
1 Local existence and uniqueness of analytic so-
lutions: contractive mapping approach

Consider the system of equations (or one vector equation if you prefer)

y′ = F (x, y); y(x0) = y0 (1)

where y ∈ C
n, x ∈ C. The second condition, the initial value, makes (1) an

initial value problem, IVP. You see that by taking y = ỹ + y0, x = x̃ + x0 and
F̃ (x̃, ỹ) = F (x̃ + x0, ỹ + y0), we can assume, without loss of generality that our
IVP is

y′ = F (x, y); y(0) = 0 (2)

We must specify the properties of F . Let where Dǫ = {z : |z| < ǫ}. We will
assume that F : Dδ × D

n
ǫ 7→ C

n is analytic in Dδ × D
n
ǫ for some δ > 0, ǫ > 0.

This means that F has a convergent Taylor series in (x, y1, ..., yn) in Dδ × D
n
ǫ .

It is known (by Hartog’s theorem: google it!) that if F is separately analytic
in each variable (thinking therefore of the others as being “frozen”), then it is
analytic in the stronger sense above.

By taking a slightly smaller ǫ if needed, we can assume that F is continuous
up to the boundary, that is continuous in Dδ × Dn

ǫ .
Check that the functions y which are analytic in Dδ and continuous in Dδ

endowed with the sup norm, ‖y‖∞ = supx∈Dδ
|y| form a Banach space; call this

Banach space B.
We now consider a closed subspace of B, the closed ball B = {y ∈ B : ‖y‖ ≤

ǫ}.
Exercise. Check that the IVP (102) is equivalent to

y =

∫ x

0

F (s, y(s))ds (3)

Let ǫ be small enough. How small that is, we’ll calculate in a moment. We now
consider the nonlinear operator M be defined on B with values in B, given by

M(y) =

∫ x

0

F (s, y(s))ds (4)

For |M(y)| to be bounded by ǫ, we need that δ max
Dδ×Dn

ǫ

|F (s, y(s)| < ǫ. Check

that this can be arranged by taking δ small enough.
For M(y) to be contractive, check that it suffices to have

(n + 1)max{|∂Fj/∂yk|, |∂Fj/∂x|δ < α < 1

This ensures contractivity and therefore existence and uniqueness of solutions
of the IVP.
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1.1 Reminder: the exponential and the log of a matrix

Note that n−matrices can be identified with vectors in R
n2

, and they form a
Banach space.

We can consider the sum

eM =

∞
∑

k=0

Mk/k! (5)

Since ‖M2‖ ≤ ‖M‖2 (the usual L2 7→ L2 norm, and all norms are equivalent in
R

n), and also
∞
∑

k=0

‖M‖k/k! (6)

evidently converges, it follows that eM is correctly defined. You can check the
usual properties of the exponential. Careful though: AB 6= BA in general, so
we can’t expect eA+B = eAeB .

For the log, if M is diagonalizable, then define log M to be A[log Λ]A−1.
Here, A is the diagonalization matrix, Λ is diagonal, and so is, by definition
log Λ, which consists on the diagonal of the logs of the diagonal elements.

Exercise: If M has a nontrivial Jordan normal form, it is enough to define
the log block by block. Each block is of the form λI −N , λ ∈ C, I the identity
matrix and N a nilpotent. Then, the sum

I log λ −
m

∑

k=1

(N/λ)k (7)

where Nm = 0 gives a function with the properties of the log.

2 Reminder: the fundamental solution of a lin-

ear system

Consider a linear system of differential equations of the form

w′ = A(z)w (8)

where w ∈ C
n and A is analytic near z0; we first look at (8) near z0; without loss

of generality, we can take z0 = 0. You know already that, in a neighborhood of a
regular point (i.e., a point where A analytic) there exist n linearly independent
vector solutions, {wj : j = 1, ..., n} of (160). Furthermore, you can choose initial
conditions so that wj(z = 0) = ej , the unit vector in the direction j. If you
construct a matrix M having as the j − th row the vector wj , you can check
immediately that

M ′ = A(z)M ; M(0) = I (9)
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Since the rows are linearly independent, you know from elementary algebra that
M is invertible. Let N = M−1. Since MN = I we have

M ′N + MN ′ = 0 ⇒ MN ′ = −AMN = −A ⇒ N ′ = −NA ; N(0) = I

so N gives, up to the order of the matrices, the backward evolution z → −z.
Take any z-independent vector w0 independent, and let w = Mw0. We have

(Mw0)
′ = M ′w0 = AMw0 ⇒ w′ = Aw; w(0) = Iw0 = w0 (10)

Thus, we see that the solution of the initial value problem w′ = Aw,w(0) = w0

is simply Mw0. We will often work with the fundamental matrix solution M ,
as it often simplifies the calculations.

Remark 1. Note also that, if we look at the matrix differential equation

W ′ = AW (11)

the general solution is W = MC where C is any z-independent (that is, con-
stant) matrix. Indeed, since M is invertible, we can define Q = M−1W , which
we write in the form W = MQ. We then have

M ′Q + MQ′ = AMQ ⇔ MQ′ = 0 ⇔ Q′ = 0 (12)

(since M ′ = AM) which indeed means that Q is a constant matrix.

3 Isolated singularities of linear systems

Consider the system
w′ = A(z)w (13)

where A is a matrix valued analytic function, but now with an isolated singu-
larity at z0. Clearly, by translating z we can take z0 = 0, and by rescaling z,
we can assume that A is analytic in D = D \ {0} where D is the open unit disk.
Though the equation is single-valued in D, since D is not simply connected, the
solutions may not be, as seen by solving the equation y′ = ay/z with a /∈ Z. We
can take z = eζ and D becomes {ζ : Reζ ∈ R

−}, a half plane. By the standard
existence and uniqueness theorems, we find that there is a unique solution of
the system, rewritten in ζ, and thus there is a fundamental solution of (160), in
the form M(ln z), which shows once more that, in principle at least, the solution
of (160) may not be single-valued.

4 Some general facts about solutions near iso-
lated singularities

In the generality of the singular systems in §3 all we can say now, without a
lot more theory, is the way the solution itself can be ramified. Once more, we
consider that we rescaled everything so that z = 0 is the isolated singularity,
and D = D \ {0} is the domain of analyticity of A.
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Theorem 1. The general solution of (160) is of the form

M(z) = S(z)zP (zP := eln z P ) (14)

where P is a constant matrix, and S(z) is analytic in D. With the price of
changing the matrix M to MT , with T a constant matrix, we can write

MT = S1x
J (15)

where J is the Jordan normal form of P .

What this theorem says is that the solution itself is single-valued up to
multiplication by zP with P constant. Of course, there is no reason to expect
that S is analytic at zero-just that 0 is an isolated singularity.

Lemma 1. Assume M is any matrix analytic on the universal covering of D
which satisfies

M(ze2πi) = MC where C is a constant invertible matrix. (16)

Then
M(z) = S(z)zP (17)

where P is a constant matrix and S(z) is analytic in D. At the price of altering
M by a constant matrix, P can be taken to be in Jordan normal form,

Proof of the lemma. Since C is invertible, we can define P (up to 2ZπiI) by
C = e2πiP . Let

S = Mz−P (18)

S(ze2πi) = Me2πiP e−P ln z−2πiP = Me−P ln z = S(z) (19)

since eaP and ebP commute, if a and b are scalars. Let now T be the change of
basis that brings P to its Jordan normal form, that is T−1PT = J . We then
have

MT = STT−1zP T = STzJ (20)

where ST is also ingle valued, as required.

Proof of the theorem. We only need to show that the assumptions of the lemma
above hold. Take N(z) = M(ze2πi). That is, we use the fact that M exists on
the universal covering of D, and look at its value on the second Riemann sheet.
We have

N(z)′ = M ′(ze2πi) = A(ze2πi)M(ze2πi) = A(z)M(ze2πi) = A(z)N (21)

where we used the fact that M is already a solution, and A is single-valued.
Thus, by Remark 1, we must have N = MC where C is a constant matrix.

Remark 2. If S happens to be analytic, note also the emerging noninteger
powers of z and ln zj through the term zJ .

Indeed, if J1 is an elementary Jordan block in J , we have

zJ = zλI+N = zλeN ln z = zλ(1 + N ln z + · · · ln zlN l/l!) (22)

where N l+1 = 0, and thus l < n, the degree of the system.
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5 Regular singular points of differential equa-
tions, nondegenerate case

5.1 Example

x(x − 1)y′′ + y = 0 (23)

around x = 0. The indicial equation is r(r − 1) = 0 (a resonant case: the
roots differ by an integer). Substituting y0 =

∑∞
k=0 ckxk in the equation and

identifying the powers of x yields the recurrence

ck+1 =
k2 − k + 1

k(k + 1)
ck (24)

with c0 = 0 and c1 arbitrary. By linearity we may take c1 = 1 and by induction
we see that 0 < ck < 1. Thus the power series has radius of convergence at least
1. The radius of convergence is in fact exactly one as it can be seen applying
the ratio test and using (137); the series converges exactly up to the nearest
singularity of (136).

Exercise 1. What is the asymptotic behavior of ck as k → ∞?

We let y0 = y0

∫

g(s)ds and get, after some calculations, the equation

g′ + 2
y′
0

y0
g = 0 (25)

and, by the previous discussion, 2y′
0/y0 = 2/x + A(x) with A(x) is analytic.

The point x = 0 is a regular singular point of (138) and in fact we can check
that g(x) = C1x

−2B(x) with C1 an arbitrary constant and B(x) analytic at
x = 0. Thus

∫

g(s)ds = C1(a/x + b ln(x) + A1(x)) + C2 where A1(x) is analytic
at x = 0. Undoing the substitutions we see that we have a fundamental set of
solutions in the form {y0(x), B1(x)+B2(x) ln x} where B1 and B2 are analytic.

5.2 Singularities of the first kind

Consider the system

w′ =
1

z
Bw + A1(z)w; or, in matrix form, M ′ =

1

z
BM + A1(z)M (26)

where B is a constant matrix and A1 is analytic at zero. Let J be the Jordan
normal form of B and T−1BT = J . Then, we see that

T−1MT =
1

z
T−1BTT−1MT + T−1A1(z)TT−1MT (27)

with M̃ = T−1MT we see that

M̃ ′ =
1

z
JM̃ + A2(z)M̃ (28)

where clearly A2 is also analytic. In other words,
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Remark 3. In (53) we can assume, without loss of generality that B is in its
Jordan normal form, J . We will thus study equations of the form

y′ =
1

z
Jy + A(z)y (29)

where A(z) is analytic.

5.3 Nondegenerate case

Assumption. No two eigenvalues of B differ by a positive integer.

Theorem 2. Under the assumption above, (29) has a fundamental matrix so-
lution in the form M(z) = Y (z)zJ , where Y (z) is a matrix analytic in D.

Exercise 2. Check that, if we had not arranged for B to be in its Jordan
normal form, the solution of (53) would be M(z) = Z(z)zB, where Z(z) is a
matrix analytic at zero.

Proof. Clearly, it is enough to prove the theorem for (29). We look for a solution
of (29) in the form M = Y zJ , where

Y (z) = J + zY1 + z2Y2 + · · · (30)

we get

Y ′zJ +
1

z
Y JzJ =

1

z
JY zJ + AY zJ (31)

Multiplying by z−J we obtain

Y ′ +
1

z
Y J =

1

z
JY + AY (32)

or

Y ′ =
1

z

(

JY − Y J
)

+ AY (33)

Using (62) we get

Y1 + 2zY2 + 3z2Y3 + · · · =
[

(JY1 − Y1J) + z(JY2 − Y2J) + · · ·
]

+ A0J + zA1J + · · · + zA0Y1 + z2(A0Y2 + A1Y1) + · · · (34)

The associated system of equations, after collecting the powers of z is

kYk = (JYk − YkJ) + Ak−1J +
k−1
∑

j=1

YjAk−j−1; k ∈ N (35)

or

VkYk = Ak−1J +

k−1
∑

j=1

YjAk−j−1; k ∈ N (36)
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where
VkM := kM − (JM − MJ) (37)

is a linear operator on matrices M ∈ R
n2

. As a linear operator on a finite
dimensional space, VkX = Y has a unique solution for every Y iff det Vk 6= 0
or, which is the same, jX − JX + XJ = 0 implies X = 0. We show that this is
the case, by showing that Xv = 0 for all generalized eigenvectors of J .

Let v be one of the eigenvectors of J . If VkX = 0 we obtain, since Jv = λv,

k(Xv) − J(Xv) + Xλv = 0 (38)

or
J(Xv) = (λ + k)(Xv) (39)

Here we use our assumption: λ + k is not an eigenvalue of J . This forces

Xv = 0 (40)

We let v0 = v and take the next generalized eigenvector, v1, in the same Jordan
block as v, if any.

We remind that we have the following relations between these generalized
eigenvectors:

Jvi = λvi + vi−1 (41)

where v0 = v is an eigenvector and 1 ≤ i ≤ m − 1 where m is the dimension of
the Jordan block. With i = 1 we get

k(Xv1) − J(Xv1) + X(λv1 + v0) = 0 (42)

and, using (40) (i.e., Xv0 = 0), we get the same equation (43), now for Xv1:

J(Xv1) = (λ + k)(Xv1) (43)

and thus Xv1 = 0. Inductively, we see that Xv = 0 for any generalized eigen-
vector of J , and thus X = 0.

