The point 2 = 0 is a regular singular point of (3.161) and in fact we can check

that g(x) = C1272B(x) with C7 an arbitrary constant and B(x) analytic at

z =0. Thus [ g(s)ds = C1(a/z+bln(x)+ A;(x))+Cy where A () is analytic

at z = 0. Undoing the substitutions we see that we have a fundamental set of

solutions in the form {yo(z), B1(z)+ Bz (x) Inz} where By and B are analytic.
A converse of this theorem also holds, namely

Theorem 3.162 (Fuchs) If a meromorphic linear differential equation has,
at © = xg, a fundamental system of solutions in the form (3.157), then xg is
a reqular singular point of the equation.

For irreqular singularities, at least one formal solution contains divergent
power series and/or exponentially small (large) terms. The way divergent
power series are generated by the higher order of the poles is illustrated be-
low.

Ezample. Consider the equation

Y+ 7y =1 (3.163)

which has an irregular singularity at x = 0 since the order of the pole in
Co = 272 exceeds the order of the equation. Substituting y = > r- cpr® we
get cg = c¢; =0, co = 1 and in general the recurrence

cr+1 = —key

whence ¢, = (—1)%(k — 1)! and the series has zero radius of convergence. (It
is useful to compare this recurrence with the one obtained if 272 is replaced
by 7! or by 1.) The associated homogeneous equation 3y’ + =2y = 0 has the
general solution y = Ce'/* with an exponential singularity at = = 0.

3.9e Spontaneous singularities: the Painlevé’s equation P;

In nonlinear differential equations, the solutions may be singular at points
x where the equation is regular. For example, the equation

yl — y2 + 1
has a one parameter family of solutions y(x) = tan(x + C'); each solution has
infinitely many poles. Since the location of these poles depends on C', thus

on the solution itself, these singularities are called mowvable or spontaneous.
Let us analyze local singularities of the Painlevé equation Pr,

V' =yt (3.164)

We look at the local behavior of a solution that blows up, and will find so-
lutions that are meromorphic but not analytic. In a neighborhood of a point
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where y is large, keeping only the largest terms in the equation (dominant
balance) we get y” = y? which can be integrated explicitly in terms of elliptic
functions and its solutions have double poles. Alternatively, we may search
for a power-like behavior
y~ Az — xo)?

where p < 0 obtaining, to leading order, the equation Ap(p — 1)zP=2 = A%p?
which gives p = —2 and A = 6 (the solution A = 0 is inconsistent with our
assumption). Let’s look for a power series solution, starting with 6(z —x¢) =2 :
y=06(x—20) 2 +cq(x—x0) P +eco+--. Weget: c.; =0,c0 =0,¢; =
0,co = —x9/10,¢c3 = —1/6 and ¢4 is undetermined, thus free. Choosing a ¢y,
all others are uniquely determined. To show that there indeed is a convergent
such power series solution, we follow the remarks in §3.8b . Substituting
y(z) = 6(z — 29)72 + d(z) where for consistency we should have §(z) =
o((z — x0)~2) and taking x = x + 2 we get the equation

12
5" = ?6—1—,2—}—3604—62 (3.165)

Note now that our assumption § = o(z72) makes §2/(5/22) = 225 = o(1)
and thus the nonlinear term in (3.165) is relatively small. Thus, to leading
order, the new equation is linear. This is a general phenomenon: taking out
more and more terms out of the local expansion, the correction becomes less
and less important, and the equation is better and better approximately by
a linear equation. It is then natural to separate out the large terms from the
small terms and write a fixed point equation for the solution based on this
separation. We write (3.165) in the form

12
§" — Z0=z+m+ 52 (3.166)

and integrate as if the right side was known. This leads to an equivalent
integral equation. Since all unknown terms on the right side are chosen to
be relatively smaller, by construction this integral equation is expected to be
contractive. The indicial equation for the Euler equation corresponding to
the left side of (3.166) is r? —r — 12 = 0 with solutions 4, —3. By the method
of variation of parameters we thus get

D 1 4, 1, PR T e g
5:;’3——10%2 *EZ +02*ﬁ/056(5)d8+7 OS 6% (s)ds
1 1
— L laicati ) @aen

the assumption that § = o(z72) forces D = 0; C is arbitrary. To find ¢
formally, we would simply iterate (3.167) in the following way: We take r :=

62 = 0 first and obtain 6y = —%xoz2 — %23 + Cz*. Then we take r = §3 and
compute d; from (3.167) and so on. This yields:
1 1 2
§=——mxp2® — -2+ C2* + Y064 0Ty (3.168)

10 6 1800 900
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This series is actually convergent. To see that, we scale out the leading power
of z in §, 22 and write § = z?u. The equation for v is

-5
u:—%—%—ksz—T/osu ds—i——/ su?

=-22_Z 1
10 6+C’z +J() (3.169)

It is straightforward to check that, given C large enough (compared to /10
etc.) there is an e such that this is a contractive equation for u in the ball
|lu]|lo < C1 in the space of analytic functions in the disk |z| < e. We conclude
that § is analytic and that y is meromorphic near x = x.

Note. The Painlevé property discussed in §3.9f , requires that y is globally
meromorphic, and we did not prove this. That indeed y is globally mero-
morphic is in fact true, but the proof is delicate (see e.g. [1]). Generic
equations fail even the local Painlevé property. For instance, for the simpler,
autonomous, equation

"+ +2=0 (3.170)

the same analysis yields a local behavior starting with a double pole, f ~
—6272. Taking f = —6272+(2) with § = o(272) again leads to a nearly linear
equation for § which can be solved by convergent iteration, using arguments
similar to the ones above. The iteration is (for some a # 0)

_6 a1 [7 4 34/232
5—524—02 723/0 %0 (s)ds + 7/ s7°0%(s)ds (3.171)

but now the leading behavior of § is larger, %. Iterating in the same way as
before, we see that this will eventually produce logs in the expansion for ¢ (it
first appears in the second integral, thus in the form z%1n z). We get

6 1 oz 72 719 4 117
=+

Z B . .\
= 5. 750 " 250 T 5000 T 7h000°  2is7mo0” M) TCE A (3172)

where later terms will contain higher and higher powers of In(z). This is
effectively a series in powers of z and In z a simple example of a transseries,
which is convergent as can be straightforwardly shown using the contractive
mapping method, as above.

Note 3.173 Eq. (3.170) does not have the Painlevé property, see § 3.9f
below. This log term shows that infinitely many solutions can be obtained just
by analytic continuation around one point, and suggests the equation is not
integrable.
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*3.9f Discussion: the Painlevé property.

Painlevé studied the problem of finding differential equations, now called equa-
tions with the Painlevé property , whose only mowvable singularities are poles®.
There are no restriction on the behavior at singular points of the equation. The
solutions of such an equation have a common Riemann surface simple enough
we can hope to understand globally. The motivation of this study apparently
goes back to Fuchs, who had the intuition that through such equations one
should be able to construct interesting, well-behaved new functions.

We note that the Painlevé property guarantees some form of integrability
of the equation, in the following sense. If we denote by Y (z;zo; Cy,Cy) the
solution of the differential equation y” = F(x,y,y’) with initial conditions
y(zo) = C1,y'(z0) = Co we see that y(z1) = Y (21;2;y(2),y'(z)) is formally
constant along trajectories and so is ¢/ (z1) = Y’/ (z1; 2; y(x), y'(x)). This gives
thus two constants of motion in C provided the solution Y is well defined
almost everywhere in C, i.e., if Y is meromorphic.

On the contrary, “randomly occurring” movable branch-points make the
inversion process explained above ill defined.

This does not of course entail that there is no constant of motion. However,
the presence of spontaneous branch-points does have the potential to prevent
the existence of well-behaved constants of motions for the following reason.
Suppose y satisfies a meromorphic (second order, for concreteness) ODE and
K(x;y,y") is a constant of motion. If zq is a branch point for yg, then yq
can be continued past zy by avoiding the singular point, or by going around
xo any number of times before moving away. This leads to different branches
(Y0)n of yo, all of them, by simple analytic continuation arguments, solutions
of the same ODE. By the definition of K (z;y,y’) however, we should have
K(x; (yo)n, (Wo)h) = K(x;y0,y,) for all n, so K assumes the same value on
this infinite set of solutions. We can proceed in the same way around other
branch points x1, xs, ... possibly returning to xg from time to time. Generi-
cally, we expect to generate a family of (yo)n,,...n; Which is dense in the phase
space. This is an expectation, to be proven in specific cases. To see whether
an equation falls in this generic class M. Kruskal introduced a test of nonin-
tegrability, the poly-Painlevé test which measures indeed whether branching
is “dense”. Properly interpreted and justified the Painlevé property measures
whether an equation is integrable or not.

6There is no complete agreement on what the Painlevé property should require and Painlevé
himself apparently oscillated among various interpretations; certainly movable branch
points are not allowed, but often the property is understood to mean that all solutions
are single-valued on a common Riemann surface.
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3.9g Irregular singularity of a nonlinear differential equa-
tion

As another example, consider the equation
v +y=at+y*+ayd (3.174)

with the restriction y — 0 as * — 4o00. Exact solutions exist for special
classes of equations, and (3.174) does not (at least not manifestly) belong to
any of them. However, formal asymptotic series solutions, as x — oo, are
usually easy to find. If y is small and power-like, then 3/, 3% < y and a first
approximation is y; ~ 1/x. Then yo ~ 1/ + y3 + 2y} — y}. A few iterations
quickly yield (see Appendix 3.9i )

yx)=a ' +22+32 7+ 1327+ 692 ° +4282 °+ 0 (z77) (3.175)

To find a contractive mapping reformulation, we have to find what can be
dropped in a first approximation. Though the derivative is formally small, as
we discussed in §3.8b , it cannot be discarded when a rigorous proof is sought.
Since f and 1/z are both formally larger than f’ they cannot by discarded
either. Thus the approximate equation can only be

v +y=z"'+E(f) (3.176)

where the “error term” E is just f3 +xf°. An equivalent integral equation is
obtained by solving (3.176) as though E was known,

y=go+N(y)

go(x) = y(wo)e @ T0) 4o /fﬁ %Sds; N(y) = e_’”/ e® [y°(s) + sy°(s)] ds
- - (3.177)

say with x, 79 € R™ (a sector in C can be easily accommodated). Now, the
expected behavior of y is, from (3.175) 271(1 + o(1)). We take the norm
[yl = sup, >, |[zy(z)] and S the ball {y : (zo,00) : [|ly|| < a} where a > 1 (we
have to allow it to be slightly bigger than 1, by (3.175)).

To evaluate the norms of the operators involved in (3.177) we need the
following relatively straightforward result.

Lemma 3.178 For x > xg > m we have

xr
e_s/ efs Mds < [1 —m/xo| ta™
x

0

PROOF In a sense, the proof is by integration by parts: for x > xg > m
we have
eTyp~m < |1 _ m/x()'—l(exx—m)/

and the result follows by integration.
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Exercise 3.179 (i) Show that, if @ > 1 and if zq is sufficiently large, then N
is well defined on S and contractive there. Thus (3.177) has a unique fixed
point in S. How small can you make x(?

(ii) A slight variation of this argument can be used to prove the validity of
the expansion (3.175). If we write y = yn + 0(z) where yy is the sum of the
first NV terms of the formal power series of y, then, by construction, yy will
satisfy the equation up to errors of order z=V~1. Write an integral equation
for 6 and show that d is indeed O(z~N~1). See also §3.9h below.

3.9h  Proving the asymptotic behavior of solutions of non-
linear ODEs: an example

Consider the differential equation
y —y=a"2—49> (3.180)

for large x. If f behaves like a power series in inverse powers of = then y’ and
y3 are small, and we can proceed as in §3.9g to get, formally,

yx)~ =272 422073 — 627 + 24275 — 119270 4708277 — 4926278 + - -

(3.181)
How do we prove this rigorously? One way is to truncate the series in (3.181)
to n terms, say the truncate is y,, and look for solutions of (3.180) in the
form y(x) = yn(x) 4+ d(z). For é(x) we write a contractive equation in a space
of functions with norm sup,, |t"T'6(x)|.

Exercise 3.182 Carry out the construction above and show that there is a
solution with an asymptotic power series starting as in (3.181).

Alternatively, we can write an integral equation just for y, as in §3.9g and
show that it is contractive in a space of functions with norm sup,-,, |2%y(z)|.
Then, knowing that it is a contraction, we can iterate the operator a given
number of times, with controlled errors. First,

em/ e *s %ds = 693*/ e s 2ds = 7/ e~ (14 s) 2ds
z T J1 T Jo

1 2 6 24
Nﬁ—ﬁ—l—ﬁ—ﬁ"‘"' (3.183)

Then,
y(z) = ex/ e *s 2ds —e” / e *y(s)3ds (3.184)

oo
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together with contractivity in the chosen norm implies

y(z) = em/ 675872d8—|—€z/ e *0(s7%)ds
1 2 6 24 s
ZE_E‘FE_E"FO(SC ) (3185)
We can use (3.185) and (3.183) in (3.184) to obtain the asymptotic expansion
of y to O(z~1%), and by induction, to all orders.

Exercise 3.186 Based on (3.185) and (3.183) show that y has an asymptotic
power series in H. In particular, the asymptotic series is differentiable (why?).

To find the power series of y, we can also note that the asymptotic series must
be a formal power series solution of (3.180) (why?). Say we want five terms of
the expansion. Then we insert y = asx 2 +asx 3 +agx ™t +asz "% + agzr™O
in (3.180) and solve for the coefficients. We get

1+a 2as + a 3asz + a dag +as  ag+ bas + a3
2, 202 3, 993 4, A0 4 % 5

= 3 pon o 6 =0 (3.187)
and it follows immediately that
g = 717043 = 2,(14 = 76,@5 = 24, ag = —119 (3188)

Note that the signs alternate! This is true to all orders and it follows from
Watson’s lemma, after BE summation.

3.9i Appendix: some computer algebra calculations

Figure 3.5 shows a way to solve ¥/ +vy = ' +1> +23° by asymptotic power
series, using Maplel1.“%” is Maple shortcut for “the previous expression”.
The input line following Eq. (4) is copied and pasted without change. In
practice one would instead return to the line after Eq. (4) and re-run it as
many times as needed. Of course, a do loop can be easily programmed, but
there is no point in that unless a very high number of terms is needed.

3.10 Singular perturbations
3.10a Introduction to the WKB method

In problems depending analytically on a small parameter, internal or ex-
ternal, the dependence of the solution on this parameter may be analytic
(regular perturbation) or not (irregular perturbation). Ordinary differential
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dl:=y(x) = - (diff(y(x), x))+1/x+y ()" 3+x*y(x)*5;
dl:=y(x) = - (% y(x)) + % +¥(x)° + x¥(x)°
rs:=rhs(dl);
rsi=- (% y(x)) 4 +y07 +x(0°

subs (y (x)=0, rs) :asympt (%, %, 8) ;
1

X

subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
1,11 1
X X

XX

subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
1 1 3 7 15 | 25 1
"+ S5+ +5+=+—-+0| =
x X 2 & ¥° % (x7]

subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
l+i+i+1_f+4_55+i60+0
X

X2 X3 X X X

subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
1 1 3 13 , 69 308 1
"+ S5+ S+F+—=+—F +0| =
x ¥ 2 3 x X ( J
subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
1 1 3 13 | 69 428
—+S5+S5+>+—=+—F+0
x ¥ £ & X X ( J
subs (y (x) =%, rs) :asympt (%, %, 8) :sort (%, x);
l-I-l-l-i-l-1—‘::’-I-G—?+£68-|-0( ]
X

X2 )(3 X X X

FIGURE 3.5: Maplell output.
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equations depending on a small parameter are singularly perturbed when the
perturbation is such that, in a formal series solution, the highest derivative
is formally small. In this case, in a formal successive approximation scheme
the highest derivative is first discarded, then it appears in the corrections and
it it thereby iterated upon. This, as we have seen in many examples, leads
to divergent expansions. Furthermore, there should exist formal solutions
other than power series, since the procedure above obviously yields a space of
solutions of dimensionality strictly smaller than the degree of the equation.
An example is the Schrédinger equation

—e2" + V(x) — By =0 (3.189)

for small €, which will be studied in more detail later. In an e-power series,
" is subdominant 7. The leading approximation would be (V(z) — E)y = 0
or ¢ = 0 which is not an admissible solution.

Similarly, in

22f' 4+ f = 2% (z near zero) (3.190)

the presence of 22 in front of f’ makes f’ subdominant if f ~ 2P for some p.
In this sense the Airy equation (3.209) below, is also singularly perturbed, at
x = 00. It turns out that in many of these problems the behavior of solutions is
exponential in the parameter, generically yielding level one transseries, studied
in the sequel, of the form Qe where P and @Q have algebraic behavior in the
parameter. An exponential substitution of the form f = e® should then make
the leading behavior algebraic.

3.10b  Singularly perturbed Schrodinger equation. Setting
and heuristics

We look at (3.189) under the assumption that V' € C*°(R) and would like
to understand the behavior of solutions for small e.

3.10b .1 Heuristics

Assume V' € C* and that the equation V(zp) = E has finitely many
solutions.

Applying the WKB transformation ¢ = e (for further discussions on the
reason this works, and for generalizations see §4.9, 41, pp. 140, 41 , and pp.
146) we get

—w? — ' +V(z)— E=—&w” — Ew’ +Uz) =0 (3.191)

"Meaning that it is asymptotically much less than other terms in the equation.
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where, near an xgy where
U(zo) #0 (3.192)

the only consistent balance® is between —e?w'” and V (z) — E with e2w” much
smaller than both. For that to happen we need

U <1 where h=uw' (3.193)

We place the term €2h/ on the right side of the equation and set up the
iteration scheme

h2 =e¢2U—~h,_ ;3 h1=0 (3.194)
or
Qh/
ho= YO 1€ 2L b= 0 (3.195)
€

Under the condition (3.193) the square root can be Taylor expanded around

L
VU 1 ,h! 1, (R

We thus have

ho = e U2 (3.197)
h 10U
hy = e 1UY/? (1 + e2U°> =+ U2 - T (3.198)
~ 11U 5 UH)? 1 U”
_ 1r71/2 _ - Y = -
hy = +e U 4U+e< 557 t 3 (3.199)

and so on. We can check that the procedure is formally sound if U~ 1h) < 1
or

U'U3? <« 1 (3.200)
Formally we have
w = j:e’l/Ulm(s)ds — ian SRR (3.201)
and thus
b~ U—1/4e:i:e’1 JUY?(s)ds (3.202)

8As the parameter, € in our case, gets small, various terms in the equation contribute
unevenly. Some become relatively large (the dominant ones) and some are small (the
subdominant ones). If no better approach is presented, one tries all possible combinations,
and rules out those which lead to conclusions inconsistent with the size assumptions made.
The approach roughly described here is known as the method of dominant balance [6]. It
is efficient but heuristic and has to be supplemented by rigorous proofs at a later stage of
the analysis.
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If we include the complete series in powers of € in (3.202) we get
P ~ exp (ie_l / U1/2(8)d8> U4 (14 eFi(z) + Fa(z) +...)  (3.203)

There are two possibilities compatible with our assumption about zg, namely
V(zo) > E and V(z9) < E. In the first case there is (formally) an exponen-
tially small solution and an exponentially large one, in the latter two rapidly
oscillating ones.
The points where (3.200) fails are called turning points. Certainly if |U (z1)| >

d, then (3.200) holds near z;, for € small enough (depending on §). In the
opposite direction, assume U'U~3/2 = ¢ is bounded; integrating from z + €
to x we get —2(U(x)™Y/2 4+ U(z1)7Y/2) = [ ¢(s)ds, and thus U(zg +€)"1/? is
uniformly bounded near xy. For instance if U has a simple root at z = 0, the
only one that we will consider here (but multiple roots are not substantially
more difficult) then condition (3.200) reads

x> 3 (3.204)

The region where this condition holds is called outer region.

3.10c  Formal reexpansion and matching

Often, on the edge of validity, the growth structure of the terms of the series,
(or, more generally, transseries), suggests the type of expansion it should be
matched to in an adjacent region; thereby this suggests what approximation
should be used in the equation as well, in a new regime. We can observe this
interesting phenomenon of matching by reshuffling, on the formal solutions
of (3.189) close to a turning point. We assumed that U € C*° and U has
finitely many zeros. Suppose U(0) = 0 and U’(0) = a > 0. If we look at
the expansion (3.199) in a neighborhood of = 0 and approximate U by its
Taylor series at zero U(x) = az + ba? + ...

vax bx 1 bx 5z bx
ho = 14+ — _ =4+ - — (1 - = +...
2 € + 2a + 4z + a + 32v/ax® 10a +

(3.205)
and in general we would get
x €
b= Y (ot G+ b)) €= 0 (3:200)
€ x
where
) 2/3 A/3
Yj = ajo + a1 + ajox” + - = ajo + aﬂ@ + (ljgm + .- (3.207)

We note that now the expansion has two small parameters, ¢ and x; these
cannot be chosen small independently: the condition if £ <« 1 has to be
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satisfied to make asymptotic sense of (3.206). This would carry us down
to values of z such that, say, & < 1/In|e|. §6 is devoted to the study of
matching, at the level of transseries.

3.10d The equation in the inner region; matching subre-
gions

In a small region where (3.200) fails, called inner region, a different approxi-
mation will be sought. We see that V (z)—E = V'(0)z+2?h(z) =: ax+z2h(x)
where h(z) € C*°(R). We then write

—2" + axr = —2®h(z)Y (3.208)

and treat the rhs of (3.208) as a small perturbation. The substitution z = €2/3¢
makes the leading equation an Airy equation:

—p" 4+ at) = —232 (3 t)y (3.209)

which is a regularly perturbed equation! For a perturbation method to apply,
we merely need that 22h(x) in (3.208) is much smaller than the lhs, roughly
requiring x < 1. This shows that the inner and outer regions overlap, there is
a subregion —the matching region— where both expansions apply, and where,
by equating them, the free constants in each of them can be linked. In the
matching region, mazimal balance occurs, in that a larger number of terms
participate in the dominant balance. Indeed, if we examine (3.191) near 2 = 0,
we see that w'? > w” if € 2z > ¢ 'z71/2, where we used (3.197). In the
transition region, all terms in the middle expression in (3.191) participate
equally.

3.10e  Outer region. Rigorous analysis
We first look at a region where U(zx) is bounded away from zero. We will

write U = F2.

Proposition 3.210 Let F € C*(R), F? € R, and assume F(z) # 0 in [a, b].
Then for small enough € there exists a fundamental set of solutions of (3.189)
in the form

Yy = O (z;€) exp [:I:e_1 /F(s)ds] (3.211)
where @4 (x;€) are C® in e > 0.
PROOF We show that there exists a fundamental set of solutions in the

form

Yy = exp [te 'Ry (z;€)] (3.212)
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where Ry (x;€) are C™ in e. The proof is by rigorous WKB.
Note first that linear independence is immediate, since for small enough €
the ratio of the two solutions cannot be a constant, given their ¢ behavior.
We take 1) = €“/€ and get, as before, to leading order w’ = +F. We look at
the plus sign case, the other case being similar. It is then natural to substitute
w' = F + §; we get

8 +2 Fy = —F — 162 (3.213)

which we transform into an integral equation by treating the rhs as if it
was known and integrating the resulting linear inhomogeneous differential
equation. Setting H = f F the result is

§=—e "¢ F’(s)e%ds— 167 K / 52(8)62H5(S) ds =: J(6) =: 8o+ N(9)
€ a

‘ (3.214)
We assume that F' > 0 on (a,b), the case F' < 0 being very similar. The case
F € iR is not too different either, as we will explain at the end.
Let now [|[F'||c = A in (a, b) and assume also that minge(, ) [U(s)| = B? >
0.

Lemma 3.215 For small €, the operator J is contractive in a ball B := {4 :
16]loc <2AB~ "€}

PROOF i) Preservation of B. We have

x
do(z)| < Ae_%H(l')/ C2H(5) gg

By assumption, H is increasing on (a,b) and H' # 0 and thus, by the
Laplace method, cf. Proposition 3.18, for small € we have (since H' = ﬁ),

2H(x)
160(x)] < 24e~ #H@) 2

. < ¢AB!
ZH(x) €

Note We need this type of estimates to be uniform in z € [a, b] as ¢ — 0. To
see that this is the case, we write

a a € S

a

Similarly,
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<2e2A2B73

1 v s
,e—¥/ 52(3)62He( L ds
€ a

and thus, for small € and 6 € B we have

J(6) < e 'ABTt + 22 A?B7? < 2¢AB7!

ii) Contractivity. We have, with 61,02 € B, using similarly Laplace’s
method,

2H(s)

76) = TG < 2 [ 150) = B19)1als) + 515 s

2eA
< gz lloe —aif - (3.217)

and thus the map is contractive for small enough e.

I

Note. We see that the conditions of preservation of B and contractivity
allow for a dependence of (a,b) on e. Assume for instance that a,b > 0 and
V(z) = E has no root in [a,b + ) with v > 0, and that a is small. Assume
further that V(0) = E is a simple root, V'(0) = a # 0. Then for some C' > 0
we have B > Cm?a? and the condition of contractivity reads

2
“lal

|af?

ie. a > (¢/|a])?? and for small enough e this is also enough to ensure
preservation of B. We thus find that the equation 6 = J(J) has a unique
solution and that, furthermore, ||| < const.c. Using this information and
(3.217) which implies

eA _
[l J(8)] < §2AB le

we easily get that, for some constants C; > 0 independent on €,

|5 - 5o| S 016|5| S 016|50| + 016|5 — (50|
and thus
|6 — do| < Caeldo|
and thus, applying again Laplace’s method we get
—eF’

6?‘\./
2F

(3.218)

which gives
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P ~ exp (:I:e_l/Ul/Q(s)ds> U4

The proof of the C'*° dependence on € can be done by induction, using (3.218)
to estimate 62 in the fixed point equation, to get an improved estimate on §,
etc.

In the case F' € iR, the proof is the same, by using the stationary phase
method instead of the Laplace method.
[

3.10f Inner region. Rigorous analysis

By rescaling the independent variable we may assume without loss of gen-
erality that « = 1 in (3.209) which we rewrite as

—" 1t = —E2B32hy (23)0 = f(1) (3.219)

which can be transformed into an integral equation in the usual way,

B(t) = —Ai(t) / £(5)Bi(s)ds + Bi(t) / F()Ai(s)ds + CLAi(t) + CoBi(t)

(3.220)
where Ai, Bi are the Airy functions, with the asymptotic behavior
1 3 1 3
Ai(t) ~ ﬁfl/‘*e*%”; Bi(t) ~ ﬁfl“e%” (3.221)
and
[t=Y/2Ai(t)| < const., |t7YBi(t)| < const. (3.222)

as t — —oo. In view of (3.221) we must be careful in choosing the limits of
integration in (3.220). It is important to ensure that the second term does
not have a fast growth as ¢ — oo, and for this purpose we need to integrate
from ¢ toward infinity in the associated integral. For that, we ensure that
the maximum of the integrand is achieved at or near the variable endpoint of
integration. Then Laplace’s method shows that the leading contribution to
the integral comes from the variable endpoint of integration as well, which
allows for the opposite exponentials to cancel out. We choose to look at an
interval in the original variable x € In; = [-M, M] where we shall allow for
e-dependence of M. We then write the integral equation with concrete limits
in the form below, which we analyze in I;.
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b(t) = —Ai(t) /0 £(s)Bi(s)ds+
Bi(t) /A; F(s)Ai(s)ds + CLAi(t) + CoBi(t) = Jy + g (3.223)

Proposition 3.224 For some positive const., if € is small enough (3.223) is
contractive in the sup norm if M < const.¢?/®.

PROOF Using the Laplace method we see that for ¢t > 0 we have

2,3

t 3
t~/4em5t? / sT1/4e35% gg < const.(|t| +1)7*
0

and also

M )
/4¢3 %/ s~V 7552ds<t Vdes %/ 871/467%8%&9
t t
< const.(|t|+1)"1  (3.225)

and thus for a constant independent of €, using (3.221) we get

| T2 (t)] < const.e/3(Jt| + 1)~ up Y (s)]
se|0,

for ¢ > 0. For t < 0 we use (3.222) and obtain

’Ai(t) /Nt[ F(s)Bi(s)ds

and get for a constant independent of €

0
S (1+|t‘)71/4 sup |f(5)|(00n5t+/ 571/4d5
s€[—t,0] t

|JY(t)| < const.e?/3(1 + [t|)*/% < const.e?/3(e 23 M)>/? < 1

We see that for small enough €, the regions where the outer and inner equa-
tions are contractive overlap. This allows for performing asymptotic matching
in order to relate these two solutions. For instance, from the contractivity ar-
gument it follows that

b= (1-J) o= Z TEapg

giving a power series asymptotics in powers of €2/ for 1.
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3.10g Matching

We may choose for instance x = const.c'/? for which the inner expansion (in
powers of €2/3) and the outer expansion (in powers of €) are valid at the same
time. We assume that x lies in the oscillatory region for the Airy functions
(the other case is slightly more complicated).

We note that in this region of = the coefficient of €® of the outer expansion
will be large, of order (U'U~3/2)F ~ e=3k/4 A similar estimate holds for
the terms of the inner expansion. Both expansions will thus effectively be
expansions in e~ /4. Since they represent the same solution, they must agree
and thus the coefficients of the two expansions are linked. This determines
the constants C; and Cy once the outer solution is prescribed.

3.11 WKB on a PDE

Consider now a a parabolic PDE, say the heat equation.

VYt = Vaa (3.226)

The fact that the principal symbol is degenerate (there are fewer ¢ than x
derivatives) has an effect similar to that of a singular perturbation. If we
attempt to solve the PDE by a power series

)= i tF By (x) (3.227)
k=0

this series will generically have zero radius of convergence. Indeed, the re-
currence relation for the coefficients is Fj, = F,é’_l /k whose solution, Fj, =

F()(Qk)/k! behaves like Fj ~ k! for large k, if F' is analytic but not entire.
Generally, exponential solutions are expected too.? If we take ¢ = e in
(3.226) we get

Wy = W2 + Wey (3.228)

where the assumption of algebraic behavior of w is expected to ensure w?2 >>
wz, and so the leading equation is approximately

wy; = w? (3.229)

9The reason will be better understood after Borel summation methods have been studied.
Divergence means that the Borel transform of the formal solution is nontrivial: it has
singularities. Upon Laplace transforming it, paths of integration on different sides of the
singularities give different results, and the differences are exponentially small.
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which can be solved by characteristics. We take w, = u and get for u the
quasilinear equation

Uy = 2uty, (3.230)

with a particular solution u = —x/(2t), giving w = —z%/(4t). We thus take
w = —x?/(4t) + § and get for § the equation

x 1
8+ “0p+ — = 02+ Oy 3.231

where we have separated the relatively small terms to the rhs. We would
normally solve the leading equation (the lhs of (3.231)) and continue the
process, but for this equation we note that § = —% Int solves not only the
leading equation, but the full equation (3.231). Thus

x? 1

which gives the classical heat kernel
1 1’2
Y =—e 4 (3.233)

Vit

This exact solvability is of course rather accidental, but a perturbation ap-
proach formally works in a more PDE general context.



Chapter 4

Analyzable functions and transseries

As we have seen, there is an important distinction between asymptotic ex-
pansions and asymptotic series. The operator f — A,(f) which associates to
f its asymptotic power series is linear as seen in §1.1c . But it has a nontriv-
ial kernel (A,(f) = 0 for many nonzero functions), and thus the description
through asymptotic power series is fundamentally incomplete. There is no
unambiguous way to determine a function from its classical asymptotic series
alone. On the other hand, the operator f — A(f) which associates to f its
asymptotic expansion has zero kernel, but it is still false that A(f) = A(g)
implies f = g (A is not linear, see Remark 1.24). The description of a function
through its asymptotic expansion is also incomplete.

4.1 Analytic function theory as a toy model of the theory
of analyzable functions

Let A denote the set of germs of analytic functions at z = 0, let C[[z]] be the
space of formal series in z with complex coefficients, of the form Y7 cuz®,
and define C.[[z]] as the subspace of series with nonzero radius of convergence.
The Taylor series at zero of a function in A is also its asymptotic series at
zero. Moreover, the map 7 : A — C,[[z]], the Taylor expansion operator, is
an isomorphism and its inverse 7! = S is simply the operator of summation
of series in C,[[z]]. 7 and S commute with most function operations defined
on A. For instance we have, with f, fi and fy in C.[[2]]

1. S{afi+0fs} =aSfi+08Sfa; 2. S{fifo} =SfiSfe;
3. S{f*}:{sf} 4. S{f}’:{b‘f}/;
.S "l rsi . S{fiofsl =8f108f:; 7. Sl=
5 {/0 f} /0 P 6 S{fiof) =SFioSh 1 (411)

*
)

where f*(z) = ?(E) All this is standard analytic function theory.

89
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Convergent summation, S, is such a good isomorphism between A and
C.[[2]], that usually no distinction is made between formal (albeit convergent)
expansions and their sums which are actual functions. There does not even
exist a notational distinction between a convergent series, as a series, and its
sum as a number. Yet we can see there is a distinction, at least until we have
proven convergence.

Consequences of the isomorphism to solving problems. As a result
of the isomorphism, whenever a problem can be solved in C.[[z]], S provides
an actual solution of the same problem. For example, if § is a formal solution
of the equation

7=09+z (4.2)

as a series in powers of z, with nonzero radius of convergence, and we let
y = Sy we may write, using (4.1),

(37’2192-1-2)@(S{Q'}:S{gjz}—i—z)@(y/zyQ—l—z)

i.e. ¢ is a formal solution of (4.2) iff y is an actual solution. The same
reasoning would work in many problems with analytic coefficients for which
solutions g € C¢|[z]] can be found.

On the other hand, if we return to the example in Remark 1.24, f; and f5
differ by a constant C', coming from the lower limit of integration, and this
C' is lost in the process of calculating the asymptotic expansion. To have a
complete description, clearly we must account for C'. It is then natural to try
to write instead ~

fig "~ e f+Cho (4.3)

However, Note 1.22 shows C} 2 cannot be defined through (1.11); C; 2 cannot
be calculated as f12 — e’”f since f does not converge. The right side of (4.3)
becomes for now a purely formal object, in the sense that it does not connect to
an actual function in any obvious way; (4.3) is perhaps the simplest nontrivial
instance of a transseries.

It is the task of the theory of analyzable functions to interpret in a natural
and rigorous way expansions such as (4.3), so that expansions and functions
are into a one-to-one correspondence. An isomorphism like (4.1) holds in
much wider generality.

Some ideas of the theory of analyzable functions can be traced back to
Euler as seen in §1.1e , Cauchy, Borel who found the first powerful technique
to deal with divergent expansions, and by Dingle and Berry who substantially
extended optimal truncation methods.

In the early 80’s exponential asymptotics became a field of its own, with the
a number of major discoveries of Ecalle, the theory of transseries and analyz-
able functions, and a very comprehensive generalization of Borel summation.

Setting of the problem. One operation is clearly missing from both A
and C.[[z]] namely division, and this severely limits the range of problems that
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can be solved in either A or C.[[z]]. The question is then, which spaces A; D A
and S1 D C,[[z]] are closed under all function operations, including division,
and are such that an extension of 7 is an isomorphism between them? (See
also §1.1e ). Because of the existence of an isomorphism between A; and the
formal expansions S; the functions in A; were called formalizable). Exploring
the limits of formalizability is at the core of the modern theory of analyzable
functions. See also § 1.1e .

In addition to the obvious theoretical interest, there are many important
practical applications. One of them, for some generic classes of differential
systems where it has been worked out, is the possibility of solving problems
starting from formal expansions, which are easy to obtain (usually algorith-
mically), and from which the isomorphism produces, constructively, actual
solutions.

We start by looking at expansions as formal algebraic objects, to understand
their structure and operations with them.

4.1a Formal asymptotic power series

Definition 4.4 For x — oo, an asymptotic power series (APS) is a formal
structure of the type

> (4.5)

€N
We assume that k; > k; if i > j and that there is no accumulation point of
the kz 1

In particular, there is a smallest power k; € Z, possibly negative. We usually
arrange that ¢; # 0, and then j = 1.
Examples. (1) Integer power series, i.e. series of the form

oo

> ;—’,ﬁ (4.6)

k=M
(2) Multiseries, finitely generated power series, of the form
ck17k27'~~;k7n
Z xallirerOtnkn (47)
ki>M
for some M € Z and n € N, where a1 > 0,...,, > 0. Its generators are the

monomials x=, ..., x” %,

Proposition 4.8 A series of the form (4.7) can be rearranged as an APS.

IN could be replaced by an ordinal. However, for power series, under the nonaccumulation
point assumption, there would be no added generality.
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PROOF  For the proof we note that for any m € N, the set

n
{(k1,k2,....kn) €Z" : k; > M for 1 <i<n and Zaiki <m}
i=1
is finite. Indeed, k; are bounded below, a; > 0 and Z?zl a;k; — oo if at
least one of the sequences {k;, } is unbounded. Thus, there are finitely many
distinct powers 7P, p between m and m + 1.

Exercise 4.9 As a consequence show that:
(1)
inf{v:v=a1k + -+ anky, for some ky,...k, > M} < oo
(2) The set
J={v:v=a1ki + -+ anky for some ky,...k, > M}

s countable with no accumulation point. Furthermore J can be linearly or-
dered

vV < < <Y<
and all the sets

Ji i =A{k1,....k; > M :v; = ok + - + ankn}

are finite.
Complete the proof of the proposition.

