
1 Gradient and Hamiltonian systems

1.1 Gradient systems

These are quite special systems of ODEs, Hamiltonian ones arising in conserva-
tive classical mechanics, and gradient systems, in some ways related to them,
arise in a number of applications. They are certainly nongeneric, but in view of
their origin, they are common.

A system of the form
X ′ = −∇V (X) (1)

where V : Rn → R is, say, C∞, is called, for obvious reasons, a gradient system.
A critical point of V is a point where ∇V = 0.

These systems have special properties, easy to derive.

Theorem 1. For the system (1), if V is smooth, we have (i) If c is a regular
point of V , then the vector field is perpendicular to the level hypersurface V −1(c)
along V −1(c).

(ii) A point is critical for V iff it is critical for (1).
(iii) At any equilibrium, the eigenvalues of the linearized system are real.
More properties, related to stability, will be discussed in that context.

Proof.

(i) It is known that the gradient is orthogonal to level surface.
(ii) This is clear essentially by definition.
(iii) The linearization matrix elements are aij = −Vxi,xj

(the subscript no-
tation of differentiation is used). Since V is smooth, we have aij = aji, and all
eigenvalues are real.

1.2 Hamiltonian systems

If F is a conservative field, then F = −∇V and the Newtonian equations of
motion (the mass is normalized to one) are

q′ = p (2)

p′ = −∇V (3)

where q ∈ Rn is the position and p ∈ Rn is the momentum. That is

q′ =
∂H

∂p
(4)

p′ = −∂H
∂q

(5)

where

H =
p2

2
+ V (q) (6)
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is the Hamiltonian. In general, the motion can take place on a manifold, and
then, by coordinate changes, H becomes a more general function of q and p. The
coordinates q are called generalized positions, and q are the called generalized
momenta; they are canonical coordinates on the phase on the cotangent manifold
of the given manifold.

An equation of the form (4) is called a Hamiltonian system.

Exercise 1. Show that a system x′ = F (x) is at the same time a Hamiltonian
system and a gradient system iff the Hamiltonian H is a harmonic function.

Proposition 1. (i) The Hamiltonian is a constant of motion, that is, for any
solution X(t) = (p(t), q(t)) we have

H(p(t), q(t)) = const (7)

where the constant depends on the solution.
(ii) The constant level surfaces of a smooth function F (p, q) are solutions of

a Hamiltonian system

q′ =
∂F

∂p
(8)

p′ = −∂F
∂x

(9)

Proof. (i) We have

dH

dt
= ∇pH

dp

dt
+∇q

dq

dt
= −∇pH∇q +∇qH∇p = 0 (10)

(ii) This is obtained very similarly.

1.2.1 Integrability: a few first remarks

Hamiltonian systems in one dimension are integrable: the solution can be writ-
ten in closed form, implicitly, as H(y(x), x) = c. Note that for an equation of the
form y′ = G(y, x), this is equivalent to the system having a constant of motion.
The latter is defined as a function K(x, y) defined globally in the phase space,
(perhaps with the exception of some isolated points where it may have “simple”
singularities, such as poles), and with the property that K(y(x), x) = const for
any given trajectory (the constant can depend on the trajectory, but not on x).
Indeed, in this case we have

d

dx
C(y(x), x) =

∂C

∂y
y′ +

∂C

∂x
= 0

or

y′ = −∂C
∂x

/
∂C

∂y

which is equivalent to the system

ẋ =
∂C

∂y
; ẏ = −∂C

∂x
(11)

which is a Hamiltonian system.
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1.2.2 Local versus global

It is important to mention that a system is actually called Hamiltonian if the
function H is defined over a sufficiently large region, preferably the whole phase
space.

Indeed, take any smooth first order ODE, y′ = f(y, x) and differentiate with
respect to the initial condition (we know already that the dependence is smooth;
we let dy/d(y0) = ẏ):

ẏ′ =
∂f

∂y
ẏ (12)

with the solution

ẏ = exp

(∫ x

x0

∂f(y(s), s)

∂y
ds

)
(13)

and thus, in the local solution y = G(x;x0) we have Gx0
(x;x0) 6= 0, if G is

smooth –i.e. the field is regular–, and the implicit function theorem provides
a local function K so that x0 = K(y(x), x), that is a constant of motion! The
big difference between integrable and nonintegrable systems comes from the
possibility to extend K globally.

1.3 Example

As an example for both systems, we study the following problem: draw the
contour plot (constant level curves) of

F (x, y) = y2 + x2(x− 1)2 (14)

and draw the lines of steepest descent of F .
For the first part we use Proposition 1 above and we write

x′ =
∂F

∂y
= 2y (15)

y′ = −∂F
∂x

= −2x(x− 1)(2x− 1) (16)

The critical points are (0, 0), (1/2, 0), (1, 0). It is easier to analyze them using
the Hamiltonian. Near (0, 0) H is essentially x2 + y2, that is the origin is a
center, and the trajectories are near-circles. We can also note the symmetry
x → (1 − x) so the same conclusion holds for x = 1, and the phase portrait is
symmetric about 1/2.