Now, we claim that V −1
k ≤ Ck−1 for some C. We let C be the commutator

operator, CX = JX − XJ Now ‖JX − XJ‖ ≤ 2‖J‖‖X‖ and thus

V −1
k = k−1

(

I − k−1C
)−1

= k−1(1 + o(1)); (k → ∞) (44)

Therefore, the function kVk is bounded for k ∈ R
+.

We rewrite the system (35) in the form

Yk = V −1
k Ak−1J + V −1

k

k−1
∑

j=1

YjAk−j−1; k ∈ N (45)

or, in abstract form, with Y = {Yj}j∈N, (LY)k := V −1
k

∑k−2
l=0 AlYk−1−l, where

we regard Y as a function defined on N with matrix values, with the norm

‖Y‖ = sup
n∈N

‖µ−n
Y(n)‖; µ > 1 (46)

we have
Y = Y0 + LY (47)
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Exercise 3. Show that (47) is contractive for µ sufficiently large, in an appro-
priate ball that you will find.

The solution of this exercise is given in the appendix.

6 Changing the eigenvalue structure of J by trans-

formations

To solve the general case, in which eigenvalues may differ by positive integers,
we find transformations which decrease one eigenvalue by one, leaving all, others
the same and without changing the structure of the ODE.

Write J in the form

J =

(

J1 0
0 J2

)

(48)

where J1 is the Jordan block we care about, dim(J1) = m ≥ 1, while J2 is a
Jordan matrix, consisting of the remaining blocks. The transformation we are
looking for would change J into J − I1 where

I1 =

(

I 0
0 0

)

(49)

where I is the identity matrix. That, in turn, would change the fundamental
solution to

Y zJ−I1 (50)

This suggests we try this change of variables in our equation. In matrix form,

M ′ = z−1JM + AM (51)

where we take M = M1z
I1 .

Exercise 1. Show that, if a ∈ C and P is a projector, P 2 = P , then

zaP = Pza + (I − P ) (52)

Is it true that (zB)′ = z−1BzB for any matrix B?

We have
M ′

1z
I1 + z−1M1I1z

I1 = z−1JM1z
I1 + AM1z

I1 (53)

We can multiply to the right by zI1 and get

M ′
1 = z−1JM1 − z−1I1M1 + AM1 (54)

which does not quite work, because of non-commutation. So it is natural to try

M = zI1M1 =

(

z 0
0 1

)

M1
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since J and zI1 commute. We then have
(

1 0
0 0

)

M1+

(

z 0
0 1

)

M ′
1 = z−1J

(

z 0
0 1

)

M1+

(

A11 A12

A21 A22

)(

z 0
0 1

)

M1 (55)

We multiply to the left by
(

1/z 0
0 1

)

and get

M ′
1 = z−1JM1 +

(

1/z 0
0 1

)(

A11z A12

A21z A22

)

M1

= z−1JM1 +

(

A11 A12(0)/z + Ã12

A21z A22

)

M1 =
1

z

(

J1 A12(0)
0 J2

)

+ ÃM (56)

where Ã is analytic. We have thus obtained

Proposition 2. By the change of variables M = zI1M1, the equation for M1

is of the form
M ′

1 = z−1RM1 + ÃM1 (57)

where R has eigenvalues λ1 − 1, ..., λm.

Exercise 2. Use this procedure repeatedly to reduce any resonant system to a
nonresonant one. That is done by arranging that the eigenvalues that differ by
positive integers become equal.

Exercise 3. Use Exercise 2 to prove the following result.

Theorem 3. Any system of the form

y′ =
1

z
B(z)y (58)

where B is an analytic matrix at zero, has a fundamental solution of the form

M(z) = Y (z)zB′

(59)

where B′ is a constant matrix, and Y is analytic at zero. In the nonresonant
case, B′ = B(0). In the resonant case, the eigenvalues of R do not differ by
integers, and they are a subset of the eigenvalues of B(0), precisely those that
do not differ by integers of other eigenvalues, or, in the groups that do, the one
which has the smallest real part.

Note that this applies even if B(0) = 0.

Exercise 4. Find B′ in the case where only two eigenvalues differ by a positive
integer, where the integer is 1.
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6.1 Example

Let’s consider again the equation

x(x − 1)y′′ + y = 0 (60)

We want to use the theory we have developed this far, to find the shape of the
generic solution at 0, 1,∞ (the only singular points of the equation).

Let’s start with x = 0. We can write the equation in system form in the
following way:y′

1 = y2, y
′
2 = −y1/(x(x − 1)), or in matrix form

(

y1

y2

)′
=

(

0 1
−1/(x(x − 1)) 0

)(

y1

y2

)

=
1

x

(

0 x
−1/(x − 1) 0

) (

y1

y2

)

(61)

or
y = x−1By + Ay (62)

where, by decomposition by partial fractions,

B :=

(

0 0
1 0

)

; A :=

(

0 1
1/(1 − x) 0

)

(63)

Clearly, A is analytic at 0. The eigenvalues of B are 0, 0 (e.g., the determinant
and trace are zero). Thus, the eigenvalues are nonresonant.

It follows that the fundamental solution of this equation is

M = Y (z)zB (64)

where Y (z) is analytic near zero (in this case, analytic in the unit disk, since
x = 1 is the singular point closest to the origin (other than the origin itself).

Thus,

M =

(

y11 y12

y21 y22

)(

I + ln z

(

0 0
1 0

))

=

(

y11 y12

y21 y22

) (

1 0
ln z 1

)

=

(

y11 + y12 ln z y12

y21 + y22 ln z y22

)

(65)

and thus, by applying M to some initial condition (a, b) we get that the general
solution of (60) in a neighborhood of 0 is

y = a(y11 + y12 ln z) + by12 (66)

6.2 Example:Bessel functions

The equation

f ′′ +
3

2x
f ′ + f = 0 (67)

has the general solution

C1x
−1/4J1/4(x) + C2x

−1/4Y1/4(x) (68)
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where J and Y are Bessel functions. In matrix form, as in the example before,
we have

f ′ = M f (69)

where

M =

(

0 1

−1 − 3

2x

)

=
1

x

(

0 x

−x −3

2

)

=
1

x
B + A (70)

where

B =

(

0 0

0 −3

2

)

; A =

(

0 1
−1 0

)

(71)

and thus the fundamental matrix is

(

f11 f12

f21 f22

)

x

0

B

@

0 0

0 −3

2

1

C

A

=

(

f11 x−3/2f12

f21 x−3/2f22

)

(72)

This means that the general solution of the equation is of the form

f = C1f1(x) + C2x
−3/2f2(x) (73)

with f1 and f2 analytic.

Exercise 5. It also follows from the analysis above that f2(0) = 0. Why?

6.3 A different type of example

Let us now look at (60) near infinity. We make the change of variables x = 1/t
to bring infinity to 0, our familiar point of analysis. We get, with u(x) = f(1/x),

t2(t − 1)f ′′ + 2t(t − 1)f ′ + f = 0 (74)

In matrix form, this is

y′ =





0 1
1

t2(t − 1)
−2

t



y (75)

Because of the 1/t2 factor, this does not look like one of the equations that can
be brought to the form

u′ =
1

x
Bu + Au (76)

But note that the method of conversion, namely y1 = y, y2 = y′, is not the only
possibility! In fact, if y ∼ ta then y′ ∼ ata−1. Then we should take, to get the
right singular behavior, y1 = u1, y2 = u2/t. Then u1 = y1 and u2 = ty2; thus
u′

1 = y′
1 = y2 = u2/t and

u′
2 = y2 + ty′

2 =
u2

t
+ t

(

y1

t2(t − 1)
− 2y2

t

)

=
u2

t
+

u1

t(t − 1)
− 2u2

t

11



that is,

u′ =
1

t
Bu + Au (77)

where

B =

(

0 1
−1 −1

)

; A =

(

0 0
1

t − 1
0

)

(78)

The eigenvalues of B are −1/2 ± i
√

3/2.

Exercise 6. This is just a calculation, but very much worth doing. Write the
general solution of (74) near t = 0.

Exercise 7. Redo the analysis in §6.1 with thje type of transformations used in
the present section.

Exercise 8. Consider the system

y′ =
1

x
By + Ay (79)

where

B =

(

0 1
1 0

)

; A =

(

x 1
x 1

)

(80)

(a) Write it as a second order equation;
(b) Using the matrix form, find the general solution of the second order

equation near 0.

Exercise 9. Use Abramowitz and Stegun (or your favorite tables) to find the
solutions of the equations in the previous two sections, and then find the behavior
at the singular points analyzed, using the tables. Which is easier, using tables
or direct calculation?

Important note: there are advantages to using special functions or other
methods that we’ll study later. We have not determined here how the solutions
behave globally, e.g., how a specific solution of (60) calculated in a neighborhood
of zero behaves at infinity–we only obtained all its possible behaviors.

7 Scalar n−th order linear equations

These are equations of the form

y(n) + a1(z)y(n−1) + · · · + an(z)y = 0 (81)

Such an equation can always be transformed into a system of the form w′ =
A(x)w, and viceversa. There are many ways to do that. The simplest is to take
v0 = y, ..., vk = y(k), ... and note that (81) is equivalent to









v0

v1

· · ·
vn−1









′

=









0 1 0 · · · 0
0 0 1 · · · 0

· · ·
−an(z) −an−1(z) −an−2(z) · · · −a1(z)

















v0

v1

· · ·
vn−1









(82)
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In the other direction, to simplify notation assume n = 2. The system is then

y′ = a(x)y + b(x)w
w′ = c(x)y + d(x)w

(83)

We differentiate one more time say, the second equation, and get

w′′ = dw′ + (bc + d′)w + (ac + c′)y (84)

If c ≡ 0, then (84) is already of the desired form. Otherwise, we write

y =
1

c
w′ − d

c
w (85)

and substitute in (84). The result is

w′′ =

(

a + d +
c′

c

)

w′ +

(

c

(

d

c

)′
+ [cb − ad]

)

w (86)

Note that a and c, by assumptions, have at most first order poles, while c′/c has
at most simple poles for any analytic function. Therefore, the emergent second
order equation has the general form

w′′ + a1(x)w′ + a2(x)w = 0

where ai has a pole of order at most i.

Exercise 1. Generalize this transformation procedure to nth order systems.
Show that the resulting nth order equation is of the general form

y(n) + a1y
(n−1) + · · · + any = 0 (87)

where the coefficients ai are analytic in Dρ \ {0} and have a pole of order at
most i at zero.

Definition 3. An equation of the form (87) has a singularity of the first kind
at zero if the conditions of ai = bi/zi where bi are analytic at zero. (Compare
with Exercise 1.)

7.1 The indicial equation

Looking for power series solutions zλ(1+c1z+c2z
2+ · · · ), we insert this into the

differential equation and note that y(j) = λ(λ − 1) · · · (λ − j + 1)zλ−j(1 + o(1))
and also that ajz

λ−n+j(1 + o(1)) = bj(0)zλ−n)(1 + o(1)). Thus, the equation
for the leading power of z is

λ(λ − 1) · · · (λ − n + 1) + λ(λ − 1) · · · (λ − n + 1)b1(0) + · · · + bn(0) = 0 (88)
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7.2 Regular singularities and singularities of the first kind

7.2.1 Reformulation as a system

There is a reformulation of (87) as a system of the form (58). Clearly, the
transformation leading to (82) produces a system of equations with a singularity
of order n. As in §6.3, the natural substitution is

ϕk = zk−1y(k−1), k = 1, 2, ..., n (89)

We then have y(k−1) = z−k+1ϕk−1 and

ϕl+1 = zly(l) = zl
(

z−l+1ϕl

)′
= (1 − l)ϕl + zϕ′

l (90)

or
zϕ′

l = (l − 1)ϕl + ϕl+1 (91)

while

ϕ′
n = (n − 1)zn−2y(n−1) + zn−1

(

−any − an−1y
′ − ... − a1y

(n−1)
)

= (n − 1)zn−2zn−1ϕn − 1

z
(−bnϕ1 − bn−1ϕ2 − ... − b1ϕn) (92)

where bn−k+1(z) are analytic, where we used Definition 3. In matrix form, the
end result is the system

ϕ′ = z−1Bϕ (93)

where

B =

















0 1 0 0 · · · 0
0 1 1 1 · · · 0
0 0 2 1 · · · 0
0 0 0 3 · · · 0

· · ·
−bn(z) −bn−1(z) −bn−2(z) −bn−3(z) · · · (n − 1) − b1(z)

















(94)
or

ϕ′ = z−1B(0)ϕ + A(z)ϕ (95)

where A is analytic at zero.