I

Thus (4.7) can be written in the form (4.5). The largest term in a series S is
the dominance of S:

Definition 4.10 (of Dom) If S is a nonzero APS of the type (4.5) we define
Dom(S) to be c;,x~ %1 where iy is the firsti in (4.5) for which ¢; # 0 (as noted
above, we usually arrange ¢; #0). We write Dom(S) =0 iff S = 0.

4.1a .1 Operations with APS

Note 4.11 The following operations are defined in a natural way and have
the usual properties: +,—, X, / differentiation and composition S1 o Sy where
So is a series such that k1 < 0. For composition and division, see note after
Proposition 4.18. For instance,

oo o0

Cj - dl o del

Vi Z o Z rVitm (412)
k=0 1=0 k,1=0

Ezxercise 4.13 (*) Show that the last series in (4.12) can be written in the

form (4.5).

Exercise 4.14 (*) Show that finitely generated power series are closed under
the operations mentioned above.
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4.1a .2 Asymptotic order relation

If C1,Cs # 0, we naturally write (remember that £ — 400 and the defini-
tion of <« in (1.8) and (1.9))

Cia? <« Coxd iff p<q

Definition 4.15 For two nonzero APSs Sy, Sy we write S1 >> Sy iff Dom(S1) >
Dom/(S3).

Proposition 4.16 Dom(S1S2) = Dom(S1)Dom(Sz2), and if Dom(S) # const
then Dom(S") = Dom(S)’.

PROOF Exercise. I

Thus we have

Proposition 4.17 (See note(4.11)).

(i) S1 < T and S < T imply S1 + Sy < T and for any nonzero S3 we
have 5153 < 5253.

(ZZ) Sl > T1 and SQ > T2 imply 5152 > T1T2,

(iii) S < T implies § > .

(w) S < T < 1 implies 8" < T' <1 and 1 < S < T implies 8" < T’
(prime denotes differentiation). Also, s << 1= <sand L>>1=L> L'
S">T and T > 1 implies S > T. Also 1> 5" > T implies S > T.

(v) There is the following trichotomy for two nonzero APSs : S < T or
S > T or else % — C <« 1 for some constant C.

PROOF Exercise. I

Proposition 4.18 Any nonzero APS S can be uniquely decomposed in the
following way
S=L+C+s

where C is a constant and L and s are APS, with the property that L has
nonzero coefficients only for positive powers of x (L is purely large) and s has
nonzero coefficients only for negative powers of x (s is purely small; this is
the same as, simply, small).

PROOF  Exercise. I

Exercise 4.19 (*) Show that any nonzero series can be written in then form
S = D(1+ s) where D =Dom(S) and s is a small series.

Exercise 4.20 Show that the large part of a series has only finitely many
terms.
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Exercise 4.21 (*) Show that for any coefficients aq, ..., Gy, ... and small se-
ries s the formal expression

14+ a1+ ags®+--- (4.22)

defines a formal power series. (A proof in a more general setting is given in

§4.9.)

Note 4.23 Let S be a nonzero series and D = Cyx="* = Dom(S). We define
1/D =(1/Cy)z"* and

(1784’52*83"') (424)

S| =

L
S
and more generally
1
S = Ol ymP (1 +0Bs+ 568 - 1)s? + - > (4.25)
The composition of two series S = Z?;O sgx~ "% and L where L is large is

defined as

Sol:= Z sp Lk (4.26)
k=0

Exercise 4.27 (*) Show that (4.26) defines a formal power series which can
be written in the form (4.5).

Examples

Proposition 4.28 The differential equation

1
Yy 4y = — > (4.29)

has a unique solution as an APS which is purely small.

PROOF For the existence part, note that direct substitution of a formal
. . o0 7]() .

integer power series yo = ), cxx~ " leads to the recurrence relation ¢; = 1
and for k > 2,

Cp = (k‘ — l)ck_l + E Cly Choy Ceg
kitkot+ks=k;k;>1

for which direct induction shows the existence of a solution, and we have

1 1 3 12 60
y0:*+7+73+74+7+"'
X X

For uniqueness assume yg and y; are APS solutions and let 6 = y; —yo. Then
0 satisfies
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8 40 = 3y3d + 3yod> + 6° (4.30)

Since by assumption § < 1 we have Dom(é’) <« Dom(d) and similarly
Dom(3y2d + 3yod? + §%) < Dom(§). But this implies Dom(d) = 0 and thus
0 = 0. There are further formal solutions, not within APS but as more general
transseries containing exponentially small terms. I

4.1a .3 The exponential

Proposition 4.31 If s is a purely small series then the equation y' = s’y
(corresponding intuitively to y = e®) has APS solutions of the form C + s;
where sy is small. If we choose C =1 then s; = 51,1 is uniquely defined.

We define, according to the previous proposition, e* = 1+ s1,1; 1 + 51,1 is
simply the familiar Maclaurin series of the exponential.
But e” is not definable in terms of APS.

Proposition 4.32 The differential equations f' = +x (%) have no nonzero
APS solution.

PROOF By Proposition 4.17, if f # 0is an APS, then f' < f,s0 f' = +f
is not possible.

Thus we adjoin a solution of (*) as a new formal monomial €* 2, determined
by the equation only up to a multiplicative constant, derive its properties
and check for consistency of the extension (meaning in this case that the new
element is compatible with the structure it was adjoined to). Monomials are
by definition positive, so we postulate e* > 0. Then, from (*) we see that
e® > const and inductively, e® > consta™ for any n. Thus e” > z™ for all n.
Consistency of the definition is a consequence of the existence of transseries,
constructed in detail in §4.9 (with a sketch in §4.2b ).

More generally, if L is a large series, say purely large, then we have to
define the composition exp(L(z)) as a new symbol (it cannot be constructed
based on APS and e*). To preserve the properties of differentiation we should
have (e¥)’ = L’e®. Then e” is a solution of the equation f’ = L’f; since
(elrel?) is a solution of f' = (L} + Lb)f, for consistency, we should define
elielz = elitlz  If [, = —Ly then eftel? = const which, by symmetry,
should be one.

Remark 4.33 The general solution of ¢’ +y = 0 is Ce™®. Indeed, we may
multiply by e® and get (ye®) =0, i.e. ye® =C or y = Ce™ 7.

2The existence of a function solution to (*) is not relevant here, since APSs are not functions.

3We know that this cannot be inconsistent with the equation and order relation, since it is
true for the actual exponential.
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Definition 4.34 In general if S = L+C+s we write e¥ = C(1+s1.1)e” where
el is to be thought of as a primary symbol, subject to the further definitions
elitlz = elielz gnd (el)' = L'el.

After we have adjoined these new elements, the general solution of
f+f=a" (4.35)

is

~ —x = k! —x

Yo + Ce = W + Ce (436)

k=0
Indeed, if § is any solution of (4.35) then f = §— 7o satisfies the homogeneous
equation f’ 4 f = 0. The rest follows from Remark 4.33.
To formally solve (4.35) within power series, only algebraic operations and

differentiation are needed. However, within the differential field 4 , generated
by 1/z, ® (4.36) has no nonzero solution, as see in the exercise below.

Exercise 4.37 (*) Find a differential field, containing 1/z,in which (4.35)
has no solution: Note that the space of functions which are meromorphic
at infinity form a differential field. Show that this is the case with conver-
gent power series of the form 7, o, e % with ky € Z (possibly negative).
Complete the proof.

This shows again that the space of transseries has to have enough many “in-
nate” objects, or else simple equations cannot be solved. If there are too many
though, association with true functions is endangered. It is a delicate balance.

4.1a .4 Exponential power series (EPS)
A simple example of EPS is a formal expression of the type

oo

Cij
> o (4.38)

ij=1

where \; are increasing in ¢ and k; are increasing in j. Again the usual
operations are well defined on EPS (except for composition, to be defined
later, together with transseries).

The order relation, compatible with the discussion in § 4.1a .3, is defined
by eMZxh2 > eMsTrka iff \; > \g or if \; = A3 and ko > k4. Consistent with

4That is, roughly, a differential algebra with a consistent division. A (commutative) differ-
ential algebra is a structure endowed with the algebraic operations +, — x, multiplication
by constants and differentiation, and with respect to these operations behave as expected,
see e.g. [39].

5There is a minimal differential field containing 1/, by definition the one generated by 1/x.
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this order relation it is then natural to reorder the expansion(4.38) as follows

Dot i ;j (4.39)

Then we can still define the dominance of a structure of the form (4.38).

As another simple example of an EPS, let us find the formal antiderivative
ofzemz. We write 3/ = gmz and, for instance by WKB we see that y is of order
e” . We write y = ge® and get

g +2rg=1 (4.40)

where, a power series solution can be found by noting that, within APSs
g /x < g, and we write

1 1
= 5. oo 4.41
g 2z 2£Ug ( )
and by formal iteration we get
1 1 1-3 1-3:5 > (2k — 1)1
jo=ro-+ 13+t 235 —D=1) (442
g0 2z * 423 + 815 T 165 1625 Z ok p2k+1 ) ) )

(compare with §3.1). The general solution is gg plus the general solution of
the associated homogeneous equation g’ + 2zg = 0, Ce=2". Thus

e 2 (2k — 1!
EPS(/ ) ng Y] +C, — o0

k=0

4.1a .5 Exponential power series solutions for (4.29)

To show how transseries arise naturally as solutions of ODEs we continue
the formal analysis of (4.29).

To simplify notation, we drop the tildes from formal asymptotic expansions.
We have obtained, in Proposition 4.17 a formal series solution (4.29), yo. We
look for possible further solutions. We take y = yg + 0. The equation for §
is (4.30) where we search for solutions ¢ < 1, in which assumption the terms
on the right side of the equation are subdominant (see footnote 8 on Page
80). We have ¢’ + 6(1 + o(1)) = 0 thus 6 = Ce~*+°(®)and this suggests the
substitution § = e¥. We get

w' + 1 = 3y2 + 3ype” + **

and since e = § < 1 the dominant balance (footnote 8, Page 80) is between
the terms on the left side, thus w = —x + C' + w; and we get

wy = 3ya + 3yoe TeWt 4 e 2w
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We have ype et = yod = yoe *1°(*). Since ype *e¥ < " for any n and
thus w] = O(z~2) then w; = O(z~ ). Thus, ¥ = 1+ w; + w$/2 + ... and
consequently 3yge~%e®t 4+ e~ 22w g negligible with respect to y3. Again by
dominant balance, to leading order, wj = 3y3 and thus wy = [ 3y + wo =
¢1 + wa (@1 is a formal power series). It follows that, to leading order, we
have

wy = 3ype ”

and thus we = ¢2e™" where ¢ is a power series. Continuing this process of

iteration, we can see inductively that w must be of the form

o0
w=—x+ Z bre ke
k=0

where ¢y are formal power series, which means

oo
y=3 e, (1.43
k=0

where yp are also formal power series. Having obtained this information, it
is more convenient to plug in(4.43) directly in the equation and solve for the
unknown series yi. We get the system

vo+yo=a""+yd

Y1 = 3y5m
(4.44)
Up— ke =30y =30 D> UnUk > Y, Yk Uk

k1+tko=k;k;>1 k1+tko+kz=k;k; >1

(Check that for a given k, the sums contain finitely many terms.) We can
easily see by induction that this system of equations does admit a solution
where y; are integer power series. Furthermore, y; is defined up to an arbi-
trary multiplicative constant, and there is no further freedom in yj, whose
equation can be solved by our usual iteration procedure, after placing the
subdominant term gy on the rhs. We note that all equations for k > 1 are lin-
ear inhomogeneous. The fact that high-order equations are linear is a general
feature in perturbation theory.

Choosing then yq in such a way that ygl] =14+az ' +... we have y; = C’ygl].
By the special structure of the rhs of the general equation in (4.44) we see

that if y,[:] is the solution with the choice y; = ygl] we see, by induction, that

the solution when y; = Cygl] is Cky,[j]. Thus the general formal solution of
(4.29) in our setting should be
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i Cky][cl]e—k:c
k=0

where yél] =Y.

Exercise 4.45 (*) Complete the details in the previous analysis: show that
the equation for y; in (4.44) has a one parameter family of solutions of the
form y; = ¢(1 + s1) where s is a small series, and that this series is unique.
Show that for k& > 1, given yg, ..., yx—1, the equation for yi in (4.44) has a
unique small series solution. Show that there exists exactly a one parameter
family of solutions general formal exponential-power series solution of the form
(4.43) of (4.29).

4.2 Transseries
4.2a Remarks about the form of asymptotic expansions

The asymptotic expansions seen in the previous examples have the common
feature that they are written in terms of powers of the variable, exponentials
and logs, e.g.

& 2 2 (1 1 5
Fds~e N | ———+——.. 4.46
/x ‘ e <2x 4x2+8x3 ) (4.46)
1
nl ~ \/Zrenmn-ntyinn (1 v+ ) (4.47)
12n
Tel 1 1 2
—dt~e" | —+—=+ =5+ ... 4.48
/1 t c (:v tetEt ) (4.48)

4.2b  Construction of transseries: a first sketch

Transseries are studied carefully in §4.9. They are finitely generated asymp-
totic combinations of powers, exponentials and logs and are defined induc-
tively. In the case of a power series, finite generation means that the series
is an integer multiseries in ¥, ..., y, Where y; = z7 P Re (Bj) > 0. Examples
are (4.38), (3.81) and (1.25); a more involved one would be

Inlnx + Z e kexp(7, k")
k=0

A single term in a transseries is a transmonomial.
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A term of the form m = z~®k1——kn with o; > 0 is a level zero
(trans)monomial.

Real transseries of level zero are simply finitely generated asymptotic
power series. That is, given aq, ..., a,, With o; > 0 a level zero transseries
is a sum of the form

S = E Ckl’m’;c"aj_alkl_"'_a”’k”’ (4.49)
ki >M;

with car, v, # 0 where Mi, ..., M, are integers, positive or negative;

the terms of S are therefore nonincreasing in k; and bounded above by
O(x7a1M17~~'7a'rLM7L).

gmtMi—.—anMn g the leading order, cM,,...M, is the leading constant
and cpy, . g, 2~ @1 Mi—manMn iy the dominance of (4.49), Dom(S).

Note. When we will construct transseries more carefully, we will denote
Py =t ,ulfl <+ f1, " the monomial z =k~ ~knen We note that k — g,
defines a morphism between Z™ and the Abelian multiplicative group
generated by p1, ..., fn.

The lower bound for k; easily implies that there are only finitely many
terms with the same monomial. Indeed, the equation a1 k1 +...+ank, =
p does not have solutions if Re (a;)k; > [p| + 3=, loy[| M.

A level zero transseries can be decomposed as L + const + s where L,
which could be zero, is the purely large part in the sense that it contains
only large monomials, and s is small.

If S # 0 we can write uniquely

S = const x= Mo Ma (] 4 g)

where s is small.

Operations are defined on level zero transseries in a natural way. The
product of level zero transseries is a level zero transseries where as in (4)
above the lower bound for k; entails that there are only finitely many

terms with the same monomial in the product.

It is easy to see that the expression (1 —s)~!:=1— s+ 5% — ... is well
defined and this allows definition of division via

1/S = const™LgorMitetandn (] _ 5=l
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8. A transmonomial is small if m = o(1) and large if 1/m is small. m is
neither large nor small iff m = 1 which happens iff —a1 k1 —...—a, ky, = 0;
this is a degenerate case.

9. It can be checked that level zero transseries form a differential field.
Composition S7(S2) is also well defined whenever S is a large transseries.

In a more abstract language that we will use later, for a given set of monomi-
als p1, ..., b, and the multiplicative group G generated by them, a transseries
of level zero is a function defined on Z" with values in C, with the property
that for some ko we have F(k) = 0 if k < ko.

More general transseries are defined inductively; in a first step exponentials
of purely large level zero series are level one transseries.

It is convenient to first construct transseries without logs and then define
the general ones by composition to the right with an iterated log.

10. Level one. The exponential e* has no asymptotic power series at in-
finity (Proposition 4.32) and e” is taken to be its own expansion. It
is a new element. More generally, e with L purely large (positive or
negative) is a new element.

11. A level one transmonomial is of the form pu = me® where m is a level
zero transmonomial and L is a purely large level zero transseries. u
is large if the leading constant of L is positive and small otherwise. If
L is large and positive then e’ is, by definition, much larger than any
monomial of level zero. We define naturally ef1ef2 = ef1+L2. Note
that in our convention both z and —z are large transseries.

12. A level one transseries is of the form

S= 3 Chikati = Y (4.50)
ki>M; k>M
where p; are large level one transmonomials.

With the operations defined naturally as above, level one transseries
form a differential field.

13. We define, for a small transseries, e* = > 7~ s* /k!l. If s is of level zero,
then e® is of level zero too. Instead, we cannot expand e”, where L is
purely large.

14. Differentiation is defined inductively: with ()’ = az®~!, and the steps
!/
to be carried by induction are (fg)' = f'g + f¢, <ZkZM ckpk> =
>k ([,Lk)/ and (el) = L'el.
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15. The construction proceeds similarly, by induction and a general exponential-
free transseries is one obtained at some level of the induction. They form
a differential field.

16. In general, transseries have an exponential level (height) which is the
highest order of composition of the exponential (and similarly a loga-
rithmic depth) exp(exp(2?)) + Inz has height 2 and depth 1. Height
and depth are required to be finite. That is, for instance, the expression

x

f=e+e 4 ... (4.51)

(as a function series (4.51) converges uniformly on R, to a C'*° function)
6 is not a valid transseries.

17. It can be shown, by induction, that S’ = 0 iff S = const.

18. Dominance: If S # 0 then there is a largest transmonomial ul_kl T
in S, with nonzero coefficient, C. Then Dom(S) = Cpy* - pFn. If S
is a nonzero transseries, then S = Dom(S)(1 + s) where s is small, i.e.,
all the transmonomials in s are small. A base of monomials can then be
chosen such that all M; in s are positive; this is shown in §4.9.

19. Topology.

(a) If S is the space of transseries generated by the monomials L1y eeey hny
then, by definition, the sequence SV! converges to S given in (4.50)

if for any k there is a jo = jo(k) such that cE] = ¢y for all j > jg.

(b) In this topology, addition and multiplication are continuous, but
multiplication by scalars is not.

(¢) It is easy to check that any Cauchy sequence is convergent and
transseries form a complete linear topological space.

(d) Contractive mappings: A function (operator) A : S — S is con-
tractive if for some o < 1 and any Sp, S3 € S we have Dom(A(S;)—
A(S2)) < aDom(S; — Ss).

(e) Fized point theorem. It can be proved in the usual way that if A is

contractive, then the equation S = Sy + A(S) has a unique fixed
point.
Examples —This is a convenient way to show the existence of mul-
tiplicative inverses. It is enough to invert 1 + s with s small. We
choose a basis such that all M; in s are positive. Then the equation
y = 1 — sy is contractive.

61t turns out that the Taylor series of f has zero radius of convergence everywhere, with
|f(m)| exceeding em nminlnm,
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—Differentiation is contractive on level zero transseries (multiseries).
This is intuitively obvious, since every power in a series decreases
by one.

—The equation y = 1/xz—y' is contractive within level zero transseries;
It has a unique solution.

—The inhomogeneous Airy equation

11
y=—+-y
x T

"

also has a unique solution, namely

/1 a\"1 1 2 40

20. If L,, = log(log(...log(x))) n times, and T is an exponential-free transseries
then T'(L,,) is a general transseries. Transseries form a differential field,
furthermore closed under integration, composition to the right with large
transseries, and many other operations; this closure is proved as part of
the general induction.

21. The theory of differential equations in transseries has many similarities
with the usual theory. For instance it is easy to show, using an inte-
grating factor and 17 above that the equation y’ = y has the general
solution Ce® and that the Airy equation y” = xy that we looked at
already, has at most two linearly independent solutions. We will find
two such solutions in the examples below.

Note 4.53 Differentiation is not contractive on the space of power series
at zero, or at any point zg € C, but only on asymptotic series at infinity.

Note that d/dz = d/d(1/z) = —2%d/dz.

4.2c Examples of transseries solution: a nonlinear ODE

To find a formal power series solution of
Y +y=a"+¢° (4.54)

we proceed as usual, separating out the dominant terms, in this case y and
x~2. We get the iterations scheme, contractive on level zero transseries,

y[n] (I’) - $72 = yfn—l] - yfn—l] (455)

with yjo = 0. After a few iterations we get

G(r) =27 2422 3 460 4240+ 121 2 6473227 45154 2 8+ - (4.56)
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To find further solutions, since contractivity shows there are no further
level zero transseries, we look for higher order corrections. We write y =
g+ =: yo + 0 and obtain (4.30). Since yo and § are small, to leading
order the equation is 6’ +§ = 0. Thus 6 = Ce™*. Including the power
correction 3y2d we get § = Cyie™® where y; is a power series. Clearly,
to next order of approximation, we need to take into account 3yo6? which
is roughly 3C?yoy?e~2%. This introduces a correction of type C?yse~2* to
0, with yo a power series, and continuing, we get, through the nonlinearity
6 = Zzil CFe=#@y, . a level one transseries. To show uniqueness we can
write the equation for § in a contractive way, which is better done within the
rigorous theory of transseries (cf. Exercise 4.232). For further analysis of this
transseries see §5.3b .

Ezxample 2. To find a formal solution for the Gamma function recurrence
Gn4+1 = Na,, we look directly for transseries of level at least one, a, = eln
(since it is clear that no power series would satisfy the recurrence). Thus
foy1 = Inn + f,. It is clear that f,41 — fn < fn; this suggests writing
fas1 = [fa+ fo+Lfl + .. and, taking f' = h we get the equation

1 1
hp=Inn— =h, — —hll — .. 4.57
nn = Shl, = (457)
(which is contractive in the space of transseries of zero level, see also Note4.53).
We get

h=1 1 L + L
=lnn— —— —— + —...
2n  12n2  120n4
and thus
1 1 1
n=nlnn—-—n— =1 —_— ..+ C
f nlnn —n 2nn+12n 36073 +

4.3 Solving equations in terms of Laplace transforms

Let us now consider again the Airy equation
y' =y (4.58)

We divide by exp(%m?’/ 2) and change variable %x?’/ 2 = s to ensure that the
transformed function has an asymptotic series with power-one of the factorial
divergence. The need for that will be clarified later, see §4.7.

Taking then y(z) = e§$3/2h(%x3/2) we get

1

h= 4.
5h=0 (4.59)

1
r" + (2 + —)h’ +
3s
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and with H = L71(h) we get

pp—DH = (-l

The solution is

H=Cp52-p)~°°
and it can be easily checked that any integral of the form

¢

h= / e P*H(p)dp
0
for ¢ # 0 is a solution of (4.59) yielding the expression

¢
2,3/2

f=eé / e 5" Pp3/5(2 - p)=/5dp (4.60)
0

for a solution of the Airy equation. A second solution can be obtained in a
similar way, replacing e3e"? by e_%””3/2, or by taking the difference between
two integrals of the form (4.60). Note what we did here is not Laplace’s
method of solving linear ODEs. Examine the differences.

For Example 2 above, factorial divergence suggests taking inverse Laplace
transform of g, = f, — (nInn —n — L Inn).
The recurrence satisfied by g is

1 (1+ )1 (1+1) LR
il —9gn =G, =1—(=+n)ln )=t =+ ..
gn+1 = Gn =4 2 n 1202 " 1213

First note that £='q = p~2L~1¢” which can be easily evaluated by residues
since

TN S S VI N N
= T nr1 2 (n+1)2  n?

Thus, with £L71g, := G we get

(e = 1)G(p) = 3
001—13—(9+1)e—p
g = / 2 \2 P dp
"o p*(e7? —1)

(It is easy to check that the integrand is analytic at zero; its Taylor series is
15 — P’ +0(%).)
The integral is well defined, and it easily follows that
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1 2
n=C+n(lnn—1)—-Inn+
fn=C+n(lnn—-1) 5 7 /0 (e 1)

solves our recurrence. The constant C' = %ln(277) is most easily obtained by
comparing with Stirling’s series (3.153) and we thus get the identity

0<>1—B—(9+1)6*P

1 1
lnF(n+1):n(lnn—l)—ilnn—&—iln(%r)—l—/o 22(67371)

e—npdp

(4.61)
which holds with n replaced by z € C as well.
This represents, as it will be clear from the definitions, the Borel summed
version of Stirling’s formula.

Exercise 4.62 (*) Prove formula (1.2); find a bound for C when |z| < 1/2.

Other recurrences can be dealt with in the same way. One can calculate
> j—1J~" as a solution of the recurrence

1

Sp+1 — Sp = ﬁ

Proceeding as in the Gamma function example, we have [/ — % = 0(n?)
and the substitution s,, = Inn + g, yields

1_*_1 ( n)
n —9n = — n
gnt1 =9 n n+1

and in the same way we get

o 1 1
fn:C+lnn+/ e*”p<f— — )dp
0 p l—e7?

where the constant can be obtained from the initial condition, f; = 0,

C= —/Oooe—p(; - 7167p)dp

which, by comparison with the usual asymptotic expansion of the harmonic
sum also gives an integral representation for the Euler constant,

o 1 1
= -bp —_ — d
K /0 © (1—e—p p) b

Comparison with (4.61) gives

n—1

1 o 1 1 I(n)
_ — = —np(Z _ =
;:1 ; vy=Ilnn+ /0 e <p = 67p)dp () (4.63)
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Exercise: The Zeta function. Use the same strategy to show that

oo — 1 n—1
D) — LI N I 4.64
(=1 = [ p= [ e ey

1—e® -5
4.3 .1 The Euler-Maclaurin summation formula
Assume f(n) does not increase too rapidly with n and we want to find the
asymptotic behavior of .
=Y f(k) (4.65)

k=kq

for large n. We see that S(k) is the solution of the difference equation
S(k+1)—S(k) = f(k) (4.66)

To be more precise, assume f has a level zero transseries as n — oo. Then we
write S for the transseries of S which we seek at level zero. Then S(k +1) —
S(k) = S"(k)+ S"(k)/2 + ... + ST (k)/k! + ... = §' + LS where

1 di
—Z Saw (4.67)

is contractive on 7y (check) and thus

S'(k) = f(k) — LS (4.68)
has a unique solution,
- > o 1
r_ VI =
S JE:O( WL f = 1 Lf (4.69)

(check that there are no transseries solutions of higher level). From the first
few terms, or using successive approximations, we get

£/ + 35 £ (8) = s PO E) Z Cif (k) (1.70)

Examining the way the C;»s are obtained, it is clear that they do not depend

on f. Then it suffices to look at some particular f for which the sum can be
calculated explicitly. If n > 0 we have

7k/n _
Ze — e_l/n (4.71)

while, by one of the definitions of the Bernoulli numbers we have

= (—1)j7z1 (4.72)
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Exercise 4.73 Using these identities, determine the coefficients C; in (4.70).

By integration we get
S(k) ~ f( ds +C + Z J“ f<J>( ) (4.74)

Rel. (4.74) is called the Euler-Maclaurin sum formula.

Exercise 4.75 (*) Complete the details of the calculation involving the iden-
tification of coefficients in the Euler-Maclaurin sum formula.

Exercise 4.76 Find for which values of a > 0 the series
eiVE

ka
k=1

18 convergent.

Exercise 4.77 (*) Prove the Euler-Maclaurin sum formula in the case f is
C by first looking at the integral f;“ f(s)ds and expanding f in Taylor by
s =mn. Then correct f to get a better approrimation etc.

That (4.74) gives the correct asymptotic behavior in fairly wide generality is
proved, for example, in [19].

We will prove here, under stronger assumptions, a stronger result which
implies (4.74). The conditions are often met in applications, after changes of
variables, as our examples showed.

Lemma 4.78 Assume f has a Borel summable expansion at 0 (m applz'ca—
tions f is often analytic at0) and f(z) = O(2?). Then f(1/n) = [° F(p)e™"Pdp,
F(p) = O(p) for small p and

S fi/n) / e_"pei(li)ldp—/Oooe_"opei(li)ldp (4.79)

kno

PROOF  We seck a solution of (4.66) in the form S = C+ [~ H(p)e **dp,
or, in other words we inverse Laplace transform the equation (4.66). We get

F(p)

(e P—1)H=F= H(p) = =1

(4.80)

and the conclusion follows by taking the Laplace transform which is well
defined since F(p) = O(p), and imposing the initial condition S(ko) =0. [
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4.3a A second order ODE: the Painlevé equation P;

d2
chZ =62 +a (4.81)

We first look for formal solutions. As a transseries of level zero it is easy to
see that the only possible balance is 6y + = = 0 giving
i
7\/5

V6

We choose one of the signs, say + and write
jo— — o= (yz- o LI (4.82)
yO—\/g T yo_\/é z 2\/5 83/2 Yo .
By iteration we get

B i iv6 49;
y“‘ﬁ@*w*w'“) (483)

To find the solution as a Laplace transform of a function with a convergent
series at the origin, we need to ensure that the formal series is Gevrey one, see
84.5 and §4.7. The growth of the coefficients of the x series can be estimated
from their recurrence, but there are better ways to proceed, for instance using
the duality with the type of possible small exponential corrections. The reason
behind this duality will be explained in §4.7.

y~ =+

Exercise 4.84 Let § = o + 0 be a transseries solution to (4.82). Show (for
instance by WKB) that Ind = %\/ﬂ61/4x5/4(1 +0(1)

Equivalently, still heuristically for the moment, we note that the series is
obtained, by and large, by repeated iteration of d?/(y/xdz?). This applied to
power series, and insofar as the ensuing divergence of coefficients is concerned,
is equivalent to repeated iteration of d/(x'/*dz) ~ d/dxz5/*. Tteration of d/dt
on analytic nonentire functions produces Gevrey one series (§4.5), and thus
the natural variable is t = 2%/4. This variable appears, as mentioned before,
in the exponential corrections, see Exercise 4.84. We let

—24x)5/4 —z
) il 2;))  y(e) = 6(1—2;%@))

P becomes

1 1 392
B'+—h —h—=h®— = 4.
3 2 . (4.85)
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If we write h(t) = [;° H(p)e™"Pdp, then the equation for H is

196 P 1

2 3

—1H(p) = — H(s)ds+ -H +« H 4.

0P = DH) = 1z’ + [ s (s + 5H » (1.86)
where convolution is defined by (2.20). We will study convolution equations
of the form (4.86) on an example in § 5.3a and in general in §5.

4.4 Borel transform, Borel summation

The formal Laplace transform, still denoted £ : C[[p]] — C[[x~!]] is defined
by

L{s} =L {Z Ckpk} = Z e L{p"} = chk‘!:fkfl (4.87)
k=0 k=0 k=0

(with £{p®*~1} = T'(a)z~® the definition extends straightforwardly to nonin-
teger power series).

4.4a  The Borel transform B

The Borel transform, B : C[[z71]] — C[[p]] is the (formal) inverse of the
operator £ in (4.87). This is a transform on the space of formal series. By
definition, for a monomial we have

T(s+1) .
in C (more precisely, on the universal covering of C\ {0}, see footnote on p.
226) to be compared with the inverse Laplace transform,

4.89
x5+l 0 otherwise ( )

E_lf(s +1) _ {ps for Rep >0

(for Re (p) < 0 the contour in (2.14) can be pushed to +00).

Because the k — th coefficient of B{f} is smaller by a factor k! than the
corresponding coefficient of f, B{ f} may converge even if f does not. Note
that £B is the identity operator, on series. If B{f} is convergent and L is the
actual Laplace transforms, we effectively get an identity-like operator from
Gevrey one series to functions.

These two facts account for the central role played by LB, the operator of
Borel summation in the theory of analyzable functions . See also the diagram
on p. 26.
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4.4b  Definition of Borel summation and basic properties

Series of the form f = Yoneg ek Ak = Bmkn = with Re (35) > 0 fre-
quently arise as formal solutions of differential systems. We will first analyze
the case m = 1,7 = 1, 8 = 1 but the theory extends without difficulty to more
general series.

Borel summation is relative to a direction, see Definition 4.111. The same
formal series f may yield different functions by Borel summation in different
directions.

Borel summation along R consists in three operations, assuming (2) and
(3) are possible: 3 B

1. Borel transform, f +— B{f}. .

2. Convergent summation of the series B{f} and analytic continuation
along R (denote the continuation by F' and by D an open set in C containing
R U {0} where F is analytic). )

3. Laplace transform, F — [ F(p)e ?*dp =: LB{f}, which requires
exponential bounds on F', defined in some half plane Re (z) > xo.

Note 4.90 Slightly more generally, the formal inverse Laplace transform
(Borel transform, B) of a small zero level transseries, that is of a small multi-
series, is defined, roughly, as the formal multiseries obtained by term-by-term
inverse Laplace transform,

B Z kR = Z ap®* Tk - a) (4.91)

k>0 k>0

The definition of Borel summation for multiseries as in (4.91) is the same,
replacing analyticity at zero with ramified analyticity.

*

The domain of Borel summation is the subspace Sg of series for which the
conditions for the steps above are met. For 3 we can require that for some
constants Cr, vp we have |F(p)| < Cpe’"P. Or we can require that | F'||, < oo
where, for v > 0 we define

T / " P\ F(p)]dp (4.92)

Remark 4.93 The results above can be rephrased for more general series of
the form Y722, ckx™"7" by noting that for Re (p) > —1 we have

L =2 D(p+1)
and thus

r—1 r—1

B (Z ckxkr> = colll(ir) + l;‘(ir) x B (Z ckmk>

k=0
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Furthermore, Borel summation naturally extends to series of the form

[
E Ckx—k—r
k=—M

where M € N by defining

[e%s} 0 oo
LB ( Z ckxkr> = Z T+ LB <Z ckxkr>
k=—M k=—M k=0

More general powers can be allowed, replacing analyticity in p with analyticity
) 51 Bm
in p°t, ... pPm.

Simple examples of Borel summed series are series that indeed come from
the Laplace transform of analytic functions, as in (4.61), (4.63), (4.113) and
(4.128).
We note that L. := {f : ||f||, < co} forms a Banach space, and it is easy
to check that
LicLLifv>v (4.94)

and that
IF)l, — 0asv— oo (4.95)

the latter statement following from dominated convergence.

Note 4.96 A function f is sometimes called Borel summable (by slight abuse
of language), if it analytic and suitably decaying in a half plane (say H),
and its inverse Laplace transform F' is analytic in a neighborhood of Rt U
{0}. Such functions are clearly into a one-to-one correspondence with their
asymptotic series. Indeed, if the asymptotic series coincide, then their Borel
transforms —convergent—coincide, and their analytic continuation is the same
in a neighborhood of RT U {0}. The two functions are equal.

4.4b .1 Note on exponentially small corrections

Note 4.96 shows that we can define corrections to divergent expansions,
within the realm of Borel summable series. For instance we can represent f
by f (a power series) plus Ce %, iff f — Ce™7 is Borel summable.

4.4c  Further properties of Borel summation

Proposition 4.97 (i) Sp is a differential field,” and LB : Sg — LBSs com-
mutes with all these operations, that is, it is a differential algebra isomorphism.

Twith respect to formal addition, multiplication, and differentiation of power series.
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(i) If S. C Sp denotes the differential algebra of convergent power series,
and we identify a convergent power series with its sum, then LB is the identity

on S,. ~ R ~
(#ii) In addition, for f € Sp, LB{f} ~ [ as |z| — oo, Re (z) > 0.

For the proof, we need to look more closely at convolutions.

Definition 4.98 (Inverse Laplace space convolution) IfF,G € L},  then

loc
(F*G)(p) = /OP F(s)G(p — s)ds (4.99)

Assuming exponential bounds at infinity we have (cf (2.19))
L(FxG)=LFLG (4.100)

Lemma 4.101 The space of functions which are in L'[0,€) for some ¢ >
0 and real-analytic on (0,00) is closed under convolution. If F and G are
exponentially bounded then so is F xG. If F,G € Ll then Fx G € L.

PROOF The statement about L' follows easily from Fubini’s theorem.
Writing
P 1
| 5= ds=p [ Ae0LG0-0) (@102
0 0
analyticity is manifest. Clearly, if |F}| < C1e”'? and |Fy| < Cye?P, then

|F1 * F2| < 0102p e<”1+y2)p < 0102 e(V1+U2+1)p

Finally, we note that

S P
0

; F(s)G(p — s)ds

e p
dpg/ e,yse,u(p,s)/ P (s)||G(p—s)|dsdp
0 0
:/O /0 67V3|F($)|6*VT|G(T)‘CZT: HF”V”GHV (4.103)

by Fubini. [

To show multiplicativity, we use §4.7b . Analyticity and exponential bounds
of |F % G| follow from Lemma 4.101. Consequently, F * G is Laplace trans-
formable, and the result follows from (4.100).

PROOF of Proposition 4.97 We have to show that if f is a Borel
summable series, then so is 1/f. We have f = Cz™(1 + s) for some m where
s is a small series.
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We want to show that
l—s+s*—s*+... (4.104)
is Borel summable, or that
5423 (4.105)
is Borel summable. Let Bs = H. We examine the function series
S=-H+H+H-H3+... (4.106)

where H*" is the self convolution of H n times. Each term of the series is
analytic, by Lemma 4.101. Let K be an arbitrary compact subset of D. If
maxpyer | H(p)| = m, then it is easy to see that

" pn—l
(n—1)!

Thus the function series in (4.106) is absolutely and uniformly convergent in
K and the limit is analytic. Let now v be large enough so that | H||, < 1 (see
(4.95)). Then the series in (4.106) is norm convergent, thus an element of L.

Exercise 4.108 Check that (1+ LH)(1+ LS) =1.

It remains to show that the asymptotic expansion of L(F * G) is indeed the
product of the asymptotic series of LF and LG. This is, up to a change of
variable, a consequence of Lemma 1.32.

(i) Since f1 = f = 325°, k%1 is convergent, then |cy| < CR* for some
C,R and F(p) = > po,cxp®/k! is entire, |F(p)| < >-po, CR*p"/k! = CeltP
and thus F' is Laplace transformable for |z| > R. By dominated convergence
we have for |z| > R,

oo N oo
k (AT k 1N —k—1 __
E{chp /k.}—}\}gnooﬁ{chp /k.}—chx = f(x)
k=0 k=0 k=0
(iii) This part follows simply from Watson’s lemma, cf. § 3.4. I

4.4c .1 Convergent series composed with Borel summable series

Proposition 4.109 Assume A is an analytic function in the disk of radius
p centered at the origin, aj, = A®)(0)/k!, and § =3 spx™* is a small series
which is Borel summable along RY. Then the formal power series obtained by

reexpanding
S o

in powers of x is Borel summable along RT.
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PROOF Let S = Bs and choose v be large enough so that ||S||, < p~! in
Ll. Then

Il = |AGS) = 11D awS™ [l < D arllSIE < Y arp® < oo (4.110)

k=0 k=0 k=0

thus A(xS) € L. Similarly, A(xS) is in LL([0,a)) and in Ak ,v([0,a)) (see
(4) on p. 154) for any a. I

4.4c .2 Directionality of Borel sums

In general, a Laplace transform depends on the direction of the ray.

Definition 4.111 The Borel sum of a series in the direction ¢ (argz = ¢),
(LB)yf is by convention, the Laplace transform of Bf along the ray xp € RT,
that is arg(p) = —¢:

ip

(LB), f = /Oooe e P*F(p)dp = L_4F = LF(-e7*) (4.112)

We can also say that Borel summation of f along the ray arg(z) = ¢ is defined
as the (RT) Borel summation of f(ze'?).
For example, we have

<kl e *(Ei(x) —mi) for ¢ €
LBy Y~ = L-of(1=p) 7'} = { o “Ei(x) for & — 0
k=0 e *(Ei(x) + mi) for ¢ €

The middle formula does not follow by Borel summation, but rather by BE
summation and uses an elementary instance of medianization. See also the
discussion in §4.4f . Medianization will be considered in higher generality in
85, and it reduces in this simple case to taking the Cauchy principal part of
the integral along RT.

4.4d  Stokes phenomena and Laplace transforms: an exam-
ple

The change in behavior of a Borel summed series as the direction in C
changes is conveniently determined by suitably changing the contour of inte-
gration of the Laplace transform. We illustrate this on a simple case:

e’} e~ P
f(x) :=/0 T (4.114)
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We seek to find the asymptotic behavior of the analytic continuation of f for
large x, along different directions in C. A simple estimate along a large arc
of circle shows that, for x € Rt we also have

—im/4

ocoe 671;@
f(x) :/0 1+pdp (4.115)

Then the functions given in (4.114) and (4.115) agree in R™ thus they agree
everywhere they are analytic. Furthermore, the expression (4.115) is analytic
for argx € (—m/4,37n/4) and by the very definition of analytic continuation f
admits analytic continuation in a sector arg(z) € (—n/2,3w/4). Now we take
x with argz = 7/4 and note that along this ray, by the same argument as
before, the integral equals

—mi/2

ooe —px
flx)= / dp 4.116
= (4116)
We can continue this rotation process until arg(x) = m — € where we have
ooe—‘fm-%—ie —px
T) = d, 4.117
f@= [ (1.117)

which is now manifestly analytic for arg(z) € (/2 —€,37/2 — €). To proceed
further, we collect the residue at the pole:

—Ti—ie —Titie

ooe e—pg; ocoe e—px
/o 1+pdp—/0 1+pdp:2m'e” (4.118)
and thus i
ooe e—pm
flz) = /0 T pdp — 2mie” (4.119)

which is manifestly analytic for arg(z) € (7/2+¢,37/24¢). We can now freely
proceed with the analytic continuation in similar steps until arg(z) = 27 and
get

f(xe*™) = f(z) — 2mie® (4.120)

The function has nontrivial monodromy® at infinity.

We also note that by Watson’s lemma, as long as f is simply equal to a
Laplace transform, f has an asymptotic series in a half-plane. Relation (4.119)
shows that this ceases to be the case when arg(z) = m. This line is called a
Stokes line. The exponential, “born” there is smaller than the terms of the
series until arg(z) = 37/2.

In solutions to nonlinear problems, most often infinitely many exponentials
are born on Stokes lines.

8Change in behavior along a closed curve containing a singularity.
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At arg(x) = 37/2 the exponential becomes the dominant term of the ex-
pansion. This latter direction is called an antistokes line. In solutions to
nonlinear problems, all exponentials collected at a Stokes line become large
at the same time, and this is usually a source of singularities of the repre-
sented function, see §4.4e . Sometimes, the Stokes phenomenon designates,
more generally the change in the asymptotic expansion of a function when
the direction towards the singular point is changed, especially if it manifests
itself by the appearance of oscillatory exponentials at antistokes lines.

In the example above, it so happens that the function itself is not single-
valued. Taking first take first z € RT, we write

oo —xt o _—s 1 _—s oo _—sg
f(:n):6*$/ ¢ dt:e*z/ € ds=e® / ¢ ds+/ ¢ ds>
1 t T s x S 1 S
1 - 1
s S 1
=e” <Cl +/ ¢ ds> =e 7 <C’1 +/ eids — lnx>

=e 7 (entire — Inz) (4.121)

However, the Stokes phenomenon is not due to the multivaluedness of the
function but rather to the divergence of the asymptotic series, as seen from
the following remark.

Remark 4.122 Assume f is analytic outside a compact set and is asymptotic
to f as |x| — oo (in any direction). Then f is convergent.

PROOF By the change of variable z = 1/z we move the analysis at zero.
The existence of an asymptotic series as z — 0 implies in particular that f
is bounded at zero. Since f is analytic in C \ {0} then zero is a removable
singularity of f, and thus the asymptotic series, which as we know is unique,
must coincide with the Taylor series of f at zero, a convergent series.

The exercise below also shows that the Stokes phenomenon is not due to
multivaluedness.

Exercise 4.123 (*) (1) Show that the function f(z) = [ e=*"ds is entire.
(2) Note that

R 1 [® et 1 [ eau et [ =27
-s d = — 7dt = — d = d
/z © 2/952 Vit 255/1 Vu YT /0 VI+p P
(4.124)

Do a similar analysis to the one in the text and identify the Stokes and anti-

stokes lines for f. Note that the “natural variable” now is x2.

See (6.1) for the form of the Stokes phenomenon for generic linear ODEs.
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4.4e Nonlinear Stokes phenomena and formation of singu-
larities

Let us now look at (4.61). If we take n to be a complex variable, then the
Stokes lines are those for which after deformation of contour of the integral

S5 )
—np 4.12
/0 pPler—1) 4 (4.125)

in (4.61), which is manifestly a Borel sum of a series, will run into singularities
of the denominator. This happens when n is purely imaginary. Take first n
on the ray argn = —7/2 + ¢. We let

P (P
rp=""2 G

We rotate the contour of integration to argp = w/2 — €, compare with the
integral to the left of the imaginary line and get the representation

ooei™/2—ic ooeim/2+ic
/ F(p)e™"dp = / F(p)e™"Pdp
0 0
ooei™/2+ic 1
+ 2w Z ReSF(p)e_np‘ngjm + /0 F(p)e_”pdp + Z W
JEN JjEN
coeim/2Fic
= / F(p)e "Pdp — In(1 — exp(—2nmi)) (4.126)
0
where the sum is convergent when argn = —m/2 + ¢, and thus, when argn =

—m/2 4 € we can also write

Ooe'nr/2+ze

Fn+1) = W\/ﬁ (g)n exp (/0 F(p)e_"l’dp>

(4.127)
from which it is manifest that for argxz # 7 I'(x 4+ 1) is analytic and Stirling’s
formula holds for large |z|, while along R~ it is meromorphic, with simple
poles at all negative integers.

We see that for arg(n) € (—m, —7/2) the exponential, present in the Borel
summed formula, is beyond all orders, and would not participate in any clas-
sical asymptotic expansion of I'(n + 1).

We also see that the poles occur on the antistokes line of I', and essentially
as soon as exponential corrections are classically visible, they produce singu-
larities. This is typical indeed when there are infinitely many singularities
in Borel space, generically the case for nonlinear ODEs that we will study
in §6. This is also the case in difference equations. We also note that, after
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reexpansion of the log, the middle expression in (4.126) is a Borel summed
series plus a transseries in n (although now we allow n to be complex).
Conversely then, f Borel sums to

InT'(n+1) —In [ 21 (E)n} arg(n € (—7n/2,m/2)
LBf={InT(n+1)—1In [ 2mn (g)n —In(1 —e ") argn € (—7r, —g)

InT(n+1)—1In [ 2mn (ﬁ> ] —1In(1 —e®"™) argn € (g, 7T>
e
(4.128)
and the lines argn = 4m/2 are Stokes lines. We note that nothing special
happens to the function on these lines, while the asymptotic series has the
same shape. The discontinuity lies in the link between the series and its BE
sum.

4.4f Limitations of classical Borel summation

The need of extending Borel summation to BE summation arises because the
domain of definition of Borel summation is not wide enough; series occurring
in even simple equations are not always Borel summable. A formal solution
of f/+ f=1/xis f =372 kla=*"1. Then, since Y Bf = (1 —p)~! is not
Laplace transformable, because of the nonintegrable singularity at p = 1, f is
not Borel summable.

While in a particular context one can avoid the singularity by slightly ro-
tating the contour of £ in the complex plane, there is clearly no one ray
of integration that would allow for arbitrary location of the singularities of
general formal solutions of say differential equations.

We cannot impose restrictions on the location of singularities in Borel plane
without giving up trivial changes of variable such as =’ = az.

If the ray of integration has to depend on f , then linearity of the summation
operator becomes a serious problem (and so is commutation with complex
conjugation).

Ecalle has found general averages of analytic continuations in Borel plane,
which do not depend on the origin of the formal series, such that, replacing the
Laplace transform along a singular rays with averages of Laplace transforms
of these continuations, the properties of Borel summation are preserved, and
its domain is vastly widened. The fact that such averages exist is nontrivial,
though many averages are quite simple and explicit.

Multiplicativity of the summation operator is the main difficulty that is
overcome by these special averages. Perhaps surprisingly, convolution (the
image of multiplication through £71), does not commute in general with an-
alytic continuation along curves passing between singularities! (see §5.12a
).

A simplified form of medianization, the balanced average, which works for
generic ODEs (but not in the generality of Ecalle’s averages) is discussed in
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§5.10.

Mixtures of different factorial rates of divergence in the same series when
present, usually preclude classical Borel summation as well. Acceleration and
multisummation (the latter considered independently, from a cohomological
point of view by Ramis, see; see also §8.2), universal processes too, were intro-
duced by Ecalle to deal with this problem in many contexts. Essentially BE
summation is Borel summation, supplemented by averaging and acceleration
when needed.

(Also, the domain of definition of classical Borel summation does not, of
course, include transseries, but this is not a serious problem since the definition
LBexp(ax) = exp(ax) solves it.)

4.5 Gevrey classes, least term truncation, and Borel sum-
mation

Let f = ZZOZO ¢z~ * be a formal power series, with power-one of factorial
divergence, and let f be a function asymptotic to it. The definition (1.11)
provides estimates of the value of f(x) for large =, within o(z="), N € N,
which are, as we have seen, insufficient to determine a unique f associated to
f. Simply widening the sector in which (1.11) is required cannot change this
situation since, for instance, exp(—z'/™) is beyond all orders of f in a sector
of angle almost m.

If, however, by truncating the power series at some suitable N(z) instead
of a fixed N, we can achieve exponentially good approximations in a sector of
width more than 7, then uniqueness is ensured, by Exercise 2.28.

This leads us to the notion of Gevrey asymptotics.

Gevrey asymptotics.

_ o0
fl@)=> e, x— o0
k=0

is by definition Gevrey of order 1/m, or Gevrey-(1/m) if
ek < CLCE (RH)™

for some C, Cy [5]. There is an immediate generalization to noninteger power
series. Taking x = y™ and g(y) = f(x), then g is Gevrey-1 and we will focus
on this case. Also, the corresponding classification for series in z, z — 0 is

obtained by taking z = 1/z.

Remark 4.129 (a) The Gevrey order of the series Y, (k!)"z~*, where r > 0,
is the same as that of Y, (rk)!z=*. Indeed, if ¢ > 0 we have, by Stirling’s
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formula,

Const (14 ¢)7% < (rk)!/(k!)" ~ Const k*~" < Const (1+e)*

*

Definition 4.130 Let f be Gevrey-1 . A function f is Gevrey-1 asymptotic
to f as x — oo in a sector S if for some Cs,Cy,Cs, and all x € S with
|x] > Cs and all N we have

[F@) = N < CLOp+ | N (N 4 1)) (4.131)

i.e. if the error f — f [N is of the same form as the first omitted term in f .
Note the uniformity requirement in N and x; this plays a crucial role.

Remark 4.132 (Exponential accuracy) If f is Gevrey-1 and f is Gevrey-
1 asymptotic to f then f can be approximated by f with exponential precision
in the following way. Let N = | |x/Cs| | (|-] is the integer part); then for any
C > Cy we have

f(x) — fN(z) = O(|z| =Y/ 2e 121/, || large) (4.133)

Indeed, letting |z| = NCs + € with € € [0,1) and applying Stirling’s formula
we have

NI(N + 1)CYINCy + ¢V = O(|a| /2 121/C2)

O

Note 4.134 Optimal truncation, see e.g. [18], is in a sense a refined version of
Gevrey asymptotics. It requires optimal constants in addition to an improved
form of Rel. (4.131). In this way the imprecision of approximation of f by f
turns out to be smaller than the largest of the exponentially small corrections
allowed by the problem where the series originated. Thus the cases in which
uniqueness is ensured are more numerous. Often, optimal truncation means
stopping near the least term of the series, and this is why this procedure is
also known as summation to the least term.

4.5a Connection between Gevrey asymptotics and Borel
summation

The following theorem goes back to Watson [35].

Theorem 4.135 Let f = Yoo ckx™* be a Gevrey-1 series and assume the
function f is analytic for large x in Spy = {z : |arg(z)| < w/2+ 6} for some
§ > 0 and Gevrey-1 asymptotic to f in Sry. Then

(i) f is unique.
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(i) f is Borel summable in any direction eR* with |6] < § and f = LBy f.

(iii) B(f) is analytic (at p = 0 and) in the sector S; = {p : arg(p) €
(=0,0)}, and Laplace transformable in any closed subsector.

(iv) Conversely, if f is Borel summable along any ray in the sector Ss
given by |arg(x)| < ¢, and if Bf is uniformly bounded by ¢”®! in any closed
subsector of Ss, then f is Gevrey-1 with respect to its asymptotic series f in
the sector |arg(x)| < 7/2 + 4.

Note.In particular, when the assumptions of the theorem are met, Borel
summability follows using only asymptotic estimates.

The Nevanlinna-Sokal theorem [50] weakens the conditions sufficient for
Borel summability, requiring essentially estimates in a half plane only. It was
originally formulated for expansions at zero, essentially as follows:

Theorem 4.136 (Nevanlinna-Sokal) Let f be analyticin Cr = {2z : Re (1/2) >
R~1} and satisfy the estimates

N-1
f(z) =Y arz* + Ry(2) (4.137)
k=0

with
IRy (2)] < AcV N[z (4.138)

uniformly in N and in z € Cg. Then B(t) = Y.~ a,t™/n! converges for
|t| < 1/o and has analytic continuation to the strip-like region S, = {t :
dist(¢,RT) < 1/0}, satisfying the bound

IB(t)| < K exp(|t]/R) (4.139)

uniformly in every S, with ¢’ > o. Furthermore, f can be represented by
the absolutely convergent integral

flz) =271 /OOO e 2 B(t)dt (4.140)

for any z € Cg. Conversely, if B(t) is a function analytic in S, (¢ < o)
and there satisfying (4.139), then the function f defined by (4.140) is analytic
in Cr, and satisfies (4.137) and (4.138) [with a,, = B(™(t)|;—o] uniformly in
every Cr/ with R’ < R.

Note 4.141 Let us point out first a possible pitfall in proving Theorem 4.135.
Inverse Laplace transformability of f and analyticity away from zero in some
sector follow immediately from the assumptions. What does not follow imme-
diately is analyticity of L~ f at zero. On the other hand, B f clearly converges
to an analytic function near p = 0. But there is no guarantee that B f has
anything to do with £~ f! This is where Gevrey estimates enter.
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PROOF of Theorem 4.135

(i) Uniqueness clearly follows once we prove (ii).

(ii) and (iii) By a simple change of variables we arrange C; = Cy = 1. The
series Fy = Bf is convergent for |p| < 1 and defines an analytic function, F}.
By Proposition 2.12, the function F' = £~ f is analytic for [p| > 0, |arg(p)| <
d, and F(p) is analytic and uniformly bounded if | arg(p)| < d; < §. We now
show that F' is analytic for [p| < 1. (A proof different from the one below is
seen in §4.5a .1.) Taking p real, p € [0,1) we obtain in view of (4.131) that

~ oo+ N _
F) = YU < [l [fs) = V) e
—ioc0+ N
* dz > dz
S = Sy .
=0 [oo |z +iN|N <) @t NN

NlePN o d¢ 3
/2(p=1)N
S NvI [m @1 e < CON°Ze —0as N —oo (4.142)

for 0 < p < 1. Thus FIN=1(p) converges. Furthermore, the limit, which by
definition is F1, is seen in (4.142) to equal F, the inverse Laplace transform of
f on [0,1). Since F and F; are analytic in a neighborhood of (0,1), F' = F;
wherever either of them is analytic . The domain of analyticity of F is thus,
by (ii), {p: [p| <1} U{p: [p| > 0, |arg(p)| < d}.
(iv) Let |¢| < 6. We have, by integration by parts,
- aN
f(z) = fN"U(z) = x*Nz:dp—NF (4.143)
On the other hand, F' is analytic in S,, some a = a(¢$)—neighborhood of

the sector {p : |arg(p)| < |¢|}. Estimating Cauchy’s formula on an a—circle
around the point p with |arg(p)| < |¢| we get

[F™ (p)] < Na(¢) V[ F(p)]lois.

Thus, by (4.143), with |0] < |¢| chosen so that v = cos(f — arg(z)) is maximal
we have

5 oo exp(—1i0)
[#(@) — 7] = ‘x—N / F) (p)edp
0

oo
gN!a*N|x|*N||Fe”‘p‘||oo;sa/ 6*1793+V|P|’de
0

= const.Nla Ny | N7 Fllo.s,  (4.144)

9Here and elsewhere we identify a function with its analytic continuation.
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for large enough =x.

4.5a .1 Sketch of the proof of Theorem 4.136

We can assume that f(0) = f’(0) = 0 since subtracting out a finite number
of terms of the asymptotic expansion does not change the problem. Then, we
take to x = 1/z (essentially, to bring the problem to our standard setting).
Let ) ;

1 ct+i100 1 ct+i100
F=— 1 Prder = — P
s | merds= o [ g@erds

We now want to show analyticity in S, of F. That, combined with the

proof of Theorem 4.135 completes the argument.

We have
N-1
_ J
fla)y=>" — + B (2)
j=2
and thus,
N-1 i—1 ct+ioco
a;p? 1
(p) 2 G- T omi ), (et
and thus
B 1 c+ioco
P2 = |9y L[ e (1 erdn] < vV pe BT
- a c—100

and thus |F((p)/n!| < A3zn?0", and the Taylor series of F at any point
po € Rt converges, by Taylor’s theorem, to F', and the radius of convergence
is 0. The bounds at infinity follow in the usual way: let ¢ = R~'. Since f is
analytic for Rexz > ¢ and is uniformly bounded for Rex > ¢, we have

c+ioco
/ f(1/x)ePTdx

—100

o g
< K / Fﬁl < Ky (4.145)

for p € RT. In the strip, the estimate follows by combining (4.145) with the
local Taylor formula.

Note 4.146 As we see, control over the analytic properties of Bf near p =0
1s essential to Borel summability and, it turns out, BE summability. Mere
inverse Laplace transformability of a function with a given asymptotic series,
in however large a sector, does not ensure Borel summability of the series. We
know already that for any power series, for instance one that is not Gevrey
of finite order, we can find a function f analytic and asymptotic to it in more
than a half plane (in fact, many functions). Then (L7!f)(p) exists, and is
analytic in an open sector in p, origin not necessarily included. Since the
series is not Gevrey of finite order, it can’t be Borel summable. What goes
wrong is the behavior of L1 f at zero.
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4.6 Borel summation as analytic continuation

There is another interpretation showing that Borel summation should com-
mute with all operations. Returning to the example Y k!(—2)~*~! we can
consider the more general sum

(o]
(=1)*T(Bk + B)
k=0

which for 8 = 1 agrees with (1.45). For 8 = i, (4.147) converges if |z| > 1,
and the sum is, using the integral representation for the Gamma function and

dominated convergence,
/ S i d (4.148)
—dap 1
o 14+pBaf-1

Analytic continuation of (4.148) back to 5 =4 becomes precisely (1.50).

Exercise 4.149 Complete the details in the calculations above. Show that
continuation to i and to —i give the same result (1.50).

Thus Borel summation should commute with all operations with which ana-
lytic continuation does. This latter commutation is very general, and comes
under the umbrella of the vaguely stated “principle of permanence of rela-
tions” which can hardly be formulated rigorously without giving up some
legitimate “relations”.

Exercise 4.150 (*) Complete the proof of Theorem 4.136.

4.7 Notes on Borel summation

BE works very well in problems such as (singular) differential, partial differ-
ential, and difference equations. We have seen that (1) due to the closure of
transseries under operations, often formal transseries solutions exist; (2) they
usually diverge due to the presence of repeated differentiation in the process
of generating them. Some of the reasons why Borel summation is natural in
these classes of problems are sketched in §4.7b .

But Borel summation has been successfully applied in problems in which
divergence is generated in other ways. There is likely quite a bit more to
understand and room for developing the theory.
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Note 4.151 Summation naturally extends to transseries. In practice how-
ever, rarely does one need to Borel sum several levels of a transseries'®: once
the lowest level has been summed, usually the remaining sums are convergent;

we will then not address multilevel summation in this book.

4.7a  Choice of critical time

1. To ensure Borel summability, we change the independent variable so
that, with respect to the new variable t the coefficient ¢, of t=¢ is
I(a+ 1), up to geometrically bounded prefactors. This is the order of
growth implied by Watson’s lemma. The order of growth is intimately
linked to the form of free small exponential corrections, as explained in
§4.7a .1 below. If these are of the form e~*" then divergence is usually
like (n!)!/9. The variable should then be chosen to be ¢t = z%: this ¢ is
the critical time.

2. The choice of ”t” and preparation of the equation are essential however
for the process to succeed, see 2 in § 4.7a .1. Since (d/dt)?" = (d?/dt*)"
iterating the n—th order derivative on a power series produces power one
of the factorial divergence, regardless of n. For instance, iterating the
operator in (4.68) produces the same divergence as iterating simply D.
This partly explains the similarity in summability properties between
differential and difference equations. As another example, in (4.52), the
divergence is the same as that produced by iteration of d/(x'/?dx) ~
d/d(xz3/?) so t = 23/, See also §4.3a and 1in § 4.7a .1 and §4.7b .

3. Often series fail to be Borel summable because of singularities in the
direction of the Laplace transforms, or different types of factorial diver-
gence being mixed together. BE summation extends Borel summation
and addresses these difficulties. See §4.4f .

4.7a .1 Critical time, rate of divergence, exponentially small cor-
rections.

1. (a) If we expect the solutions of an equation to be summable with respect
to a power of the variable, then the possible freedom in choosing the
Laplace contour in the complex domain should be compatible with the
type of freedom in the solutions.

In returning to the original space, the Laplace transform f(z;¢) =

i
foooe F(p)e *Pdp can be taken along any nonsingular direction if ex-
ponential bounds exist at infinity. For instance we can take the Laplace
transform of (1 —p)~! along any ray other than RT, and obtain a solu-

tion of f'4 f = 1/z. An upper half plane transform differs from a lower

10That is, terms appearing in higher iterates of the exponential.
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half plane transform precisely by 2wie~*. Now, if F' is analytic in a
neighborhood of R but is not entire, then, by Watson’s lemma f(x; ¢)
has an asymptotic series in 2! of Gevrey order exactly one, difference
between two Laplace transforms on two sides of a singularity pq is, to
leading order of the form e Po*.

Thus, if the Gevrey order of a formal solution is k, we need to take /%
as a variable, otherwise the discussion above shows that proper Borel
summation cannot succeed.

(b) Conversely then, if the difference between two solutions is of the form
e~ then divergence of the formal series is expected to be of factorial
type (n!)!/4.

. It is crucial to perform Borel summation in the adequate variable. If the
divergence is not fully compensated (undersummation), then obviously
we are still left with a divergent series. “Oversummation”, the result of
overcompensating divergence usually leads to superexponential growth
of the transformed function. The presence of singularities in Borel plane
is in fact a good sign. For equation (4.40), the divergence is like V!,
The equation is oversummed if we inverse Laplace transform it in x;
what we get is

2H' —pH =0; H(0)=1/2 (4.152)

and thus H = %ep2/ 4. There are no singularities anymore but we have
superexponential growth; this combination is a sign of oversummation.
Superexponential growth is in certain ways worse than the presence of
singularities. Close to the real line, there is no obvious way of taking
the Laplace transform.

. In some cases, a simple change of variable in the z-plane, as we have
seen, can solve the problem. Here, the freedom (difference between
solutions) in (4.40) Ce~*". The critical time is t = 2% . We then take
g = h(2?). The equation for h is

1
W +h=—— 4.153
i (4.153)
. If the solutions of an equation are summable, then it is expected that
the transformed equation should be more regular. In this sense, Borel
summation is a regularizing transformation; see also § 7.2 where this
feature is very useful.

In the case of (4.153) it becomes
—pH + H = p Y27 71/2 (4.154)

an algebraic equation, with algebraic singularities. The transformed
function is more regular.
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4.7b  Borel summation and differential and difference sys-
tems

We recall that, in differential systems, a problem is singularly perturbed
if the highest derivative does not participate in the dominant balance; the
highest derivative is then discarded to leading order. It reappears eventu-
ally, in higher order corrections. Then higher and higher corrections contain
derivatives of increasing order. For analytic nonentire functions, by Cauchy’s
formula, (™ grows roughly like const™n!.

It is then natural to diagonalize the main part of the operator producing
divergence. For instance, in (4.40) it is d/(2xdz) = d/dx? := d/dt: then,
by definition, in transformed space, d/dt becomes multiplication by the dual
variable p. Repeated differentiation corresponds to repeated multiplication by
p. The latter operation produces geometric growth/decay and thus nonzero
radia of convergence of the expansion.

The operator d/dt is diagonalized by the Fourier transform. In an asymp-
totic problem, say for a large variable ¢, we need to keep t large in the trans-
form process. The Fourier transform on a vertical contour in the complex
domain is in fact an inverse Laplace transform, cf. also Remark 2.8.

In this sense, the pair (£,£71), in appropriate coordinates, is canonically
associated to summation of formal solutions of singularly perturbed equations.

4.8 Borel transform of the solutions of an example ODE,
(4.55)

For differential equations there exist general results on the Borel summability
of formal transseries solutions, see §5. The purpose now is to illustrate a
strategy of proof that is convenient and which applies to a reasonably large
class of settings.

It would be technically awkward to prove based on the formal series alone
that its Borel transform extends analytically along the real line and that is
has the required exponential bounds towards infinity.

A better approach is to control the Borel transform of § via the equation
it satisfies. This equation is the formal inverse Laplace transform of (4.55),
namely, setting Y = By

—pY +Y =p+ Y xY Y i=p+YV* (4.155)

We then show that the equation (4.155) has a (unique) solution which
is analytic in a neighborhood of the origin together with a sector centered
on RT in which this solution has exponential bounds. Thus Y is Laplace
transformable, and immediate verification shows that y = LY satisfies (4.54).
Furthermore, since the Maclaurin series S(Y') formally satisfies (4.155) then
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the formal Laplace (inverse Borel) transform B~1SY is a formal solution of
(4.54), and thus equals ¢ since this solution, as we proved in many similar
settings is unique. But since SY = By it follows that g is Borel summable,
and the Borel sum solves (4.54).

The transformed equations are expected to have analytic solutions, there-
fore to be more regular than the original ones.

Further analysis of the convolution equations reveals the detailed analytic
structure of By, including the position and type of singularities, needed in

understanding the Stokes phenomena in the actual solutions.
*

*4.9 Appendix : Rigorous construction of transseries

This section can be largely omitted at a first reading except when rigor, further
information, or precise definitions and statements are needed.

Ecalle’s original construction is summarized in [31]. Alternative construc-
tions are given in [3], [37]. An interesting recent extension is [32].

This section is based on [21] and it provides the proofs needed to back up
the statements in §4.2a . Following the steps involved in the rigorous con-
struction of transseries is needed in order to fully understand their structure,
the reason why so many problems have transseries solutions, as well as the
various limitations of transseries.

4.9a  Abstracting from §4.2b

1. Let (G, -, <) be a finitely generated, totally ordered (any two elements
are comparable) Abelian group, with generators pi1, pi2, ...f4n, such that
< is compatible with the group operations, that is, g1 < g2 and g3 < g4
implies g193 < g294, and so that 1 > pu; > --- > u,. This is the case
when p; are transmonomials of level zero.

2. We write py = pk = /ffl e pin
Lemma 4.156 Consider the partial order relation on Z™, k > m iff
ki > m; for alli=1,2,...,n and at least for some j we have k; > m;.
If BC A={k € Z"™ : k > m}, then there is no infinite nonascending
chain in B. That, is there is no infinite sequence in B,b, # b, for
n #m, and by # by for all n.

PROOF  Assume there is an infinite nonascending sequence, {k(m)}men.
Then at least for some i € {1,2,...,n} the sequence {k;(m)}men must
have infinitely many distinct elements. Since the k;(m) are bounded
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below, then the set {k;(m)}men is unbounded above, and we can ex-
tract a strictly increasing subsequence {k;(m;)}ien. We now take the
sequence {k(m;)}ien. At least for some j # i the set k;(m;) needs to
have infinitely many elements too. Indeed if the sets {k;(m;);j # i} are
finite, we can split {k(m;)}ien into a finite set of subsequences, in each
of which all k;(my), j # ¢, are constant while k; is strictly increasing.
But every such subsequence would be strictly decreasing, which is im-
possible. By finite induction we can extract a subsequence {k(m¢)}+en
of k(m)}men in which all k;(m;) are increasing, a contradiction.

Remark. This is a particular, much easier result of J. Kruskal’s tree
theorem which we briefly mention here. A relation is well-founded if
and only if there is no countable infinite descending sequence {x; }en of
elements of X such that x,,41 Rz, for every n € N. The relation R is a
quasiorder if it is reflexive and transitive. Well-quasi-ordering is a well-
founded quasi-ordering such that that there is no sequence {z;}en with
x; £ x;Vi < j. A treeis a collection of vertices in which any two vertices
are connected by exactly one line. J. Kruskal’s tree theorem states that
the set of finite trees over a well-quasi-ordered set is well-quasi-ordered.

Ezercises. (1) Show that the equation ki +ko =1 has only finitely many
solutions in the set {k : k > m}.

(2) Show that for any 1 € R™ there can only be finitely many p € N and
k; eR",j=1,..,p such that ky + ko +---k, =1

Corollary 4.157 For any set B C A ={k € Z" : k > m} there is a
set By = mag(B) with finitely many elements, such that Vb € B\ By
there exists by € By such that by < b.

Consider the set of all elements which are not greater than other ele-
ments of B, By = {b; € B|b # by = b % b1}. In particular, no two
elements of By can be compared with each-other. But then, by Lemma
4.156 this set cannot be infinite since it would contain an infinite non-
ascending chain.

Now, if b € B\ By, then by definition there is a ¥’ > bin B. If ¥/ € B
there is nothing to prove. Otherwise there is a " > o’ in B. Eventually
some b®) must belong to By, finishing the proof, otherwise b < b’ < ...
would form an infinite nonascending chain.

For any m € Z" and any set B C {k|k > m}, the set A = {uxlk € B}
has a largest element with respect to >. Indeed, if such was not the case,
then we would be able to construct an infinitely ascending sequence.
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Lemma 4.158 No set of elements of px € G such that k > m can
contain an infinitely ascending chain, that is a sequence of the form

N <K ge L0

PROOF For such a sequence, the corresponding k would be strictly
nonascending, in contradiction with Lemma 4.156.

. It follows that for any m every B C Am = {g € G|g = p; k > m} is well
ordered (every subset has a largest element) and thus B can be indexed
by ordinals. By this we mean that there exists a set of ordinals Q (or,
which is the same, an ordinal) which is in one-to-one correspondence
with B and gg < gg if > (.

. If Ais asin 4, and if g € G has a successor in A, that is, there is a
g € A, g > g then it has an immediate successor, the largest element
in the subset of A consisting of all elements less than g. There may
not be an immediate predecessor though, as is the case of e™* in A; =
{z7™,n € N}U{e *}. Note also that, although e~ has infinitely many
predecessors, there is no infinite ascending chain in A;.

Lemma 4.159 For any g € G, and m € Z", there exist finitely many
(distinct) k > m such that uyx = g.

PROOF  Assume the contrary. Then for at least one i, say ¢ =
1 there are infinitely many k; in the set of (k); such that pux = g.
As in Lemma 4.166, we can extract a strictly increasing subsequence.
But then, along it, u’f2 - pFn would form an infinite strictly ascending
sequence, a contradiction. I

. For any coefficients cx € R, consider the formal multiseries, which we
shall call transseries over G,

T = Z Ciefix (4.160)
keZn:k>M

Transseries actually needed in analysis are constructed in the sequel,
with a particular inductive definition of generators py.

. More generally a transseries over G is a sum which can be written in
the form (4.160) for some (fized) n € N and for some some choice of
generators uy, k € Z™.
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The fact that a transseries s is small does not mean that the correspond-
ing py have positive k; s could contain terms such as xe™® of 2V22
etc. But positiveness can be arranged by a suitable choice of generators
as follows Lemma 4.166.

Note It is important that a transseries is defined over a set of the form
Ay, For instance, in the group G with two generators z—! and V2 an

expression of the form

> Copnar V2T (4.161)

{(m,n)€Z2|mv2+n>0}

is not acceptable (the possible powers in (4.161 is dense) and the be-
havior of a function whose “asymptotic expansion” is (4.161) is not at
all clear.)

Exercise 4.162 Consider the numbers the form my/2+n, where m,n €
Z. It can be shown, for instance using continued fractions, that one can
choose a subsequence from this set such that s,, T 1. Show that ) x=°"
is not a transseries over any group of monomials of order zero.

Expressions similar to the one in the exercise do appear in some problems
in discrete dynamics. The very fact that transseries are closed under
many operations, including solutions of ODEs, shows that such functions
are “highly transcendental”.

Given m € Z" and g € G, the set S; = {k|ux = g} contains, by
Lemma 4.159 finitely many elements (possibly none). Thus the constant
d(g) = Zkesg cx is well defined. By 4 there is a largest ¢ = g; in the
set {ux|d(g) # 0}, unless all coeflicients are zero. We call this ¢; the
magnitude of T', g1 = mag(T), and we write dom(T") = d(g1)g1 = d1g1.

By 5, the set {g = ux|k > m} can be indexed by ordinals, and we write

T=> dsgs (4.163)
BeQ

where gg < gg if § > ’. By convention, the first element in (4.163),
d1 gy is nonzero.

Convention. To simplify the notation and terminology, we will say,
with some abuse of language, that a group element gs appearing in
(4.163) belongs to T.

Whenever convenient, we can also select the elements of dggg in T with
nonzero coefficients. As a subset of a well ordered set, it is well ordered
too, by a set of ordinals 2 C 2 and we can write
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T =Y dsgs (4.164)
Be

where all dg are nonzero.

Notation To simplify the exposition we will denote by Ay, the set
{pklk > m}, K;,, = {klk > m} and 7, _ the set of transseries over Ay,.

Any transseries can be written in the form

T'=L+c+s= Z dggs + ¢+ Z dggp (4.165)
BEQg>1 BENgpK1

where L is called a purely large transseries, ¢ is a constant and s is called
a small transseries.

Note that L,c and s are transseries since, for instance, the set {8 €
Q; gs < 1} is a subset of ordinals, thus an ordinal itself.

Lemma 4.166 If G is finitely generated, if Am C G and s is a small
transseries over Am we can always assume, for an n > n’ that the
generators vy, k € Z™ are such that for all v € s we have k' > 0.

s = Z HkCk = Z dﬁgﬁ = Z Vk/ci(, (4167)

k>m BeQ k’>0

PROOF In the first sum on the left side we can retain only the set
of indices I such that k € I = ux = gg has nonzero coefficient dg. In
particular, since all gg < 1, we have ux < 1 Vk € I. Let I} = Mag(I).
We adjoin to the generators of G all the vy = py with k’ € I;. The new
set of generators is still finite and for all k € I there is a k' € Mag(I)
such that k > k’ and py can be written in the form Vllc, 1 where all
1> 0. I

Remark. After the construction, generally, there will be nontrivial
relations between the generators. But nowhere do we assume that gen-
erators are relation-free, so this creates no difficulty.