7.2.2 Eigenvalues of B(0) in (95)

An easy way to determine these is to look at the eigenvalue equation, (B−λI)x =
0. If we expand this out as a system, using the explicit form (94), we get

(0 − λ)x0 + x1 = 0 (96)

(1 − λ)x1 + x2 = 0 (97)

(2 − λ)x2 + x3 = 0 (98)

... (99)

−bn(0)x0 − bn−1(0)x1 − · · · − (b1 − [n − 1 − λ])xn−1 = 0 (100)
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Without loss of generality we can take x1 = 1. Then

x1 = λ, x2 = λ(λ − 1), · · · , xn−1 = λ(λ − 1) · · · (λ − (n − 2))

and thus (290) is equivalent to

−bn(0)−λbn−1(0)−· · ·− (b1− [(n−1)−λ])λ(λ−1) · · · (λ− (n−2)) = 0 (101)

which is precisely (88). We have shown

Proposition 4. The eigenvalues of B(0) are precisely the roots of the indicial
equation.

7.2.3 Examples of behavior of solutions for first versus higher kind

singular equations

Consider the following simple examples.
(1) f ′′ + (1 + 1/z)f ′ − 2f/z2 = 0; (2) f ′′ + (1 + 1/z2)f ′ − 2f/z3 = 0.
What is the expected behavior of the solutions? If we try f(z) = zm + · · ·

in (1) we get (m2 − 2)z−2 + · · · = 0 thus m = ±
√

2.

We try a solution of the form f(z) = z
√

2
∑∞

k=0 ckzk = z
√

2g(z), and get c0

arbitrary, so we take, say, c0, then c1 = −
√

2/(1 + 2
√

2), and in general,

cm = − m +
√

2 − 1

m(m + 2
√

2)
cm−1 (102)

It is easy to show that cm are bounded (in fact |cm| ∼ 1/(m + 1)!, and then g
is analytic.

Let us consider, instead, (2). The same substitution, zm + · · · now gives
m = 2.

We try a power series solution of the form f(z) =
∑∞

k=2 ckzk Again c0 is
undetermined, say we take it to be one, and in general we have

cm = −(m + 1)cm−1 − cm−2 (103)

This time, it is not hard to show, |c(m)| ∼ (m + 1)!, and the series diverges.

7.2.4 Solutions of the original nth order ODE

Exercise 2. Using Theorem 3 check that for any block of eigenvalues λ, λ +
p1, ..., λ + pm, 0 ≤ p1 ≤ p2 ≤ ... ≤ pm ∈ Z, m ≥ 0, there is always a solution of
(87) of the form

y = zλ+pmφ(z) (104)

where φ is analytic at zero, and φ(0) = 1.
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8 Some special functions and their regular sin-
gular points

Here is a good and up to date online source of information about special func-
tions: http://dlmf.nist.gov/.

8.1 Hypergeometric functions

The general solution of the equation

x(x − 1)y′′ + [(a + b + 1)x − c]y′ + aby = 0 (105)

is

y = A · 2F1(a, b; c;x) + Bx1−c
2F1(a − c + 1, b − c + 1; 2 − c;x), (106)

With the substitution
y = u, y′ = v/x

we get
(

u
v

)′
=

1

x
B

(

u
v

)

+ A(x)

(

u
v

)

(107)

where

B =

(

0 1
0 1 − c

)

(108)

and

A =

(

0 0
−ab/(x − 1) −(a + 1 + b − c)/(x − 1)

)

(109)

The eigenvalues of B are clearly 0 and 1− c. Note that they are resonant when
c ∈ Z \ {1}.
Exercise 1. (a) Find the behavior near the origin of the general solution in the
nonresonant case.

(b) In the resonant case, show that there is always a solution of the form
x1−cA(x) if 1−c > 0 and A(x) otherwise, where A is analytic. Use reduction of
order (explained in general in the next section) to find the behavior of the second
solution. Reduction of order in the first case would mean: look for y(x) in the
form x1−cA(x)g(x) where x1−cA(x) is already a solution. Solve the equation for
g.

8.2 The exponential integral

This is defined by

Ei1(z) =

∫ ∞

z

e−t

t
dt (z 6= 0) (110)

where the path does not cross the negative real axis or pass through the origin.
There is a cut along the interval (−∞, 0]. The function is also defined on R

−,
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in terms of the principal part of the integral, as a multivalued function, but we
will not worry about this now.

We see that

Ei1(z)′ = −e−z

z
(111)

With the substitution Ei1(z) = g(z)e−z we get

zg′ − zg + 1 = 0 (112)

We transform this into a second order homogeneous equation by differentiating
once more in z:

g′′ + (1/z − 1)g′ − g/z = 0 (113)

Clearly, zero is the only singular point of this equation. We write as before
g = u, g′ = v/z and we get

u′ = g′ = v/z; (114)

We get
(

u
v

)′
=

1

x
B

(

u
v

)

+ A(x)

(

u
v

)

(115)

where

B =

(

0 1
0 0

)

(116)

where clearly the eigenvalues of B are 0, 0. Note that

zB =

(

1 ln z
0 1

)

(117)

Write the general solution of (113) in a neighborhood of zero. Here, it is easy
enough to find the behavior of Ei1(z) directly from the integral expression. How?

8.3 Bessel functions

The Bessel functions of the first kind satisfy the equation

x2y′′ + xy′ + (x2 − ν2)y = 0 (118)

or, in normal form,

y′′ +
1

x
y′ +

(

1 − ν2

x2

)

y = 0 (119)

The general solution of this equation is

y = C1Jν(x) + C2Yν(x) (120)

In this case, the system is

(

u
v

)′
=

1

x
B

(

u
v

)

+ A(x)

(

u
v

)

(121)
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where

B =

(

0 1
ν2 0

)

(122)

with eigenvalues ν,−ν. In the nonresonant case there are two solutions which
behave near zero likr

z±νA±(z) (123)

with A± analytic.
The algorithm is clear. I attach a Maple file with the general procedure, in

which, instead of e1 you would insert any second order ODE. Finally, let’s make
a simple connection with equilibria. If we have a system of the form

x′ = ax + by (124)

y′ = cx + dy (125)

and the associated matrix is diagonalizable, then we can bring it to the form

u′ = λ1u; v′ = λ2v (126)

Of course, this can be easily solved in closed form. But we also note that we
can write

dv

du
= b

v

u
; b =

λ2

λ1
(127)

which perhaps the simplest case we can think of within Frobenius theory. Sup-
pose first that b ∈ R, then based on Frobenius theory, it is very easy to draw
the phase portrait. Discuss also the case when b is complex, and the case when
the Jordan form of

(

a b
c d

)

is nontrivial.

8.4 Reduction of order

Let λ1 be a characteristic root such that λ1+n is not a characteristic root. Then,
there is a solution of (87) of the form y1 = zλ1ϕ(z), where ϕ(z) is analytic and
we can take ϕ(0) = 1.

We can assume without loss of generality that λ1 = 0. Indeed, otherwise we
first make the substitution y = zλ1w and divide the equation by zλ1 .

The general term of the new equation is of the form

z−λ1blz
−l(zλ1w)n−l = z−λ1blz

−l
n−l
∑

j=0

(

n − l

j

)

w(j)(zλ1)(n−l−j)

= z−λ1blz
−l

n−l
∑

j=0

(

n − l

j

)

w(j)zλ1−n+l+j = bl

n−l
∑

j=0

(

n − l

j

)

w(j)z−(n−j) (128)
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Figure 1:

which is of the same type as (87).
Thus we assume λ1 = 0 and take y = ϕw. As discussed, we can assume
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ϕ(0) = 1. The equation for w is

n
∑

l=0

z−lbl

n−l
∑

j=0

(

n − l

j

)

w(j)ϕ(n−l−j) = 0 (129)

or
n

∑

j=0

w(j)

n−j
∑

l=0

z−lbl

(

n − l

j

)

ϕ(n−l−j) = 0 (130)

or also
n

∑

j=0

w(n−j)

j
∑

l=0

z−lbl

(

n − l

j

)

ϕ(j−l) = 0 (131)

We note that this equation, after division by ϕ (recall that 1/ϕ is analytic) is
of the same form as (87). However, now the coefficient of w is

n
∑

l=0

z−lbl

(

n − l

0

)

ϕ(n−l) =

n
∑

l=0

z−lblϕ
(n−l) = 0 (132)

since this is indeed the equation ϕ is solving.
We divide the equation by ϕ (once more, remember ϕ(0) = 1), and we get

n−1
∑

j=0

w(1+(n−1−j))b̃j = 0 (133)

where

b̃j =

j
∑

l=0

z−lbl

(

n − l

j

)

ϕ(j−l)

ϕ
(134)

has a pole of order at most j, or

n−1
∑

j=0

g(n−1−j)b̃j = 0 (135)

with w′ = g. This is an (n− 1)th order equation for g, and solving the equation
for w reduced to solving a lower order equation, and one integration, w =

∫

g.
Thus, by knowing, or assuming to know, one solution of the nth order equa-

tion, we can reduce the order of the equation by one. Clearly, the characteristic
roots for the g equation are λi − λ1 − 1, i 6= 1. We can repeat this procedure
until the equation for g becomes of first order, which can be explicitly solved.
This shows what to do in the degenerate case, other than, working in a similar
(in some sense) way with the equivalent nth order system.
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8.4.1 Reduction of order in a degenerate case: an example

Consider the equation
z(z − 1)y′′ + y = 0 (136)

This equation can be solved in terms of hypergeometric functions, but it is
easier to understand the solutions, at least locally, from the equation. The
indicial equation is r(r−1) = 0 (a resonant case: the roots differ by an integer).
Substituting y0 =

∑∞
k=1 ckzk in the equation and identifying the powers of z

yields the recurrence

ck+1 =
k2 − k + 1

k(k + 1)
ck (137)

with c1 arbitrary, which of course we can take to be 1. By induction we see that
0 < ck < 1. Thus the power series has radius of convergence at least 1. The
radius of convergence is in fact exactly one as it can be seen applying the ratio
test and using (137); the series converges exactly up to the nearest singularity
of (136). We knew that we must get an analytic solution, by the general theory.
We let y0 = y0

∫

g(s)ds and get, after some calculations, the equation

g′ + 2
y′
0

y0
g = 0 (138)

and, by the previous discussion, 2y′
0/y0 = 2/z+A(z) with A(z) is analytic. The

point z = 0 is a regular singular point of (138) and in fact we can check that
g(z) = C1z

−2B(z) with C1 an arbitrary constant and B(z) analytic at z = 0.
Thus

∫

g(s)ds = C1(a/z+b ln(z)+A1(z))+C2 where A1(z) is analytic at z = 0.
Undoing the substitutions we see that we have a fundamental set of solutions
in the form {y0(z), B1(z) ln z + B2(z)} where B1 and B2 are analytic.

8.4.2 Singularities at infinity

An equation has a singularity of first kind at infinity, if after the change of
variables z = 1/ζ, the equation in ζ has a singularity of first kind at zero.

For instance, (136) changes into

y′′ +
2

ζ
y +

y

ζ2(1 − ζ)
= 0 (139)

As a result, we see that (136) only has singularities of the first kind on the
Riemann sphere, C∞.

Exercise 2. (i) Show that any nonzero solution of (136) has at least one branch
point in C. (Hint: Examine the indicial equations at: 0, 1 and ∞. Alternatively,
you can use the indicial equation at ∞ and (137).)

(ii) Use the substitution (??) to bring the equation to a system form. What
is the matrix B′

0, the matrix B′ in the notation of Theorem 3 at z = 0? What
is its Jordan normal form?

(iii) If we write the B′
1 corresponding to the singular point z = 1, can B′

0

and B′
1 commute?
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9 General isolated singularities

We now take a system of the form

y′ = By (140)

Interpreted as as a matrix equation, we write

Y ′ = BY (141)

where, for some ρ > 0 the matrix B(z) is analytic in Dρ\{0}. We do not assume
anymore that the singularity is a pole. It is clear that (141) has, at any point
z0 ∈ Dρ \ {0}, a fundamental matrix solution Y0, and that the general matrix
solution of (141) is Y0K where K is an invertible constant matrix. Indeed, Y0 is
invertible, and if Y is any solution we can thus always write Y = Y0K, clearly,
for K = Y −1

0 Y . Then, we can check that Y0K
′ = 0, or K ′ = 0 which is what

we claimed. By our general arguments, Y0 is analytic (at least) in a disk of
radius |z0|. If we take a point z1 = z0e

iφ, with φ small enough, then the disk
D|z0|(z0) and the disk D|z0|(z1) overlap nontrivially, and then Y0 = Y1K1 for
some constant matrix K. We see that Y0 is analytic in D|z0|(z1). It follows
that Y0 is analytic on the Riemann surface of the log at zero, that is, it can be
continued along any curve in D not crossing zero: Y0 → Y1K1 → Y2K1K2 · · · .
Does this mean that Y0 is analytic in D \ {0}? Absolutely not. This is because

Figure 2:

after one full loop, we may return at z0 with YnKn · · ·K1 = Y0K for some
nontrivial K. To see that, we can just recall the general solution M(z)zB′

valid when zB is analytic, or simply look at the solution of the equation y′ =√
2y/z, y = z

√
2. However, note that K is invertible, and thus it can be written

in the form eC . Indeed, the Jordan form J of K is of the type D + N , where
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D is diagonal with all elements on the diagonal nonzero, and N is a nilpotent
commuting with D. We then write D+N = D(1+D−1N) and note that N1 :=
D−1N is also nilpotent. We define log(D + N) = log D +

∑m
j=1(−1)j−1N1j/j

where m is the size of the largest Jordan block in J . We define lnK = U−1 lnJU
where U is the matrix that brings K to its Jordan form. We can check that
eln J = J and consequently eln K = K. If we write K = e2πiP we note that the
matrix Y0z

−P is single-valued, thus analytic in Dρ \ {0}. Thus we have proved,

Theorem 4. The matrix equation (141), under the assumptions there, has a
fundamental solution of the form A(z)zP where A is analytic in Dρ \ {0}.