An algebra over G can be defined as follows. Let A and A be well or-
dered sets in Q. The set of pairs (5, 5) € A x A is well ordered (check!).
For every g, the equation gg - 95 =9 has finitely many solutions. In-
deed, otherwise there would be an infinite sequence of gg which cannot
be ascending, thus there is a subsequence of them which is strictly de-
scending. But then, along that sequence, 95 would be strictly ascending;
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then the set of corresponding ordinals 3 would form an infinite strictly
descending chain, which is impossible. Thus, in

T-T:= > g, Y dgdg (4.168)

NEAXA 98959y
the inner sum contains finitely many terms.

We denote by 7g the algebra of transseries over G. 7g is a commutative
algebra with respect to (4, -). We will see in the sequel that 7g is in
fact a field. We make it an ordered algebra by writing

T < Ty & mag(Ty) < mag(Ts) (4.169)

and writing
T>0<« dom(T) >0 (4.170)

Product form. With the convention dom(0) = 0, any transseries can
be written in the form

T = dom(T)(1 + s) (4.171)
where s is small (check).

Embeddings (cf. footnote on p. 156). If G; C G, we write that 7g, C 7g
in the natural way.

Topology on 7g. We consider a sequence of transseries over a common
set A, of elements of G, indexed by the ordinal €.

(T} s 790 = Y dfl gl
Bep

Definition. We say that 7' — 0 as j — oo if for any § € (2 there is
a j(8) such that the coefficient d[g} =0 for all if j > j(0).

Thus the transseries TU! must be eventually depleted of all coefficients.
This aspect is very important. The mere fact that dom(S) — 0 does
not suffice. Indeed the sequence ), j x~% 4+ je®, though “rapidly
decreasing” is not convergent according to the definition, and probably
should not converge in any reasonable topology.

Equivalently, the sequence T/ — 0 is convergent if there is a represen-
tation such that

W = 3" el (4.172)

k>m

and in the sum px = ¢ has only one solution (we know that such a
[7]
k

choice is possible), and min{|k;| + -+ |kp| : ¢’ #0} — 0 as j — oco.
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Let ji1, ..., i, be any generators for G, m € Z%, as in 5 and T; € Ta,
a sequence of transseries. Let N; := min{ky + ... + ky|pf" -+ - pbr €
T;}. Note that we can write min since, by Lemma 4.156, the minimum
value is attained (check this!). If N; — oo then T — 0. Indeed, if
this was not the case, then there would exist a gg such that gg € T}
with dg # 0 for infinitely many j. Since IN; — oo there is a sequence
tk € Am such that k1 + ... + &k, — oo and px = gg. This would yield
an infinite set of solutions of ux = gg in Ay, which is not possible. The
function max{e~k1l++lknl ; D =g Ck # 0} is a semimetric (it satisfies
all properties of the metric except the triangle inequality) which induces
the same topology.

More generally, transseries are a subset of functions f defined on G with
real values and for which there exists a ko(f) = ko such that f(gx) =0
for all k < kg. On these functions we can define a topology by writing
fU — 0 if ko(fU1) does not depend on j and for any gs there is an N
we have fl"(gs) = 0 for all n > N. The first restriction is imposed
to disallow, say, the convergence of x™ to zero, which would not be
compatible with a good structure of transseries.

This topology is metrizable. For example we can proceed as follows.
Let A, be the common set over which the transseries are defined. The
elements of G are countable. We choose any counting on Ay,,. We then
identify transseries over Ay, with the space F of real-valued functions
defined on the natural numbers. We define d(f,g) = 1/n where n is
the least integer such that f(n) # g(n) and d(f,f) = 0. The only
property that needs to be checked is the triangle inequality. Let h € F.
If d(g, h) > 1/n, then clearly d(f,g) < d(f,h)+d(h,g). If d(g,h) < 1/n
then d(f,h) = 1/n and the inequality holds too.

The topology cannot come from a norm, since in general a,u /4 0 as
a, — 0.

We also note that the topology is not compatible with the order relation.
For example s, = 27" + e % — e % as n — 00, 5, > e V¥ for all n
while e % e~ VZ. The same argument shows that there is no distance
compatible with the order relation.

In some sense, there is no “good” topology compatible with the order
relation <. Indeed, if there was one, then the sequences s, = ™" and
t, = 7™ 4+ e~ ® which are interlaced in the order relation should have
the same limit, but then addition would be discontinuous!!.

Giving up compatibility with asymptotic order allows us to ensure con-
tinuity of most operations of interest.

11 This example was pointed out by G. Edgar.
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Exercise. Show that a Cauchy sequence in Ty
is a topological algebra.

is convergent, and Ta,,

m’

If G is finitely generated, then for any small transseries

s = Z dggg (4.173)
BEQ:gg<<1

we have s/ — 0 as j — oo.

PROOF Indeed, by Lemma 4.166 we may assume that the gen-
erators of G, u1,..., un, are chosen such that all k_ > 0 in s. Let
g € G. The terms occurring in the formal sum of s/ are of the form

U+ ’uliﬂr---l{b

const. iy where [7, > 0 and at least one lj > 0. There-

fore I} + ... + 1] — oo and ,_, ,, 8" — 0 by 21 for any j, M — oc.

I

As a side remark, finite generation is not needed at this point. More
generally, let A C G be well ordered. It follows from J. Kruskal’s theorem
that the set A D A of all products of elements of A is also well quasi-
ordered.

Note 4.174 The sum ZZOZO cxs® might belong to a space of transseries
defined over a larger, but still finite, number of generators. For instance,
if
1 1 et = S
— = —1)ale I 4.175
re® + 1 me”(l—l—me—x) T J;)( ) x’e ( )

then the generators of (4.175) can be taken to be x~!

,e T xe™® but
certainly cannot stay e~%,z ! since then the powers of z=! would be
unbounded below.

In particular if f(u) := > po,cpp” is a formal series and s is a small
transseries, then

fs) = cxs” (4.176)
k=0
is well defined.

Exercise 4.177 Show that [ is continuous, in the sense that if s =
s =0 asn — oo, then f(s") — ¢.

T > Ty, T3 < Ty and Ty <« T then Ty + T3 > T5 + T,. Indeed,
mag(7} + T3)=mag(T1) and mag(T3 + Ty)=mag(T3).



30.

31.
32.

33.

34.

35.

36.

Analyzable functions and transseries 137

It is easily checked that (1 +s)-1/(1+ s) =1, where

LI > (-1)s7 (4.178)

1+ s =

More generally we define

-1
(1—|—s)a:1+a5+%52+~--

Writing S = dom(S)(1 + s) we define S™! = dom(S)~(1 + s)~L.
If i is defined for a real r, we then adjoin " to G and define
T = dgi(1 4 5)"
If pj — u;- is a differentiation, defined from the generators p; into 7g,
where we assume that differentiation is compatible with the relations

between the generators, we can extend it by (g1g2) = g¢ig2 + 9195,
1’ = 0 to the whole of G and by linearity to 7g,

/ n
(Z ckuk> =S Y ket (4.179)
kezZn j=1 kezZn

and the latter sum is a well defined finite sum of transseries.

Exercise. Show that with these operations, Ig is a differential field.

If s is a small series, we define

k
s S
e = o (4.180)
k>0

Exercise. Show that e has the usual properties with respect to multipli-
cation and differentiation.

Transseries are limits of finite sums. We let m € Z" and M, =
(p,p,...,p) € N™. Note that

T, := Z dsgs S Z dsgp
gp=Hr;m<k<M,,;58€Q BEQ

Indeed, it can be checked that d(T},,T) — 0 as p — occ.

More generally, let G be finitely generated and kg € Z. Assume s — 0
as k — o0o. Then, for any sequence of real numbers ¢, the sequence

> sk (4.181)

ko<k<M,,
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where M, = (p, ...,p),p € N is Cauchy and the limit

lim 4.182
e Z Ck Sk ( 8 )
ko<k<M,

is well defined. In particular, for a given transseries

Tas=Y_ desk (4.183)

we define the transcomposition

Tas= Y  dgsk (4.184)
k>ko

As an example of transcomposition, we see that transseries are closed
under right pseudo-composition with large (not necessarily purely large)
transseries T =T;;i=1,2,...,n by

Ti(1/T)= > aT™* (4.185)
k>m
if
T, = Z ckuk
k>m

(cf. 27) We should mention that at this level of abstractness pseudo-
composition may not behave as a composition, for instance it may not
be compatible with chain rule in differentiation.

Asymptotically contractive operators. Contractivity is usually de-
fined in relation to a metric, but given a topology, contractivity depends
on the metric while convergence does not. There is apparently no nat-
ural metric on transseries.

Definition 4.186 Let first J be a linear operator from Ty or from
one of its subspaces, to Ay,

JT'=J Z Cklk = Z CkJ‘LLk (4187)

k>m k>m

Then J is called asymptotically contractive on Am if

Juy = Z CpHj+p (4.188)

p>0
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Remark 4.189 Contractivity depends on the set of generators. We

can, more generally say that an operator is contractive is there is an
extension of the set of generators such that Condition (4.188) holds.

Remark 4.190 It can be checked that contractivity holds if

Jus =Y cpmirp(l+55) (4.191)
p>0

where s; are small transseries.

Exercise 4.192 Check that for any p; we have

n-+p
sup Z Jkuj —0
p>0 k=n
as n — oo.
We then have
JT =" Jme (4.193)
k>m

Definition 4.194 The linear or nonlinear operator J is (asymptoti-
cally) contractive on the set A C Am if J : A — A and the following
condition holds. Let Ty and Ty in A be arbitrary and let

T1 — T2 = Z (679757 (4195)
k>m
Then
J(Ty) = J(T2) = > chpticsp (1 + 5x) (4.196)
k>m

where px > 0 and sk are small.

Remark 4.197 The sum of asymptotically contractive operators is con-
tractive; the composition of contractive operators, whenever defined, is
contractive.

Theorem 4.198 (i) If J is linear and contractive on Ty, then for any
To € Ta,, the fized point equation T = JT + Ty has a unique solution
T e TAm-

(i) In general, if A C Am is closed and J : A A is a (linear or non-
linear) contractive operator on A, then T = J(T') has a unique solution
is A.
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PROOF  (ii): the sequence T, = J(T},) is convergent since for
some coefficients ¢; x we have

JUT) = J(T) = Z CjkHk+gp — 0

k>m

as ¢ — oo. Uniqueness is immediate. I

39. When working with transseries we often encounter this fixed point prob-
lem in the form X =Y + M (X), where Y is given, X is the unknown
Y is given, and N is “small”.

Ezercise. Show the existence of a unique inverse of (1 + s) where s is a
small transseries, by showing that the equation T = 1—sT 1is contractive.

40. For example 0 is contractive on transseries of level zero (see also Note 4.53).
This is clear since in every monomial the power of z decreases by one.
But note that 9 is not contractive anymore if we add “terms beyond all
orders”, e.g., (e7"") = —2ze% > e 7.

We cannot expect any contractivity of 0 in general, since if T} is the
level zero solution of T'=1/x — T then T1 + Ce™? is a solution for any
C so uniqueness fails.

41. One reason the WKB method works near irregular singularities, where
exponential behavior is likely, is that is reduces the level of the transseries
to zero, where 0 is contractive. Iterated exponentials almost never oc-
cur in differential /difference equations, and then the substitution y = e
achieves the level reduction.

42. We take the union

T=J%s

g

with the natural embeddings. It can be easily checked that 7 is a
differential field too. The topology is that of inductive limit, namely a
sequence of transseries converges if they all belong to some 7g and they
converge there.

43. One can check that algebraic operations, exponentiation, composition

with functions for which composition is defined, are continuous wherever
the functions are “C°°”.

Exercise 4.199 LetT € Ay,. Show that the set {Th € Am|T1 < T} is closed.
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4.9b  General logarithmic-free transseries
4.9¢c Inductive assumptions

1. We have constructed level zero transseries. Transseries of any level are
constructed inductively, level by level.

Since we have already studied the properties of abstract multiseries, the
construction is relatively simple, all we have to do is essentially watch
for consistency of the definitions at each level.

2. Assume finitely generated transseries of level at most n have already
been constructed. We assume a number of properties, and then build
level n + 1 transseries and show that these properties are conserved.

(a) Transmonomials p; of order at most IV are totally ordered, with
respect to two order relations, < and <. Multiplication is defined
on the transmonomials, it is commutative and compatible with the
order relations.

(b) For a set of n small transmonomials, a transseries of level at most
N is defined as expression of the form (4.160).

It follows that the set {g = ux|k > m} can be indexed by ordi-
nals, and we can write the transseries in the form (4.163). The
decomposition (4.165) then applies.

It also follows that two transseries are equal iff their corresponding
dg coincide.

The order relations on transseries of level N are defined as before,
T > 1 if, by definition g; > 1, and T' > 0 iff d; > 0.

Transseries of level at most N are defined as the union of all T4
where A, is as before.

(c) A transmonomial or order at most N is of the form z%e* where L
is a purely large or null transseries of level N —1, and e’ is defined

recursively. There are no transseries of level —1, so for N = 1 we
take L = 0.

Exercise. Show that any transmonomial is of the form x%e e -e
where L; are of order exactly j meaning that they are of order j
but not of lower order.

Lo, .. oLj

(d) For any transmonomial, (z%)" is defined as x%"e"* where the

ingredients have already been defined. It may be a adjoined to
the generators of G and then, as in the previous section, T is well
defined.

(e) By definition, 2%% = el2® and x@elipozelr = gutazelitlz,
Furthermore e’ > z%?%2 for any a if L1 > 0 is a purely large
transseries of level strictly higher than the level of L.
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(f) There is a differentiation with the usual properties on the gener-
ators, compatible with the group structure and equivalences. We
have (z%el) = ax®~12zF +22L e’ where L' is a (finitely generated)
transseries of level at most N — 1.

We define

T = Z ek [(a7R) e P 4 gl (e L BY] (4.200)
keZnk>M

where, according to the definition of differentiation, (4.200) is a
finite sum of products of transseries of level at most N.

We have T” = 0 iff T' = const. If dom(Th,2) # const.,then Ty < Ts
implies T] < Tj.

It can be checked by induction that 7' > 0,7 > 1 implies 7/ > 0. In
this sense, differentiation is compatible with the order relations.

It can then be checked that differentiation has the usual properties.

if ¢ is a constant, then e€ is a constant, the usual exponential of ¢, and
if L+ ¢+ s is the decomposition of a transseries of level N — 1 we write
eltets = eleces where e is reezpanded according to formula (4.180)

and the result is a transseries of level N.

We convene to write e, for any T transseries of level at most N only
in this reexpanded form.

Then it is always the case that e’ = Tjef* where T} and L; are
transseries of level N — 1 and L is purely large or zero. The transseries
el is finitely generated, with generators e’ | if L1 > 0 or e** other-
wise, together with all the generators of L.

Sometimes it is convenient to adjoin to the generators of T' all the gen-
erators in the exponents of the transmonomials in 7', and then the gen-
erators in exponents in the exponents of the transmonomials in T etc.
Of course, this process is finite, and we end up with a finite number of
generators, which we will call the complete set of generators of T.

This defines the exponential of any transseries of level at most N — 1
if L # 0 and the exponential of any transseries of level at most N if
L = 0. We can check that et = T2 iff T} = Ts.

If all transseries of level N are written in the canonical form (4.163)
then 77 = Ty iff all gg at all levels have exactly the same coefficients.
Transseries, in this way, have a unique representation in a strong sense.

The space of transseries of level N, TVl is defined as the union of all
spaces of transseries over finitely generated groups of transmonomials

of level N.
70 - 7,
N
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with the inductive limit topology.

9. The abstract theory of transseries we have developed in the previous
section applies. In particular we have by definition 1/(1—s) = 3, s/ and
1/T =1/dom(T)(1+s)~! and transseries of level N form a differential
field closed under the contractive mappings.

10. Note that transseries of order N are closed under the contractive map-
ping principle.

4.9d Passing from step N to step N +1

1. We now proceed in defining transseries of level at most N + 1. We have
to check that the construction preserves the properties in §4.9c .

2. For any purely large transseries of level N we define 2%’ to equal the
already defined transmonomial of order N. If L is a (finitely generated)
purely large transseries of level exactly N we define a new objects, x%e”,
a transmonomial of order N + 1, having the properties

zoel = ela.
ro1elipazole — partazlitLa

for any a.

Ezercise. Show that if L1 and L1 are purely large transseries and
the level of Ly strictly exceeds the level of Ly, then et > x%el?
for any a.

Note that Ly + Ly may be of lower level but it is either purely large or
else zero; Ly Lo is purely large.

Note 4.201 At this stage, no meaning is given to e, or even to e®;
they are treated as primitives. There are possibly many models of this
construction. By BE summation, a subclass of transseries is isomorphi-
cally associated to set of functions. The symbol e* corresponds to the
usual exponential, convergent multiseries will correspond to their sums
etc.

3. If « > 0 and L is a positive transseries of level N we define a generator of
order N to be i = =%~ L. We choose a number of generators f1, ..., fin,
and define the Abelian multiplicative group generated by them, with the
multiplication rule just defined. We can check that G is a totally ordered,
of course finitely generated, Abelian group, and that the order relation
is compatible with the group structure.



144

10.

Asymptotics and Borel summability

We can now define transseries over G = GV ag in §4.9.

We define transseries of order N + 1 to be the union over all 7gv+ui,
N+1]

with the natural embeddings. We denote these transseries by 7' .
Compatibility of differentiation with the order relation. We have already
assumed that this is the case for transseries of level at most N. (i) We
first show that it holds for transmonomials of level N+1. If L; — Lo is a
positive transseries, then (z%el1)’ > (aPef2) follows directly from the
formula of differentiation, the fact that e1~%2 is large and the induction
hypothesis. If L; = Lo then a > b and the property follows from the
fact that L is either zero, or else L > x? for some 3 > 0 for some
positive 8 (check!).

(ii) For the general case we note that

/
D dong | = daui
E 5

and pj < pj, if f1 > Bz2. Then dom(T) = (dom(T))" and the prop-
erty follows.

Differentiation is continuous. Indeed, if 7™ — 0,

T = Z c{(m]xk'ae_k'l‘ —0 as m — o
k>m

where the transseries L1, ..., L,, are purely large, then

(T[m])/ _ l Z (k - acgn])xk-aefk-L_L/ . Z (kc{(m]):ck'aeik'L

k>m k>m

and the rest follows from continuity of multiplication and the definition
of convergence.

Therefore, if a property of differentiation holds for finite sums of trans-
monomials, then it holds for transseries.

By direct calculation, if pq, uo are transmonomials of order N + 1 then
(uap2)'= pipe + paph. Then, one can check by usual induction, the
product rule holds for finite sums of transmonomials. Using 8 the prod-
uct rule follows for general transseries.

4.9d .1 Composition

Composition to the right with a large (not necessarily purely large)
transseries T of level m is defined as follows.
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The power of a transseries T = x%e%(1+s) is defined by TP = z%ePL (1+
s)P, where the last expression is well defined and (TP)" = pT'TP~!
(check).

The exponential of a transseries is defined, inductively, in the following
way.

T=L+c+s=el =clee’ = Selee (4.202)
where S is given in (4.180).

A general exponential-free transseries of level zero has the form

Ty= Y aa ** (4.203)

k>m

where (a1, ..., a,) € RT" for some n.

Then we take T = (T, ..., T*) and define Ty(1/T) by (4.185); To(1/T)
has level m. If the sum (4.203) contains finitely many terms, it is clear
that [To(1/T)) = T4(1/T)T’. By continuity, this is true for a general
To of level zero.

Assume that composition with 7" has been defined for all transseries of
level N. It is assumed that this composition is a transseries of level
N +m. Then L(T) = Ly 4+ ¢1 + s1 (it is easily seen that L(T') is not
necessarily purely large). Then

(z%") o (T) := T%T) = 2b(1 + 5, (T))e (™D (4.204)

where Ly (T) is purely large. Since L; has level N +m, then (z%eL)o(T)
has level N +m + 1. We have (e£1)’ = Ljel* and the chain rule follows
by induction and from the sum and product rules.

Exercise 4.205 If T'" is a sequence of transseries, then e is a not
necessarily a valid sequence of transseries. But if it is, then there is
an Lo such that L™ = Ly for all large n. If ™ s a sequence of
Tlnl

transseries and T — 0, then e — 1.

The exponential is continuous. This follows from the Exercise 4.205 and
Exercise 4.177.

Take now a general large transseries of level N + 1 and write T =
z%l (1 + 5); let
t= Y a kel (4.206)

k>m
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Then ¢(T) is well defined as the limit of the following finite sum with
generators x_“w‘f‘,x_"‘f e‘li(T), e_li(T); i =1, n:

HT) = Y areleeleh@(144(T)) (4.207)

M, >k>m

14. The chain rule holds by continuity.

15. The general theory we developed in §4.9 applies and guarantees that the
properties listed in §4.9¢ hold (check!).

4.9d .2 Small transseries as infinitesimals; expansions beyond
all orders

16. Let T be a transseries of level N over G and dx a small transseries with
dominance e~ % where L is a positive large transseries of level N + p,
p > 0. Then (T(z + dz) — T(z))/dx = T'(z) + s(T) where s(T) is a
small transseries of level N + p.

The proof is by induction on the level. By linearity and continuity it is
enough to prove the statement for transmonomials. We have

(Z‘ + dm)ae—Ll(x—o—dz) _ l‘a(l + dw/x)aeLl(m)+L'1(z)dz+s(L)

where L)dz is a small transseries (since Lje~ is small) and s(L;) is of
level N + p. The claim follows after reexpansion of the two terms in the
product. Note that dr must be far less than all terms in T'; dxr < 1 is
not enough.

Exercise 4.208 Show that, under the same assumptions that

dz"
— (n) il
I'(x+dx) = jgzo '™ () n! (4.209)

In this sense, transseries behave like analytic functions.

4.9d .3 An inequality helpful in WKB analysis.

Proposition 4.210 If L >> 1 then L" < (L')? (or, which is the same, L' <
L?).

PROOF If L = z%!" where L; # 0 then L, is purely large, then the
dominance of L’ is of the form ze’t, whereas the dominance of L is of the
form 2%e?L* and the property is obvious. If L; = 0 the property is obvious as
well.

In WKB analysis this result is mostly used in the form (4.212 below.
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Exercise 4.211 Show that if T > 1, T positive or negative, we have

dom[(e™)™] = dom[(T")"e"] (4.212)

4.9e General logarithmic-free transseries
These are simply defined as
.= ™ (4.213)
NeN

with the natural embeddings.

The general theory we developed in §4.9 applies to 7, as well. Since any
transseries belongs to some level, any finite number of them share some level.
There are no operations defined which involve infinitely many levels, because
they would involve infinitely many generators. Then, the properties listed in
§4.9¢ hold in 7. (check!).

4.9f Ecalle’s notation

e || —small transmonomial.

e [1 —large transmonomial.

e [1 —any transmonomial, large or small.
e [l| —small transseries.

e [T1 —large transseries.

e [I] —any transseries, small or large.

4.9f .1 Further properties of transseries

Definition. The level I(T) of Tis n if T € T and T ¢ 7"~11.

4.9f .2 Further properties of differentiation
We denote D = %

Corollary 4.214 We have DT =0 <= T = Const.

PROOF We have to show that f T =L +s#0then 7" #0. If L #£0
then for some 3 > 0 we have L + s > 27 4+ s and then L' + s’ > 27~ #£ 0. If
instead L = 0 then (1/T) = L + s1 + ¢ and we see that (L + s1)’ = 0 which,
by the above, implies L1 = 0 which gives 1/s = s1, a contradiction.
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Proposition 4.215 Assume T =L orT = s. Then:
(i) If I(mag(T)) > 1 then I(mag(T~1T")) < I(mag(T)).
(i) dom(T") = dom(T) (1 + s).

PROOF Straightforward induction. I

4.9f .3 Transseries with complex coefficients

Complex transseries 7¢ are constructed in a similar way as real transseries,
replacing everywhere Ly > Lo by Re L1 > Re Ly. Thus there is only one order
relation in 7¢, >>. Difficulties arise when exponentiating transseries whose
dominant term is imaginary. Operations with complex transseries are then
limited. We will only use complex transseries in contexts that will prevent
these difficulties.

4.9f .4 Differential systems in 7,

The theory of differential equations in 7, is similar in many ways to the
corresponding theory for functions.
FEzxzample. The general solution of the differential equation

ff+f=1/x (4.216)

in 7, (for z — +o0) is T(z;C) = Y oy kla™" + Ce™ = T(z;0) + Ce™".
The particular solution T'(z;0) is the unique solution of the equation f =
1/x —Df which is manifestly contractive in the space of level zero transseries.

Indeed, the fact that T'(z;C) is a solution follows immediately from the
definition of the operations in 7. and the fact that e™* is a solution of the
homogeneous equation.

To show uniqueness, assume 77 satisfies (4.216). Then Ty = T7 — T'(x;0) is
a solution of DT + T = 0. Then Ty = €T satisfies D15 = 0 i.e., To = Const.

4.92 The space 7 of general transseries

We define
log,, () = loglog ... log(x) (4.217)
T tmes
exp,, () = expexp...exp(x) (4.218)
R
(4.219)

with the convention expg(x) = logy(z) = =.
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We write exp(logz) = z and then any log-free transseries can be written as
T(x) = T o exp,,(log,,(z)). This defines right composition with log,, in this
trivial case, as Ty olog,, (z)) = (T o exp,,) o log,, (z) := T(z).

More generally, we define 7, the space of general transseries , as a set of
formal compositions

T={Tolog, :TeT}
with the algebraic operations and inequalities (symbolized below by ®) inher-

ited from 7T by

(Th olog,) ® (Tr olog,, ;) = [(Th o expy) ® Tz olog,, 4. (4.220)

and using (4.220), differentiation is defined by

n—1
D(T olog,) =z~" [(H log;,) ™! | (DT) o log,,
k=1

Proposition 4.221 7T is an ordered differential field, closed under restricted
composition.

PROOF Exercise. I

The logarithm of a transseries. This is defined by first considering the case
when T € 7. and then taking right composition with iterated logs.
If T = cmag(T)(1 + s) = cx®e®(1 + s) then we define

log(T') = log(mag(T)) + logc+log(1 4+ s) = alogz + L + logc + log(1 + s)
(4.222)
where log ¢ is the usual log, while log(1 + s) is defined by expansion which we
know is well defined on small transseries.

1. If L > 1 is large, then log L > 1 and if s < 1, then logs > 1.

4.9g .1 Integration

Proposition 4.223 T is closed under integration.

PROOF The idea behind the construction of D! is the following: we
first find an invertible operator J which is to leading order D~'; then the
equation for the correction will be contractive. Let T' =}, -, pk olog,,. To
unify the treatment, it is convenient to use the identity

JRCCE /1() (Toep, ) ® [] ew,at = [ nioa

j<n+1 10%n+2(93)
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where the last integrand, 77 () is a log-free transseries and moreover

k k —ki1Li—...—kpm L
Tl(t) _ E Ck,ull "'/“Ll\/flw — E ce it ML
k>ko k>ko

The case k = 0 is trivial and it thus suffices to find ~'e*’, where n = [(L) >
1 where L > 0. We analyze the case 9 'e~F, the other one being similar.
Then L > 2™ for any m and thus also L > a™ for all m. Therefore, since
de~t = —(0L)e~ T we expect that dom(d~te=1) = —(OL)"te~ and we look

for a A so that

€_L

“leml = 1 4.224
0 e 8L( +A) (4.224)
Then A should satisfy the equation
2 2
A=— oL _ oL A+ (0L)"toA (4.225)

(oL)*  (9L)
Since s; = 1/L’ and s; = L"”/(L')? are small, by Lemma 4.166, there is
a set of generators in which all the magnitudes of s; o are of the form pX
with k > 0. By Proposition 4.210 and Exercise 4.199, (4.225) is contractive
and has a unique solution in the space of transseries with the complete set of
generators of L and 7! and A < L and the generators constructed above.
For the last term, note that if A = Y c, e« and L = Xt | then A'/L' =
SeoLl e tve tr and Ll et = p, < 1.
[

1. Since the equation is contractive, it follows that mag(A) = mag(L"/L"?).

In the following we also use the notation 0T = T’ and we write P for the
antiderivative ~! constructed above.

Proposition 4.226 P is an antiderivative without constant terms, i.e,

PI'=L+s

PROOF This follows from the fact that Pe~L < 1 while P(e%) is purely
large, since all small terms are of lower level. Check!

Proposition 4.227 We have

P(T1 + Tz) = PT1 + PTs

(PT) =T; PT' =Ty

P(TWTy) = (TvTz)g — P(T(T>)

T > T, = PTy > PTs

T>0andT>»>1 = PT >0
(4.228)
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where

T = Z gt = 15 = Z e pt®
k>ko k>ko;k#0

PROOF Exercise. I

There exists only one P with the properties (4.228), for any two would differ
by a constant.

Remark 4.229 Let sqg € 7. The operators defined by

J1(T) = P(e~*(Const. + s0)T(x)) (4.230)
Jo(T) = X227 P (2227 eT* (Const. + 50)T(x)) (4.231)

are contractive on T .

PROOF  For (4.230) it is enough to show contractivity of P(e~*-). If we
assume the contrary, that 7" <« Te™? it follows that logT % 1. We know
that if logT is small then mag(T) = ¢, ¢ constant. But if mag(T) = ¢ then
the property is immediate. The proof of (4.230) is very similar. .

Exercise 4.232 In Eq. (4.54) let §o be a level zero transseries solution, and
let y = yo + d be the general transseries solution. If §'/§ = L 4+ ¢ + s, show
that L =0 and ¢ = —1. Then § = Ce *(1 + s1). Show that the equation for
s1 is contractive in the space of small transseries of any fixed level.






Chapter 5

Borel summability in differential
equations

In §5.3 we look at an ODE example which illustrates some key ingredients
needed in a more general analysis. §5.9 contains a number of results which hold
for generic systems of differential equations; the proofs, outlined in §5.10 and
given in detail (with some simplifying assumptions) in §5.11 rely on methods
that can be adapted to other problems.

Using the singularity structure in Borel plane, one can generically recon-
struct a system of ODEs from just one, possibly formal, solution, see Re-
mark 5.73.

5.1 Convolutions revisited

We have
LI[f*g]=(Lf)(Lg) (5.1)
Furthermore,
LI[f = (gxh)] = L[fIL[g*h] = LIfIL[gIL[A] = L](f * g) * h] (5.2)

and since the Laplace transform is injective, we get

f(gxh)=(fxg)xh (5.3)

and convolution is associative. Similarly, it is easy to see that

fxg=gxf, fx(g+h)=fxg+f*h (5.4)

Some spaces arise naturally and are well suited for the study of convolution
equations.

(1) Let v € R and define L := {f : RT : f(p)e P € L'(R")}; then the
norm || f||, is defined as || f(p)e~"?||1 where || - ||; denotes the L' norm.

153
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We recall that Ll is a Banach algebra with respect to convolution, see
Proposition 4.101.

We see that the norm is the Laplace transform of |f| evaluated at large
argument v, and it is, in this sense, a Borel dual of the sup norm in the
original space.

(2) We say that fisin LL(R*e™) if f, := f(te'?) € LL. Convolution along
Rte’ reads

(Fea)0) = [ 19t~ s)ds =
o plple®? _ ' ' _
e'? /O Fte)g(e(|p| — t)dt = €' (f, * gs)(Iple’®)  (5.5)

It is clear that L. (R*ei?) is also a Banach algebra with respect to convolution.

(3) Similarly, we say that f € L,,(S) where S = {te'? : t € R, ¢ € (a,b)} if
f € LL(R*e™) for all ¢ € (a,b). We define ||f|,.s = SUPge (a,p) 1 f1lL1 (m+ i)
LL(9) is also a Banach algebra.

(4) The L. spaces can be restricted to an initial interval along a ray, or a
compact subset of S, restricting the norm to an appropriate set. For instance,

o ={s: [ e (s)lds < oc (5.6)

These spaces are Banach algebras as well. Obviously, if A C B, LL(B) is
naturally embedded (cf. footnote on pp. 156) in L. (A).

(5) Another important space is Ag.,(€), the space of analytic functions
analytic in a star-shaped neighborhood £ € C in the ball {p : |p| < K of the
interval [0, K'] in the norm (v € R™T)

1) = K sup |e=171 ¢ ()
peé

Note. This norm is topologically equivalent with the sup norm (convergent
sequences are the same), but better suited for controlling exponential growth.

Proposition 5.7 The space Ak, is a Banach algebra with respect to convo-
lution.

PROOF  Analyticity of convolution is proved in the same way as Lemma 4.101.
For continuity we let |[p| = P, p = Pe'® and note that
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’ ﬂ’P/f p—s)ds

= ’K‘l/ Kf(te'®)e ™ Kg((P —t)ei?)e P~ dt
0

—‘ *vP/ F(te®)g((P — 1)ei®)dt

K
SK*IIIfHIIgII/ dief = flllgll - (5-8)
0
I

Note that Ag,, C LL(E).
(6) Finally, we note that the space Ak ,.0(€) = {f € Ak, () : f(0) =0} is
a closed subalgebra of Ak , .

Remark 5.9 In the spaces Li, Ak, Ak o etc. we have, for a bounded
function f,
[ fgll < llgl| max|f]

5.1a  Spaces of sequences of functions

In Borel summing not simply series but transseries it is convenient to look
at sequences of vector-valued functions belonging to one ore more of the spaces
introduced before. We let

Y= {¥kheo: kKEZ™, yeC” (5.10)

and
Y ={Yx}r. o (5.11)

For instance if m = 1 we define
(Y e @) Y a Y < o) (512)
k=1
We introduce the following convolution on L,l,’ u

n—1

(F*¥G), = > F; Gy (5.13)
j=1
Exercise 5.14 Show that
IF#Gl[. < [IFllo,lIGllu, (5.15)

and (L}, ..+, %, || |l,,x) is a Banach algebra.



156 Asymptotics and Borel summability

5.2 Focusing spaces and algebras

An important property of the norms (1)—(4) and (6) in §5.1 is that for any
f we have ||f|| — 0 as v — oo. For L. for instance this is an immediate
consequence of dominated convergence.

A family of norms |||, depending on a parameter v € R™ is focusing if for
any f with || f]],, < oo we have

[fll. L0asv T oo (5.16)

(We note that norms can only be focusing in Banach algebras without identity,
since ||I]| < |||/ || implies ||I|| > 1.) This feature, when present, is important
since it allows us to choose v such that nonlinear terms in an equation are
arbitrarily small.

Let V be a linear space and {||||,} a family of norms satisfying (5.16). For
each v we define a Banach space B, as the completion of {f € V : || f|l, < oo}.
Enlarging V if needed, we may assume that B, C V. For o < 3, (5.16) shows
B, is naturally embedded in Bg' . Let F C V be the projective limit of the
B,. That is to say

F=JB (5.17)

v>0

where a sequence is convergent if it converges in some B,. We call F a
focusing space.

Consider now the case when (B,,+, *,||||,) are commutative Banach alge-
bras. Then F inherits a structure of a commutative algebra, in which * is
continuous. We say that (F,#,]|||,) is a focusing algebra.

Examples. The spaces |, L} and U, >0 Ak and L}W are focusing
algebras. The last space is focusing as v — oo and/or p — oo.

An extension to distributions, very useful in studying singular convolution
equations, is the space of staircase distributions D/ see §5.13.

m,u)

Remark 5.18 The following result is immediate. Let A, B be any sets and
assume that the equation f(x) = 0 is well defined and has a unique solution
1 in A, a unique solution zs in B and a unique solution x3 in A N B. Then
r1 = 29 = x3 = x. In particular, if A C B then x € AN B. This is useful
when we want to show that one solution has a number of different properties:
analyticity, boundedness, etc. and we do not want to complicate the norms.
See e.g. Proposition 5.20 below.

1That is, we can naturally identify B, with a subset of B which is isomorphic to it.
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5.3 Borel summation of the formal solutions to (4.54).
5.3a Borel summability of the asymptotic series solution

Since we have a Banach algebra structure in Borel plane, differential equa-
tions become effectively algebraic equations (with multiplication represented
by *), much easier to deal with.

The analysis of (4.54) captures some important part of what is needed in a
general setting. Its formal inverse Laplace is

—pY +Y =p+Y*3; <:>Y=L+LY*3 =N(Y) (5.19)
L=p 1-p
where L7y =Y and Y =Y xY x Y.

Let [a,b] € (0,27), and S = {p : arg(p) € (a,b), Sk ={p € S : |p| < K},

B={p:|p| <a<1}.
Proposition 5.20 (i) For large enough v, Eq. (5.19) has a unique solution
in the following spaces: LL(S), LL(Sk), Av.o(Sxk UB). (i) There is a solution
Y which is analytic in SUB and it is Laplace transformable along any direction
in S. The Laplace transform is a solution of (4.54).

PROOF  The proof is the same for all these spaces, since they generate
focusing algebras. Choose € small enough. Then for large enough v we have

p
e 2 21
I < (5.21)
Let B be the ball of radius € in the norm v. Then if F' € 28 we have
IV, < '1629 V—!—maX p— V]2 =€/24ce® < e (5.22)

if € is small enough (that is, if v is large). Furthermore, for large v, N is
contractive in B for we have, for small €,

INCED) = N(EDly < el B — Bl = el(Fy — F) s (72 4 Fy = By ),
<cl|(Fy — )|, (3¢%) < e (5.23)

(ii) We have the following embeddings: LL(S) C LL(Sk), A,0(Sxk UB) C
LL(Sk). Thus, by Remark 5.18, there exists a unique solution Y of (5.19)
which belongs to all these spaces.