10 Frobenius’ theorem

Definition 5. An equation of the form (87) has a regular singularity at zero if
there exists a fundamental set of solutions in the form of finite combinations of
functions of the form

yi = zλi(ln z)mifi(z); (by convention, fi(0) 6= 0) (142)

where fi are analytic, mi ∈ N ∪ {0}

Theorem 5 (Frobenius). An equation of the form (87) has a regular singularity
at zero iff the singular point is of the first kind. (Clearly, a similar statement
holds at any point.)

10.1 Converse of Frobenius’ theorem

For the proof, we note that we can always change coordinates so that P = J
is in Jordan normal form. Then, the equation (87) has the general solution in
the form A(x)xJK where K is a constant matrix. Then, check that there is a
solution of the form xλy1(x) where y1 is analytic in Dρ \ {0}. By performing a
reduction of order on the associated nth order equation and rewriting that as a
system, check that we get a system of order n − 1, otherwise of the same form
(87).

Exercise 1. Use induction on n to complete the proof.

11 Nonlinear systems

A point, say z = 0 is a singular point of the first kind of a nonlinear system if
the system can be written in the form

y′ = z−1h(z, y) = z−1(L(z)y + f(z, y)) (143)

where h is analytic in z, y in a neighborhood of (0, 0). We will not analyze
these systems in detail, but much is known about them, [3] [2]. The problem, in
general, is nontrivial and the most general analysis to date for one singular point
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is in [3], and utilizes techniques beyond the scope of our course now. We present,
without proofs, some results in [2], which are more accessible. They apply to
several singular points, but we will restrict our attention to just one, in the
setting of (143). In the nonlinear case, a “nonlinear nonresonance” condition
is needed, namely: if λi are the eigenvalues of L(0), we need a diophantine
condition: for some ν > 0 we have

inf
{

(|m|+k)ν |k+m ·λ−λi|
∣

∣

∣m ∈ N
n, |m| > 1, k ∈ N∪{0}; i ≤ n

}

> 0 (144)

Furthermore, L(0) is assumed to be diagonalizable. (In [3] a weaker nonreso-
nance condition is imposed, known as the Brjuno condition, which is known to
be optimal.)

Proposition 6. Under these assumptions, There is a change of coordinates
y = Φ(z)u(z) where Φ is analytic with analytic inverse, so that the system
becomes

u′ = z−1h(z, u) = z−1(Bu + f(z, u)) (145)

where B is a constant matrix.

Proposition 7. The system (145) is analytically equivalent in a neighborhood
of (0, 0), that is for small u as well as small z, to its linear part, namely to the
system

w′ = z−1Bw (146)

In terms of solutions, it means that the general small solution of (143) can
be written as

y = H(z,Φ(z)zBC) (147)

where H(u, v) is analytic as a function of two variables, C is an arbitrary con-
stant vector. The diophantine, and more generally, Brjuno condition is gener-
ically satisfied. If the Brjuno condition fails, equivalence is still possible, but
unlikely. The structure of y in an equation of the form (147) is

yj(z) =
∑

m,k

ck,mzkzm·λ (148)

12 Variation of parameters

As we discussed, a linear nonhomogeneous equation can be brought to a linear
homogeneous one, of higher order. While this is useful in a theoretical quest,
in practice, it is easier to solve the associated homogeneous system and obtain
the solution to the nonhomogeneous one by integration. Indeed, if the matrix
equation

Y ′ = B(z)Y (149)

has the solution Y = M(z), then in the equation

Y ′ = B(z)Y + C(z) (150)
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we seek solutions of the form Y = M(z)W (z). We get

M ′W + MW ′ = B(z)MW + C(z) or M(z)W ′ = C(z) (151)

giving

Y = M(z)

∫ z

a

M−1(s)C(s)ds (152)

13 Equilibria

We start with the simple example of the harmonic oscillator. It is helpful in a
number of ways, since we have a good intuitive understanding of the system.
Yet, the ideal (frictionless) oscillator has nongeneric features.

We can use conservation of energy to write

1

2
mv2 + mgl(1 − cos x) = const (153)

where x is the angle and v = dx/dt, so with l = 1 we get

x′′ = − sin x (154)

13.1 Exact solutions

This equation can be solved exactly, in terms of Weierstrass elliptic functions.
Integration could be based on (155), and also by multiplication by x′ and inte-
gration, which leads to the same.

1

2
x′2 − cos x = C (155)

∫ x

0

ds√
C + 2 cos s

= t + t0 (156)

With the substitution tan(x/2) = u we get
∫ tan(x/2)

0

du√
1 + u2

√

C + 1 + (C − 1)u2
= t + t0 (157)

Whenever a differential system can be reduced to mere integrations as above,
we say that the system is integrable by quadratures. On the other hand, by
definition the elliptic integral of the first kind, F (z, k) is defined as

F (z, k) =

∫ z

0

ds√
1 − s2

√
1 − k2s2

(158)

and we get, with K =
√

2/
√

1 + C,

iKF (cos(z/2),K)
∣

∣

∣

x

0
= t + t0 (159)

At this point, we should study elliptic functions to proceed. They are in fact
very interesting and worthwhile studying, but we’ll leave that for later. For
now, it is easier to gain insight on the system from the equation than from the
properties of elliptic functions.

25



13.2 Discussion and qualitative analysis

Written as a system, we have

x′ = v (160)

v′ = − sin x (161)

The point (0, 0) is an equilibrium, and x = 0, v = 0 is a solution. So are the
points x = nπ, v = 0, n ∈ N.

Note that (160) is a Hamiltonian system, i.e., it is of the form

x′ =
∂H(x, v)

∂v

v′ = −∂H(x, v)

∂x
(162)

where H(x, v) = 1
2v2 + 1− cos x. In all such cases, we see that H is a conserved

quantity, that is H(x(t), v(t)) = const along a given trajectory {(x(t), v(t)) : t ∈
R}. The trajectories are thus the level lines of H, that is

H(x, v) =
1

2
v2 + 1 − cos x = C (163)

the trajectories (we artificially added 1, since H is defined up to an additive
constant, to make H ≥ 0.

We now see the importance of critical points: If H is analytic (in our case,
it is entire), at all points where the right side of (162) is nonzero, either x(y) or
v(x) are locally analytic, by the implicit function theorem, whereas otherwise,
in general, the curves are nonuniquely defined and possibly singular.

We have H(0, 0) = 0 and we see that H(x, v) = h for 0 < h < 2 are closed
curves.

Indeed, we have in this case,

|v| ≤
√

2h + 2 (164)

1 − cos x < h (165)

and thus both x and v are bounded, (x, v) ∈ K, in particular x ∈ (−π/2, π/2).
Then, H(x, v) ≤ h is compact, and since, if C < 2 we have ∇H = 0 only at the
origin, where H is zero, and H is positive otherwise, its maximum occurs on
the boundary of {(x, v) : H(x, v) ≤ h}. Furthermore, H(x, v) = h is an analytic
curve, in the sense above, since ∇H 6= 0 in this region.

Physically, for initial conditions close to zero, the pendulum would periodi-
cally swing around the origin, with amplitude limited by the total energy.

Fig. 9 represents a numerical contour plot of v2/2 − cos x. If we zoom in,
we see that the program had difficulties at the critical points ±π, showing once
more that there is something singular there.
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Figure 3: Contour plot of v2/2 − cos x

13.3 Linearization of the phase portrait

Take
(1 − u2/2) = cos x; u ∈ [−2, 2] (166)

We can write this as
u2 = 4 sin(x/2)2 (167)

which defines two holomorphic changes of coordinates

u = ±2 sin(x/2) (168)

These are indeed biholomorphic changes of variables until sin(x/2)′ = 0 that is,
x = ±π. With any of these changes of coordinates we get

u

sin x
u′ = v (169)

v′ = − sin x (170)

or

uu′ = v sin x (171)

v′ = − sin x (172)
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which would give the same trajectories family as

u′ = v (173)

v′ = −u (174)

for which the exact solution, A sin t, A cos t gives rise to circles. The same could
have been seen easily seen by making the same substitution, (177) in (163). We
note again that in (177) we have u2 ∈ [0, 4], so the equivalence does not hold
beyond u = ±2.

What about the other equilibria, x = (2k + 1)π? It is clear, by periodicity
and symmetry that it suffices to look at x = π. If we make the change of variable
x = π + s we get

s′ = v (175)

v′ = sin s (176)

In this case, the same change of variable, u = 2 sin(s/2) gives

u′ = v (177)

v′ = u (178)

implying v2−u2 = C as long as the change of variable is meaningful, that is, for
u < 2, or |s| < π. So the curves associated to (175) are analytically conjugated
to the hyperbolas v2 − u2 = C. The equilibrium is unstable, points starting
nearby necessarily moving far away. The point π, 0 is a saddle point.

The trajectories starting at π are heteroclinic: they link different saddles of
the system. In general, they do not necessarily exist.

In our case, these trajectories correspond to H = 2 and this gives

v2 = 2(1 + cos(x)) (179)

or
v2 = 4 cos(x/2)2 (180)

that is, the trajectories are given explicitly by

v = ±2 cos(x/2) (181)

This is a case where the elliptic function solution reduces to elementary func-
tions: The equation

dx

dt
= 2 cos(x/2) (182)

has the solution
x = 2arctan(sinh(t + C)) (183)

We see that the time needed to move from one saddle point to the next one is
infinite.
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13.4 Connection to regularly perturbed equations

Note that at the equilibrium point (π, 0) the system of equations is analytically
equivalent, insofar as trajectories go, to the system

(

x
v

)′
=

(

0 1
1 0

) (

x
v

)

(184)

The eigenvalues of the matrix are ±1 with (unnormalized) eigenvectors (1, 1)
and (−1, 1). Thus, the change of variables to bring the system to a diagonal
form is x = ξ + η, v = ξ − η. We get

ξ′ + η′ = ξ − η (185)

ξ′ − η′ = ξ + η (186)

By adding and subtracting these equations we get the diagonal form

ξ′ = ξ (187)

η′ = −η (188)

or
dξ

dη
= − ξ

η
; or ξη +

1

η
ξ = 0 (189)

a standard regularly perturbed equation. Clearly the solutions of (189) are
ξ = C/η with C ∈ (−∞,∞), and insofar as the phase portrait goes, we could
have written ηξ + 1

ξ η = 0, which means that the trajectories are the curves

ξ = C/η with C ∈ [−∞,∞], hyperbolas and the coordinate axes. In the original
variables, the whole picture is rotated by 45◦.

13.5 Completing the phase portrait

We see that, for H > 2 we have

v = ±
√

2h + 2 cos(x) (190)

where now h > 2. With one choice of branch of the square root (the solutions are
analytic, after all), we see that |v| is bounded, and it is an open curve, defined
on the whole of R. Note that the explicit form of the trajectories, given by
(163) does not, in general, mean that we can solve the second order differential
equation. The way the pendulum position depends on time, or the way the
point moves along these trajectories, is still transcendental.

13.6 Local and asymptotic analysis

Near the origin, for C = a2 small, we have

x′ = v (191)

v′ = x − x3/6 + ... (192)
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Figure 4: Contour plot of y2/2 − cos x

implying

x′ = v (193)

v′ ≈ x (194)

which means

x ≈ a sin t (195)

v ≈ a cos t (196)

For C very large, we have

dx√
C + cos x

= dx(C + cos x)
−1/2

= dxC−1/2(1 + cos x/C)
−1/2

= dx(C−1/2 − 1

2
cos x/C−3/2 + · · · ) (197)

which means

C−1/2x +
1

2
sin x/C−3/2 + · · · = t + t0 (198)

or

x = C1/2(t + t0) −
1

2
sin(C1/2t)/C−3/2 + · · · = (199)

The solutions near the critical point (π, 0) can be analyzed similarly.
Local and asymptotic analysis often give sufficient qualitative, and some-

times quantitative information about all solutions of the equation.

14 Equilibria

In [4], Chapter 1.3 about nonlinear systems starts with the words:
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“We must start by admitting that almost nothing beyond general statements
can be made about most nonlinear systems. In the remainder of this book we
will meet some of the delights and horrors about such systems, but the reader
must bear in mind that the line of attack we develop in this text is only one and
that any other tool in the workshop of applied mathematics, including numerical
integration, perturbation methods, and asymptotic analysis, can and should be
brought to bear on a specific problem”. Since the book was written, there has
been substantial progress, especially in using tools of asymptotic analysis, to
find the behavior of nonlinear systems. We will see about these later but for
now, we start with classical results and tools.

14.1 Flows

Consider the system
dx

dt
= F (x) (200)

where F is smooth enough. Such equations can be considered in R
n or, more

generally, in Banach spaces.
As we know by now, if x0 is a regular point for F , then there exists a unique

local solution of (200) with x(0) = x0.