Thus Y is analytic in S and in L.(S), in particular it is Laplace trans-
formable. The Laplace transform is a solution of (4.54) as it is easy to check.

It also follows that the formal power series solution § of (4.54) is Borel

summable in any sector not containing R*, which is a Stokes line. We have,
indeed, By =Y (check!).
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5.3b Borel summation of the transseries solution

If we substitute
J=1o+ Yy Cre g (5.24)
k=1

—kx

in (4.54) and equate the coefficients of e=** we get the system of equations

k—1
o+ (1= k= 303)dk = 300 > Gjik—j + > Uin¥jnUjs  (5.25)
Jj=1 Jitiztis=k;ji>1

The equation for y; is linear and homogeneous:

% = 3050 (5.26)
Thus
7 = Ce’; 5::/ 350 (t)dt (5.27)

Since § = O(z7?) is the product of Borel summable series (in C\ R*), then,
by Proposition 4.109 e® is Borel summable in C \ RT. We note that §; =
1+ o(1) and we cannot take the inverse Laplace transform of g; directly. It
is convenient to make the substitution 7, = z*@;. We get

k—1
G+ (1 —k— 3¢5+ ko ")@r =3¢0 Y ;Pr—j + > CIRCINGCIR
j=1 Ji+get+is=k;ji>1

(5.28)
or after Borel transform

—p® 4 (1—k)® = —hx®+3Y]2 «® + 3V« D*P + &*xB*P  (5.29)

where ® = {®;}jen, (k®)), = B and (F x G)y := F % Gy,

Here we reinterpret ®o, ®; which have already been analyzed, as given,
known functions (after rearrange (5.29) so that the terms containing ¢ are
explicitly written out). Consider the new equation on L}W;l C Lzlz,w the sub-
space of sequences {®;},en, ®1 = 0 (and similar subspaces of other focusing

algebras). They are focusing spaces too (check!).

Proposition 5.30 For any p, if v is large enough, (5.29) is contractive.
Thus (5.29) has a unique solution in this space. Similarly, it has a unique
solution in L}, ,1(S), Ay u1(Sk) for any S and Sk as in Proposition 5.20.
Thus there is a v large enough so that for all k

coe ! arg(x)

or(x) = /0 e PP (p)dp (5.31)
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exist for |x| > v. The functions or(z) = @r(x)t are analytic in z, for
arg(z) € (—7/2,2m 4+ w/2). Similarly, pr(x) = ¢r(x)~ are analytic in x, for
arg(z) € (=27 — w/2,7/2).

(i) The function series

Z Che Mkl (z) (5.32)
k=0

and -
ZCEe_kxxkap,:(x) (5.33)
k=0

converge for sufficiently large Rex, arg(z) € (—7n/2,7/2) and solve (4.54).

Note. The solution cannot be written in the form (5.32) or (5.33) in a sector of
opening more than 7 centered on RT because the exponentials would become
large and convergence is not ensured anymore. This, generically, implies blow-
up of the actual solutions, see §6.

Exercise 5.34 (*) Prove Proposition 5.30.

Proposition 5.35 Any Solution of (4.54) which is o(1) as x — 400 can be
written in the form (5.32) or, equally well, in the form (5.32).

PROOF  Let yo := y* be the solution of (4.54) of the form (5.32) with
C = 0. Let y be another solution which is o(1) as # — +oc and let § = y—y™.
We have

§ = =0+ 3y28 + 3y + 83 (5.36)
or 5
5= —1+43y3 + 3yod + 0% = —1+o(1) (5.37)

Thus (since we can integrate asymptotic relations),
Ind =—z+o(x) (5.38)

and thus
5= efa:+o(w)

Returning to (5.37), we see that

!
% = —1+43y3 + 3yod + 0% = —1+ O(1/2?) (5.39)

or

§d=Ce "(1+0(1)) (5.40)
We then take 6§ = Cie~*1* and obtain

s = 3y2 + 3yge TS 4 o202 (5.41)
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where s is small, or,

5= / (3y3(t) + 3yo(t)e =+ 4 e—2t+25<t>) dt (5.42)
Eq. (5.42) is contractive in the space of functions s : [v,00) — C in the sup
norm. The solution of this equation is then unique. But s = In(y; —y*) + =
where y; is the solution of the form (5.32) with C' = 1 is already a solution of
(5.42), so they must coincide.

5.3c¢  Analytic structure along R™

The approach sketched in this section is simple, but of limited scope as it
relies substantially on the ODE origin of the convolution equations.

A different, complete proof, that uses the differential equation only mini-
mally is given in §5.11.

*

By Proposition 5.20, Y = Yj is analytic in any region of the form B U Sk.
We now sketch a proof that Yy has analytic continuation along curves that do
not pass through the integers.

For this purpose we use (5.33) and (5.32) in order to derive the behavior
of Y. It is a way of exploiting what Ecalle has discovered in more generality,
bridge equations.

We start with exploring a relatively trivial, nongeneric possibility, namely
that y™ =y~ =: yo. (This is not the case for our equation, though we will not
prove it here; we still analyze this case since it may occur in other equations.)

+ie

vt = / Y(p)e ""dp = yo (5.43)
0

we have y ~ ¢ in a sector of arbitrarily large opening. By inverse Laplace
transform arguments, Y is analytic in an arbitrarily large sector in C\ {0}.
On the other hand, we already know that Y is analytic at the origin, and it
is thus entire, of exponential order at most one. Then, gy converges.

Exercise 5.44 Complete the details in the argument above.
We now consider the generic case y™ # y~. Then there exists S # 0 so that
ocoe’® 0
yt = / e Y (p)dp =y~ + Y SFe M ato (x) (5.45)
0 k=1
Thus
+ie

/OO:G e PY (p)dp = /100 e P (Y (p) =Y (p)dp =) SFe M atp, ()
=t (5.46)
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In particular, we have

1 i€

L eyt () = Y (p))dp = Se / T e )dp + Ot )

i€

= S/ e P i (p — 1)dp + O(x%e™2")  (5.47)
1

Then, by Proposition 2.21, f(f) Yt = fég Y~ +Spi(p—1) on (1,2). (It can
be checked that [Y has lateral limits on (1, 2), by looking at the convolution
equation in a focusing space of functions continuous up to the boundary.)

Since ¢y is continuous, this is means [} Y+ = Sei(p — 1) + [J Y~ or
Yt=Y" +8Yi(p—1),oryet, YT(1+s) =Y (1+s)+ SYi(s) everywhere
in the right half s plane where Y~ — Y] is analytic, in particular in the fourth
quadrant. Thus the analytic continuation of Y from the upper half plane
along a curve passing between 1 and 2 exists in the lower half plane; it equals
the continuation of two functions along a straight line not crossing any singu-
larities. The proof proceeds by induction, reducing the number of crossings
at the expense of using more of the functions Y3, Y3, etc..

This analysis can be adapted to general differential equations, and it allows
for finding the resurgence structure (singularities in p) by constructing and
solving Riemann-Hilbert problems, in the spirit above.

5.4 General setting

By relatively simple algebraic transformations a higher order differential
equation can be transformed into a first order vectorial equation (differential
system) and vice-versa [15]. The vectorial form has some technical advantages.

We consider the differential system

y' =f(z,y) yeCr (5.48)

under the following assumptions:

(al) The function f is analytic at (o0, 0).

(a2) A condition slightly weaker than nonresonance (see §5.6a ) holds: for
any half plane H in C, the eigenvalues \; of the linearization

A=— (8fi (oo,O)) (5.49)

9y, i,5=1,2,..n

lying in H are linearly independent over Z. In particular, all eigenvalues are
distinct and none of them is zero.
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Writing out explicitly a few terms in the expansion of f, relevant to leading
order asymptotics, we get

. 1 .
y' = fo(z) — Ay + SAy o+ g(z,y) (5.50)

5.5 Normalization procedures: an example

Many equations that are not presented in the form (5.50) can be brought
to this form by changes of variables. The key idea for so doing in a systematic
way is to calculate the transseries solutions of the equation, find the trans-
formations which bring the transseries to the normal form (5.82), and then
apply the same transformations to the differential equation. The first part of
the analysis need not be rigorous, as the conclusions are made rigorous in the
steps that follow it.

We illustrate this on a simple equation

u =ud—t (5.51)

in the limit ¢ — +o00. This is not of the form (5.50) because g(u,t) = u> —t
is not analytic in ¢ at t = oco. This can be however remedied in the way
described.

As we have already seen before, dominant balance for large ¢ requires writing
the equation (5.51) in the form

u=(t+u)"/? (5.52)

and we have v’ < t. Three branches of the cubic root are possible and are
investigated similarly, but we aim here merely at illustration and choose the
simplest. Iterating (5.52) in the usual way, we are lead to a formal series
solution in the form

1 . o0 ~
a=t/3+ §t’4/‘3 +o=t t;;’j?) (5.53)
k=0

To find the full transseries we now substitute u = @+ 0 in (5.51) and keep the
dominant terms. We get

&' 9 o 2 '
— = (=t 4+ ZInt
5 (5 +3n)

from which it follows that
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§ = 233" (5.54)

Since exponents in a normalized transseries solution are linear in the (nor-
malized) variable, the critical time is t/3. We take x = (At)%/3; the formal
power series (5.53) takes the form

oo

a=2""Y" Z—’,j (5.55)
k=0

But the desired form is Z;O:o %. Thus the appropriate dependent variable is

h = Bx'/5u. The choice of A and B is made so as to simplify the final analysis.
We choose A = —B?/5,15/B> = —1/9 and we are led to the equation

, 1 3 1

h + 5xh+3h 9 =0 (5.56)
which is analytic at infinity, as expected. The only remaining transformation
is to subtract out a few terms out of h, to make the nonlinearity formally small.
This is done by calculating, again by dominant balance, the first two terms
in the 1/x power expansion of h, namely 1/3 —2~!/15 and subtracting them
out of h, i.e., changing to the new dependent variable y = h — 1/3 + 271 /15.
This yields

1
/ —1
= — — 5.57
Yy y+5xy+g(y71’ ) (5.57)
where
3y? 1 y 1

gy, 27" = =30 +¢*) + (5.58)

5z 1522 2522 + 32533

5.6 Further discussion of assumptions and normalization

Under the assumptions (al) and (a2), A in (5.50) can be diagonalized by
a linear change of the dependent variable y. It can be checked that by a
further substitution of the form y; = (I + #~'V)y, the new matrix A can
be arranged to be diagonal. No assumptions on A are needed in this second
step. See also [54]. Thus, without loss of generality we can suppose that the
system is already presented in prepared form, meaning:

(n1) A = diag();) and

(n2) A = diag(oy)
For convenience, we rescale x and reorder the components of y so that
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(n3) Ay =1, and, with ¢; = arg(\;), we have ¢; < ¢; if i < j. To simplify
the notation, we formulate some of our results relative to A; = 1; they can be
easily adapted to any other eigenvalue.

A substitution of the form y = y1z~ for some N > 0 ensures that

(n4) Re(ej) >0, 7=1,2,...,n.

Note 5.59 The case Re(a;) < 0 treated in [24] and §5.11 is simpler but it
cannot be arranged by simple transformations, while the general case (n4) is
dealt with in [22]; in both papers the notation is notation is slightly different:

B:=—Aand B:=-a (5.60)

k

Finally, through a transformation of the form y < y — Ziw:l arr™" and

y < (1 + Alx_l + -+ AMHx_M_l)y we arrange that 2
(5) fp = O(z=™~1) and g(z,y) = O(y?, =M ~ly). We choose M > 1+
max; Re (a;) (cf. (n2)).

5.6a Nonresonance

(1) Ai, i = 1,...,n1 are assumed Z-linearly independent for any d. (2) Let
6 € [0,2r) and A = (Ai;,..., A;,) where ‘argx\ij —9‘ € (—m/2,7/2) (those
eigenvalues contained in the open half-plane Hy centered along e'?). We re-
quire that for any # the complex numbers in the finite set

Nik ={\i—k-A€Hy:keN i=1,..,p} (5.61)

have distinct directions d;.x. The directions of arg(—N,.) are Stokes rays for
the transseries of the ODE.

It can be easily seen that the set of A which satisfy (1) and (2) has full
measure; see also [22].

Without the nonresonance assumption, the main series o (but not the full
transseries) is shown to be multisummable in [4].

5.7 Overview of results
Known results for this type of equations are informally summarized as follows.

i All yi are BE summable 3 in a common half plane, of the form
Hy = {z : Re(z) > zo}.

2This latter transformation is omitted in [22].

3Due to special properties of this ODE setting, the process used here is simpler than, but
equivalent to, BE summation.
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11 The Borel sums yx = LBy are analytic in Hy.

iii There exists a constant ¢ independent of k so that sup,cy, |yl <
cX. Thus, the new series,

y = Z Che Mkrgoky, (z) (5.62)
ke(NU{0})™

is convergent for any C for which the corresponding erpansion

(5.82) is a transseries, in a region given by the condition |Cie™N%x%i| <
c; ' (remember that C; is zero if |e=i%| is not small).

w The function'y obtained in this way is a solution of the differential
equation (5.50).

v Any solution of the differential equation (5.50) which tends to zero
in some direction d can be written in the form (5.62) for a unique
C, this constant depending usually on the sector where d is (Stokes
phenomenon).

vi The BE summation operator LB is the usual Borel summation in
any direction d of x which is not a Stokes line. However LB is
still an isomorphism, whether d is a Stokes direction or not.

5.8 Further notation

5.8a Regions in the p plane

We use the convention N 3 0. Let
W={peC:p£k\,VkeN,i=1,2,...,n} (5.63)

The Stokes directions of yo are d; = {p : arg(p) = —¢;},7 = 1,2,...,n.
The rays {p: arg(p) = ¢;},7 = 1,2,...,n are singular for Yy, and we simply
speak of them as singular rays.

We construct the surface R, consisting of homotopy classes 4 of smooth
curves in W starting at the origin, moving away from it, and crossing at most
one singular line, at most once (see Fig. 1):

4classes of curves that can be continuously deformed into each other without crossing points
outside W.
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FIGURE 5.1: The paths near \; relate to the medianized averages.

Ri={7:(0.1) = W 5(0) =0 Th(D] > 0: ars(y(1)) monotonic

(modulo homotopies) (5.64)

Define Ry C R by (5.64) with the supplementary restriction arg(y) € (¢, —
27, 19) where ¢, = max{—m/2, ¢, — 27} and 2 = min{nw/2, P2 }.

R1 may be viewed as the part of R above a sector containing R¥.

Similarly we let R’y C Ry with the restriction that the curves v do not
cross any singular direction other than R, and we let ¢4 = + max(+ arg~y)
with S Rll.

By symmetry (renumbering the directions) it suffices to analyze the sin-
gularity structure of Yo in Ry only. However, (c1) breaks this symmetry
for k # 0 and the properties of these Yy will be analyzed along some other
directions as well.

5.8b  Ordering on N

The notation is essentially the one already used for multiseries and transseries:

We write k = k" if k; > k. for all ¢ and k = k' if k > k" and k # k’. The
relation > is a well ordering on N™'. We let e; be the unit vector in the gt
direction in N™.
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5.8c  Analytic continuations between singularities

By AC,(f) we denote the analytic continuation of f along a curve .

For the analytic continuations near a singular line d;;x the notation is similar
to Ecalle’s:

f~ is the branch of f along a path v with arg(y) = ¢; — 0, while f=7+
denotes the branch along a path that crosses the singular line between j\;
and (j + 1)\, from right to left (see also [24]).

We write Pf for fop f(s)ds and P, f if integration is along the curve .

5.9 Analytic properties of Yy and resurgence
We let m; =2+ |Rea;] and o} = m; — o.
Theorem 5.65 (i) Yo = Byq is analytic in R U {0}.
The singularities of Yo (which are contained in the set {I\; : 1 € Nt j =

1,2,...,n}) are described as follows. For I € N* and small z, using the
notations explained in §5.8a we have

Y5 (z41)) =+ [(iSj)l(ln 2)" Ye, (2)} " + Byj(z) =

{Zlagfl(an)O,IAlj(Z)} U B (1= 1.2,..) (5.66)

where the power of Inz is one iff laj € Z, and Ay;,By; are analytic for small
z. The functions Yk are, exceptionally, analytic at p = I\;, | € NT, iff the
Stokes constants vanish, i.e.
Sj =r;T(a}) (A1), (0) =0 (5.67)
where rj =1 — e2mig—1) yf la; ¢ Z av;id r; = —2mi otherwise.
Analyticity and resurgence of Yy, k > 0.
(ii) Yy = By, |k| > 1, are analytic in R\Sk, where
Sk={-K XA+ X :kK <k 1<i<n} (5.68)
(Sk turns out to be a set of actual singularities, generically).

Forl € N andp nearl);, j =1,2,...,n there exist A = Ayj; and B = By,
analytic at zero so that for small z we have
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k.41 (Imy)
Yi(z41)) =+ {(isj)l< g )(m 2" Yicyie, (2) + Bu;(2) =

} (Im;)

{zk'a/"'lo‘;_l(lnz)o’l A (2) +Bu(2) (1=0,1,2,...) (5.69)

where the power of Inz is 0 iff | =0 ork-a+la; ¢ Z and Axo; = e; /().
Nearp € {\i — k' -X:0 <K <k}, (where Yg is analytic) Y, k # 0 have
convergent Puiseux series.

5.9 .1 Properties of the analytic continuation along singular rays
In the following formulas we make the convention Yy (p — 7) = 0 for p < j.

Theorem 5.70 i) For all k and Re (p) > 7,Im (p) > 0 as well as in distribu-
tions (more precisely in D), ,; see §5.13 and [22]) we have

m,v’

YiEF (p) - YU TR (p) = (251 (klj j) (Y e (0 =) " s

and also,

|+ k . NN (i
vi=vi+ X (1S 0 e 6

Jj=1

Remark 5.73 (Resurgence) The fact that the singular part of Yi(p+1A;)
in (5.66) and (5.69) is a multiple of Yy e, (p) is the effect of resurgence and
provides a way of determining the Yy given Yg provided the S; are nonzero.
Since, generically, the S; are nonzero, given one formal solution, (generically)
an n parameter family of solutions can be constructed out of it, without using
(5.50) in the process; the differential equation itself is then recoverable.

*

Averaging. We extend Byy along d; ik by the weighted average of analytic
continuations

Yi= Y+ 3 (Y - VY (5.74)
j=1
Proposition 5.75 Relation (5.74), with Rey = 1/2 gives the most general

reality preserving, linear operator mapping formal power series solutions of
(5.50) to solutions of (5.88) in Dy, .
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This follows from Proposition 23 in [22] and Theorem 5.70 below.

For the choice v = 1/2 the expression (5.74) coincides with the one in
which + and — are interchanged (Proposition 34 in [22]), and this yields a
reality-preserving summation.

We call B 1 Yk = Yﬁa the balanced average of Yy, and it is the restriction
of the median average to generic systems of ODEs, becoming much simpler
because of the extra structure inherited from the differential equation. It
is not multiplicative in general, that is outside the ODE context, while the
median average is.

Remark 5.76 Clearly, if Yy is analytic along d;x, then the terms in the
infinite sum vanish and Y, = Y. For any Yy this is the case for all directions
apart from the finitely many singular ones.

It follows from (5.74) and Theorem 5.77 below that the Laplace integral of
Y, along R* can be deformed into contours as those depicted in Fig. 1, with
weight —(—v)¥ for a contour turning around k)\;.

In addition to symmetry (the balanced average equals the half sum of the
upper and lower continuations on (0,2);)), an asymptotic property uniquely
picks C' = 1/2. Namely, for C = 1/2 alone are the LBy always summable to
the least term, see [22], [18].

5.9a Summability of the transseries

The following is an abbreviated form of a theorem in [22]. The statements
are more precise there and more details are given about the functions, but to
present them here would require introducing many new notations.

For clarity we again specialize to a sector in H in = containing \; = 1 in
which (c1) holds (and for p in the associated domain R’y), but A; plays no
special role as discussed in the introduction.

Theorem 5.77 - The limits in distributions of Y,-"~(p) and Y,.,""(p) on
RY exist for all k and n.

— There is an xo large enough so that for Re (xp/|p|) > z¢ all the Laplace
transforms in distributions, fs e"’lefnf(p)dp exist and are bounded by pu*
for some p > 0.

~The series
y=LY] + Y Cre kA gleryf (5.78)
|k|>0
y=LY; + Y Cre *Xpkery (5.79)
k|>0

are convergent and either of them provides the most general decaying solution
of (5.50) along S (so there is a multiplicity of representation).
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—The Laplace transformed average
£+ >y (Y - )| (5.80)
j=1

is the most general Borel sum of yyx that commutes with complex conjugation
and multiplication.

Of special interest are the cases v = 1/2, discussed below, and also v = 0,1
which give:

y=LYF+ Y Cre*Arghoryd (5.81)
|k|>0

Formal solutions. We we allow for complex valued transseries,

y = S/O + Z C{Cl e CswLe_(k-A)ka-ayk (.’L' — 00, arg(m) ﬁxed)
k>0;/k|>0
(5.82)

under the assumption that Re (—k - A z) < 0. That is, agreeing to omit the
terms with C; = 0, with = in d, we should have

(c1) arg(x) + ¢; € (—m/2,7/2) for all i such that C; # 0. In other words,
C; # 0 implies that \; lies in a half-plane centered on d, the complex conjugate
direction to d.

*

The series yo is a formal solution of (5.50) while, for k # 0, yi satisfy
a hierarchy of linear differential equations [54] (see also § 5.12b for further
details). In

y = LByo+ Z Of . OFnem(kXNegkarpg,  (x — oo, arg(z) fixed)
k>0;/k[>0
(5.83)

given y, the value of C; can only change (and it usually does) when arg(z) +
arg(A; —k-A) =0, k; € NU{0}, i.e. when crossing one of the (finitely many
by (c1)) Stokes lines.

5.10 Outline of the proofs

5.10a  Summability of the transseries in nonsingular direc-
tions: a sketch

We have
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gle,y) =Y m@y'= > gar 'y (jo] > w0,y <yo) (5.84)
n>1 s>05]1/>1

where we denote
yi=ol oyl =1 4 4 1 also y| == max{|yi|:i=1,...,n} (5.85)

By construction g1 =0 if [I] =1 and s < M.
The formal inverse Laplace transform of g(z,y(z)) (formal since we have
not yet shown that £~ 'y exists) is given by:

Y y@'Y gar | = Y G YT+ Y gaY? (5.86)
n>1 s>0 n>1 n>2
= N(Y) = (L 'g)(p,*Y) = G(p,*Y)
(5.87)

where the last two equalities are mere suggestive notations. For instance,
L7 1g(1/x,y), after series expansion in convolution powers of Y is essentially
the Taylor series in y of g, with multiplication replaced by convolution.

(Direct calculations, using expanded formulas for G(p,*Y), ete, are given
in §5.11.)

Also, Gi(p) = Y22 gs1p* ™1 /sl and (G * Y*); = (Gr); = VA ALY
By (n5), G{}(0) =0 if [I] = 1 and I < M.

Thus the inverse Laplace transform of (5.50) is the convolution equation:

—pY =Fy — AY + APY + G(p, ¥Y) (5.88)

Let dj(z) :== > 155 (Jl) gl(w)y(lfj. Straightforward calculation (see Appendix
§5.12b ; cf. also [24]) shows that the components ¥y of the transseries satisfy
the hierarchy of differential equations

Vi + (A—i<A+k~a) —k-)\)yk—i-Zdj(x)(yk)j:tk
=

(5.89)

where ty = ty (yo, {yk/}0<k,<k) is a polynomialin {yw } s and in {d; }j<k
(see (5.281)), with t(yo,0) = 0; tx satisfies the homogeneity relation

tx <YO7 {Ck/Yk’}(Hk,%) = C*ti (YOv {yk'}0—<k’—<k) (5.90)
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Taking £ in (5.89) we get, with D; =15 ( ) [Gl * Y D) 8o,1 * YS(I_D],

(-p+A-k-A) Y- (A+k-a)PYi+ ) Dy« Y =T (5.91)
ljl=1

where of course, for |j| = 1, we have Y;? = Yf(; now Ty is a convolution

polynomial, cf. (5.205).
*

Since g is assumed analytic for small |y| < € we have

g(1/z,y) Z gy’ (5.92)

and by Cauchy’s formula and Fubini we have

g(l
= const. ?{ f =y /x iﬁl ds (5.93)

and therefore by (n5) pp. 164 we have
&) < A7V (5.94)
for some A; and thus
G| < AMp|™; |goa| < A (5.95)

for some A > 0, where G| = £~ 'g;. Similarly,

g(l/z,y +h) —g(l/z,y) => a(l/z;y)h' (5.96)
j>0
or
'g(1/z, y+h)—L'g(1/z,y) = £ | D _a(l/z;y)h! | =) GsH"
j>=0 j>=0

(5.97)

where 5
|G| < B jp[™ (5.98)

It follows that in any of the focusing norms used we have
Similarly, we have

G(p,*(Y + H)) — G(p,*Y) = Dy (p,xY) « H+ o(|H]||,) (5.100)
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where

g

D Y)= (£t

) (oY) IDsps¥)] = 0asy o0 (101

We write eq. (5.88) in the form

(—p+ MY =Fo+ A(1 xY) + G(p,+Y) (5.102)
Consider a region in C of the form

S={peC:|p|<ecor arg(p) € (a,b)} (5.103)

not containing singular directions. Then the matrix (—p—i—f\) is invertible and
Y = (—p+A)7HFo+ A1+ Y) + G(p, +Y) (5.104)

Let A(S) be any of the focusing algebras over S.

Proposition 5.105 Eq. (5.104) is contractive in S and has a unique solution
there.

PROOF  This follows immediately from (5.100) and (5.101). I

5.10b Higher terms of the transseries

The equations with |k| = 1 are special: they are singular at p = 0. Indeed,
with k = e,,, =: e (the m-th unit vector, see pp.166) we have

(_pm_e.A)YE_ (A+e.a)7>ve+ > DyjxYF =0 (5.106)
lil=1

where A — e - X is not invertible.

Suppose first Dj = 0. Then (5.106) is just a system of linear ODEs, written
in integral form, at a regular singularity. The fact that the singularity is
regular follows from the assumptions (al)—(n5). The general theory of ODE
applies and Y, has a convergent Frobenius expansion at zero.

In general, for small p, D; = O(p?), because of the behavior of Yy. Then
near the origin, the contribution of these terms is small. One writes

(—p+ix—e-,\)Ye—(A+e-a)7>Ye=R (5.107)
where
R=-> DjxYJ (5.108)
ljl=1

and inverts the operator on the left side of (5.107). In the process of inversion
one free constant, C,,, is generated (a free constant was to be expected, since
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(5.106) is homogeneous). For any value of C,,, however, the ensuing integral
equation is contractive.

For k| > 1, <fp +A-k- )\) is invertible in S, again by (al)—(n5). The
homogeneous part of the (linear equations) for Yy is regular. But the inho-
mogeneous term is singular at p = 0, due to Ye.

The equations are treated in a space designed to accommodate these singu-
larities. Contractivity of the system of equations for the Yy; |k| > 1, as well
as summability of the resulting transseries and the fact that it solves (5.50)
are then shown essentially as in §5.3b .

The analysis of the convolution equations along singular directions is more
delicate, but not so different in spirit from the analysis of the equation for
Y. at p = 0: near singular points, the convolution equations are well approx-
imated by regularly singular ODEs.

However, new problems arise if Rea > 0. Then the singularities of the
functions Yy, alway located in Sk, are nonintegrable, of strengths growing
with the distance to the origin, as seen in (5.69). In [22] this is dealt with by
working in Dy, .

*5.11 Detailed proofs, for Re(a;) < 0 and a
one-parameter transseries

This section essentially follows [24]. The simplifying assumptions are removed
in [22].

We use the notation (5.60) and 3 = 8;. We have Re 8 > 0. The substitution
described above (n4) makes

Re (3) € (0,1] (5.109)

The one-parameter family of transseries formally small in a half-plane is given
by

y=Fo+ > Cre g, (5.110)
k=1

where the series yj, are small; (5.89) becomes

n 1
i+ ([\ 1Bk ag(x,yo)> ve =Ygyl ™" > [TT]m.,)

v >1 Sm=ki=1j=1
(5.111)
where g .= 0Wg/dy', (Og)yr = 21, (v&)i(98/0yi), and Y5, stands
for the sum over all integers m;; > 1 with 1 <7 < n,1 < j <; such that

I
i Zj:l mi; = k.
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Since m;; > 1, we have > m;; = k (fixed) and card{m; ;} = 1], the
sums in (5.111) contain only a finite number of terms. We use the convention

Hie@ =0.
In the following, we choose the usual branch of the logarithm, positive for
z > 1.

Proposition 5.112 i) The function Yq := By is analytic in W and Laplace
transformable along any direction in W. In a neighborhood of p = 1 we have

_ [ 8s(1—p)°~tA(p) + B(p) for B #1
Yolp) = { Spln(1 —p)A(p) + B(p) for 3=1 (5.113)

(see (5.109)), where A, B are (C™-valued) analytic functions in a neighbor-
hood of p=1.

1) The functions Yy := By, k=0,1,2,.. are analytic in Rq.
i11) For small p we have

Yo(p) = pAo(p); Yi(p) ="' 'Ax(p), k€N (5.114)

where Ay, k > 0, are analytic functions in a neighborhood of p =10 in C.
i) If S3 =0 then Yy, k > 0, are analytic in VWWUN.

v) The analytic continuations of Yy, along paths in Ry are in L _(RT)

loc
(their singularities along RY are integrable ®). The analytic continuations

of the Y, in R1 can be expressed in terms of each other through resurgence
relations:

S’ng oTE = (YO_ — Yak71+> ,  on(0,1); (ra:=pr—p-—a) (5.115)

relating the higher index series in the transseries to the first series and

m (k47 o
Y, +=Y;+Z< s )SggY;ﬂ.mj (5.116)
j=1

S is related to the Stokes constant [54] S by

is
$5 = { 2sin(x(1=3)) for 71
§ for =1

2

5For integrability, the condition Re 3 > 0 is essential.



176 Asymptotics and Borel summability

Let Y be one of the functions Y}, and define, on R* N R, the “balanced
average” of Y ©:

o0
Yo =yt ok (Y* —Y*’“”*)Hork (5.117)
k=1
(H is Heaviside’s function). For any value of p, only finitely many terms
(5.117) are nonzero. Moreover, the balanced average preserves reality in the
sense that if (5.50) is real and yq is real then Y is real on R* — N (and
in this case the formula can be symmetrized by taking 1/2 of the expression
above plus 1/2 of the same expression with + and — interchanged). Equation
(5.117) has the main features of medianization (cf. [31]), in particular (unlike
individual analytic continuations, see Appendix 5.12a ) commutes with con-
volution (cf. Theorem 5.128). Y’? is exponentially bounded at infinity for
the functions we are dealing with.
Let again y be one of y; and Y = By. We define:

ocoet?
LyBy =Ly Y =2 +— / Y (p)e™P*dp if ¢ #£0
0
LoBY =LY =2 — / Y% (p)e Prdp if =0 (5.118)
0

(the first relation is the usual one, the second one defines summation along
the Stokes line).

The connection between true and formal solutions of the differential equa-
tion is given in the following theorem:

Theorem 5.119 i) There is a large enough v such that, for Re (x) > v the
Laplace transforms L4Y, exist for all k> 0 in

Wi :={p:pgNU{0} and argpe (—¢_,04+)} (5.120)

where we denote, for simplicity, by ¢ the singular direction nearest to R* in
H (similarly for ¢_). For ¢ € (—p—,d4) and any C, the series

y(@) = (LsByo) (@) + Y C*e ™™ (LyBy)(x) (5.121)
k=1

is convergent for large enough x in H.
The function 'y in (5.121) is a solution of the differential equation (5.50).
Furthermore, for any k > 0 we have L4Byr ~ yi in H and LyByy is a
solution of the corresponding equation in (5.89).

6As mentioned, it coincides with Ecalle’s medianization, but is simpler here due to the
special features of ODEs.
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i1) Conversely, given ¢, any solution of (5.50) having ¥o as an asymptotic
series H can be written in the form (5.121), for a unique C.

iti) The constant C, associated in ii) with a given solution y of (5.50),
depends on the angle ¢:

C(04) for¢p>0
C(¢) =4 C(0+) = 18y for 6 =0 (5.122)
C(04) =S forp <O

(see also (5.113) ).

When ¢ is not a singular direction, the description of the solutions is quite
simple:

Proposition 5.123 i) With ¢ describing a ray in W, the equation (5.88) has

a unique solution in L{ (®), namely Yo = Byo.

it) For any ray in Wh, the system (5.88), (5.91) has the general solution
solution C*Y ), = C*Byy, k > 0.

The more interesting case ¢ = 0 is addressed in the following theorem:

Theorem 5.124 i) The general solution in LL (R*) of (5.88) is

loc

Yo(p) = i CrY}(p — k)H(p — k) (5.125)
k=0

with C' € C arbitrary.
it) Near p =1, Y¢ is given by:

— p)B— or
Yc(p) = { %((1175),6711:(%)1_]]33((5)) ;;ngll (B#1) (5.126)

Spln(1—p)A(p) + B(p) forp <1
Y = =1
e = (51 ) L CAG) AB) o1 B
where A and B are analytic in a neighborhood of p = 1.

iii) With the choice Yo = Y52, the general solution of (5.91) in Ll (R*)
is CFYb k € N.

Comparing (5.126) with (5.113) we see that if S # 0 (which is the generic
case), then the general solution on (0,2) of (5.88) is a linear combination of
the upper and lower analytic continuations of By:

Yo=MY{+(1-X)Yy (5.127)

Finally we mention the following result, which shows that the balanced
average, like medianization [31], commutes with convolution.
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Theorem 5.128 If f and g are analytic in R1 then fx*g extends analytically
in R1 and furthermore,

(frg)=fsg™ (5.129)

As a consequence of the linearity of the balanced averaging and its com-
mutation with convolution, if t; » are the transseries of the solutions f; 5 of
differential equations of the type considered here and if LBt 2 = f; o then

LB (afl + b{':g) = af + bfy (5130)

Moreover, what is less obvious, we have for the componentwise product for-
mula o
LB(t1t2) = £1£5 (5.131)

5.11a Comments

We look more carefully at the behavior along singular directions. As men-
tioned, at singular points, the convolution equations are to leading order lin-
ear, regularly perturbed, ODEs. In nonlinear equations, one singularity is
replicated periodically along its complex direction, via autoconvolution.

The next task is to find a Borel summation valid along the singular direc-
tions while preserving all properties of usual Borel summation. The formulas
are valid in the context of ODEs, where they offer simplicity, as well as com-
plete classification of well-behaved averages, but do not substitute for the
general averages of Ecalle. The latter have the expected properties regardless
of the origin of the expansion, see [30].

We first obtain the general solution in L . of the convolution system (5.91)
in W and then, separately, on the Stokes line RT. We show that along a ray in
W, the solution is unique whereas along the ray RT there is a one-parameter
family of solutions of the system, branching off at p = 1. We show that any
Li . solution of the system is exponentially bounded at infinity (uniformly in
k). Therefore the Laplace transforms exist and solve (5.50). Conversely, any
solution of (5.50) with the required asymptotic properties is inverse Laplace
transformable, therefore it has to be one of the previously obtained solutions of
the equation corresponding to kK = 0. We then study the regularity properties
of the solutions of the convolution equation by local analysis.

Having the complete description of the family of L{ . solutions we com-
pare different formulas for one given solution and obtain resurgence identities;
resurgence, together with the local properties of the solutions are instrumental
in finding the analytic properties of Y in R;.

5.11b  The convolution equation away from singular rays

We denote by L 1(€) the set of functions which are locally integrable along
each ray in £ (an intersection of usual Ly spaces).
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Proposition 5.132 There is a unique solution of (5.88) in Ly 1 (W) namely
Yo = Byo.

This solution is analytic in W, Laplace transformable along any ray argp =
¢ contained in W and LyY¢ is a solution of (5.50).

For the proof we need a few more results.

Remark 5.133 There is a constant K > 0 (independent of p and 1) so that
forallp e C and all1>0

Gi(p)| < Keollle ! (5.134)

if co > max{zy ',y '}

PROOF From the analyticity assumption it follows that

|gm.1| < Const o™ (5.135)
where the constant is independent on m and 1.
Then,
colpl _ 1
|G1(p)| < Const CO|1‘+1€7 < Const ¢olllTecolPl
colp|
I
Consider the ray segments
dp ={ae":0<a< D} (5.136)

the L' norm with exponential weight along ®p

D
1l = 171l = / 71| £ (p)]|dp] = / eV (e dE (5.137)

and the space

Ly(®p) = {f : |If]l, < oo}
(it D < o0, L, (®p) = Li,o(Pp)).
Let £ € C be a bounded domain, diam (K) = D < co. On the space of
continuous functions on X we take the uniform norm with exponential weight:

1£llu := D sup{|f(p)le” "'} (5.138)
peC

(which is equivalent to the usual uniform norm).

Let O C D, O 5 0 be a star-shaped, open set, diam(QO) = D containing a
ray segment ®. Let A be the space of analytic functions f in O such that
f(0) = 0, endowed with the norm (5.138).
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Proposition 5.139 The spaces LL(®p) and A are focusing algebras, see
§5.1, §5.2.