Remark 4. (a) Note that equilibria, defined as points where F (xe) = 0 are
singular points of the field. Trajectories can intersect there. But this does not
mean that flows are singular there. Indeed, if we write

x(t) = x0 +

∫ t

0

F (x(s))ds

and the field is smooth at x0, the map above is contractive, and there is a unique
solution. See also Remark 6 below.

The initial condition x0 is mapped, by the solution of the differential equation
(200) into x(t) where t ∈ (−a, b).

The map x(0) → x(t) written as f t(x0) is the flow associated to F .
For t ≥ 0 we note the semigroup property f0 = I, fs+t = fsf t. This follows

from uniqueness of solutions, giving x(t + s;x0) = x(s;x(t;x0)).
Fixed points, hyperbolic fixed points in R

n. Example. If F (x) = Bx
where B does not depend on x, then the general solution is

x = eBtx0 (201)

where x0 is the initial condition at t = 0. (Note again that a simple exponential
formula does not exist, in general, if B depended on t.)

In this case, the flow f is given by the linear map

f t(x0) = eDF (0)tx0 (202)

Note that (Dxf)(0) = eBt.
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Note 5. Remember that the eigenvalues of eBα are eλiα where λi are the
eigenvalues of B.

Definition 8. The point x0 is a fixed point of f if f t(x0) = x0 for all t.

Proposition 9. If f is associated to F , then x0 is a fixed point of f iff F (x0) =
0.

Proof. Indeed, we have x(t + ∆t) = x(t) + F (x0)∆t + O((∆t)2) for small ∆t.
Then x(t + ∆t) = x(t) implies F (x0) + O(∆t) = 0, or, F (x0) = O(∆t). Taking
∆t → 0, we see that F (x0) = 0. Conversely, it is obvious that F (x0) = 0 implies
that x(t) = x0 is a solution of (200), and this solution is unique, by Remark 4.

Remark 6. This also shows that if trajectories intersect at an equilibrium, then
along any nontrivial trajectory ending at x0 (that is, a trajectory other that
x(t) = x0, we must have x(t) 6= x0 for all t ∈ R and thus x0 = limt→∞ x(t).

Assume 0 is a fixed point of F , F (0) = 0. The flow f depends on two
variables, x0 and t. Since x(t;x0) = f t(x0), we clearly have

∂f

∂t
= F (x(t;x0)) = F (ft(x0)) (203)

To see what
∂f

∂x0
is near 0, we see that, if F is differentiable, we have

x′ = F (x) = F (0) + (DF )(0)x + o(x) = (DF )(0)x + o(x) (204)

We thus expect, to leading order, to have

x′ = (DF )(0)x ⇒ x = et(DF )(0)x0 (205)

This is indeed the case, and it is shown below.

Proposition 10. If f is associated to the C1 field F , and x1 is a fixed point of
f , then Dxf t|x=x1

= eDF (x1)t.

That is, the flow is tangent to the linear flow.

Proof. Without loss of generality we take x1 = 0. Let t be fixed and take
the initial condition x(t = 0) = x0 small enough. Let DF (0) = B. We have
F (x) = F (0) + g(x) where g(x) = O(x2) for small x. We have x′ = Bx + g(x).
Taking x = eBtu we get

eBtu′ + BeBtu = BeBtu + g(eBtu) (206)

where g(x) = o(x). Thus

u = x0 +

∫ t

0

e−Bsg(eBsu(s))ds (207)
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or

x = eBtx0 +

∫ t

0

eB(t−s)g(x(s))ds (208)

Consider the Banach space of functions defined on [0, T ] with the sup norm,
and the ball Bδ of radius e‖B‖T ‖δ‖ for some δ small enough. Consider the
neighborhood N = {x0|‖x0‖ < δ/2} and assume we are working with initial
conditions in N .

We claim that (208) is contractive in Bδ, for all x0 ∈ N . Indeed, you can
easily check that the ball is preserved if δ is small enough, since g(x) = o(x).

To show contractivity, we note that

ξ(t) − η(t) =

∫ t

0

eB(t−s)[g(ξ(s)) − g(η(s))]ds (209)

where we know that

‖g(ξ(s)) − g(η(s))‖ = o(‖ξ(s) − η(s)‖) (210)

by the definition of differentiability in a neighborhood of zero (since F (ξ) −
F (η) = (D(F )(0) + o(1))(ξ − η) + o(ξ − η)). The rest of the contractivity proof
is straightforward.

Now we see that, for x0 < δ, for any δ1 > 0 we can arrange that

∣

∣‖x − eBtx0‖
∣

∣ ≤ δ1‖x‖ (211)

or
∣

∣‖x‖ − ‖eBtx0‖
∣

∣ ≤ δ1‖x‖ (212)

thus ‖x‖ ≤ ‖eBtx0‖ + δ1‖x‖ or ‖x‖ ≤ 1/(1 − δ1)‖eBtx0‖, implying,

x = eBtx0 + δ2; ‖δ2‖ ≤ δ1e
‖B‖T

1 − δ1
‖x0‖

proving the statement.

Definition 11. • The fixed point x = 0 is hyperbolic if the matrix Dxf |x=0 has
no eigenvalue on the unit circle.

• Equivalently, if f is associated with F , the fixed point 0 is hyperbolic if the
matrix DF (0) has no purely imaginary eigenvalues.

14.2 The Hartman-Grobman theorem

The following result generalizes to Banach space settings.
Let U and V be open subsets of R

n. Let f be a diffeomorphism between
U and V with a hyperbolic fixed point, that is there is x0 ∈ U ∩ V so that
f(x0) = x0 and Df(x0) has no spectrum on the unit circle. Without loss of
generality, we may assume that x = 0.
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Theorem 6 (Hartman-Grobman for maps). Under these assumptions, f and
Df(0) are topologically conjugate, that is, there are neighborhoods U1, V1 of zero,
and a homeomorphism h from U1 to V1 so that h−1 ◦ f ◦ h = Df(0).

The proof is not very difficult, but it is preferable to leave it for later.

Theorem 7 (Hartman-Grobman for flows, [6]). Let consider x′ = F (t) over
a Banach space, where F is a C1 vector field defined in a neighborhood of the
origin 0 of E. Suppose that 0 is a hyperbolic fixed point of the flow described by
F . Then there is a homeomorphism between the flows of F and DF (0), that is
a homeomorphism between a neighborhood of zero into itself so that

f t = h ◦ etDF (0) ◦ h−1 (213)

See also [5].
The more regularity is needed, the more conditions are required.

Differentiable linearizations

Theorem 8 (Sternberg-Siegel, see [6]). Assume f is differentiable, with a hy-
perbolic fixed point at zero, and the derivative Df is Hölder continuous near
zero. Assume further that DF (0) is such that its eigenvalues satisfy

Reλi 6= Reλj + Reλk (214)

when Reλj < 0 < Reλk. Then the functions h in Theorems 6 and 7 can be
taken to be diffeomorphisms.

Smooth linearizations

Theorem 9 (Sternberg-Siegel, see [6]). Assume f ∈ C∞ and the eigenvalues
of Df(0) are nonresonant, that is

λi − kλ 6= 0 (215)

for any k ∈ Z
n with |k| > 1. Then the functions h in Theorems 6 and 7 can be

taken to be C∞ diffeomorphisms.

We will prove, in simpler settings, the Hartman-Grobman theorem for flows.

For the analytic case, see Proposition 6.

14.3 Bifurcations

Bifurcations occur in systems depending on a parameter (or more), call it s.
Thus, the system is

d

dt
x(t; s) = F (x; s) (216)

A local bifurcation at an equilibrium, say x = 0, F (0) = 0, may occur when at
least one of the eigenvalues of DF (0) becomes purely imaginary. (Otherwise,
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the linearization theorem shows that the phase portrait is locally similar to that
of the linearized system. In this case, the topology does not change unless we
indeed go through purely imaginary eigenvalues.) We will explore bifurcation
types and prove theorems about some of them, but before that let’s see what
types of equilibria are possible in linear systems. Those that are associated to
hyperbolic fields represent, again by the linearization theorem, the local behavior
of general hyperbolic systems.

15 Types of equilibria of linear systems with

constant coefficients in 2d

The equation is now
x′ = Bx (217)

where B is a 2 × 2 matrix with constant coefficients.

15.1 Distinct eigenvalues

In this case, the system can be diagonalized, and it is equivalent to a pair of
trivial first order ODEs

x′ = λ1x (218)

y′ = λ2y (219)

15.1.1 Real eigenvalues

The change of variables that diagonalizes the system has the effect of rotating
and rescaling the phase portrait of (218). The phase portrait of (218) can be
fully described, since we can solve the system in closed form, in terms of simple
functions:

x = x0e
λ1t (220)

y = y0e
λ2t (221)

On the other hand, we have

dy

dx
=

λ2

λ1

y

x
= a

y

x
⇒ y = C|x|a (222)

where we also have as trajectories the coordinate axes: y = 0 (C = 0) and x = 0
(”C = ∞”). These trajectories are generalized parabolas. If a > 0 then the
system is either (i) a sink, when both λ’s are negative, in which case, clearly,
the solutions converge to zero. See Fig. 5, or (ii) a source, when both λ’s are
positive, in which case, the solutions go to infinity.

The other case is that when a < 0; then the eigenvalues have opposite
sign. Then, we are dealing with a saddle. The trajectories are generalized
hyperbolas,

y = C|x|−|a| (223)
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Figure 5: All types of linear equilibria in 2d, modulo euclidian transformations
and rescalings: sink, source, spiral sink, saddle, nontrivial Jordan form, center
resp. In the last two cases, the arrows point according to the sign of λ or ω,
resp.
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Say λ1 > 0. In this case there is a stable manifold the y axis, along which
solutions converge to zero, and an unstable manifold in which trajectories go
to zero as t → −∞. Other trajectories go to infinity both forward and backward
in time. In the other case, λ1 < 0, the figure is essentially rotated by π/2.

15.1.2 Complex eigenvalues

In this case we just keep the system as is,

x′ = ax + by (224)

y′ = cx + dy (225)

We solve for y, assuming b 6= 0 (check the case b = 0!), introduce in the second
equation and we obtain a second order, constant coefficient, differential equation
for x:

x′′ − (a + d)x′ + (ad − bc)x = 0 or (226)

x′′ − tr(B)x′ + det(B)x = 0 (227)

If we substitute x = eλt in (226) we obtain

λ2 − tr(B)λ + det(B) = 0 (228)

and, evidently, since λ1 + λ2 = tr(B) and λ1λ2 = det(B), this is the same
equation as the one for the eigenvalues of B. The eigenvalues of B have been
assumed complex, and since the coefficients we are working with are real, the
roots are complex conjugate:

λi = α ± iω (229)

The real valued solutions are

x = Aeαt sin(ωt + ϕ) (230)

where A and ϕ are free constants. Substituting in

y = b−1x′ − ab−1x (231)

we get
y(t) = Aeαtb−1[(α − 1) cos(ωt + ϕ) − ω sin(ωt + ϕ) (232)

which can be written, as usual,

y(t) = A1e
αt sin(ωt + ϕ1) (233)

If λ < 0, then we get the spiral sink. If α > 0 then we get a spiral source,
where the arrows are reverted.

A special case is that when α = 0. This is the only non-hyperbolic fixed
point with distinct eigenvalues. In this case, show that for some c we have
x2 +cy2 = A2, and thus the trajectories are ellipses. In this case, we are dealing
with a center.
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15.2 Repeated eigenvalues

In 2d this case there is exactly one eigenvalue, and it must be real, since it
coincides with its complex conjugate. Then the system can be brought to a
Jordan normal form; this is either a diagonal matrix, in which case it is easy to
see that we are dealing with a sink or a source, or else we have

(

x
y

)′
=

(

λ 1
0 λ

)(

x
y

)

(234)

In this case, we obtain
dx

dy
=

x

y
+

1

λ
(235)

with solution
x = ay + λ−1y ln |y| (236)

As a function of time, we can write

(

x
y

)

= e

0

@

λ 1
0 λ

1

At

= eλt
[

I +

(

0 1
0 0

)

t
]

(

x0

y0

)

(237)

x(t) = (At + B)eλt (238)

y(t) = Aeλt (239)

We see that, in this case, only the x axis is a special solution (the y axis is not),
and thus, all solutions approach (as t → ∞ or t → −∞ for λ < 0 or λ > 0
respectively) the x axis.

Note 7. The eigenvalues of a matrix depend continuously on the coefficients of
the matrix. In two dimensions you can see this by directly solving λ2−Tr(A)λ+
det(A) = 0. Thus, if a linear or nonlinear system depends on a parameter α
(scalar or not) and the equilibrium is hyperbolic when α = α0, then the real
part of the eigenvalues will preserve their sign in a neighborhood of α = α0.
The type of equilibrium is the same and local phase portrait changes smoothly
unless the real part of an eigenvalue goes through zero.