Corollary 5.140 Let f be continuous along ®p, D < oo and g € LL(Pp).
Given € > 0 there exists a large enough v and K = K(e,®p) so that for all k

1+ g < K€

By Proposition 5.139 we can choose v = v(e, Pp) so large that ||g|l, < e
(we make use of the focusing nature of the norm). Then, by Proposition 5.139
and Eq. (5.138) we have:

i

/O fpe'® — s)g™*(s)ds

e’

4
< D'l £, / 19| (s)]|ds| <
0

Dt e Wl f[lullglly < K €*

O
Remark 5.141 By (5.134), for any v > ¢g, and ®p C C, D < 00
Y e el
1G] < Keo! '/ |dplelPltco=) = ¢ (5.142)
0 VvV —Cy
where we wrote
feL,(®p)iff [[f]]., € L,(Pp) (5.143)

(and similarly for other norms of vector functions).

PROOF of Proposition 5.132  We first show existence and uniqueness
in L171 (W) .
Then we show that for large enough v there exists a unique solution of (5.88)
in LL(®s). Since this solution is also in L. (P ) it follows that our (unique)
L . solution is Laplace transformable. Analyticity is proven by usual fixed

point methods in a space of analytic functions. I

Proposition 5.144 i) For ®p € W and large enough v, the operator

N =X 0) - (=) (Fo) = B [ Yds 4 N (Y)G))  (5.145)

is contractive in a small enough neighborhood of the origin with respect to |||«
if D < 0o and with respect to ||||, for D < cc.
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ii) For D < oo the operator N given formally in (5.86) is continuous in
Llloc(q)D). The last sum in (5.86) converges uniformly on compact subsets of
Op. N(LL.(®p)) is contained in the absolutely continuous functions on ®p
[47]. Moreover, if v, — v in |||, on ®p, D < oo, then for v\ > v large
enough, N (v,,) exist and converge in |||, to v.

Here we make use of Remark 5.18 to obtain at the same time a number of
needed properties of the solutions (analyticity, bounds at infinity, etc.).

The last statements in (ii) amount to saying that A is continuous in the
topology of the inductive limit of the L.

PROOF Since A and B are constant matrices we have

INL(Y)]

up < Const(®) ([ Follu, + Y]

w1 + IV (Y)]

wy)  (5.146)

As both ||1]|, and ||Fol|,,, are O(v~!) for large v, the fact that A7 maps a
small ball into itself follows from the following remark.

Remark 5.147 Let € > 0 be small enough. Then, there is a K so that for
large v and all v such that ||V]|y,, =: 0 <,

INO luw < K (v + 1]

ww) 1Vl (5.148)

By (5.135) and (5.142), for large v and some positive constants C1, ..., Cs,

Nl < Co | D G IVIEL + D lgoallu v,
=1 [11>2
< @ Z Co|1| P Z CO|1\5\1| < <02 i + i) co™8™ Z 1
Bz vV —Co -
[1>1 [1]>2 m=1 m=2 [1]=m
Cy S n (Ca
< (V + Co5> mZ:lcomém(m +4)" < <V + Co(5> Cs0
(5.149)
O
To show that A7 is a contraction we need the following:
Remark 5.150
* * 1|—
| := [1(£ +h)™ = £ < 1] (€[] + )" 1R (5.151)

where [[[| = llllu or [[[l.-
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This estimate is useful when h is a “small perturbation”. The proof of
(5.151) is a simple induction on 1, with respect to the lexicographic ordering.
For |1] = 1, (5.151) is clear; assume (5.151) holds for all 1 < 1; and that 1;
differs from its predecessor 1y at the position k (we can take k = 1), i.e.,
(11)1 =1+ (10)1. We have:

(£ +h)™ — £ = ||(f+ D)™« (F +hy) — £ =
[(E*1 + Ty ) (fr + ha) — £ = [[£9 5 by + hyy * fy + Dy 5 by || <
€)1 h| + [[hy, [][£]] + [y, [|h]| <

Il (10! ol IE] + el ) <
Bl (o] + (£ + [R]p! (5.152)

Remark 5.153 For small§ and large enough v, N1 defined in a ball of radius
d centered at zero, is contractive in the norms |||u,u-

By (5.146) and (5.148) we know that the ball is mapped into itself for large
v. Let € > 0 be small and let £, h be so that ||f|] < § — ¢, ||h|| < e. Using
(5.151) and the notations (5.88) (5.146) and ||| = ||||.,, We obtain, for some
positive constants C1, ..., Cy and large v,

IVI(E+h) = M(E)] < Cull | D goa-+ D Gox | ((E+h)" —£) | <

=2 =1

call
Colmll | > I/()_icll\lé'”’1 + > leoMeMTt | < (Csp! + Cud) ||

n>1 0 n>2

(5.154)

To finish the proof of Proposition 5.144 take v € A. Given € > 0 we can
choose v large enough (by Proposition 5.139) to make ||v]|,, < €. Then the sum
in the formal definition of N is convergent in A, by (5.149). Now, if D < oo,
then L (®p) = LL(®p) for any v > 0. If v,, — v in LL(®p), we choose €
small enough, then v large so that ||v|, < ¢, and finally ng large so that for
n > ng ||[vp — v||, < € (note that |||, decreases w.r. to v) thus ||v,|, < 2e
and continuity (in LL(®p) as well as in L (Poo) = Ukea., L.(0,k)) follows
from Remark 5.153. Continuity with respect to the topology of the inductive
limit of the L} is proven in the same way. It is straightforward to show that
N(LL _(®)) C Cu(®), where C, are absolutely continuous functions [47].

loc
U Ps.1aa
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The fact that £4Y¢ is a solution of (5.50) follows from Proposition 5.144
and the properties of £ (see also the proof of Proposition 5.211).

Since Yo(p) is analytic for small p, (£Y)(x) has an asymptotic series for
large z, which has to agree with ¥ since LY solves (5.50). This shows that
Y, = B¥,.

O p5.132

Remark 5.155 For any ¢ there is a constant Ko = K2(0,|p|) so that for all
1 we have

Y5 (p)] < Koo (5.156)

The estimates (5.156) follow immediately from analyticity and from Corol-
lary 5.140.
I

5.11c  Behavior of Y((p) near p=1.

The point p = 1 is a singular point of the convolution equation. The solution
is generally singular too. Its behavior at the singularity is derived using the
convolution equation alone.

*

Let Yy be the unique solution in Lq 1 (W) of (5.88) and let € > 0 be small.

Define

Yo(p) forpe W, p| <1—c¢
0 otherwise

H(p) := { and h(1 —p) :=Yo(p) — H(p)
(5.157)

In terms of h, for real z =1 — p, z < ¢, the equation (5.88) reads:
—(1 — 2)h(z) = F1(2) — Ah(2) + B/ h(s)ds + N(H +h) (5.158)

where

Fi(1-s)=Fo(s) - B | H(s)ds

Proposition 5.159 i) For small ¢, H*(1+2) extends to an analytic function
in the disk D := {z : |2| < €¢}. Furthermore, for any 0 there is an € and a
constant K1 := K1 (0,€) so that for z € D, the analytic continuation satisfies
the estimate

[H* (1 + 2)| < K6 (5.160)
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PROOF The case |I| = 1 is clear: H itself extends as the zero analytic
function. We assume by induction on |1| that Proposition 5.159 is true for all
1, [1] <1 and show that it then holds for (e.g.) Hy + H*l, for all 1, 1| < .

H is analytic in an e-neighborhood of [0,1 — 2¢], and therefore so is H*!.
Taking first z € RT, z < ¢, we have

1-z 1—e
Hy(s)H"(1 — 2 — 5)ds = Hi(s)H" (1 — 2 — 5)ds =
0 0
1/2 1—e¢
H,(s)H(1 — 2 — s)ds + Hy(s)H"(1 — 2 — 5)ds (5.161)
0 1/2

The integral on [1/2,1 — ¢ is analytic for small z, since the argument of H*!
varies in an e-neighborhood of [0,1/2]; the integral on [0,1/2) equals

1—z 1/2 1—e 1—z
/ H (1—z—t)H*(t)dt = +/ +/ Hy(1—z—t)H*(t)dt
1/2—=2 1/2—z 1/2 1—e¢

(5.162)
In (5.162) the integral on [1/2 — z,1/2] is clearly analytic in D, the second
one is the integral of an analytic function of the parameter z with respect to
the absolutely continuous measure H*!dt whereas in the last integral, both
H*! (by induction) and H; extend analytically in D..
To prove now the induction step for the estimate (5.160), fix ¢ small and
let:

5
n <& M= |p|r<lﬁg}’§+e|H<p)|’ Mp(e) = max [H(p)l; €< A (5.163)

Let Ko := Ka(n; €) be large enough so that (5.156) holds with 7 in place of §
for real x € [0,1—¢] and also in an € neighborhood in C of the interval [0,1/2+
2¢]. We use (5.156) to estimate the second integral in the decomposition
(5.161) and the first two integrals on the rhs of (5.162). For the last integral
in (5.162) we use the induction hypothesis. If K; > 2K, (2M; + Ms), it
follows that |H*! * H;| is bounded by (the terms are in the order explained
above):

MQ(G)KQWI + MlKQT]l + M1K277l + (2€)M1K1(5l < K1(5l+1 (5164)
I

Proposition 5.165 The equation (5.158) can be written as
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—(1—2)h(z) = F(2)—Ah(z)+B /Z s)ds— Z/Z hj(s)D,;(s—z)ds (5.166)

€

F(z) = N(H)(1 - 2) + Fy(2) (5.167)

D; =Y LGi«HY + Y LigoHY V= (1o, ol — 1), 1) (5.168)

=1 n>2

extend to analytic functions in D, (cf. Proposition 5.159). Moreover, if H is
a vector in LL(RT) then, for large v, D; € LL(RT) and the functions F(z)
and D; extend to analytic functions in D..

PROOF Noting that (Yo — H)*?(1 — 2) = 0 for ¢ < 1/2 and z € D,
the result is easily obtained by re-expanding N (H + h) since Proposition
5.159 guarantees the uniform convergence of the series thus obtained. The
proof that D; € L. for large v is very similar to the proof of (5.154). The
analyticity properties follow easily from Proposition 5.159, since the series
involved in N (H) and D; converge uniformly for |z| < e.

Consider again the equation (5.166). Let I'=A—(1-2)1, where 1 is the
identity matrix. By construction I' and B are block- diagonal, their first block
is one-dimensional: I‘11 =z and 311 = (. We write this as =20l «(z) and
smnlarly, B = 3® B., where I'. and B, are (n —1) x (n — 1) matrices. I'c(2)
and I'71(z) are analytic in D..

Lemma 5.169 The function Yo given in Proposition 5.132 can be written in
the form

Yo(p) = (1—p)?tai(p) +as(p) (B#1)
Yo(p) = In(l-pai(p) +az(p) (B=1) (5.170)

for p in the region (D +1)NW D+ 1:={1+2: 2 € D.}) where a;, as
are analytic functions in De + 1 and (a;); =0 for j > 1.

Proof.
Let Q(z f h(s)ds. By Proposition 5.132; Q is analytic in D.N(1—-W).
From (5. 166) we obtaln
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(zeT(2)Q'(2) - (8@ B.)Q Z/ D,( (s)ds (5.171)

or, after integration by parts in the rhs of (5.171), (D;(0) =0, cf. (5.168)),

(z8T(2))Q'(2) — (69 Bo)Q +Z/ DAE s)ds (5.172)

With the notation (Q1,Q1) = (Q1,Q2,...,Qn) we write the system in the
form

(z*ﬁQl(z))/ = B (Fl(z) + Z /Z D'lj(s — Z)Qj(s)ds)
()QL) = ST, (FL + Z/ D'\ (s — 2)Q;(s)d )

C(z) = — /OZ Lo(s) ' Be(s)ds
Q(e) =0 (5.173)

After integration we get:

Q1(z) = Ri(2) + 1(Q)
Qi(2) =Ri(2) +JL(Q) (5.174)
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with

€

J1(Q) = 2 /Ztﬁ1Z/tQj(s)D’1j(t—s)dsdt
i=17¢

TLQE) = e [COr 7 [ S [ DL = 2)Qi00ds |
j=1e

€

Ri(2) = €0 / CCOP (1) 1F | ()dt

€

Ri(z) = 2° / R (B#1)

F1(0) — sFi(0)

Rl(z):F1(0)+F1'(0)zlnz+z/z Fils) = ds (B=1)

(5.175)

Consider the following space of functions:

Qs = {Q analytic in D, N (W — 1) : Q = 2PA(2) + B(z)} for 8 # 1 and

Qi+ = {Q analyticin DN (W —1): Q =zlnzA(z) + B(z)} (5.176)

where A, B are analytic in D.. (The decomposition of Q in (5.176) is unam-
biguous since 27 and zIn z are not meromorphic in D,.)
The norm

1QIl = sup {|A(2)],|B(2)| : z € De} (5.177)

makes Qg a Banach space.
For A(z) analytic in D, the following elementary identities are useful in what
follows:

z 1
/ A(s)s"ds = Const + 2" / A(zt)t"dt = Const + 2" A1 (2)
€ 0
z 1 1
/ s"Ins A(s)ds = 2" ! lnz/ A(zt)t"dt + 2" / A(zt)t" Intdt
0 0 0
(5.178)

where A; is analytic and the second equality is obtained by differentiating
with respect to r the first equality.
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Using (5.178) it is straightforward to check that the rhs of (5.174) extends
to a linear inhomogeneous operator on Qg with image in Qg and that the
norm of .J is O(e) for small e. For instance, one of the terms in J for f =1,

z t
z/ t_2/ slns A(s)D'(t — s)ds =
0 0
11
22 lnz/ / o A(zro)D (27 — z70)dodT+
o Jo

1 1
22/ dT/ doo(InT +1Ino)A(z1o)D' (27 — 270)
0 0
(5.179)

manifestly in Qg if A is analytic in D.. Comparing with (5.176), the extra
power of z accounts for a norm O(e) for this term.

Therefore, in (5.173) (1—.J) is invertible and the solution Q € Qg C L (D).
In view of the the uniqueness of Y (cf. Proposition 5.132), the rest of the
proof of Lemma 5.169 is immediate.

5.11d  General solution of (5.88) on [0,1 + ¢]

Let Y be the solution given by Proposition 5.132, take € small enough and
denote by O, a neighborhood in C of width € of the interval [0,1 + €].

Remark 5.180 . Y, € L'(0,). As ¢ — 40, Yo(pe'®) — Y (p) in the sense
of L*([0, 1+¢€]) and also in the sense of pointwise convergence for p # 1, where

v ::{(Yo(p) p<l1

I —pt0)flay(p)+as(p) p>1 B7 1

Yo(p) p<l1

=+ 0

= . = 1
Yo { In(l—p+0i)a(p) + as(p)p>1 =1 (5181
Moreover, Y are Li. . solutions of the convolution equation (5.88) on the
interval [0,1 + €.

The proof is immediate from Lemma 5.169 and Proposition 5.144.
O

Proposition 5.182 For any A € C the combination Yy = AXY{ + (1 -\ Y,
is a solution of (5.88) on [0,1 + €].
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Proof. For p € [0,1)U(1,1+¢] let ya(p) := Y, —H(p). Since y3*> =0 the
equation (5.88) is actually linear in y, (compare with (5.166)).
O
*

Note: We consider the application By := yo — Y and require that it be
compatible with complex conjugation of functions By (¥5) = (Ba(¥o))* where
F*(z) := F(Z). We get Re A = 1/2. It is natural to choose A = 1/2 to make
the linear combination a true average. This choice corresponds, on [0,1 + €],
to the balanced averaging (5.117).

*
Remark 5.183 For any § > 0 there is a constant C(6) so that for large v

10Y2) ) < C(6)6M W1 with |1 > 1 (5.184)
(Nl is taken on the interval [0,1 + €] ).

Without loss of generality, assume that I; > 1. Using the notation (5.168)
we get

<

AZ“M%WY%”@—@@

u
b

AaY%MﬂY%m@—ﬂw

D

i /05 (Yo)u(p — ) (¥4")™" (s)ds

U2 U2

(5.185)

(IIlup refers to the interval p € [0,1/2 + €/2].) The first uy norm can be
estimated directly using Corollary 5.140 whereas we majorize the second one
by

L5 11 Y5 (@) s

and apply Corollary 5.140 to it for |1| > 2 (if |I] = 2 simply observe that
(Yb)*! is analytic on [0,1/2 + €/2]).
O

Lemma 5.186 The set of all solutions of (5.88) in Li .([0,1+ €]) is param-
eterized by a complex constant C' and is given by

- Ybe(p) forpe0,1)
Yolp) = { Y ) 4 Clo— 1)P-1AW) forp e (L1t d (5.187)

for B#£1 or, for 6 =1,
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Y5 (p) + C(p — DA(p) forp e (1,1 + ¢

where A extend analytically in a neighborhood of p = 1.
Different values of C correspond to different solutions.
This result remains true if Y3 is replaced by any other combination Yy :=

AY§ +(1-N)Y,, AeC.

Yo(p) _ { Yga(p) Jorpe [Ov 1) (5.187)/

Proof.
We look for solutions of (5.88) in the form

Y"(p) +h(p—1) (5.188)

From Lemma 5.169 it follows that h(p — 1) = 0 for p < 1. Note that

N(Y3 o7 i +h)(2) = N(YE)(A +2) + i /OZ h;i(s)Dj(z —s)ds (5.189)
j=1

where the D, are given in (5.168), and by Remark 5.184 all infinite sums
involved are uniformly convergent. For z < e (5.88) translates into (compare
with (5.166)):

“(1 4 2)h(z) = —Ah(z) — B /O h(s)ds+ Y /O hi(s)D, (= — s)ds (5.190)
Let

Q(z) := /OZ h(s)ds (5.191)

As we are looking for solutions h € L, we have Q € C,[0, €], and Q(0) = 0.
Following the same steps as in the proof of Lemma 5.169 we get the system
of equations:

ey =Y | "Dl (= - £)Q,(s)ds

(OQuY = O [T - 90 (s)ds
j=170

Clz) = — /O f.(s)~1 Bu(s)ds
Q(0)=0 (5.192)
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which by integration gives

(1+J)Q(z) = CR(2) (5.193)
where C' € C and

@) == [0S [ aumi - asi
j=1

0

J(Q)1(z) = e ) /Oze@@fc(t)l D /0 D= 9)Q(s)ds |

R, =0
Ri(z) = 2P
(5.194)

First we note the presence of an arbitrary constant C' in (5.193) (Unlike in
Lemma 5.169 when the initial condition, given at z = € was determining the
integration constant, now the initial condition Q(0) = 0 is satisfied for all C').

For small € the norm of the operator J defined on C,[0, €] is O(e), as in the
proof of Lemma 5.169. Given C the solution of the system (5.192) is unique
and can be written as

Q=CQp Qo:=(1+J)'"R#0 (5.195)

It remains to find the analytic structure of Qg. We now introduce the space

Q=1{Q:[0,¢) »C":Q=2:"A(2)} (5.196)

where A(z) extends to an analytic function in D.. With the norm (5.177)
(with B =0), Q is a Banach space. As in the proof of Lemma 5.169 the
operator J extends naturally to @ where it has a norm O(e) for small e. It
follows immediately that

QoeQ (5.197)

The formulas (5.187), (5.187’) follow from (5.188) and (5.191).
O

Remark 5.198 If Sz # 0 (c¢f. Lemma 5.169) then the general solution of
(5.88) is given by

Yo(p) = (1= N)Y{ (p) + Y, (p) (5.199)

with A € C.
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Indeed, if a; # 0 (cf. Lemma 5.169) we get at least two distinct solutions
of (5.193) (i.e., two distinct values of C') by taking different values of A in
(5.199). The remark follows from (5.197) (5.196) and Lemma 5.186.

O

5.11e  The solutions of (5.88) on [0, )

In this section we show that the leading asymptotic behavior of Y, as

p — 1T determines a unique solution of (5.88) in L{ (RT). Furthermore, any

Li . solution of (5.88) is exponentially bounded at infinity and thus Laplace
transformable. We also study some properties of these solutions and of their
Laplace transforms.
Let Y be a solution of (5.88) on an interval [0,1 + ¢], which we extend to
R* letting Y (p) = 0 for p > 1 + €. For a large enough v, define
Sy = {f € Ll .([0,00)) : £(p) = Y(p) on [0,1 + €]} (5.200)

and

So:={f € L ([0,00)) : f(p) =0 on [0,1+ €]} (5.201)

We extend Y to RT by setting Y(p) = 0 for p > 1 + €. For p > 1+ ¢ (5.88)
reads:

A~ ~ A p ~ ~
(Y +8) = Fy— AT +8) - B/ (¥ +8)(s)ds + N(Y +8)  (5.202)
0
with d € Sy, or

§=-Y+A-p! (FO — B/Op(Y +6)(s)ds + N (Y + 6)) = M(9)

(5.203)
For small ¢y > 0 and 0 < p; < p2 < oo, consider the truncated sectors

S(j;lym) ={z:2=pe? p1 <p<py; 0< O < P} (5.204)
and the spaces of functions analytic in S(j;l p2) and continuous in its closure:
o - {f £ € C(S(,,m); £ analytic in S(ﬂ;m)} (5.205)

which are Banach spaces with respect to ||||, on compact subsets of S(,, ,,)-
Proposition 5.206 i) Given Y, the equation (5.203) has a unique solution
in L [l + €,00). For large v, this solution is in LL([1 + €,00)) and thus
Laplace transformable.
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i1) Let Yo be the solution defined in Proposition 5.132. Then
Yi(p) = lim Yo(pe'®) € CRM\{1}) 1 L, () (5.207)

(and the limit exists pointwise on RT\{1} and in L (RT).)

loc
Furthermore, YOjE are particular solutions of (5.88) and

Y5 (p) = (1—-p)" la*(p) +ai(p) (B#1)
Y5 (p) =In(1—p)a*(p) +ai(p) (B=1) (5.208)

where a* and ali are analytic near p = 1.

Proof

Note first that by Proposition 5.144, M (eq. (5.203)) is well defined on So,
(eq.(5.201)). Moreover, since Y is a solution of (5.88) on [0,1 + €), we have,
for 89 € Sp, M(8) =0 a.e. on [0,1+¢€), ie.,

M(SO) C So

Remark 5.209 For large v, M is a contraction in a small neighborhood of
the origin in ||||u,v-

Indeed, sup{[|(A — p)lenscn :p > 1+ €} = O(e™) so that

M) — M(B2)]lu < SN (8))) — A (62)

W 5.210
: N (5.210)
The rest follows from (5.154) —Proposition 5.144 and Proposition 5.139 ap-
plied to Y.

O

The existence of a solution of (5.203) in Sy N L1 ([0, 00)) for large enough v
is now immediate.

Uniqueness in L{ . is tantamount to uniqueness in L'([1+¢, K]) = LL([1+
6, K], for all K —1—¢ € RT. Now, assuming M had two fixed points in
LL([1+€, K]), by Proposition 5.139, we can choose v large enough so that these
solutions have arbitrarily small norm, in contradiction with Remark 5.209.

ii). For p < 1,YF(p) = Yo(p). For p € (1,1 + ¢€) the result follows from
Lemma 5.169. Noting that (in view of the estimate (5.149)) M(Q% 1 ) C
Vilﬂ’oo, the rest of the proof follows from the Remark 5.209 and Lemma
5.169.

O
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5.11f General L} . solution of the convolution equation

loc

Proposition 5.211 There is a one parameter family of solutions of equation
(5.88) in LL _[0,00), branching off at p = 1 and in a neighborhood of p = 1
all solutions are of the form (5.187), (5.187 ). The general solution of (5.88)
is Laplace transformable for large v and the Laplace transform is a solution

of the original differential equation in the half-space Re (z) > v.

Proof. Let Y be any solution of (5.88). By Lemma 5.186 and Proposi-
tion 5.206, v large implies that Y € L1([0,00)) (thus LY exists), that ||Y]|,
is small and, in particular, that the sum defining AV in (5.86) is convergent in
LL(RT). We have

LY GrsYT+ ) gy Y

11>1 1>2
=D (LG)LY) + > goa(LY)' =D ay' =g (5.212)
[j>1 [>2 >1

(and g(z,y(z)) is analytic for Re () > v). The rest is straightforward.

Corollary 5.213 There is exactly a one parameter family of solutions of
(5.50) having the asymptotic behavior described by yq in the half-plane Re () >
0.

Proof. Any solution with the properties stated in the corollary is inverse
Laplace transformable and its inverse Laplace transform has to be one of the
L}, . solutions of the convolution equation (5.88). The rest of the proof follows
from Proposition 5.211.

O

5.11g Equations and properties of Y and summation of the
transseries

Proposition 5.214 Let Y be any L (RT) solution of (5.88). For large v

loc

and some ¢ > 0 the coefficients dy, in (5.91) are bounded by
|dm(p)| < ePc™

Note that £~ (g™ (x,y)/m!) is the coefficient of Z*™ in the expansion of
N(Y + Z) in convolution powers of Z (5.86):
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Z 20,1+ Z G* (Y + Z)*l

=2 =1

Z*m
1 sk *(1—k)
St Y G| ¥ ()7
[11>2 [11>1 0<k<I Z#m
1
> gor+ Y Gix Z( )GI*Y*(I_“‘) (5.215)
152 11 >m N

(m is fixed) where 1 > m means [; > m;,i = 1,...,n and (11() =11, (,lcb)
Let € be small and v large so that ||Y||, < e. Then, for some constant K,
we have (cf. (5.134))

< 3 Kol (gye) 1 (ril) _

I

1
. Y*(l—m)
(S5 ()

|m|

n ; colp|
e~ Iml g ocolpl H Z ( >(Coe)zi g &0 eolplm] (5.216)
m;

— + —
i=11,>m; (1 — ecg)ml+n

(where I(I1,resp.) = {|1] > 1(2,resp.);1 > m}) for large enough v.
O
For k = 1, Ry = 0 and equation (5.91) is (5.190) (with p < z) but now
on the whole line RT. For small z the solution is given by (5.195) (note that
D; = d,,...,0) and so on) and depends on the free constant C' (5.195). We
choose a value for C' (the values of Y; on [0, €] are then determined) and we
write the equation of Y; for p > € as

n

A=1-pYi) =4 [ Yias= Y [ (¥0,6)D;0 - s)ds

€

=R(p) = ; Yl(s)ds+2/0 (Y1);(s)D;(p—s)ds (5.217)

(R only depends on the values of Y1(p) on [0, €]). We write

(1+J1)Y1=Q;'R (5.218)
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with Q1 = 1 — A + p. The operator J; is defined by (J1Y1)(p) :=0 for p < ¢,
while, for p > e we write

(J1Y1)(p) /Y1 ds—Z/ (Y1); — s)ds

By Proposition 5.165, Proposition 5.139 and the Banach algebra properties,
cf. §5.1, and noting that sup,. 1Q7Y = O(e™'), we find that (1 + .J;) is
invertible as an operator in L} since:

||:}1||ll L1 <bup||@ || HB||||1||,,+T7, ]ll_aX HD.HV —>Oabl/—>OO
J
Y Y p>e€ ISJSn

(5.219)
Given C, Y] is therefore uniquely determined from (5.218) as an LL(R™T)
function.
The analytic structure of Y for small z is contained in in (5.187), (5.187’).
As a result,

~C Z Lk+5), (5.220)

xrk+8

where Y77 a;2" is the series of a(z) near z = 0.
Correspondingly, we write (5.91) as

(14 Jx)Ye = Q; 'R (5.221)
with Qy := (A +p+ k) and

) =@ (B [ nesyis =3 [Tnyepi- s | G222

ilzgesg < sup 10 (BN + 0 max D31, ) (5229
Since sup, 1Q: | — 0 as k — oo we have
sup {||Jxll1,01 } — 0 as v — oo (5.224)
k>1
Thus,
Proposition 5.225 For large v, (14 Ji),k > 1 are simultaneously invertible

in LY, (cf. 5.224). Given Yo and C, Yy, k > 1 are uniquely determined and
moreover, for k > 2, the following estimate holds
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sup,>o Q5 |
SUPg>1 ”JkHL}J»—»

Ykl < 3— - IR&l = K[IR& | (5.226)

O

(Note: There is a one-parameter only freedom in Yi: a change in Yy can
be compensated by a corresponding change in C.)

Because of the condition > m = k in the definition of Ry, we get, by an
easy induction, the homogeneity relation with respect to the free constant C,

Y = chyl9=l = ohyy, (5.227)
Proposition 5.228 For any 6 > 0 there is a large enough v, so that

Ykl < 6% k=0,1,.. (5.229)
Fach Yy, is Laplace transformable and y, = L(Y)) solve (5.89).

Proof

We first show inductively that the Y} are bounded. Choose r small enough
and v large so that |[Yol||, < r. Note that in the expression of Ry, only Y;
with ¢ < k appear. We show by induction that || Y|, < r for all k. Using
(5.226), (5.91) the explanation to (5.89) and Proposition 5.214 we get

n
I¥klly < KRelly < 37 colllrh 3 1<% (Z (,i) Col> < (r(14eo)™) <7
[1]>1 Sm=k 1>1

(5.230)
if 7 is small which completes this induction step. But now if we look again
at (5.230) we see that in fact ||[Y|, < (r(1 + co)™)*. Choosing r small
enough, (and to that end, v large enough) the first part of Proposition 5.228
follows. Laplace transformability as well as the fact that yy solve (5.89) follow
immediately from (5.229) (observe again that, given k, there are only finitely
many terms in the sum in Ry).

O

Therefore,

Remark 5.231 The series
> CH(Yi-H) o (5.232)
k=0

is convergent in LY, for large v and thus the sum is Laplace transformable. By
Proposition 5.229 we have
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LY CHYyH)or =) Cre LY, (5.233)
k=0 k=0

is uniformly convergent for large x (together with its derivatives with respect
to x). Thus (by construction) (5.233) is a solution of (5.50).

O

(Alternatively, we could have checked in a straightforward way that the
series (5.232), truncated to order N is a solution of the convolution equation
(5.88) on the interval p € [0, N) and in view of the LL(R™) (or even L ) con-
vergence it has to be one of the general solutions of the convolution equation
and therefore provide a solution to (5.50).)

Proof of Proposition 5.112, ii)

We now show (5.114). This is done from the system (5.91) by induction
on k. For k = 0 and k = 1 the result follows from Proposition 5.132 and
Proposition 5.180. For the induction step we consider the operator Ji (5.222)
on the space

Q. ={Q:[0,¢) = C:Q(2) = 271 AL(2)} (5.234)

where Ay extends as an analytic function in a neighborhood D, of z = 0.
Endowed with the norm

Q| = sup [Ax(2)]
z€D,

Q). is a Banach space.

Remark 5.235 For k € N the operators Ji in (5.222) extend continuously
to Q, and their norm is O(e). The functions Ry, k € N (c¢f. (5.221), (5.91)),
belong to Q. Thus for k € N, Yy € Q.

If A, B are analytic then for z < €

/Z ds s"P71A(s)B(z — s) = 2P /1 dtt" A(zt)B(=z(1 —t)) (5.236)
0 0

is in Qx with norm O(e) and the assertion about Jj, follows easily. Therefore
Y € Oy if Ry € Qx. We prove both of these properties by induction and (by
the homogeneity of Ry and the fact that Ry depends only on Y,,,m < k)
this amounts to checking that if Y,, € Q,, and Y,, € Q,, then

Ym * Yn S Qm+n

as a result of the identity
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/Z dss"A(s)(z — 5)1B(z — s) = 2" T4} /1 dtt" (1 —t)7A(zt)B(z — zt)
0

0
O

It is now easy to see that LBy, ~ ¥i (cf. Theorem 5.119). Indeed, note
that in view of Remark 5.235 and Proposition 5.228, £(Y}) have asymptotic
power series that can be differentiated for large x in the positive half plane.
Since £(Y}) are actual solutions of the system (5.89) their asymptotic series
are formal solutions of (5.89) and by the uniqueness of the formal solution of
(5.89) once C' is given, the property follows.

In the next subsection, we prove that the general solution of the system
(5.89) can be obtained by means of Borel transform of formal series and
analytic continuation.

We define YT to be the function defined in Proposition 5.206, extended in
W NC* by the unique solution of (5.88) Yy provided by Proposition 5.132.
(We define Y~ correspondingly.)

By Proposition 5.206 4i), Y are solutions of (5.88) on [0,00) (cf. (5.205)).
By Lemma 5.186 any solution on [0,00) can be obtained from, say, YT by
choosing C and then solving uniquely (5.203) on [14¢€, 00) (Proposition 5.206).
We now show that the solutions of (5.218), (5.221) are continuous boundary
values of functions analytic in a region bounded by RT.

Remark 5.237 The function D(s) defined in (5.168) by substituting H =
Y*, s in Q5 o (cf (5.205)).

By Proposition 5.206, i) it is easy to check that if H is any function in
Q({A then Yt xQ ¢ ’ZBTA. Thus, with H = YT, all the terms in the infinite

sum in (5.168) are in Q;{A. For fixed A > 0, taking v large enough, the norm

py of Y' in L1 can be made arbitrarily small uniformly in all rays in SS: A
(5.205) (Proposition 5.206). Then by Corollary 5.140 and Proposition 5.206
1), the uniform norm of each term in the series

D= S 4G (Y5 + 3 Ligon (YE)™ 3 U i= (L 1oy o (ly — 1), )

[1>1 [11>2
(5.238)
can be estimated by Const p,, Uelll and thus the series converges uniformly
in Q% ~, for large v. O

Lemma 5.239 i) The system (5.91) with Yo = YT (or Y~ ) and given C
(say C = 1) has a unique solution in LL _(RT), namely Y,':, (Y, , resp.),
k € N. Purthermore, for large v and all k, Y, € Qoo (Yy € Q) (¢f.
(5.205)).

ii) The general solution of the equation (5.88) in L . (RT) can be written
in either of the forms:
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YO+ CHYS H)om or YT+ CH(YL - H)om, (5.240)
k=1 k=1

PROOF

i) The first part follows from the same arguments as Proposition 5.225.
For the last statement it is easy to see (cf. (5.236)) that Jg Q[{OO C QS:OO
the inequalities (5.223), (5.224) hold for [|||g, s—0, 4 (A arbitrary) replacing
Mz1—zy (cf. §5.1).

it) We already know that YT solves (5.91) for k = 0. For k > 0 by i)
C*Y}, € Qp o and so, by continuity, the boundary values of Yz on RT solve
the system (5.91) on RT in Ll . The rest of ii) follows from Lemma 5.186,

loc*

Proposition 5.206 and the arbitrariness of C' in (5.240) (cf. also (5.195).

5.11h  Analytic structure, resurgence, averaging

Having the general structure of the solutions of (5.88) given in Proposition
5.123 and in Lemma 5.239 we can obtain various analytic identities. The
function Y := Y* has been defined in the previous section.

Proposition 5.241 Form > 0,

- — (m+k
Ym—Y;+Z( o >S’5(an+k.H)om (5.242)
k=1
Proof.
Y, (p) is a particular solution of (5.88). It follows from Lemma 5.239 that
the following identity holds on R*:

Yo =Y]+ Y SEY - H)om (5.243)
k=1
since, by (5.126) and (5.113), (5.243) holds for p € (0, 2).
By Lemma 5.239 for any C; there is a C_ so that

Yo+ ) CHYy M) om = Yo + > CEH(Y, - H) o (5.244)
k=1 k=1

To find the relation between C, and C_ we take p € (1,2); we get, comparing
with (5.243):

Yi(p)+CiYilp—1) =Y, (p) +C_-Yi(p—1)=Cy =C_+ S5 (5.245)
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whence, for any C' € C,

Y +) (C+Sp)M Y - Hyome =Yg+ CHY, -H)om  (5.246)
k=1 k=1

Differentiating m times with respect to C' and taking C' = 0 we get

oo

k!

k=m

from which we obtain (5.242) by rearranging the terms and applying 7_,.

O
Proposition 5.247 The functions Yy, k > 0, are analytic in Rq.
PROOF
Starting with (5.243), if we take p € (1,2) and obtain:
Y, (p) =Yg () + S5 Yi(p— 1) (5.248)

By Proposition 5.206 and Lemma 5.239 the lhs of (5.248) is analytic in a
lower half plane neighborhood of (e,1 —¢), (Ve € (0,1)) and continuous in
the closure of such a neighborhood. The rhs is analytic in an upper half plane
neighborhood of (g,1—¢), (Ve € (0,1)) and continuous in the closure of such
a neighborhood. Thus, Y (p) can be analytically continued along a path
crossing the interval (1,2) from below, i.e., Y, exists and is analytic.

Now, in (5.243), let p € (2,3). Then,

SEY2(p—2)=Yo(p)” - Y(p)* - Y1(p— 1)t =
Yo(p)™ = Yo(»)" = Yo(p) " + Yo(p)" = Yo(p)” — Yolp)~" (5.249)
and, in general, taking p € (k,k + 1) we get

SEYr(p— k) = Yo(p)™ = Yo(p)~ * (5.250)

Using (5.250) inductively, the same arguments that we used for p € (0, 1) show

that Y k(p) can be continued analytically in the upper half plane. Thus, we
have

Remark 5.251 The function Yq is analytic in R1. In fact, forp € (4,5+1),
keN,

Yo ) = YE0) + Y S - ) (5.252)
k=1
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The relation (5.252) follows from (5.250) and (5.243).
I

Note: Unlike (5.243), the sum in (5.252) contains finitely many terms. For
instance we have:

Yit(p) =Y (p) +Hip— DY (p—1). (VpeRY) (5.253)

Analyticity of Y,,, m > 1 is shown inductively on m, using (5.242) and
following exactly the same course of proof as for k = 0.
O

Remark 5.254 If Sg3 =0 then Y}, are analytic in W; UN.