Note 8. When conditions are met for a diffeomorphic local linearization at an
equilibrium, then we have

(

x
y

)

= ϕ

(

u
v

)

(240)

where the equation in (u, v) is linear and the matrix ϕ is a diffeomorphism. We
then have

(

x
y

)

= (Dϕ)

(

u
v

)

+ o(u, v) (241)

which implies, in particular that the phase portrait very near the equilibrium is
changed through a linear transformation.
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15.3 Further examples, [5]

Consider the system

x′ = x + y2 (242)

y′ = −y (243)

The linear part of this system at (0, 0) is

x′ = x (244)

y′ = −y (245)

The associated matrix is simply
(

1 0
0 −1

)

(246)

with eigenvalues 1 and −1, and the conditions of a differentiable homeomor-
phism are satisfied.

Locally, near zero, the phase portrait of the system (246) is thus the proto-
typical saddle.

We will see that, again insofar as the field lines are concerned, this system
can be globally linearized too.

How about the global behavior? In this case, we can completely solve the
system. First, insofar as the field lines go, we have

dx

dy
= −x

y
− y (247)

a linear inhomogeneous equation that can be solved by variation of parameters,
or more easily noting that, by homogeneity, x = ay2 must be a particular
solution for some a, and we check that a = −1/3. The general solution of the
homogeneous equation is clearly xy = C. It is interesting to make it into a
homogeneous second order equation by the usual method. We write

1

y

dx

dy
= − x

y2
− 1 (248)

and differentiate once more to get

d2x

dy2
= −2

x

y2
(249)

which is an Euler equation, with indicial equation (λ − 2)(λ + 1) = 0, and thus
the general solution is

x(y) = ay2 +
b

y
(250)

where the constants are not arbitrary yet, since we have to solve the more
stringent equation (247). Inserting (250) into (247) we get a = −1/3. Thus, the
general solution of (248) is

3xy + y3 = C (251)
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Figure 6: Phase portrait of (242)

which can be, of course, solved for x. The phase can be obtained in the following
way: we note that near the origin, the system is diffeomorphic to the linear part,
thus we have a saddle there. There is a particular solution with x = −1/3y2

and the field can be completed by analyzing the field for large x and y. This
separates the initial conditions for which the solution ends up in the right half
plane from those confined to the left half plane.

Global linearization. This is another case of “accidental” analytic lin-
earizability since we can write the conserved quantity 3xy(x + y2/3) = C, or
(x + y2/3)y = C and thus passing to the variables u = x + y2/3, v = y the
system (242) becomes linear, of the form (244) (check!)

Note 9. The change of coordinates is thus
(

u
v

)

=

(

I +

(

0 y2/3
0 0

))(

x
y

)

(252)

and in particular we see that the transformation is, to leading order, the identity.

Exact solution of the time dependent system. Due to the very special
nature of the equation, an exact solution is possible too: we note that the second
equation contains y alone, and it gives immediately

y = y(0)e−t

while x can be either solved from the first equation or, more simply, from (258):

x(t) =
c

y(0)
et − 1

3
y(0)e−2t (253)

In the nonlinear system, y = 0 is still a solution, but x = 0 is not; x = 0 is
“deformed” into the parabola x = (−1/3)y2.
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15.4 Stable and unstable manifolds in 2d

Assume that g is differentiable, and that the system
(

x
y

)′
= g

(

x
y

)

(254)

has an equilibrium at zero, which is a saddle, that is, the eigenvalues of (Dg)(0)
are −µ and λ, where λ and µ are positive. We can make a linear change of
variables so that (Dg)(0) = diag(−µ, λ). Consider the linearization tangent to
the identity, that is, with Dg(0) = I. We call the linearized variables (u, v).

Theorem 10. Under these assumptions, in a disk of radius ǫ > 0 near the
origin there exist two functions y = f+(x) and x = f−(y) passing through the
origin, tangent to the axes at the origin and so that all solutions with initial
conditions (x0, f+(x0)) converge to zero as t → ∞, while the initial conditions
(f−(y0), y0) converge to zero as t → −∞. The graphs of these functions are
called the stable and unstable manifolds, resp. All other initial conditions
necessarily leave this disk as time increases, or decreases.

Proof. We show the existence of the curve f+, the proof for f− being the same,
by reverting the signs. We have

x(t) = ϕ1(u(t), v(t))

y(t) = ϕ2(u(t), v(t)) (255)

where (u, v) satisfy u′ = −µu and v′ = λv.
Consider a point (ϕ1(u0, 0), ϕ2(u0, 0)). There is a unique solution passing

through this point, namely (ϕ1(u+(t), 0), ϕ2(0+(t), 0)) where u+(0) = u0, v+(0) =
0. Since u+(t) → 0 as t → ∞ and ϕ is continuous, we have

(ϕ1(u+(t), 0), ϕ2(u+(t), 0)) → 0

as t → ∞. We now write (u, v) = Φ(x, y). Along the decaying solution, we
have v = 0. Since Φ = I + o(1), we have ∂Φ2/∂y = 1 at (0, 0), and the implicit
function theorem shows that ϕ2(x, y) = 0 defines a differentiable function y =
f(x) near zero, and y′(0) = 0 (check). For other solutions we have, from (255),
that x, y exits any small enough disk (check).

15.5 A limit cycle

Up to now we looked at equilibria, fixed points of the flow, which, along some
direction(s), attract solutions as t → ∞ or t → −∞. Fixed points are of
course special, degenerate, trajectories. In nonlinear systems, solutions may be
attracted by more structured trajectories: limit cycles.

We follow again [5], but with a different starting point. Let’s look at the
simple system

r′ = r(1 − r2)/2 (256)

θ′ = 1 (257)
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which we will ultimately interpret as a system of equations in polar coordinates.
Obviously, we can solve this in closed form. The flow clearly has no fixed point,
since the field never vanishes. To solve the first equation, note that if we multiply
by 2r we get

2rr′ = r2(1 − r2) (258)

or, with u = r2,
u′ = u(1 − u) (259)

The exact solution is

r = ±(1 + Ce−t)−1/2; and also r = 0; ±1, as special constant solutions
(260)

θ = t + t0 (261)

We see that all solutions that start away from zero converge to one as t → ∞.
We now interpret r and θ as polar coordinates and write the equations for x

Figure 7: Phase portrait of (256)

and y. We get

x′ = r′ cos θ − r sin θθ′ =
1

2
r(1 − r2) cos θ − r sin θ

=
1

2
x − y − 1

2
(x3 + xy2) (262)

y′ = r′ sin θ + r cos θθ′ =
1

2
r(1 − r2) sin θ + r cos θ

= x +
1

2
y − 1

2
(x2y + y3) (263)
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thus the system

x′ =
1

2
x − y − 1

2
(x3 + xy2) (264)

y′ = x +
1

2
y − 1

2
(x2y + y3) (265)

which looks rather hopeless, but we know that it can be solved in closed form.
To analyze this system, we see first that at the origin the matrix is

(

1
2 −1
1 1

2

)

(266)

with eigenvalues 1/2 ± i. Thus the origin is a spiral source. There are no other
equilibria (why?)

Now we know the solution globally, by looking at the solution of (256) and/or
its phase portrait. We note that r = 1 is a solution of (256), thus the unit circle

Figure 8: Phase portrait of (256)

is a trajectory of the system (264). It is a closed curve, all trajectories tend to
it asymptotically. This is a limit cycle.

15.6 Application: constant real part, imaginary part of
analytic functions

Assume for simplicity that f is entire. The transformation z → f(z) is associ-
ated with the planar transformation (x, y) → (u(x, y), v(x, y)) where f = u+ iv.

43



The grid x = const, y = const is transformed into the grid u = const, v = const.
We can first look at what this latter grid is transformed back into, by the trans-
formation. The analysis is more general though, nothing below requires u + iv
to be analytic. We use only use this information to shortcut through some
calculations.

We take first v(x(t), y(t)) = const. We have

∂v

∂x
x′(t) +

∂v

∂y
y′(t) = 0 (267)

which we can write, for instance, as the system

x′ =
∂v

∂y
(268)

y′ = −∂v

∂x
(269)

which, in particular, is a Hamiltonian system. We have a similar system for
v. We can draw the curves u = const, v = const either by solving this implicit
equation, or by analyzing (268), or even better, by combining the information
from both. Let’s take, for example f(z) = z3 − 3z2. Then, v = 3x2y− y3 − 6xy.
It would be rather awkward to solve v = c for either x or y. The system of
equations reads

x′ = −6x + 3x2 − 3y2 (270)

y′ = 6y − 6xy (271)

Note that ∇u = 0 or ∇v = 0 are equivalent to z′ = 0. For equilibria, we thus
solve 3z2 − 6z = 0 which gives z = 0; z = 2. Near z = 0 we have

x′ = −6x + o(x, y) (272)

y′ = 6y + o(x, y) (273)

which is clearly a saddle point, with x the stable direction and y the unstable
one. At x = 2, y = 0 we have, denoting x = 2 + s,

s′ = 6s + o(s, y) (274)

y′ = −6y + o(s, y) (275)

another saddle, where now y = 0 is the unstable direction. We note that y = 0 is,
in fact, a special trajectory, and it is in the nonlinear unstable/stable manifold
at the equilibrium points. Note also that a nonlinear stable manifold exists
locally. In this case it changes character as it happens to pass through another
equilibrium.

We draw the phase portraits near x = 0, near x = 2, mark the special
trajectory, and look at the behavior of the phase portrait at infinity. Then we
“link” smoothly the phase portraits at the special points, and this should suffice
for having the phase portrait of the whole system.
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Figure 9: Phase portrait of (270) near (0, 0).

Figure 10: Phase portrait of (270) near (0, 2).

For the behavior at infinity, we note that if we write

dy

dx
=

y(1 − 6x)

−6x + 3x2 − 3y2
(276)

we have the special solution y = 0, and otherwise the nonlinear terms dominate
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and we have
dy

dx
≈ −6yx

3x2 − 3y2
(277)

By homogeneity, we look for special solutions of the form y = ax (which would
be asymptotes for the various branches of y(x). We get, to leading order,

a =
−6a

3 − 3a2
(278)

We obtain
a = 0, a = ±

√
3 (279)

We also see that, if x = o(y), then y′ = o(1) as well. This would give us
information about the whole phase portrait, at least qualitatively.

Figure 11: Phase portrait of (270), v = const.

Exercise 1. Analyze the phase portrait of u(x, y) = const.

The two phase portraits, plotted together give Note how the fields intersect
at right angles, except at the saddle points. The reason, of course, is that f(z)
is a conformal mapping wherever f ′ 6= 0.
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Figure 12: Phase portrait of u = const

Figure 13: Phase portrait of u = const, and v = const.

Exercise 2. Draw the global phase portrait of the approximations of the pen-
dulum, x′′ + x− x3/6 = 0, x′′ + x− x3/3 + x5/5 = 0. Find the equilibria, local
and global behavior. Find out if there are limit cycles. Discuss the conection
sith the physical pendulum, x′′ + sin(x) = 0.

Exercise 3. Draw the global phase portrait of the damped pendulum, x′′ +
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ax′ +sin x = 0, where a > 0 is the air friction coefficient. Discuss what happens
as a → 0 and how this relates to the undamped pendulum, a = 0. Discuss
also the bifurcation that occurs at a = 0 and x = 0 (for a < 0, the physical
interpretation could be that we are looking backwards in time. Also, note any
global bifurcations, that is changes in the global topology.

16 Bifurcations

Here, we will speak of local and global bifurcations. Bifurcations occur when a
change in a parameter induces topological changes in the phase portrait. These
can be local, global (or both).

Local ones refer to the situations when a parameter crosses a value where
the stability of a local equilibrium (or coalescing ones) changes.

As we know, the phase portrait of a system depending on a parameter
changes structure near an equilibrium only if at least one eigenvalue becomes
purely imaginary. This may happen if one eigenvalue (or both, but generically
one) becomes zero, or else they pass through a point where they are nonzero,
imaginary and complex conjugate to each other (since we are dealing with real-
valued equations).

The classification is made by looking at the normal form. That is, we discard
higher order nonlinearities, keeping the ones that become dominant when the
bifurcation occurs. (When one eigenvalue becomes zero or imaginary, the first
nonzero nonlinear term takes over, at that point, to control the local behavior).

We will deal later with theorems showing that, under suitable conditions, a
nonlinear system is equivalent to this normal form, insofar as the topology of
the system is concerned.

For instance,
x′ = x2 + a; y′ = −y

will represent a general system of the form

x′ = a + bx2 + O(x3); y′ = −y + O(y2)

16.1 Some types of bifurcations

We will study the following types of normal forms:

x′ = x2 + a; y′ = −y; saddle-node bifurcation

Here, for a < 0 there are two equilibria that collide when a = 0, while there is
no equilibrium when a > 0.

x′ = rx − x2; y′ = −y; transcritical bifurcation

Two equilibria collide, and after the collision we still have two equilibria.

x′ = rx − x3; y′ = −y; supercritical pitchfork bifurcation
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One unstable equilibrium (r < 0) bifurcates into an unstable one and two stable
ones.

x′ = rx + x3; y′ = −y; subcritical pitchfork bifurcation

We see that in the pitchfork bifurcation, the quadratic term is absent (in prac-
tice, due to some symmetry of the system).

Of course, in these types of equilibria, much of the information is contained
in the x part, and we may to some extent ignore the y one; the equations are
decoupled.

x′ = βx − y + σx(x2 + y2); y′ = x + βy + σy(x2 + y2) Hopf bifurcation

where β = 0 is the bifurcation point. Here, eigenvalues become imaginary, but
nonzero.

16.2 Normal form of the saddle-node bifurcation

Consider a simple system which illustrates the first case, an eigenvalue going
through zero, prototypical for saddle-node bifurcations,

x′ = x2 + a (280)

y′ = −y (281)

Of course, we can solve this explicitly, but we choose not to, because solvable
equations are infrequent. We first note that the only possible equilibria are
(±√−a, 0). Clearly, there are two of them if a < 0, one if a = 0 and none if
a > 0. For a = 0, the equilibrium is non-hyperbolic and needs to be studied
separately. For a < 0, at x = ±a, we see that the linearized system is

(

x
y

)′
=

(

±2
√−a 0
0 −1

)(

x
y

)

(282)

Thus the point (−√−a, 0) is a node, while (
√−a, 0) is a saddle.

Let’s draw the complete phase portrait in the three regimes, a < 0, a = 0
and a > 0. Again, the portrait is determined by the set of equilibria, limit
cycles, and by the behavior at infinity. The three lines x = ±a and y = 0 are
special solutions of the system. We see that there are no limit cycles, since
trajectories do not cross except at the equilibria, and the lines x = ±a, never
crossed, delimit regions where the sign of x′ is constant.

Behavior at infinity: for x very large, we have x′ ≈ x2 and y′ = −y, and
thus

dy

dx
≈ −y

x2
(283)

with the solution y = Ce1/x. Thus in the far x field, the trajectories are expected
to approach horizontal lines. How do we prove this rigorously? One way is to
note that for any α > 1 (x2 − a)−1 ≤ αx−2 if x is large enough.
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Thus, we can write
y′(x)

y(x)
≥ − α

x2
(284)

where we can integrate both sides and get

y(x) ≥ Cx0,y0
eα/x (285)

where Cx0,y0
is a constant depending on the initial condition (x0, y0). Similarly,

y(x) ≤ Cx0,y0
eα′/x (286)

If instead x is bounded and y → ∞, the direction field points straight to
the origin, so there the trajectories essentially vertical lines. Piecing all this
together, we get the phase portrait depicted below.

Figure 14: Phase portrait of (287) for a = −1

For a = 0 the system simply becomes

x′ = x2 (287)

y′ = −y (288)

Clearly, the line x = 0, a special solution, is attracting, while the line y = 0 is
repelling for x > 0 and attracting (since the field points towards the origin) for
x < 0. So we see that, in some sense, the origin is now half-node, half saddle.
All nearby trajectories are attracted to zero if they start in the closed left half
plane, and repelled otherwise.

The far-field picture is clearly the same as in the case a < 0, so we can piece
together these informations to draw the phase portrait. We note that in this
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[h!]

Figure 15: Phase portrait of (287) for a = 0

case, of course, the explicit solutions y = Ce1/x, C ∈ R and x = 0, can be easily
used to draw the phase portrait. This type of behavior as a function of a, at
least in this example, explains the choice of name, saddle-node bifurcation.

Finally, for a > 0 there are no equilibria. We see that x′ > 0 for all x.
Trajectories extend from −∞ to +∞ in x. The behavior in the far field is
the same as in the previous examples. The trajectories have horizontal lines as
asymptotes for x → ±∞ and, in the upper half plane, the asymptote for x < 0
lies above the one for x > 0, since y′ < 0 there. We can now draw the phase
portrait.

As we see, the node in the left half plane approaches the saddle, touches it
at which time we have a half-node half-saddle picture, and then the equilibrium
vanishes and the curves in the left half plane “spill over” in the right half plane.
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Figure 16: Phase portrait of (287) for a > 0
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16.3 Transcritical bifurcation

Typically, for this and some other bifurcations, the y part is ignored, and for a
good reason, as we mentioned there is effectively no y participation. The reason
for which this type of bifurcation is called transcritical is from the way things
look as a function of the parameter for the x-only system. To have however
a unified picture in mind, and to recall that we are after all dealing with two
dimensional systems for which it does happen that the normal form makes y
“idle” we will look at the two dimensional system,

x′ = rx − x2 (289)

y′ = −y

For r 6= 0 there are two equilibria, and for r = 0 only one; the two equilibria
collide as before, but the outcome is different.

Take r < 0. Clearly, the origin, marked in blue, is a node. The other
equilibrium, r is a saddle (r − 2r = −r > 0).

The global picture is obtained as before: the rays: {(−t, 0) : t < r}, {(t, 0) :
t ∈ (r, 0)},{(t, 0) : t > 0}, {(0,±t2) : t > 0} are special trajectories; in the far
field, the trajectories are almost horizontal.

Figure 17: Transcritical phase portrait, r < 0
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Figure 18: Transcritical phase portrait, r = 0

Figure 19: Transcritical phase portrait, r > 0

Here, we see that a saddle-node becomes a “half saddle-half node” and then
it becomes a node-saddle. The types of equilibria are interchanged.
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16.4 Normal form of the pitchfork bifurcation

Here we are dealing with a system with symmetries, so that the normal form is

x′ = rx − x3 (290)

y′ = −y

The field is an odd function of x and y, and stays odd for all (or only small,
maybe) values of r. The name “pitchfork” will become clear in a moment.

In case 1) r > 0, we have three equilibria, x = 0 and x = ±√
r.

Figure 20: Pitchfork phase portrait, r < 0
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Figure 21: Pitchfork phase portrait, r = 0

Figure 22: Pitchfork phase portrait, r > 0

It is clear that the origin is a saddle whereas the other two equilibria, sym-
metric, are nodes (sinks).

If, 2), r = 0, clearly we only have one equilibrium, and it is a node because
−x3 always points towards the origin.

By explicit solution, we see that the trajectories are given by y = Ce−1/(2x2),
which explains the fact that the phase portrait almost seems to have a continuum
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of nodes near zero.
Finally, in case 1) r < 0, we have only one equilibrium and it is a node. the

number of equilibria changes.
Note that we can extend artificially the number of variables, to transform

the two dimensional parameter-dependent problem into a three-dimensional
parameter-free one,

x′ = rx − x3 (291)

y′ = −y (292)

r′ = 0

Clearly now the change in behavior is seen as a chenge in the 3d phase portrait,
as a function of the initial condition in r.

x

r

y

Figure 23: Pitchfork 3d phase portrait.

16.5 Normal form of the Hopf bifurcation

We will In this case, we are looking at a system for which passage through the
critical value of the parameter (β) implies nonzero, purely imaginary eigenval-
ues. Take first σ = −1:

x′ = βx − y − x(x2 + y2) (293)

y′ = x + βy − y(x2 + y2) (294)

The origin is an equilibrium for all β, and it is the only one if we refer to (296,
where θ′ > 0. At the origin, the linearized system is

(

x
y

)′
= B

(

x
y

)

; B =

(

β −1
1 β

)

(295)
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where the equation for the eigenvalues of the matrix B is (β − λ)2 + 1 = 0, and
thus λ± = β ± i. At β 6= 0 the equilibrium is hyperbolic, a spiral sink if β < 0
and a spiral source for β > 0. A change of phase portrait, a bifurcation, should
occur at β = 0.

For a simple analysis of the phase portrait, we rewrite the system in polar
coordinates.

r′ = βr − r3 (296)

θ′ = 1 (297)

For β < 0, βr− r3 has only one solution, r = 0. In (x, y), all solutions converge
to the origin, while spiraling.

In the far field, we have

r′ ≈ −r3 (298)

θ′ = 1 (299)

with solution
r = (2θ + 2C)−1/2 (300)

For r to be very large, we must have θ very close to −C. That is, asymptotically
the curves in the far field (x, y) plane have radial lines as asymptotes. The
spiraling ceases there.

Figure 24: Phase portrait of (295) for β = −1

When β = 0, r = 0 is still the only solution of βr − r3 = 0. Since again
r′ < 0, all trajectories go to the origin. But because as the origin is approached
at at very small rate, O(r3) , there is a lot of spiraling going on in that region.
We see a tendency of a limit cycle being born.
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Figure 25: Phase portrait of (295) for β = 0

For β > 0, we have three solutions of βr − r3 = 0, 0 and ±√
β (tghe minus

solution is “unphysical” for us. This means, in (x, y) that x2 + y2 = β is limit
cycle. We note that it approaches the origin as β → 0. The spiral sink changes
into a spiral source plus a limit cycle.

Figure 26: Phase portrait of (295) for β = 1
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17 Bifurcations in more general systems. The
central manifold theorem

Here we follow [4]. The setting is that of differential systems depending on a
parameter,

x′ = fµ(x), x ∈ R
n, µ ∈ R

m (301)

where we assume sufficient smoothness of f . Equilibrium solutions are given by
the (constant) solutions of the equation

fµ(x) = 0 (302)

The equilibrium points depend smoothly on µ, by the implicit function theorem,
as long as Dxfµ is invertible, that is, as long as it has no zero eigenvalue.
If (det Dxfµ)(x0, µ0) = 0, several branches of equilibria may form/disappear.
These points (x0, µ0) are bifurcation points. For example, in the pitchfork
bifurcation example, µ = r and (0, 0) is the only bifurcation point.

We saw that the there equilibria merge into one at that point.
A crucial notion here is that of transversality. In one dimension, y = f(x)

crosses the x axis transversally at x0 if f(x0) = 0 and f ′(x0) 6= 0. In d dimen-
sions, two manifolds intersect transversally if the tangent spaces at the intersec-
tion point span R

d (there is no loss in dimension). It is clear that transversal
intersections are generic. In particular, two manifolds Σ1 and Σ2 of dimensions
d1 and d2 intersect transversally along a manifold of dimension d1 + d2 − d.
Equivalently, the codimension of Σ1 ∩Σ2 is (d− d1) + (d− d2). Two surfaces in
3d intersect generically along a line, two generic curves do not intersect, and a
curve and a manifold generically intersect at a point, etc.

For the vector field µ + x2 thought of as a family of curves in R, the curve
for µ = 0 intersects the x axis non-transversally at x = 0.

However, if we lift the number of dimensions to include µ in the picture, we
have a transversal intersection of the surface F (x, µ) = x2 + µ with the (x, µ)
coordinate plane.

Also, it is clear that transversal intersections are stable in the following
sense. If two manifolds intersect transversally, then any small perturbation
of the manifolds will also have a transversal intersection. On the contrary, if
two manifolds intersect non-transversally, then their generic perturbations will
intersect transversally. Let f be a Cr vector field on R

n vanishing at the origin
(f(0) = 0) and let A = (DF )(0). We denote as usual by σu,c,s the partso of the
spectrum (eigenvalues) for which Reλ > 0, = 0, < 0 respectively.

Denote the generalized eigenspaces of σu,c,s by Eu,c,s respectively. By defi-
nition, the stable manifold is a set invariant under the flow which is tangent to
Es, the unstable one is tangent Eu whereas the center manifold is tangent to
Ec.

We remember that, in hyperbolic systems (for which therefore the center
manifold is absent) the stable/unstable manifolds are unique.
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We see that center manifolds need not be unique, on the simple example
(287),

x′ = x2 (303)

y′ = −y (304)

Clearly (0, 0) is a non-hyperbolic fixed point, with 0 eigenvalue in the x direction.
We have a unique stable manifold at (0, 0): here we look for an invariant set
tangent to the vertical axis, and in this case it is the vertical axis itself. How
about sets tangent to the center direction, x = 0? See Figure 16.2. We can solve
for the trajectories

dy

dx
= − y

x2
(305)

i.e, y = Ce1/x. We see that there is no such trajectory for x > 0, but for all C,
the trajectories in the left half plane are tangent to the real line. Any of these
would be a center manifold.

Theorem 11 (Center manifold theorem for flows). There exist Cr stable and
unstable manifolds (invariant under the flow and tangent to Es, Eu) W s and
Wu respectively, and these are unique. There is a (generally nonunique) center
manifold W c, and it is Cr−1.

Corollary 12. We can take a set of local coordinates, x̃, ỹ, z̃, corresponding to
the local splitting R

d = W c×W s×Wu, so that, topologically, the general system
is equivalent to

x̃′ = f̃(x̃) (306)

ỹ′ = −ỹ (307)

z̃′ = z̃ (308)

Let us see how to determine this equivalent system, in the special case when
W s is empty. We bring the linear part at the equilibrium of our general system
to the block diagonal form

x′ = Cx + f(x, y) (309)

y′ = Hy + g(x, y) (310)

where C is the part of the matrix whose eigenvalues have zero real part while H
is the rest of the matrix, the “hyperbolic” part. The center manifold is tangent
to Ec, and we can thus write it in locally in the form of the graph of a function,
y = h(x) (indeed, we write it first in the form G(x, y) = C and we note that
∇G ⊥ e1 and thus the implicit function theorem gives y = h(x)). Thus, we can
substitute into (309) and get

x′ = Cx + f(x, h(x)) (311)

On the other hand, h(x) = o(x) for small x, since it Dh = 0 there. Thus,
we expect, and shall prove later, that the flow provided by (311)) is a good
approximation of x̃′ = f̃(x̃), which would evolve inside the center manifold.
The following holds.
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Theorem 12 (Henry, Carr). If the origin x = 0 of (311) is locally asymp-
totically stable/unstable, then the origin of (309) is also locally asymptotically
stable/unstable.