Indeed, this follows from (5.243) (5.242) and Lemma 5.239, ).
O

On the other hand, if Sz # 0, then all Y}, are analytic continuations of the
Borel transform of Yy (cf. (5.249)) -an instance of resurgence.
Moreover, we can now calculate Y5¢. By definition, (see the discussion before
Remark 5.183) on the interval (0, 2),

1 1

Now we are looking for a solution of (5.88) which satisfies the condition
(5.255). By comparing with Lemma 5.239, which gives the general form of
the solutions of (5.88), we get, now on the whole positive axis,

oo
1
Yo" =Yg+ ) 5rS5(Y M) ok (on RY) (5.256)
k=1

which we can rewrite using (5.250):

L

oo
b
YOa:YaL—’_ZQk
k

=1

(Yg’“ —Yg’“*) (H o) (5.257)

Proposition 5.258 Let ¢1(p),¥2(p) be analytic in Ry, and such that for any
path v =t — texp(ip(t)) in Rq,

[Y12(7(1)] < f5(1) € Lige(RY) (5.259)

Assume further that for some large enough v, M and any path v in Ri we
have

/ ol (s)e 19| ds] < M (5.260)
:
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Then the analytic continuation AC, (11 * ¢2) along a path v in R, of their
convolution product ¥ * 1o (defined for small p by (2.20)) exists, is locally
integrable and satisfies (5.259) and, for the same v and some ~y-independent
M' >0,

/ by # o (s)e ™19l ds| < M (5.261)
A

Proof. Since

2001 x g = (1 4+ 2) * (Y1 + 1P2) — Y1 x Y1 — Yy x o (5.262)
it is enough to take 11 = 15 = 1p. For p € RT\N we write:

T =9t (M) om (5.263)
k=1

”

The functions vy, are defined inductively (the superscripts “+,(-)” mean, as
before, the analytic continuations in R; going below(above) the real axis). In
the same way (5.250) was obtained we get by induction:

Y=~y oty (5.264)

where the equality holds on RT\N and +, — mean the upper and lower contin-
uations. For any p only finitely many terms in the sum in (5.263) are nonzero.
The sum is also convergent in |||, (by dominated convergence; note that, by
assumption, the functions ¢y~~~ ~% belong to the same L1).

If t — ~(t) in Ry, is a straight line, other than RT, then:

AC,(( 1)) = AC,(¢) *y AC,(v) if arg(vy(t))=constz 0 (5.265)

(Since % is analytic along such a line). The notation %, means (2.20) with
p=(t).

Note though that, suggestive as it might be, (5.265) is incorrect if the
condition stated there is not satisfied and ~ is a path that crosses the real
line (see the Appendix, Section 5.12a )!

We get from (5.265), (5.263)



204 Asymptotics and Borel summability

and now the analyticity of 9 1) in R4 follows: on the interval p € (m,m+1)
we have from (5.264)

) j k
Wx)” @) = (W) ®) = @) TG+ 3N (W * i) "0~ k)
e (5.267)

Again, formula (5.267) is useful for analytically continuing (1 * w) - along a
path as the one depicted in Fig. 5.1. By dominated convergence, (¢ * ¢)*
V(jg 007 (5.205). By (5.264), 1, are analytic in R} := Ry N {p: Im (p) > 0}
and thus by (5.265) the rhs. of (5.267) can be continued analytically in R .
The same is then true for (¢ % 1)~. The function (¢ * ¢) can be extended
analytically along paths that cross the real line from below. Likewise, (¢ *)*
can be continued analytically in the lower half plane so that (¢ x) is analytic
in Rl .

Combining (5.267), (5.265) and (5.262) we get a similar formula for the an-
alytic continuation of the convolution product of two functions, f, g satisfying
the assumptions of Proposition 5.258

. i k
(fxg) " T =fragt+) (H SO *g,j_m> 0Tk (5.268)

k=1 m=0
Note that (5.268) corresponds to (5.263) and in those notations we have:

(f*9), Z Fn * G (5.269)
Integrability as well as (5.261) follow from (5.264), (5.267) and Remark 5.139.

Ops.258
By (5.117) and (5.264),

1
wba — ¢+ + Z ﬁ(ng) O Tk
k=1
so that

o 2

grsgte = (743 (Mo om) =
k=1
¢+*w++22kHOTkZ m 0 Tm) * (Y, © Thmm) © T =

Yt agt +Z SHoT Z G # Yp—m) T 01 = ()P (5.270)

m=0
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To finish the proof of Theorem 5.119 note that on any finite interval the
sum in (5.117) has only a finite number of terms and by (5.270) balanced
averaging commutes with any finite sum of the type

Z Chy. kp Jley % oo % [k, (5.271)

E1yeoikin

and then, by continuity, with any sum of the form (5.271), with a finite or
infinite number of terms, provided it converges in L] .. Averaging thus com-
mutes with all the operations involved in the equations (5.221). By uniqueness
therefore, if Yo = Y% then Y}, = Y,’;‘l for all k. Preservation of reality is
immediate since (5.88), (5.91) are real if (5.50) is real, therefore Y§¢ is real-
valued on RT\N (since it is real-valued on [0, 1)U(1, 2)) and so are, inductively,
all Y.

5.12 Appendix
5.12a  AC(f *g) versus AC(f)* AC(g)
Typically, the analytic continuation along curve in W, which is not homo-

topic to a straight line does not commute with convolution.

Remark 5.272 Let ¢ be a function satisfying the conditions stated in Propo-
sition 5.258 and assume that p =1 is a branch point of 1. Then,

W) T AP T ayT (5.273)

Proof
Indeed, by (5.268) and (5.264)

W) " =yt L 2AWF k) H o F YT 2T =
[WF + (M) o] = vF s F +2[(T x ¥ Y H] o 71 + [H(] %9 )] o 7o

(5.274)

since in view of (5.264), in our assumptions, ¥, # 0 and thus ¥ x ¥ Z 0.
O

There is also the following intuitive reasoning leading to the same conclu-
sion. For a generic system of the form (5.50), p = 1 is a branch point of Yy
and so Yy # Yy . On the other hand, if AC_; commuted with convolution,
then £(Y, ) would provide a solution of (5.50). By Lemma 5.239, £(Y, ) is
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a different solution (since Yy # Y5 ). As Y, and Y, T coincide up to p = 2
we have £(Y; 1) — L(Yy) = e~ 2*(0+°(1) as 2 — +00. By Theorem 5.119
however, no two solutions of (5.50) can differ by less than e=*(1*+°(1) yyith-
out actually being equal (also, heuristically, this can be checked using formal
perturbation theory), contradiction.

5.12b  Derivation of the equations for the transseries for
general ODEs.

Consider first the scalar equation

v = folz) = Ay — 2 'By +g(x,y) = —y+ 2 'By+ Y _gr(z)y* (5.275)
k=1

For z — 400 we take

y = Zyke_’” (5.276)
k=0

where y; can be formal series x5+ ZZOZO agn,x” ", with ago # 0, or actual
functions with the condition that (5.276) converges uniformly. Let yo be the
first term in (5.276) and 6 = y — yp. We have

y* -y — i() 5 70 = f:(k) f: j (yie™™")

J=2 = M i1,ig=1s=1
> k (ms3) g
-7 L T eam)
=1 = (70) 5=
where Z( 7) means the sum over all positive integers i1, s, . . . ,t; satisfying

ihW+ia+---+i;=m. Letdy =), k:gkyg*l. Introducing y = yo + 6 in
(5.275) and equating the coefficients of e ' we get, by separating the terms
containing y; for [ > 1 and interchanging the j, k orders of summation,

Gt A1 — D)+ 2 B di(a ZZH%S 3 (’ngygf

J=2 (is) s=1  k>{2,}
L:3) g

J l
v > (?)gkyé“‘j =3 di(@)> [Jwi. (5.278)
j=2

J=2 (i) s=1  k>{2,j} (is) s=1

where for the middle equality we note that the infinite sum terminates because
is>1and >/ _ is=1
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For a vectorial equation like (5.50) we first write

y =fo(x) = Ay =27 "By + ) _ gi(x)y" (5.279)
k>0

with y* := [, (y)¥. As with (5.278), we introduce the transseries (5.110)
in (5.279) and equate the coefficients of exp(—k - Azx). Let vi = 27 %™y, and

1 .

dj(z) =) <> gi(x)vg (5.280)
> M

Noting that, by assumption, k- A = k’ - A & k = k’/ we obtain, for k € N™1|

k>0

I ([\ -k )JA+I*11§) Vi + Z dj(x)(vi)’

lil=1

=Y dix) Y I ﬁ (Vin,),, = te(v)  (5.281)

i<k (imp:k) m=1p=1

1j[=2
where () = [I}-, (;’), (V)m means the component m of v, and > ;
stands Fz)r the sum over all vectors i, € N*, with p < j,,,m < n, so that
imp = 0and >0 _, Z;’"l imp = k. We use the convention [[, =1,>7, = 0.
With m; =1 — |Re ;| we obtain for yi

L+ ([\ ~k-M+2Y(B+k- m)) Yiet Y di(@)(vi) = ta(y) (5.282)
lil=1

There are clearly finitely many terms in tx(y). To find a (not too unreal-
istic) upper bound for this number of terms, we compare with Z(imp), which

stands for the same as Z(imp) except with i > 0 instead of i > 0. Noting that

(k;rle) = Za1+...+aszk 1 is the number of ways k can be written as a sum of

s integers, we have

_ kz+IJ|1> <k|+|j 1)"1
<) 1= 1= < < (1
g;) <Z> zHl(Z) H il —1 il —1

(5.283)
Remark 5.284 Equation (5.281) can be written in the form (5.90)

Proof. The fact that only predecessors of k are involved in t(yg,-) and
the homogeneity property of t(yo,-) follow immediately by combining the
conditions ) imp = k and i, > 0. |
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The formal inverse Laplace transform of (5.282) is then

(-p+ A=k A) i+ (B+k-m) PYic+ > Dy (Vi) = Tw(Y)

lil=1

(5.285)

with

ni Im
Ti(Y) =T (Yo, {Yi bo<w=k) = Z D;(p) * Z H H (Yi,) o
j<k; lj|>1 (imp;k) m=1 p=1
(5.286)
and

1 *(1—m 1 *(1—m
D; =Y <m> Gy N (m) go Y ™) (5.287)
1>m

1>m;[1]>2

5.12c  Appendix: formal diagonalization

Consider again the equation
- 1 -
y' = fo(x) = Ay + —Ay + g(z.) (5.283)

If A is diagonalizable, then it can be easily diagonalized in (5.288) by the
substitution y = C'ym7 where = C~*AC is diagonal.

So we can assume that A is already diagonal. Now, a transformation of
the form y = (I + 2~ 1V)y brings (5.288), up to terms of order y/z2, to an
equation of the type

1 ~ ~ A ~ A
y' = fo(z) — Ay + . (A + VA - VA) y+glz,y) (5.289)

Now we regard the map

AV i=— VA -VA
as a linear map on the space of matrices V, or, which is the same, on C?".
The equation

AV =X (5.290)

has a unique solution iff X is not in the kernel of A, which by definition,

consists in all matrices such that AY = 0, or, in other words, all matrices
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which commute with A. Since the eigenvalues of A are distinct, it is easy

to check that AY = 0 implies YV is diagonal. So, we can change the off-
diagonal elements of A at will, in particular we can choose them to be zero.
By further transformations y = (I + 277 V)y[l], 7 = 2...m, we can diagonalize
the coefficients of z 2y, ...,z™™y.

So, we can assume all coefficients of =7y up to any fixed m are diagonal.
To show that we can actually assume the coefficients of =7y, j = 2...m, to
be zero it is then enough to show that this is possible for a scalar equation

1
Y = fo(z) — Ay + —Ay+ (Agz ™%+ 4+ Az ™)y + g(z,y) (5.291)

As usual, by subtracting terms, we can assume fo(z) = O(z~M) for any
choice of M, so for the purpose of this argument, we can see that we can
safely assume fj is absent.

1
y = —Ay+ ;Ay + (Agz ™2 -+ Az ™)y +g(2,9) (5.292)

Now, taking y = (1 + ¢1/x + ca/x? + - + ¢ /2™)yl where for suitable ¢
(check!).

*5.13 Appendix: The C*—algebra of staircase
distributions, D, ,

Let D be the space of test functions (compactly supported C>° functions on
(0,00)) and D(0, x) be the test functions on (0, ).

We say that f € D’ is a staircase distribution if for any k£ = 0,1,2, ...
there is an L' function on [0,k + 1] so that f = F*™ (in the sense of
distributions) when restricted to D(0,k + 1) or

F:=P™ fcLi(0,k+1) (5.293)

(since f € Li _[0,1—¢] and Pf is well defined, [22]). With this choice we have
Remark 5.294 This space is natural to singular convolution equations aris-
ing in ODEs. The solutions are generically singular when p = nA where A
is an eigenvalue of A and n € N. If the singularity at A is nonintegrable,
so are generically the singularities at multiples of it, and the strength of the
singularity (such as, the order of the pole) grows linearly in n.

Fyy1 =P™F, on [0,k] and F7(0) =0 for j <mk—1  (5.295)
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We denote these distributions by D}, (D}, (0, k) respectively, when restricted
to D(0, k)) and observe that (J,,,., D;, 2 5, the distributions of slow growth.
The inclusion is strict since any element of S’ is of finite order.

Let f € L'. Taking F = P’/ f € C’ we have, by integration by parts and
noting that the boundary terms vanish,

(FxF)(p) = /OP F(s)F(p—s)ds = /OP FO(yPIF(p—s)  (5.296)

so that F « F € C% and

(FxF)®) = fx f (5.297)
This motivates the following definition: for f, f €D, let
[ f = (F* F,) ™ in D0,k +1) (5.298)
We first check that the definition is consistent in the sense that
(Flg1 * Fk+1)(2m(k+1)) = (Fj, * Fk)(ka)

on D(0,k+1). For p < k+1 integrating by parts and using (5.295) we obtain

d2m(k+1)

p 9 & dzmk p
m —

The same argument shows that the definition is compatible with the embed-
ding of D}, in D, with m’ > m. Convolution is commutative and associative:
with f,g,h € D/, and identifying (f * g) and h by the natural inclusion with
elements in D}, we obtain (f % g) * h = ((F x G) x H)*™%) = f x (g% h).

Note 5.300 The construction is over R ; the delta distribution at zero for
istance is not obtained in this way.

The following staircase decomposition exists in D), .

Lemma 5.301 . For each f € D)., there is a unique sequence {Ai}i:(u
such that A; € L'(RT), A; = AjX(; 41 and

yeen

F=3 Al (5.302)
i=0
Also (¢f. (5.295)),
Fo= Y PA on [0,i+1) (5.303)

J<i
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Note that the infinite sum is D’—convergent since for a given test function
only a finite number of distributions are nonzero.

Proof
We start by showing (5.303). For ¢ = 0 we take Ag = FpX[0,1] (where
Fox[0,1] := ¢ — fol Fo(s)p(s)ds). Assuming (5.303) holds for i < n we
simply note that

An = Xty | Fn — Z Prr=iA,
j<n—1
= X[0,n+1] (Fn - Pm(anIX[o,n]D = Xin,n+1] (Fn - Pm(anlX[o,n]))
(5.304)

(wWith X[, oo F7n defined in the same way as Fox([0, 1] above) has, by the in-
duction hypothesis and (5.295) the required properties. Relation (5.302) is
immediate. It remains to show uniqueness. Assuming (5.302) holds for the
sequences A;, A; and restricting f to D(0,1) we see that Ag = Ap. Assuming
A; = A, for i < n we then have A — Almn) oy D(0,n + 1). It follows

([22]) that Ap(z) = Ap(x) + P(z) on [0,n + 1) where P is a polynomial (of

degree < mn). Since by definition A, (z) = A,(z) = 0 for z < n we have
A, = A, (). a

The expression (5.298) hints to decrease in regularity, but this is not the
case. In fact, we check that the regularity of convolution is not worse than
that of its arguments.

Remark 5.305
(-%+):Dp— D, (5.306)

Since

Xiab) * X[ar 1] = (X[a,b] * X[a’,b/]) Xata’,b+b/] (5.307)

we have

FsF = Z Pm(i—j)Aj % 'pm(i—k)Ak — Z Aj % fpm(2i—j—k)Ak

J+k<|p] J+k<|p]

(5.308)

which is manifestly in C?™=mU+k)[0, p) c C2mi=mLrl[0, p).
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5.13 .1 Norms on D/,
For f € D}, define

£ llvim = cm V™Al (5.309)
1=0

(the constant ¢,,, immaterial for the moment, is defined in (5.322). When
no confusion is possible we will simply write ||f||,, for ||f|l,..» and ||A][), for
ALy (no other norm is used for the A’s). Let D', ., be the distributions
in D}, such that || f]|, < oo.

Remark 5.310 || - ||, is a norm on D'y, ..

If || fll, = O for all 4, then A; = 0 whence f = 0. In view of Lemma 5.301 we
have ||0]|, = 0. All the other properties are immediate.

Remark 5.311 D', , is a Banach space. The topology given by || - ||, on
D'y, is stronger than the topology inherited from D'.

Proof. 1f we let Dy, ,(k,k + 1) be the subset of D', , where all A; = 0
except for ¢ = k, with the norm (5.309), we have

(o)
Dy = @D;W(k, k+1) (5.312)

k=0
and we only need to check completeness of each Dy, ,(k, k + 1) which is im-
mediate: on L[k, k + 1], || - ||, is equivalent to the usual L' norm and thus
if f, € Dy, ,(k,k+1) is a Cauchy sequence then Ay, Ly Ay (whence weak

Dy, ., (kk+1) (mk)

convergence) and f, — f where f = A", O

Lemma 5.313 The space D'y, , is a C* algebra with respect to convolution.

Proof. Let f, f € D, with

m,v
00 ) 00 )
=0 =0
Then
i,j=0 ,5=0

and the support of Ai*Aj isin [i4+4,i+7542] i.e. Ai*Aj = X[i+j,i+j+2]Ai*Aj'
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) -\ m(it))
We first evaluate the norm in D;, , of the terms ( A; * Aj) .

I. Decomposition formula. Let f = F("*) ¢ D'(R, ), where F € L'(R.),
and F' is supported in [k, k + 2] i.e., F' = X, y1o)F (kK = 0). Then f € Dy,
and the decomposition of f (cf. (5.302)) has the terms:

AO =A;=..= Ak—l =0 , Ak = X[k’kJrl]F (5315)

and

Ak+n = X[k+n,k+n,+1]Gn7 where Gn = 7)7” (X[k—‘,—n,oo)Gn*l) ) GO =F
(5.316)
Proof of the decomposition formula. We use first line of (2.98) of the paper

j—1
Aj = Xpjjt1] <Fj - ZP’”("’)Az) (5.317)
=0

where, in our case, Fy = F, Fyy1 = P™F, ..., Fyyp, = P™"F, ...
The relations (5.315) follow directly from (5.317). Formula (5.316) is shown
by induction on n. For n = 1 we have

Akt1 = Xppg1,p42) (P™ F =P Ag)

= X+ 1,521 P (X[k,oo)F - X[k,k+1]F> = Xppt1,642] P (X[k+l,oo)F)

Assume (5.316) holds for Ay, j < n—1. Using (5.317), with X = X340 g+n+1)
we have

n—1

Apin =X (Pm”F - Pm("‘i)AZ) = XP" (Gno1 — Ap1)

i=k

= Xer (X[kJrnfl,oo)Gn—l - X[k+n71,k+n]Gn—1) = Xme (X[k+n,oo)Gn—1) |
II. Estimating Ay.,. For f asin I, we have
1Akslle <v™™IFIL  ([Akralls < v 2™ F]l, (5.318)

and, for n > 3

1

A Wl < 2v—nv -1 nm—1
kially < e =1y

1] (5.319)

Proof of estimates of Agyn.-
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(A) Case n = 1.

k+2
1l < [ dte P (X 1) (0
k+1

k+2 t s1 Sm—1
/ dteﬂ’t/ dsl/ dsz.../ dsm|F(sm)]
k+1 k41 k+1 k+1
k42 [e%) [e%) %)
S/ dsm\F(sm)|/ dsm_l.../ dsl/ dte vt
k+1 Sm. D) S1

k+2
= / dsm|F (sm)|e 5 mrv=™ <v™™||F||, (5.320)
k+1

(B) Case n = 2:

k+3
Ak v S/ dte_”th OO'Pm o F
esill < (Xper2o)P™ (X100 F1))

k+3 t t1 tm—1
:/ dte"’t/ dtl/ dtg.../ dtom,
k+2 k+2 k+2 k+2

tm S1 Sm—1
X / ds; / dss / dSm|F (8m)]
k41 k1 k41

k+3 ) ) )
</ dsm|F(sm)\/ dsm,l.../ dsl/ dt,
k+2 S So max{si,k+2}

oo oo
X / dtpm_1 / dte "t
t t1

m

k+3 o) o)
:/ dsm|F(sm)| dsm,l.../ dsqe v max{si,k+2},, —m—1
k+2 Sm S2

k+3 o) %)
S/ dsm|F(sm)| / dSpm—_1 / dsge V522
k42 Sm 53

k+3
_ / | F(5)|e™"*mv=2m
k42

(C) Case n > 3. We first estimate Ga, ..., Gy:

G201 < P™ (X200 P™ (Xpis1.000 F1) ) ()
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t ty tm—1 tm S1 Sm—1
= / dtl / dtg / dtm / dSl / ng / d8m|F(Sm)‘
k+2 k+2 k+2 k+1 k+1 k+1

and using the inequality
|F(sm)] = [F (5m) Xt o2 (5m) < [F(sm)]e™om e+

we get

t t1
Ga)] < e E )P, [ dny / dty ...
k1 k+1
tm—1 tm s1 Sm_2
X/ dtm/ dsl/ dsz.../ dsm—1
k+1 k+1 k+1 k41

t ty tm—1
Ga(t)] < e"<k+2>||F||V/ i [ dt / dt,,
k+1 k+1 k+1

tm S1 Sm—2
X / d81 / ng ,/ dsm_l
k+1 k+1 k+1

1

— ey(k+2)”FHy(t — k= 1)2m—1 (2m — 1)'

The estimate of G2 is used for bounding Gj:

Ga()] £ P™ (Xjisa.00)|G2l) <P (Xpsr.o0)|G2)

1
< pv(k+2) F ,,t—k—lgm_l
< DB (= k= )
and similarly (by induction)
1
Gnt < v(k+2) Fll,t—k—1 nm—-1___ -+
Gult)] < P 0=k = 1)

Then

o2 1 k+n+1 . .
||Ak+n||u§€y( + )||F||’/(Wrn_1)'/k+n dte ™ (t—k—l)nm7

and, for v > m the integrand is decreasing, and the inequality (5.319) follows.
ITI. Final Estimate. Let 1y > m be fixed. For f as in I, we have for any
v > 1,

/1 < cmt*™ (| ], (5.321)
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for some ¢, if v > vy > m.
Proof of Final Estimate

(n _ 1)nm71

B kmkn km nm 2v—nv
A= SCoAmn Al < A7 [P |34 3 vmme (nm — 1),

n>0 n>3

and, using n — 1 < (mn — 1)/m and a crude Stirling estimate we obtain

A< AN {34 me =t ST (@ o fm™)" | < et (5.322)

n>3

Thus (5.321) is proven for v > vy > m.
End of the proof. From (5.314) and (5.321) we get

- 0 ~ m(i+j)
1Al 3 1 (ace A)™)

,j=0

oo oo
< > ™A Al < e D v DAL 1A = LI
i,5=0 i,5=0

O

Remark 5.323 Let f € D,,, for some v > vy where vj* = e”. Then
f €D, foralv' >v and furthermore,

1fll, 10 asv T oo (5.324)

Proof. We have

k+1 1
mG/ |Ak(s)le™"*ds = (l/me_”)k/ |Ak(s+k)le™"*ds  (5.325)
k 0

which is decreasing in v. The rest follows from the monotone convergence
theorem. 0O

5.13 .2 Embedding of L. in D!

m

Lemma 5.326 i) Let f € L}, (cf. Remark 5.323). Then f € D, , for all
V> 1.
i) D(RT\N) N LL(RT) is dense in Dy, ,, with respect to the norm |||, .
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Proof.
Note that if for some 1y we have f € L}, (R") then

/ |f(s)lds < e”“’/ [f(s)le™*ds < e"P|[ f]|u, (5.327)
0 0

to which, application of P*~1 yields

PHF < v ¥ e £l (5.328)

AlS0, PX(y00)€”" < 07 X [,00)€"7 50 that

P X(00)€”"" < Y0~ ™ X 001 €”"" (5.329)

so that, by (5.304) (where now F,, and X, oo Fn are in L .(0,n+1)) we have
forn > 1,

[Anl < 1100”20 ™™ X s1] (5.330)

Let now v be large enough. We have

oo [ee) oo n+1 v P
Z an/ 1A, le™Pdp < vollf llue Z / o= (v=r0)p (VO) dp
n=2 0 n=2v"

e—Z(V—yg—ln(V/yo))

T - 1n(V/VO)V0||f||VO (5.331)

For n = 0 we simply have ||Ag| < ||f|l, while for n = 1 we write

1AL < 1D £l < v Ml (5.332)

Combining the estimates above, the proof of (i) is complete. To show (ii),
let f € D,,, and let k. be such that ¢, > 72, v"™[|Aill, < e. For each

i < k. we take a function &; in D(4,i + 1) such that ||§; — A;||, < €27 Then
1f = 328§ 8 s < 2e. -

Proof of continuity of f(p) — pf(p). If f(p) = > rep A,(:nk) then pf =

S ro(pAR) =3 mkP(A™)= 3R o (pAL™) 1535 (mk A ).
The rest is obvious from continuity of convolution, the embedding shown
above and the definition of the norms.






Chapter 6

Asymptotic and transasymptotic
matching; formation of singularities

Transasymptotic matching stands for matching at the level of transseries.
Matching can be exact, in that a BE summable transseries, valid in one region,
is matched to another BE summable transseries, valid in an adjacent region, or
asymptotic, when a transseries is matched to a classical asymptotic expansion.
An example of exact matching is (5.121), with the connection formula (5.122),
valid for systems of ODEs. In this case the two transseries exactly represent
one function, and the process is very similar to analytic continuation; it is a
process of continuation through transseries.

The collection of matched transseries represents exactly the function on the
union of their domain of validity. For linear ODEs, matching is global, in that
it is valid in a full (ramified, since the solution might not be single valued)
neighborhood of infinity. In this case, by the results in §5 we see that for any
¢ we have

y=LyY] + Y CrekArgker yl (6.1)
|k|=1

(where if ¢ corresponds to a Stokes line, £, is understood as the balanced
average) and transitions of the form (5.122) occur at Stokes rays, where the
constant that changes is the one corresponding to \;, where \;x is real and
positive. The representation is uniform in a ramified neighborhood of infinity.

We emphasized linear, since solutions of nonlinear ODEs usually develop
infinitely many singularities as we shall see, and even natural boundaries
in a neighborhood of infinity, and in the latter case transasymptotic matching
often ends there (though at times it suggests pseudo-analytic continuation
formulas.) The information contained in the transseries suffices to determine,
very accurately for large values of the variable, the position and often the type
of singularities. We first look at a number of simple examples, which should
provide the main ideas for a more general analysis, found in [23] together with
rigorous proofs.

A simple example of transasymptotic matching showing formation of sin-
gularities, for linear difference equations, is seen in §4.4e .

219
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6.0a Transseries and singularities. Discussion

For nonlinear systems, a solution described by a transseries in some sector,
usually forms quasiperiodic arrays of singularities on the edges of formal va-
lidity of the transseries. (Note that the change seen in (5.122) lies well within
the domain of validity of the transseries.)

Assume y’ = f(1/z,y) is a nonlinear system, with an irregular singularity
at infinity, and which is amenable to the normal form studied in §5. Assume
t = x” is the critical time needed for normalization and yq is a solution which
decays along a Stokes line, take it to be R*. Then this solution generically
develops arrays of singularities near the line " € iR; the singularity position
is, to leading order, periodic in z". The precise location is a function of the
constant C in the transseries, that is on the size of exponentially small terms
on the Stokes line.

These actual singularities are reflections of the Borel plane singularities.
Say, the equation is of the form

Y =Ny + A1 /z,y) (6.2)

with A > 0, A(21,22) analytic at 0, nonlinear in 2o and of order O(2%, 23) for
small z. Written as a system, (6.2) satisfies the assumptions in §5. Then,
there is a one parameter family of solutions y(z;C) which decay in H and
these, by § 5, and in the notations there, can be written in the form

o
y(—)i- + Z Cke—Akmyl—ci- (x)
k=1

where yy, are Borel summed series. When Az ~ i|z|+In C, the exponentials be-
come O(1) and the sum in (6.2) usually diverges. Then, see Proposition 6.19,
y(z, C) is singular at all points in an array asymptotically given by

Tp=A"12n7mi +InC) +c1 +o(l) (n— +00) (6.3)

and it is analytic inbetween the points in the array, where ¢; depends only on
the equation. This is a “first” array of singularities and to the left of it others
arrays can be found similarly.

Note, in comparison, that the singularities of £~ 'y, are located at p, =
nA,n € Z\ {0}.

See also (6.65), valid for the Painlevé equation P; and Fig. 6.3.
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6.1 Transseries reexpansion and singularities. Abel’s equa-
tion.

We examine Abel’s equation (5.51); its normal form is (5.58). We write the
decaying formal asymptotic series solution as

o0
y~ 3 “;;0 = fol(x) (6.4)
j=2

where a;o can be determined algorithmically, and their values are immaterial
for now. If yg is a particular solution to (5.57) with asymptotic series g then,
yo and yp + 0 will have the same asymptotic series if § = o(x™™) for any n,
i.e, if  is a term beyond all orders for the asymptotic series y. Furthermore,
0 satisfies

1
ox
which has the solution § ~ Cz'/®¢~*  where C is an arbitrary constant. The
full transseries solution is obtained as usual by substituting

8 =-6+—90 (6.5)

Yy = yo+ Z CF gh/Pehke 4 (6.6)
k=1

in (5.57) and equating coefficients of e™** to determine a set of differential
equations for yg, in which we look for solutions which are not exponentially
growing in H; the only such solutions are of the form

yp(z) ~ Za;’jk = gr(x) (6.7)
3=0

Arbitrariness only appears in the choice of ag 1; all other coefficients are de-
termined recursively. Since C' is arbitrary, there is no loss of generality in
setting ap,1 = 1. We rewrite the transseries (6.6) in the form

Jo(z) + Y CHE" () (6.8)
k=1
with € = 2'/%¢~*. By Theorem 5.65, (6.8) is Borel summable and
oo
y=w() + Y C'¢ plx) (6.9)
k=1

where
ye(z) = LY = /e_mYk(p)dp = LBy (6.10)
c
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and
Yy (p) = Blg] (6.11)

By the definition of Borel summation, the contours in the Laplace trans-
forms in (6.10) are taken so that —pz is real and negative. Thus, analytic
continuation in x in the upper half plane involves simultaneous analytic con-
tinuation in p in the lower half plane. We note, again using Theorem 5.65
that Yy, are analytic C\R™. Then, y; are analytic in z (and bounded by some
c*) in a sector with angles (—7/2,57/2).

Convergence of the series (6.8) depends in an essential way on the size of
effective variable £. The solution y(x) is analytic in a sector in H of any
angle < m. But & becomes large in the left half plane. The series is not
expected to converge there.

The key to understanding the behavior of y(z) for « beyond its analyticity
region is to look carefully at the borderline region, where (6.9) barely con-
verges, and see what expansion is adequate there and beyond. Convergence
is marginal along curves so that £ is small enough, but as |z|] — oo, is
nevertheless larger than all negative powers of x. In this case, any term in
the transseries of the form ¢Fag . is larger than any other term of the form
gl aj’la?_j, if k,I > 0and j > 0. Then though the transseries is still valid,
and its summation converges, the terms are disordered: smaller terms are
followed by both smaller and larger terms.

The natural thing to do is to properly reorder the terms. This will give the
expansion in a form that is suited for this marginal region, and as it turns
out, beyond it as well.

In the aforementioned domain, the largest terms are those containing no
inverse power of x, namely

y(@) ~ > &Fagr = Fy(9) (6.12)

k>0

Next in line, insofar as orders of magnitudes are concerned, are the terms
containing only the first power of 2~ and any power of ¢, followed by the
group of terms containing =2 and any power of ¢ and so on. The result is

y(x) ~ Zm‘j Zﬁkaj’k = Z £(©) (6.13)
k=0

xJ
J=0 J=0

This is a new type of expansion.

It is intuitively clear that the region of validity of (6.13), while overlapping
as expected with the transseries region, goes beyond it. This is because unless
& approaches some singular value of Fj, F; is much smaller than z. By the
same token, we can read, with high accuracy, the location of the singularities
of y from this expansion. All this will be phrased rigorously in §6.5.

The new expansion (6.13) will usually break down further on, in which case
we do exactly the same, namely push the expansion close to its boundary
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of validity, rearrange the terms there and obtaining a new expansion. This
works until true singularities of y are reached.

The expansion (6.13) has a two-scale structure, with scales £ and x, with
the &-series of each Fj analytic in £ for small . This may seem paradoxical, as
it suggests that we have started with a series with zero radius of convergence
and ended up, by mere rearrangement, with a convergent one. This is not the
case. The new series still diverges factorially, because the Fy as a function of
k grow factorially.

6.2 Determining the ¢ reexpansion in practice

In §6.1 we have found (6.13) by rearranging the series by hand. This pro-
cedure is quite cumbersome; there is a better way to obtain (6.13).

Namely, now that we know how the expansion should look like, we can
substitute (6.13) in the original differential equation and identify the terms
order by order in 1/z, thinking of £ as an independent variable. In view of
the simple changes of coordinates involved, we can make this substitution in
(5.56), which is simpler.

We obtain
UF) = (3Fy)® — 1; F}(0) =1; Fy(0) =1/3 (6.14)
while for £ > 1 we have
—&¢F + 9F3F, = (k —1- g) Fl o+ Y F,F,F (6.15)
J1+is+ist+iz=k
Ji#0

The condition F}(0) = 1 comes from the fact that the coefficient of & =
Ce~*z'/5 in the transseries is one, while Fy(0) = h(cc). Of course, the
equation for Fy can be solved in closed form. First we treat it abstractly. If
we take Fy = 1/3 4+ G, then it can be written in integral form as

£
G=1+3¢ / (G2(s) + G3(s))ds (6.16)
0

which is contractive in the ball of radius say 2 in the sup norm of functions
analytic in £ for |£| < €, for small enough e. Thus Fy is analytic in £ small,
that is, the series (6.12) converges.

We see that the equations for F}, are linear.

Exercise 6.17 Show that for £ = 1 we have a one parameter family of so-
lutions which are analytic at £ = 0, of the form —1/15 + ¢£ + ---. There
is a choice of ¢; so that the equation for Fy has a one-parameter family of
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solutions analytic at & = 0, parameterized by co, and by induction there is
a choice of ¢ so that the equation for Fjy; has a one-parameter family of
solutions parameterized by ci1 and so on.

Remark 6.18 With this choice of constants, clearly, F; is singular only if
Fy is singular.

6.3 Conditions for formation of singularities

Proposition 6.19 Let A\ =1 and &€ = x®e~*. Assume Fy is not entire (this
is generic 1). Say the unit disk Dy is the mazimal disk containing & = 0
where Fy 1s analytic, 2 and assume & € 0Dy is a singular point of Fy with the
property that Fy admits analytic continuation in a neighborhood of &. Then
y is singular at infinitely many points, asymptotically given by

Tp =2nmi 4+ a1 In(2nmi) + InCy — Inéy + o(1) (n — o0) (6.20)
Remark 6.21 We note that asymptotically y is a function of £ = Ce *z“.
This means that

1. The boundary of analyticity of Fp, the unit circle, translates in a bound-
ary of analyticity of y near the imaginary line (the image of 91 under
In, as —z+alnz =2nmi+1né —InC + o(1)).

2. The singularities are repeated nearly periodically, since the y depends
x

on x through the 27i- periodic variable e™*.
We need the following result which is in some sense a converse of Morera’s
theorem.

Lemma 6.22 Let B, = {£: [§| < r} and assume that f() is analytic on the
universal covering of B,\{0}. Assume further that for any circle around zero
C C B,\{0} and any g(§) analytic in B, we have §, f(&)g(§)dé = 0. Then f
s in fact analytic in B,.

PROOF Let a € B \{0}. It follows that ff f(s)ds is single-valued in
B,\{0}. Thus f is single-valued and, by Morera’s theorem, analytic in B,\{0}.
Since by assumption fc f(&)§rdE = 0 for all n > 0, there are no negative
powers of ¢ in the Laurent series of f(£) about zero: f extends as an analytic
function at zero.

1 After suitable changes of variables, see comments after Theorem 6.58.
2By Theorem 6.58 Fy is always analytic at zero.
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PROOF of Proposition 6.19

By lemma 6.22 there is a circle C around s and a function g(&) analytic
in B, (§ — &) so that ¢, Fy(£)g(£)dé = 1. In a neighborhood of z,, € X the
function f(x) =e %z is conformal and for large =,

9(f(z))
7€w0)y(x) f(z) e

- ;i (14 03 ) (Fo(€) + O Ng(€)de = 1+ 0(z; ) #0  (6.23)

It follows from lemma 4.158 that for large enough z, y(x) is not analytic
inside C either. Since the radius of C can be taken o(1) the result follows.

Remark 6.24 Proposition 6.19 clearly extends to the case where Fjy and y
are vectors.