17.1 The saddle-node bifurcation: general case

We follow [4]. We remember that the normal form we were aiming at was
a + x2, or, of course, more generally µ − µ0 ± (x − x0)

2. Consider now the
system (301), and assume that at µ = µ0, x = x0 there is an equilibrium in
which one eigenvalue is zero and nondegenerate. The center manifold theorem
would then allow us to reduce the study to the case where the system is one-
dimensional. More precisely, there is a 2d center manifold Σ in R

n ×R through
(x0, y0) so that (1) Σ is tangent to the plane spanned by the 0 eigenvector and
the direction of µ,

(2) For any r, Σ is Cr in a neighborhood of (x0, y0),
(3) The vector field of (301) is tangent to Σ,
and
(4) There is a neighborhood U of (x0, y0) in Σ which is invariant under the

flow.
If we restrict (301) to Σ, we get a one-parameter family of equations on the

one dimensional curves Σµ := {z ∈ Σ : µ = const =: µ}. This is the reduction
of the bifurcation problem. We now need to impose conditions that imply that
the bifurcation type of this one-dimensional system is the same as that for the
normal form µ − µ0 ± (x − x0)

2. These are: ∂f
∂µ (x0, µ0) 6= 0 (transversality in

the µ direction), and ∂2f
∂x2 (x0, µ0) 6= 0, that is the equilibrium is quadratic.

More precisely, the following theorem holds.

Theorem 13. Consider the setting above, under the following assumptions:
(SN1) M = Dxf(x0, µ0) has a simple eigenvalue 0 with right eigenvector

v and left eigenvector w (wM = 0 ↔ MT w = 0). M has k eigenvalues with
negative real parts and (n − k − 1) with positive real parts.

(SN2) w · Dµf(x0, µ0) 6= 0.
(SN3) w ·(v ·D2

xf(x0, µ0)v) 6= 0. (Note that v ·D2
xf(x0, µ0)v is a vector since

f is a vector.)
Then there is a smooth curve of equilibria in R

n×R passing through (x0, µ0)
and tangent to the hyperplane R

n × {µ0}. Depending on the signs in (SN1),
(SN2) there are no equilibria near (x0, µ0) for µ < µ0 (µ > µ0 resp.). The two
equilibria near (x0, µ0) are hyperbolic, and have stable manifolds of dimension
k and k + 1, resp. The conditions (SN1) and (SN2) are generic, in the sense
of forming an open dense set in the family of vector fields with an equilibrium
with zero eigenvalue at (x0, µ0).

17.2 Transcritical and pitchfork bifurcations

We need appropriate changes in the assumptions. They are natural, if you think
of the shape of the normal form:
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(A) Transcritical bifurcation. Here we must have fµ(0) = 0 for all µ, and
thus Dµf cannot be nonzero anymore. This condition is replaced by (SN2’)
w · (∂2f/∂µ∂x)v 6= 0 at µ = µ0.

(B) Pitchfork bifurcation (one dimension). Here we are dealing with systems
with symmetry in which f is odd. Thus, now we cannot have D2

xf 6= 0. Then,
(SN3) is replaced by (SN3’), D3

xf 6= 0
Under these assumptions a theorem similar to the one in the previous section

holds.

17.3 Hopf bifurcations

Consider now a system of the form (301) for which, at some (x0, y0) Dxf has
exactly one pair of nonzero imaginary eigenvalues, and the systems is hyperbolic
otherwise, near (x0, y0). Then, by the implicit function theorem, the equilibrium
position varies smoothly with µ, unlike in most other bifurcations. We expect
however, by looking at what we called the normal form, a qualitative change in
the structure of the equilibrium to occur at µ0: a spiral sink is transformed into
a spiral source plus a limit cycle.

By changes of variables (straightforward but rather lengthy [4]), the block
affected by the bifurcation can be brought to the form

x′ = (dµ + a(x2 + y2)x − (ω + cµ + b(x2 + y2))y + higher order terms (312)

y′ = (ω + cµ + b(x2 + y2)x) + (dµ + a(x2 + y2))y + higher order terms (313)

(essentially, the quadratic terms can be eliminated). If we momentarily discard
the higher order terms, this takes the following form in polar coordinates

r′ = (dµ + ar2)r (314)

θ′ = (ω + cµ + br2) (315)

The phase portrait of (314) does not differ substantially from the one we used
before, where br2 was missing. If a, d are nonzero, then there are periodic orbits
of the (x, y) system lying along the parabola µ = −ar2/d; the surface of periodic
orbits has quadratic tangency with the plane µ = 0 in R

2 × R.
The Hopf bifurcation theorem essentially says that the higher order terms

do not change this picture locally.

Theorem 14 (Hopf, 1942). Suppose that the system x′ = fµ(x), (x, µ) ∈ R
n ×

R, has an equilibrium at (x0, µ0) so that the following properties are satisfied.
(H1) Dxf(µ0, x0) has a unique pair of purely imaginary nonzero eigenvalues.
Then, there exists a smooth curve of equilibria (x(µ), µ) with x(µ0) = x0.

The two eigenvalues which are imaginary at (x0, µ0), λ(µ) and λ(µ) vary smoothly
with µ.

Assume furthermore that

d

dµ
(Re(λ(µ))

∣

∣

∣

µ=µ0

= d 6= 0 (316)
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Then, there exists a unique three dimensional center manifold passing through
(x0, µ0) in R

n × R, and a smooth change of coordinates preserving the planes
µ = const. for which the Taylor expansion on the center manifold is given by
(312). If a 6= 0, then there is a surface of periodic solutions in the center
manifold which has quadratic tangency with the eigenspace of λ(µ0) and λ(µ)
agreeing to second order with the paraboloid µ = −(a/d)(x2 + y2). If a < 0, the
periodic solutions are repelling.

18 The Poincaré Bendixson Theorem

Assumptions. Here we state, without proof for now, a few results related to
the possible topology of trajectories. The proofs are neither short nor very easy,
and we will leave these for later. Consider the autonomous two dimensional
system

x′ = f1(x, y) (317)

y′ = f2(x, y) (318)

We assume that f1, f2 are continuous in a domain D ∈ R
2. A regular point

P ∈ D of (316) is a point where existence and uniqueness are ensured. We have
a studied a number of sufficient conditions on f for this to be the case. In the
following, K will be a compact set in D. The theorem in a sense classifies the
possible topological behavior of trajectories of planar systems.

18.1 Semiorbits, orbits, limit sets, limit cycles, periodic
orbits

A full orbit C is a solution P (t) = (x(t), y(t)) defined on the whole of R. A
positive semiorbit C+ is a solution defined for all t ≥ 0 and correspondingly, a
negative semiorbit C− is a solution defined for all t ≤ 0. Clearly, a full orbit is
the union of a positive and a negative semiorbit.

A limit set L(C+) of the semiorbit C+ is the set of all its limit points,
that is the set of all X = (x, y) such that X = limn→∞(x(tn), y(tn)) for some
sequence {tn}n∈N (L(C−) is defined similarly). For instance, we see that the
circle in Fig. 26 is a limit set for all trajectories other than (0, 0).

ω and α sets. A more common terminology nowadays is the following. Con-
sider the flow Φ(t, P ) associated with (316). This is nothing more than the
solution of (316) with initial condition P .

The ω set of P is exactly the set of all X = (x, y) such that X = limn→∞(x(tn), y(tn))
for some sequence {tn}n∈N. This can be empty if the trajectory fails to exist
for all t ≥ 0 or if it goes to infinity. Similarly, α sets are defined in the limit
t → −∞.

Periodic orbit A periodic orbit is a solution X(t) = (x(t), y(t)) with the
property that there is some T > 0 so that X(t + T ) = X(t) for all t.
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Limit cycle A periodic orbit is a limit cycle if it is the ω or α set of some
point not belonging to it.

The question addressed by the Poincaré-Bendixson theorem is the nature of
the limit set of a semiorbit which lies in a compact (i.e., bounded) region.

First a few intermediate results.

Proposition 13. If C+ is a positive semiorbit contained in a compact set K ,
then L(C+) is nonempty, closed and connected.

Proposition 14. Let C+ be a positive semiorbit contained in a compact set
K, and assume the point P = (x, y) ∈ L(C+) is a regular (nonsingular) point.
Then the unique orbit C through P is a full orbit, and C ⊂ L(C+).

A periodic orbit is a solution such that for some T and all t we have P (t +
T ) = P (t). A limit cycle is a periodic orbit of the form L(C+) where C+ 6=
L(C+), that is, L(C+) is a nontrivial limit set.

Theorem 15 (Poincaré-Bendixson). Let C+ be a positive semiorbit contained
in K. If all points on L(C+) are regular, then L(C+) is a periodic orbit.

ω set formulation

Theorem 16 (Poincaré-Bendixson). Assume ω(P ) 6= ∅ is compact, connected
and contains finitely many equilibria. Then there are only three possibilities:

(i) ω(P ) is an equilibrium (thus P is an equilibrium).
(ii) ω(P ) is periodic orbit consisting in regular points.
(iii) ω(P ) consists of finitely many equilibria {xj} and non-closed orbits

C(P ′) such that ω(P ′) ∈ {xj} and α(P ′) ∈ {xj}.

Corollary 15. Let C be a closed orbit that forms the boundary of an open set.
Then the open set contains at least one equilibrium inside.

Corollary 16. Assume (316) has a first integral. If this first integral is not
exactly constant on any open set, then (316) has no limit cycles.

19 Appendix

19.1 Solution to Exercise 3

The equation for Yk is

kYk + (YkJ − JYk) = Rk +
k−1
∑

j=1

YjAk−j−1; Rk = Ak−1J (319)

We consider the family of Banach spaces indexed by µ > 0,

Bµ = {Y = (Yl)l∈N : |||Y|||µ := sup
j∈N

µ−j‖Yj‖ < ∞}
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Note that, since A(z) is analytic, the series
∑

l∈N
Alz

l converges, implying that,
for some C > 0,

sup
j∈N

‖AjC
−j‖ < ∞ (320)

Thus the vector R := (Rl)l∈N is in Bµ for all µ > C.
The function C given by CX = XJ − JX is evidently a linear function on

C
n2

, thus given by a matrix; since ‖CX‖ ≤ 2‖J‖‖X‖ by the triangle inequality,
its norm is bounded by

‖C‖ ≤ 2‖J‖ (321)

The function Mk given by

MkX =: kX + CX

is a linear function on C
n2

, and thus it is also given by a matrix. We have shown
that Mk is invertible, since MkX = 0 ⇔ X = 0. Thus, for every k, M−1

k exists
(and evidently has finite norm).

We now also note that, if k > 2‖J‖ we have

‖Mk‖−1 ≤ 1

k − 2‖J‖ (322)

Indeed,
M−1

k = k−1(1 − k−1C)−1 (323)

Thus the series ∞
∑

l=0

Cl/kl (324)

converges for all k > 2‖J‖. This is called a Neumann series, and you can check
that it converges to (1 − k−1C)−1.

Thus,

‖(1 − k−1C)−1‖ ≤
∞
∑

l=0

k−l(2‖J‖)l =
1

1 − 2k−1‖J‖ (325)

and (321) follows.
Therefore,

sup
k∈N

‖M−1
k ‖ = max{ max

k≤2‖J‖+1
‖M−1

k ‖, sup
k≥2‖J‖+2

(1 − 2k−1‖J‖)−1}

= max{ max
k≤2‖J‖+1

‖M−1
k ‖, 1/2} = a1 < ∞ (326)

Then the operator T̂ defined by

(T̂Y)j = M−1
j Yj (327)

is bounded in Bµ, and

‖T̂‖ = a1 (328)
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We define the (linear) operator L̂ on Bµ, µ > C, by

(L̂Y)j =

k−1
∑

j=1

YjAk−j−1; j ≥ 1 (329)

This is well defined on Bµ and

‖L̂‖ ≤ 1

µ − C
(330)

Indeed, since ‖Y ‖j ≤ µj |||Y ||| =: Nµj , we have

‖
k−1
∑

j=1

YjAk−j−1‖ ≤ N

k−1
∑

j=1

µjCk−j−1 ≤ NCk−1 µk

Ck(µ/C − 1)
=

Nµk

µ − C
(331)

Now, the system (318) can be written compactly as

Y = T̂A + T̂L̂Y (332)

This is a linear nonhomogeneous equation for Y. For it to be contractive, we
need ‖T̂L̂‖ ≤ ‖T̂‖ ‖L̂‖ < 1.

This is the case if
a1

µ − C
< 1 (333)

i.e., if µ > µ1 = C + a1. Thus Y ∈ Bµ1
, implying that ‖Yj‖ ≤ Nµj

1 for some N
and all j, and therefore the series

∞
∑

j=1

Yjz
j (334)

converges (obviously to an analytic function) for |z| < 1/µ1, and therefore Y (z)
is analytic at zero as required.

19.2 Solution to Exercise 1

The definition of zaP is exp(aP ln z) Now, since P 2 = P we have

exp(P ln z) = I +

∞
∑

k=1

(a ln z)kP k = I + P

∞
∑

k=1

(a ln z)k/k!

= I + P (za − 1) = Pza + (I − P ) (335)
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