Exercise 6.25 (*) Let X > 0 be large and € > 0 be small. The expansion
(6.12) is asymptotic along any curve of the form in Fig. 6.2, if with the
properties

e |z| > X along the curve, the length of the curve is O(X™) and no
singularity of Fj is approached at a distance less than e.

For example, a contractive mapping integral equation can be written for the
remainder

N
y(x) = E ; (f) (6.26)
j=0

for N conveniently large.

6.4 Abel’s equation, continued

Proposition 6.27 (i) The solutions u = u(z; C) of 5.51 which have algebraic
behavior in the right half plane have the asymptotic expansion

25k/3

u(z) ~ 243 12—5/3 N B (C€(2))
(2) <1+9 +kZ:O >

(as z —00; z€Ryke) (6.28)

where
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£(z) = 2(2)Y%e*3) | and z(z) = —§z5/3 (6.29)
(i) In the “steep ascent” strips arg(§) € (a1,a2), lag — a1| < 7 starting
in Ak (see p. 228) and crossing the boundary of Ak, the function u has at
most one singularity, when &(z) = & or &, and u(z) = 2/3e®*2™/3(1 + o(1))
as z — oo (the sign is determined by arg(€)).
(i) Up to obvious changes of variables, the singularities of u(z;C), for
C # 0, are located within o(1) of the singularities of Fy, which are described
in §6.4a .

Let f = Fy — 1/3. The equation for f(&) is, cf. (6.48),

§f = fF(1+3f+3f2); fo)=1 (6.30)
so that

€=&F(E)(f(&) +wo) (f(&) +wp) " (6.31)

with & = 3~1/2 exp(—%ﬂ'\/g)7 wo =3+ i\ég and 6 = —i—i?. and, cf. (6.49),

1
2

EF] = (3f + 1)*Fy + Ri(f, ..., Fu—1)
( for k > 1 and where Ry = % ) (6.32)
The functions Fy, k > 1 can also be obtained in closed form, order by order.

Remark 6.33 By Theorem 6.58 below, the relation y ~ g holds in the sector
Ss, ={z € C:arg(z) > —g +9, |Cz'/%e < 6}

for some §; > 0 and any small § > 0. Theorem 6.58 also ensures that y ~ ¢
holds in fact on a larger region, surrounding singularities of Fyy (and thus of y).
To apply this result we need the surface of analyticity of Fj; and an estimate
for the location of its singularities. We postpone its formulation which needs
more notation, until the study of particular examples motivates that.

Lemma 6.34 (i) The function Fy is analytic on the universal covering R=
C\ Z 3 where

E={& = (1) & exp(pemV/3) 1 p1p € 7} (6.35)

3This consists in classes of curves in C \ Z, where two curves are not considered distinct if
they can be continuously deformed into each-other without crossing =.
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and its singularities are algebraic of order —1/2, located at points lying above
=. Fig. 6.4a sketches the Riemann surface associated to Fy.

(i) (The first Riemann sheet.) The function Fy is analytic in C\ ((—oo7 &olu
€1,0)).

6.4a  Singularities of Fj

The rhs of (6.14) is analytic except at Fy = oo, thus Fj is analytic except
at points where Fy — oo. From (6.31) it follows that limp, o & € E and
(i) follows straightforwardly; in particular, as & — &, € = we have (£ —
E)V2Fy(€) — /=& /6.

(ii) We now examine on which sheets in Rz these singularities are located,
and start with a study of the first Riemann sheet (where Fy(£) = £+0(£?) for
small §). Finding which of the points &, are singularities of F on the first sheet
can be rephrased in the following way. On which constant phase (equivalently,
steepest ascent/descent) paths of £(Fp), which extend to | Fy| = oo in the plane
Fy, is £(Fp) uniformly bounded?

Constant phase paths are governed by the equation Im (dIn¢) = 0. Thus,
denoting Fy = X +iY, since £’ /€ = (Fy + 3F§ + ?)Fg’)_1 one is led to the real
differential equation Im (¢'/£)dX + Re (£'/¢)dY = 0 (cf. §3.6a ), or

Y (146X +9X? - 3Y?)dX
— (X +3X%-3Y?+3X% - 9XY?HdY =0 (6.36)

We are interested in the field lines of (6.36) which extend to infinity. Noting
that the singularities of the field are (0,0) (unstable node, in a natural pa-
rameterization) and Py = (—1/2,++/3/6) (stable foci, corresponding to —@p
and —uwy), the phase portrait is easy to draw (see Fig. 6.4a ) and there are
only two curves starting at (0,0) so that |Fy| — oo, & bounded, namely +R™,
along which & — &y and £ — &, respectively.

Fig. 6.4a encodes the structure of singularities of Fy on Rz in the following
way. A given class v € Rz can be represented by a curve composed of rays
and arcs of circle. In Fig. 6.4a , in the Fy-plane, this corresponds to a curve
~" composed of constant phase (dark gray) lines or constant modulus (light
gray) lines. Curves in Rg terminating at singularities of Fy correspond in Fig
2. to curves so that |Fy| — oo (the four dark gray separatrices Sy, ..., Sy).
Thus to calculate, on a particular Riemann sheet of R=, where Fj is singular,
one needs to find the limit of £ in (6.31), as Fy — oo along along +' followed
by S;. This is straightforward, since the branch of the complex powers 6, 6, is
calculated easily from the index of " with respect to P.

Remark 6.33 can now be applied on relatively compact subdomains of Rz
and used to determine a uniform asymptotic representation y ~ g in domains
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surrounding singularities of y(z), and to obtain their asymptotic location.
Going back to the original variables, similar information on u(z) follows. Let

D={[¢| <K [&&(=00,61) U (6o, +20) , [§ =&l > €[§—&i] >€} (6.37)

(for any small € > 0 and large positive K) the corresponding domain in the
z-plane is shown in Fig. 6.3.

In general, we fix € > 0 small, and some K > 0 and define Ax = {z : argz €
(&7 —0,%57+0), |£(2)] < K} and let Rk = be the universal covering of
ENAg and R,.x . the corresponding Riemann surface in the z plane, with
e— neighborhoods of the points projecting on z(z(Z)) deleted.

Applying Remark 6.33 to (5.57) it follows that for n — oo, a given solution
y is singular at points &, , such that &(Z,,)/& = 14 o(1) (|Zp,n| large).

Now, y can only be singular if |y| — oo (otherwise the rhs of (5.57) is
analytic). If Z,, is a point where y is unbounded, with § = = — %,,, and
v =1/y we have

dé

dv
where Fy is analytic near (0,0). It is easy to see that this differential equation
has a unique solution with 6(0) = 0 and that ¢’(0) = 0 as well.

The result is then that the singularities of u are also algebraic of order
-1/2.

vF(v,9) (6.38)

Proposition 6.39 If zy is a singularity of u(z; C) then in a neighborhood of
zp we have

u=4/=1/2(z — 20) "2 Ao((z — 20)"/?) (6.40)

where Ag is analytic at zero and Ag(0) = 1.

Notes. 1. The local behavior near a singularity could have been guessed
by local Painlevé analysis and the method of dominant balance, with the
standard ansatz near a singularity, u ~ Const.(z — z9)P. The results however
are global: Proposition 6.27 gives the behavior of a fized solution at infinitely
many singularities, and gives the position of these singularities as soon as C;
(or the position of only one of these singularities) is known (and in addition
show that the power behavior ansatz is correct in this case).

2. By the substitution y = v/(1 4 v) in (5.57) we get

v3

f=—p—27
v v 1+U

1
—100% + =t gttt v) (6.41)

The singularities of v are at the points where v(t) = —1.
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FIGURE 6.1: The dark lines represent the phase portrait of (6.36), as well
as the lines of steepest variation of |£(u)|. The light gray lines correspond to
the orthogonal field, and to the lines |£(u)| = const.
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3. It is not always the case that the singularities of y must be of the same
type as the singularities of F;;. The position, as we argued is asymptotically
the same, but near singularities the expansion (6.13) becomes invalid and it
must either be re-matched to an expansion valid near singularities or, again,
we can rely on the differential equation to see what these singularities are.

Further examples and discussions follow, in §6.6a and §6.6b .

6.5 General case

The setting is that of § 5. The region where the formal or summed transseries
is valid is

Sy = {x € C; if C; # 0 then e N = o(1),j =1, ,n} (6.42)

This sector might be the whole C if all C; = 0; otherwise it lies between two
antistokes lines, and has opening at most .

If we have normalized the equation in such a way that Ay = 1, and A\,
is the eigenvalue in the fourth quadrant (if there is such an eigenvalue) with
the most negative angle, then in the upper half plane, S; will be controlled,
roughly, by the condition Re (\,,z) > 0 (x). If we examine the first quadrant,
it is now convenient to rotate again the independent variable so that the first
eigenvalue for which (*) fails is A;. Since originally no exponentials associated
with A; belonging to the second or third quadrant were allowed, then after
this new rotation there will be no eigenvalue in the fourth quadrant, and the
region of validity in the first quadrant would be, roughly, up to the imaginary
line.

6.5a Notation
‘We recall that
y(z) = Y CkeMkegkey (z) = 3 " Cre Mgk LBy, () = LBy ()

k>0 k>0
(6.43)

for some constants C € C", where M; = |[Rea; | +1 (|-] is the integer part),
and

Yi(x) = i Vicg (6.44)

All terms in (6.43) with k not a multiple of e = (1,0, ..., 0) are subdominant
(small). Thus, for x near iR™ we only need to look at
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[1] ch —kx kalyk ( ) (6.45)

k>0

As in the first order example analyzed before, the region of convergence
of (6. 45) (thus of (6.43)) is then determined by the effective variable £ =
Cre "2 (since Yge, ~ S’kel;o/wk(al_Ml)). As in the simple examples at the
beginning of the chapter, the leading behavior of y!!! is expected to be

yU(@) ~ ) (Cre™ 2% ) 8,0 = Fo(€) (6.46)

k>0

(cf. (6.44)); moreover, taking into account all terms in Sie, we get

Zx—rz S oy EZF%@ (6.47)
k=0

r=0 j=0

6.5b  The recursive system for F,,

The functions F,,, are determined recursively, from their differential equa-
tion. Formally the calculation is the following.

The series F = 3 . "F,,(£) is a formal solution of (5.288); substi-
tution in the equation and identification of coefficients of =" yields the

recursive system

d 1 (4
Po=" (AF -8 F0))  (6.49)
g NP = SR, R form > 1 (6.49)
df m m — 1dg m—1 m—1 T = .
where N is the matrix
¢ 1 (0yg(0,Fo) — A) (6.50)

and the function R,,,—1(£) depends only on the Fy with & < m:

N 1 dm
_ _ _ J
Ry = — |(m 1)I+A} Fpot = ———g | = Z AF; (6.51)
z=0
For more detail see [23] Section 4.3.
To leading order we have y ~ Fy where F satisfies the autonomous (after
a substitution ¢ = e¢) equation
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Fl, = AF, — g(0,Fy)

which can be solved in closed form for first order equations (n = 1) (the
equation for Fj is separable, and for k > 1 the equations are linear), as well
as in other interesting cases (see e.g. §6.6b ).

To determine the F,,’s associated to y we first note that these functions
are analytic at & = 0 (cf. Theorem 6.58). Denoting by Fy,;, 5 = 1,..,n
the components of F,,, a simple calculation shows that (6.48) has a unique
analytic solution satisfying Fy1(€) = £ + O(&?) and Fy ;(§) = O(&?) for j =
2,..,n. For m = 1, there is a one parameter family of solutions of (6.49)
having a Taylor series at £ = 0, and they have the form F 1(£) = c1£ + O(&?)
and I ;(€) = O(€?) for j = 2,...,n. The parameter c; is determined from the
condition that (6.49) has an analytic solution for m = 2. For this value of ¢;
there is a one parameter family of solutions Fy analytic at £ = 0 and this new
parameter is determined by analyzing the equation of F3. The procedure can
be continued to any order in m, in the same way; in particular, the constant
Cm 1s only determined at step m+1 from the condition of analyticity of F,,41.

6.5¢c  General results and properties of the F,,

We describe in detail the results but omit many proofs, given in [23] which
roughly follow the lines sketched in §6.1, but are rather lengthy.

Let d be a direction in the z-plane which is not not an antistokes line.
Consider a solution y(x) of (5.288) satisfying the assumptions in §5.6a . We
define

S, =8, (y(x);e) =S U S~ (6.52)

where

£ ={wslal > R, arg(e) € [~ Fe, 5 F o and

|Cj_e*)‘ﬂxaﬂ'| <o lforj=1, ,n} (6.53)

We use the representation of y as summation of its transseries y(x) (5.62)
in the direction d. Let

Pik=A—k-A, j=1,.,m , kezZM (6.54)

For simplicity we assume, what is generically the case, that no pj;i lies on the
antistokes lines bounding S;.

We assume that not all parameters C; are zero, say C; # 0. Then S; is
bounded by two antistokes lines and its opening is at most .

We arrange that

(a) arg(A1) < arg(A2) < ... < arg(An,)

and, by construction,

(b) Im A\ > 0.
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The solution y(z) is then analytic in a region S,.

The locations of singularities of y(z) depend on the constant C; (constant
which may change when we cross the Stokes line R*). We need its value in
the sector between RT and iR, , the next Stokes line.

Fix some small, positive § and c¢. Denote

E=¢(x) = Cre Fa™ (6.55)

and

Ez{x;arg(x)e —1—6 —|—6 and
()\Ja:/|a:|) > cfor all j with 2 <j <n;} (6.56)

Also let
Ss, ={z € &; [¢(x) < o1} (6.57)

The sector £ contains Sy, except for a thin sector at the lower edge of S;
(excluded by the conditions Re (Ajz/|z|) > ¢ for 2 < j < ny, or, if ny = 1,
by the condition arg(x) > —F + 0), and may extend beyond iR, since there
is no condition on Re (Ajx)—hence Re (A\1z) = Re (x) may change sign in £
and Ss, .

Figure 6.2 is drawn for ny = 1; £ contains the gray regions and extends
beyond the curved boundary.

Theorem 6.58 (i) The functions F,,(£); m > 1, are analytic in D (see
(6.37); note that by construction Fq is analytic in D) and for some positive
B, K we have

F(€)] < KmlB™, €D (6.59)

(i1) For large enough R, the solution y(z) is analytic in Dy := {x : () €
D} and has the asymptotic representation

o0
~ Z 2" "F(&(x) (x € Dy, |x| — 00) (6.60)
m=0
In fact, the following Gevrey-like estimates hold

m—1
IR (E())| < Kom!BY|z|™™ (meNt, ze€D,) (6.61)
7=0
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(iii) Assume Fo has an isolated singularity at £ € Z and that the projection
of D on C contains a punctured neighborhood of (or an annulus of inner radius
r around) &s.

Then, if C1 # 0, y(x) is singular at a distance at most o(1) (r + o(1),
respectively) of x, € 1 ({&}) N Dy, as x, — 0.

The collection {x,}nen forms a nearly periodic array

Ty, = 2nmi + o In(2n7i) + In Cy — In&s + o(1) (6.62)
as n — oo.

Remarks. 1. The singularities x,, satisfy Cie™ a8t = £5(1 4 o(1)) (for
n — o00). Therefore, the singularity array lies slightly to the left of the anti-
stokes line iRy if Re (a1) < 0 (this case is depicted in Fig. 6.2) and slightly
to the right of iRy if Re (aq) > 0.

2. To find singularities, the system (5.288) find the normalization that gives
an o is as small as possible, undoing the transformations described in (n4)
on p. 164, which serve the different purpose of unifying the treatment of
generic ODEs. Enlarging «, always possible, yields an Fg which is entire, and
manifest singularity information is lost. See also the comments on p. 238.

3. By (6.61) a truncation of the two-scale series (6.60) at an m dependent
on x (m ~ |z|/B) is seen to produce exponential accuracy o(e~1*/5l), see e.g.
[5].

4. Theorem 6.58 can also be used to determine precisely the nature of the
singularities of y(x). In effect, for any n, the representation (6.60) provides
o(e~Klznl) estimates on y down to an o(e™¥1#=l) distance of an actual singu-
larity x,,. In most instances this is more than sufficient to match to a suitable
local integral equation, contractive in a tiny neighborhood of x,, providing
rigorous control of the singularity. See also §6.6.

6.6 Further examples

6.6a The Painlevé equation P;.

Proposition 6.63 below shows, in (i), how the constant C' beyond all orders
is associated to a truncated solution y(z) of Py for arg(z) = 7 (formula (6.64))
and gives the position of one array of poles z, of the solution associated to
C' (formula (6.65)), and in (ii) provides uniform asymptotic expansion to all
orders of this solution in a sector centered on arg(z) = 7 and one array of
poles (except for small neighborhoods of these poles) in formula (6.67).
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FIGURE 6.2: Singularities on the boundary of S; for (5.51). The gray
region lies in the projection on C of the Riemann surface where (6.28) holds.
The short dotted line is a generic cut delimiting a first Riemann sheet.

Proposition 6.63 (i) Let y be a solution of (4.81) such that y(z) ~ \/—z/6
for large z with arg(z) = w. For any ¢ € (m,m + 2m) the following limit
determines the constant C (which does not depend on ¢ in this range) in the
transseries y of y:

. — 6 ?jO;k
O RTE O D S % I ()
ang(z)O:o¢ k<|z(2)|

(Note that the constants o, do not depend on C). With this definition, if
. ~ , _ 2

C # 0, the function y has poles near the antistokes line arg(z) = m + 7 at

all points z,, where, for large n

SN U Sy (SO S S S (L PO
" 24 " 8 4w 60072

+0 ((lzz)g’) (6.65)

<,

with L, = ﬁ In (“;gz n), or, more compactly,
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327 _s/2

&(zn) =124 (24,7 +0(2,°%) (2 — 00) (6.66)

(ii) Let € € RT and define

2= (e arg(e) > Smle(a)] < e 16() 12> )

(the region starts at the antistokes line arg(z) = %ﬂ' and extends slightly beyond
the newt antistokes line, arg(z) = Im). Ify ~ \/—2/6 as|z| — oo, arg(z) =,
then for z € Z we have

oo

—z 1 308 Hy,(€)
Y\ (1 - 8V6(—2)3/? 3 <—24z>5k/4>

k=0

(|z2]| = 0, z€ Z) (6.67)

The functions Hj, are rational, and Hy(&) = £(£/12 — 1)72. The expansion
(6.67) holds uniformly in the sector 7= arg(z) € (3/5,7/5) and also on one of
its sides, where Hy becomes dominant, down to an o(1) distance of the actual
poles of y if z is large.

Proof. We prove the corresponding statements for the normal form (4.85).
One returns to the variables of (4.81) by simple substitutions, which we omit.

Most of Proposition 6.63 is a direct consequence of Theorems 1 and 2. For
the one-parameter family of solutions which are small in H we then have

b~ e R H () (6.68)

k=0

where &(x) = z71/2e~® (thus a = —1/2).
As in the first example we find Hj, by substituting (6.68) in (4.85).
The equation of Hy is

1
& Hy -+ EHy = Ho + 5 Hj

The general solution of this equation is a Weierstrass elliptic function of In¢,
as expected from the general knowledge of the asymptotic behavior of the
Painlevé solutions (see [36]). For our special initial condition, Hy analytic at
zero and Hy(€) = £(1 + o(1)), the solution is a degenerate elliptic function,
namely,

§

Hy(&) = 217
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Important remark. One of the two free constants in the general solution
H, is determined by the condition of analyticity at zero of Hy (this constant
multiplies terms in In&). It is interesting to note that the remaining constant
is only determined in the next step, when solving the equation for Ho! This
pattern is typical (see §6.5b ).

Continuing this procedure we obtain successively:

H, = (2165 +210€2 +3¢3 — 6—10 §4> (€—-12)73 (6.69)
B , 99 5 211, 13 . &6 4
Hy = (14585 +5238¢2% — §§ - 55 + @f + 21600) (£ —12)

(6.70)

We omit the straightforward but quite lengthy inductive proof that all Hy,
are rational functions of £. The reason the calculation is tedious is that
this property holds for (4.85) but not for its generic perturbations, and the
last potential obstruction to rationality, successfully overcome by (4.85), is at
k = 6. On the positive side, these calculations are algorithmic and are very
easy to carry out with the aid of a symbolic language program.

In the same way as in Example 1 one can show that the corresponding
singularities of h are double poles: all the terms of the corresponding asymp-
totic expansion of 1/h are analytic near the singularity of h! All this is again
straightforward, and lengthy because of the potential obstruction at k = 6.

Let &5 correspond to a zero of 1/h. To leading order, £; = 12, by Theo-
rem 6.58 (iii). To find the next order in the expansion of £, one substitutes
& =12+ A/z + O(z72), to obtain

1/n(e) = A= TO0

whence A = 109/10 (because 1/h is analytic at &) and we have

+0(1/2?)

109
=124+ — —2 )
=12+ T O(z™?) (6.71)

Given a solution h, its constant C' in & for which (6.68) holds can be cal-
culated from asymptotic information in any direction above the real line by
near least term truncation, namely

h

: 1/2 0,k

C= lim exp(z)z 72 h(z) — E s (6.72)
arg(z)=¢ k<|z|
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FIGURE 6.3: Poles of (4.85) for C = —12 (¢) and C = 12 (+), calculated
via (6.71). The light circles are on the second line of poles for to C' = —12.

(this is a particular case of much more general formulas [18] where } -, _ o hopz ™"
is the common asymptotic series of all solutions of (4.85) which are small in
HL.

General comments. The expansion scales, z and z~/2¢~% are crucial.
Only for this choice one obtains an expansion which is valid both in S; and
near poles of (4.85). For instance, the more general second scale 2%~ intro-

duces logarithmic singularities in H, except when a € —% + Z. With these

logarithmic terms, the two scale expansion would only be valid in an O(1)

region in x, what is sometimes called a “patch at infinity”, instead of more
than a sector. Also, a € —1 —

5 — N introduces obligatory singularities at £ = 0
precluding the validity of the expansion in S;. The case a € —% + N produces

instead an expansion valid in S; but not near poles. Indeed, the substitution
h(z) = g(z)/x™, n € N has the effect of changing o to o + n in the normal
form. This in turn amounts to restricting the analysis to a region far away
from the poles, and then all H; will be entire. In general we need thus to make

(by substitutions in (5.288)) a = o minimal compatible with the assumptions
(al) and (a2), as this ensures the widest region of analysis.
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6.6b The Painlevé equation Py
This equation reads:
y' =2 +ay+y (6.73)

(Incidentally, this example also shows that for a given equation distinct solu-
tion manifolds associated to distinct asymptotic behaviors may lead to differ-
ent normalizations.) After the change of variables

z = (3t/2)*3 y(z) =a 7 (th(t) — )

one obtains the normal form equation

h' 2442 + 1 3
h//+(1+w>h8h3+:h2+wo (6.74)

t 9¢2 9 ot3
and
e_t 2 o / 8 3
AM=1, ap=-1/2; £€= W; E°Fy +¢F, :F0+§FO
The initial condition is (always): Fy analytic at 0 and F{J(0) = 1. This implies
£
Fol€) = —>
O(f) 1— 52/9

Distinct normalizations (and sets of solutions) are provided by

z = (A)*%; y(z) = (AR)'/? (w(t) ~ B+ zlAt)

if A2=-9/8, B2 = —1/2. In this case,

’ 2
, W 3By 1—-6y
= It At

w” + . +w< + A 02 w

_ _377 2 3 L 2\ 4102
(SB 2tA>w +w +9t2 (B(1+67%) —t'y(y* —4)) (6.75)

so that

implying
¢*F} +¢F, — Fy = 3BF} — F3
and, with the same initial condition as above, we now have

26(1 + B¢
Fo= (§2+2 )
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The first normalization applies for the manifold of solutions such that y ~
—21 (for v = 0 y is exponentially small and behaves like an Airy function)
while the second one corresponds to y ~ —B — %x’3/2. The analysis can be
completed as in the other examples.



Chapter 7

Other classes of problems

7.1 Difference equations
7.la Setting

Let us now look at difference systems of equations which can be brought to
the form

x(n+1)=A (I + :LA) x(n) + g(n, x(n)) (7.1)

where A and A are constant coefficient matrices, g is convergently given for
small x by

g(n,x) = > gi(n)x" (7.2)

keN™
with gy (n) analytic in n at infinity and

m

gi(n) =0(n %) asn — oo, if Y k; <1 (7.3)
j=1
under nonresonance conditions: Let p = (p1,...,pn) and a = (ay,...,an)

where e #* are the eigenvalues of A and the a; are the eigenvalues of A.
Then the nonresonance condition is

(k- =0 mod27mi with ke Z™) < k=0. (7.4)

The theory of these equations is remarkably similar to that of differential
equations. We consider the solutions of (7.1) which are small as n becomes
large.

7.1b  Transseries for difference equations

Braaksma [13] showed that the recurrences (7.1) possess I-parameter transseries
solutions of the form

x(n) := Z Cke~kpnikag, (n) (7.5)
keN™

241
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where Xy (n) are formal power series in powers of n~! and [ < m is chosen
such that, after reordering the indices, we have Re (u;) > 0 for 1 < j <.
It is shown in [13] that

Xy = BxXy are analytic in a sectorial neighborhood & of R™, and

sup ‘A|k|ef”‘p‘Xk‘ < 00 (7.6)
peS keN™

Furthermore, the functions xy defined by

xg(n) = /0Oo e "PXk(p)dp (7.7)
are asymptotic to the series xy i.e.

xk(n) ~ Xk(n) (n — 400) (7.8)
and in any direction different from a Stokes one,

x(n) = Z Cke krnpkay, (n) (7.9)
keN!

is a solution of (7.1), if n > yo, to large enough.

There is a freedom of composition with periodic functions. For example,
the general solution of x,,11 = x,, is an arbitrary 1-periodic function. This
freedom permeates both the formal and analytic theory. It can be ruled out
by disallowing purely oscillatory terms in the transseries.

7.1c  Application: Extension of solutions of difference equa-
tions to the complex n plane

If the formal series solution, say in 1/n, of a difference equation is Borel
summable, then the expression (7.7) of the Borel sum allows for continuation
in the complex domain. Since Borel summation preserves relations, the con-
tinuation in C will as well. This extends to transseries. Furthermore, this
continuation is unique, in the following sense: The values of x on the integers
uniquely determine x. It is then easy to check that condition (7.6) implies
that the sum

x(t) = Z Ckekentkay, (1) (7.10)
keNmo

is convergent in the half plane H = {¢ : Re (t) > to}, for to large enough.

Definition 7.11 Define the continuation of xx(n) in the half plane {t : Re (t) >
to} by x(t) by (7.10).
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THEOREM 7.1

The following uniqueness property holds. If in the assumptions (7.6)—(7.9)
we have x(n) = 0 for all except possibly finitely many n € N, then x(t) =0
for allt € C, Re (t) > to.

For a proof, see [17]. In particular, as it is easy to see, the formal expansion
of InT'(n) turns out to be exactly the extension of InT" in C, see (4.61).

This extension, in turn, and transasymptotic matching, can be used to check
the Painlevé property in difference equations, and determine their integrability
properties.

7.1d Extension of the Painlevé criterion to difference equa-
tions.

The function x is analytic in H and has, in general, nontrivial singularities
in C\H. In particular, Painlevé’s test of integrability, absence of movable non-
isolated singularities, extends then to difference equations. The representation
(7.10) and Theorem 7.1 make the following definition natural. As in the case
of differential equations, fixed singularities are singular points whose location
is the same for all solutions; they define a common Riemann surface. Other
singularities (i.e., whose location depends on initial data) are called movable.

Definition 7.12 A difference equation has the Painlevé property if its solu-
tions are analyzable and their analytic continuations on a Riemann surface
common to all solutions, have only isolated singularities.

For instance, the Gamma function satisfies the Painlevé criterion, as seen in
(4.127). But the solution of an equation as simple as the logistic equation
ZTpi1 = axn (1 — x,) fails the criterion, except in the known integrable cases
a=-2,0,2,4, [17].

7.2 PDEs

Borel summability has been developed substantially in PDE settings as
well. It comes as a particularly useful tool in nonlinear PDEs, since, unlike
in ODEs, existence and uniqueness of solutions are not known in general.
Wherever applicable, Borel summation provides actual solutions by simply
summing formal ones most often much more easily accessible.

These formal solutions exist only if the initial conditions are smooth enough.
This cannot be assumed in general, and in this context it is useful to reinter-
pret Borel summation as a regularization tool. When solutions corresponding
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to analytic initial data are Borel summable, it means that the Borel trans-
formed equation, which has the Borel sums as solutions must be more regular.
Indeed, Borel transforms are by definition analytic, and thus the transformed
equation has analytic solutions if the data is analytic, a sign of better regu-
larity of the equation altogether.

7.2a Example: regularizing the heat equation

Since (7.13) is parabolic, power series solutions

F(26)
f= Zthk Z 3@' tk (7.14)

k=0

are divergent even if Fj is analytic (but not entire). Nevertheless, under
suitable assumptions, Borel summability results of such formal solutions have
been shown by Lutz, Miyake, and Schifke [40] and more general results of
multisummability of linear PDEs have been obtained by Balser [5].

The heat equation can be regularized by a suitable Borel transform . The
divergence implied, under analyticity assumptions, by (7.14) is Fy, = O(k!)
which indicates Borel summation with respect to ¢t~!. Indeed, the substitution

t=1/7; f(t,x)=t"12g(r,z) (7.15)
yields

1
Gz + T2g‘l’ + 57_9 =0

which becomes after formal inverse Laplace transform (Borel transform) in 7,
3. .
59 + G220 =0 (7.16)

which is brought, by the substitution g(p,z) = p’%u(x, Qp%); y = 2p?, to the
wave equation, which is hyperbolic, thus reqular

PGpp +

Existence and uniqueness of solutions to regular equations is guaranteed by
Cauchy-Kowalevsky theory. For this simple equation the general solution is
certainly available in explicit form: w = fi(z — y) + fo(x + y) with fi, fo
arbitrary twice differentiable functions. Since the solution of (7.17) is related
to a solution of (7.13) through (7.15), to ensure that we do get a solution it
is easy to check that we need to choose fi = fo =: u (up to an irrelevant
additive constant which can be absorbed into u) which yields,
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N

ft,z) = 2 /0OQ Yy~ [u <:E + 2y%> +u (33 — 2y%)} exp (—%) dy (7.18)

which, after splitting the integral and making the substitutions = + 2y% =s
is transformed into the usual Heat kernel solution,

fltz) =t / ~ uls) exp <—(”3_‘°’)2) ds (7.19)

. At

7.2b  Higher order nonlinear systems of evolution PDEs

For partial differential equations with analytic coefficients which can be
transformed to equations in which the differentiation order in a distinguished
variable, say time, is no less than the one with respect to the other vari-
able(s), under some other natural assumptions, Cauchy-Kowalevsky theory
(C-K) applies and gives existence and uniqueness of the initial value prob-
lem. A number of evolution equations do not satisfy these assumptions and
even if formal power series solutions exist their radius of convergence is zero.
The paper [20] provides a C-K type theory in such cases, providing existence,
uniqueness and regularity of the solutions. Roughly, convergence is replaced
by Borel summability, although the theory is more general.

Unlike in C-K, solutions of nonlinear evolution equations develop singular-
ities which can be more readily studied from the local behavior near t = 0,
and this is useful in determining and proving spontaneous blow-up. This is
somewhat similar to the mechanism discussed in §6.

We describe some of the results in [20]. The proofs can be found in the pa-
per. Roughly, the approach is similar to the ODE one. However, here the dual
equation is a partial differential-convolution equation. It would superficially
look like complicating the problem even further, but the built in regularity of
the new equation makes its study in fact much easier than the one of the orig-
inal equation. In [20], to simplify the algebra, and in fact reduce to an almost
ODE-like equation, we make use of Ecalle acceleration (cf. §8.2) although the
type of divergence would not require it.

In the following, & = 8J1032...03¢, |j| = j1+j2+...+Ja, X is in a poly-sector
S ={x:|argz;| < T + ¢;|x| > a} in C* where ¢ < -, g (x,t7 {yj}ﬁ.‘_:lo) is
a function analytic in {y; }ﬁl_:lo near 0 vanishing as |x| — co. The results in

hold for n-th order nonlinear quasilinear partial differential equations of the
form

u + PR )u+g (x,t,{Pu}) =0 (7.20)

where u € C™, for large |x| in S. Generically, the constant coefficient operator
P(dx) in the linearization of g(co,t,-) is diagonalizable. It is then taken to
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be diagonal, with eigenvalues P;. P is subject to the requirement that for all
j <mand p # 0 in C? with |argp;| < ¢ we have

Re P (—p) >0 (7.21)

where PI"(9y) is the principal symbol of P(dy). Then the following holds.
(The precise conditions and results are given in [20].)

Theorem 7.22 (large |x| existence) Under the assumptions above, for any
T >0 (7.20) has a unique solution u that for t € [0,T)] is O(|x|~!) and ana-
lytic in S.

Determining asymptotic properties of solutions of PDEs is substantially
more difficult than the corresponding question for ODEs. Borel-Laplace tech-
niques however provide a very efficient way to overcome this difficulty. The
paper shows that formal series solutions are actually Borel summable, a for-
tiori asymptotic, to actual solutions.

1

Condition 7.23 The functions bqx(x,t) and r(x,t) are analytic in (x; "'
1

,...,I;Td) for large |x| and some N € N.

Theorem 7.24 If Condition 7.23 and the assumptions of Theorem 7.22 are
satisfied, then the unique solution f found there can be written as

f(x,t) = /W e PX"'F L (p,t)dp (7.25)

1 1
where F 1+ is (a) analytic at zero in (p;"* ,...,p;N‘i ); (b) analytic in p # 0 in
the poly-sector | arg p;| < "¢+ ﬁ, 1 < d; and (c) exponentially bounded
in the latter poly-sector.

Existence and asymptoticity of the formal power series follow as a corollary,
using Watson’s lemma.

The analysis has been extended recently to the Navier-Stokes system in R?,
see [25].



Chapter 8

Other important tools and
developments

8.1 Resurgence, bridge equations, alien calculus, moulds

This is a powerful set of tools discovered by Ecalle, which provide detailed
analytic information on Borel transforms, linear and nonlinear Stokes phenom-
ena and general summation rules along singular directions [30]. The recent
article [48] provides a largely self-contained introduction.

8.2 Multisummability

Nongenerically, exponentials of different powers of z, such as e~ and ev,
may occur in the solutions of the same equation. If such is the case, no
single critical time will work, and the formal solutions are effectively mixtures
of solutions belonging to different Borel planes. Summation with respect to
any single variable will result in superexponential growth and/or divergent
expansions at the origin. For some reason, in applications, the need for full
multisummability rarely occurs. More often a nongeneric equation can be
effectively split into lower order, pure-type equations. In general though,
acceleration and multisummability were introduced by Ecalle, see [30] and [31],
adequately deal with mixed divergences in wide settings. In PDEs however it
is often helpful to use acceleration operators since they can further simplify
or regularize the problem.

We only sketch the general procedure, and refer the interested reader to
[30], [31], [5] and [13] for a detailed analysis.

Multisummation consists in Borel transform with respect to the lowest
power of z in the exponents of the transseries (resulting in oversummation
of some components of the mixture, and superexponential growth) and a se-
quence of transformations called accelerations (which mirror in Borel space
the passage from one power in the exponent to the immediately larger one)
followed by a final Laplace transform in the highest power of z.

247
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More precisely ([31]):
Ekl O‘AkQ/kl (SIS O-Akq/kq,ISqu (81)

where (Lyf)(x) = (Lf)(xF), By, is the formal inverse of L, o; € (0,1) and the
acceleration operator A,, is formal the image, in Borel space, of the change of
variable from z® to x and is defined as

Aagb:/ Cuo(:, 8)p(s)ds (8.2)
0
and where, for a € (0,1), the kernel C,, is defined as
1 c+ioo . e
—— 22—(C12
Ca(C1>C2) = i i € dz (83)

where we adapted the notations in [5] to the fact that the formal variable is
large. In our example, ¢ = 2, ky = 1, k1 = 2.

In [13], W. Balser, B.L.J. Braaksma, J-P. Ramis, and Y. Sibuya proved of
multisummability of series solutions of general nonlinear meromorphic ODEs
in the spirit of Ecalle’s theory.

Note 8.4 (i) Multisummability of type (8.1) can be equivalently character-
ized by decomposition of the series into terms which are ordinarily summable
after changes of independent variable of the form x — x®. This is shown in
[5] where it is used to give an alternative proof of multisummability of series
solutions of meromorphic ODEs, closer to the cohomological point of view of
Ramis, see [41, 44, 45].

(ii) More general multisummability is described by Ecalle [31], allowing,
among others, for stronger than power-like acceleration. This is relevant to
more general transseries equations.

8.3 Hyperasymptotics

Once a series has been summed to the least term, with exponential accuracy,
there is no reason to stop there. Often asymptotic expansions for the difference
between the function and the truncated series can be obtained too.

This new expansion can also be summed to the least term. The procedure
can be continued in principle ad infinitum. In practice, after a few iterations,
the order of truncation becomes one and no further improvement is obtained
in this way.

The overall gain in accuracy however is significant in applications.

One can alternatively choose to truncate the successive series far beyond
their least term, in a prescribed way which improves even the exponential
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order of the error (at the expense of making the calculation substantially
more laborious).

This is an entry point into hyperasymptotics, a theory in its own right,
and numerous papers address it. The concept and method were discovered
by Berry [9], with ideas going back to Dingle [26] and further developed by
Berry, Delabaere, Howls and Olde Daalhuis, see e.g. [7], [42].
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