Near x = 1/2 we write x = 1/2 + s, H = y2 + (1/4 − s2)2 and the leading
Taylor approximation gives H ∼ y2−1/2s2. Then, 1/2 is a saddle (check). Now
we can draw the phase portrait easily, noting that for large x the curves essen-
tially become x4 + y2 = C “flattened circles”. Clearly, from the interpretation
of the problem and the expression of H we see that all trajectories are closed.
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Figure 1:

Figure 2:

The perpendicular lines solve the equations

x′ = −∂F
∂x

= −2x(x− 1)(2x− 1) (17)

y′ = −∂F
∂y

= −2y (18)4



We note that this equation is separated! In any case, the two equation obviously
share the critical points, and the sign diagram can be found immediately from
the first figure.

Exercise 2. Find the phase portrait for this system, and justify rigorously its
qualitative features. Find the expression of the trajectories of (17). I found

y = C

(
1

(x− 1/2)2
− 4

)

2 Flows, revisited

Often in nonlinear systems, equilibria are of higher order (the linearization has
zero eigenvalues). Clearly such points are not hyperbolic and the methods we
have seen so far do not apply.

There are no general methods to deal with all cases, but an important one
is based on Lyapunov (or Lyapounov,...) functions.
Definition. A flow is a smooth map

(X, t)→ Φt(X)

A differential system
ẋ = F (x) (19)

generates a flow
(X, t)→ x(t;X)

where x(t;X) is the solution at time t with initial condition X.
The derivative of a function G along a vector field F is, as usual,

DF (G) = ∇G · F

If we write the differential equation associated to F , (19), then clearly

DFG =
d

dt
G(x(t))|t=0

2.1 Lyapunov stability

Consider the system (19) and assume x = 0 is an equilibrium.
Then

1. xe = 0 is Lyapunov stable (or simply stable) if starting with initial condi-
tions near 0 the flow remains in a neighborhood of zero. More precisely,
the condition is: for every ε > 0 there is a δ > 0 so that if |x0| < δ then
|x(t)| < ε for all t > 0.

2. xe = 0 is asymptotically stable if furthermore, trajectories that start close
to the equilibrium converge to the equilibrium. That is, the equilibrium
xe is asymptotically stable if it is Lyapunov stable and if there exists δ > 0
so that if |x0| < δ, then limt→∞ x(t) = 0.
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2.2 Lyapunov functions

Let X∗ be a fixed point of (19). A Lyapunov function for (19) is a function
defined in a neighborhood O of X∗ with the following properties

(1) L is differentiable in O.
(2) L(X∗) = 0 (this can be arranged by subtracting a constant).
(3) L(x) > 0 in O \ {X∗}.
(4) DFL ≤ 0 in O.
A strict Lyapunov function is a Lyapunov function for which
(4’) DFL < 0 in O.
Finding a Lyapunov function is often nontrivial. In systems coming from

physics, the energy is a good candidate. In general systems, one may try to find
an exactly integrable equation which is a good approximation for the actual one
in a neighborhood of X∗ and look at the various constants of motion of the
approximation as candidates for Lyapunov functions.

Theorem 2 (Lyapunov stability). Assume X∗ is a fixed point for which there
exists a Lyapunov function L. Then

(i) X∗ is stable.
(ii) If L is a strict Lyapunov function then X∗ is asymptotically stable.

Proof. (i) Consider a small ball B 3 X∗ contained in O; we denote the boundary
of B (a sphere) by ∂B. Let α be the minimum of L on the ∂B. By the definition
of a Lyapunov function, (3), α > 0. Consider the following subset:

U = {x ⊂ B : L(x) < α} (20)

From the continuity of L, we see that U is an open set. Clearly, X∗ ⊂ U . Let
X ∈ U . Then x(t;X) is a continuous curve, and it cannot have components
outside B without intersecting ∂B. But an intersection is impossible since by
monotonicity, L(x(t)) ≤ L(X) < α for all t. Thus, trajectories starting in U are
confined to U , proving stability.

(ii)

1. Note first that X∗ is the only critical point in O since d
dtL(x(t;X∗1 )) = 0

for any fixed point.

2. Note that trajectories x(t;X) with X ∈ U are contained in a compact set,
and thus they contain limit points. Any limit point x∗ is strictly inside U
since L(x∗) < L(x(t);X) < α.

3. Let x∗ be a limit point of a trajectory x(t;X) whereX ∈ U , i.e. x(tn, X)→
x∗. Then, by 1 and 2, x∗ ∈ U and x∗ is a regular point of the field.

4. We want to show that x∗ = X∗. We will do so by contradiction. Assuming
x∗ 6= X∗ we have L(x∗) = λ > 0, again by (3) of the definition of L.

5. By 3 the trajectory {x(t;x∗) : t ≥ 0} is well defined and is contained in B.

6. We then have L(x(t;x∗)) < λ∀t > 0.
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7. The set
V = {X : L(x(tn+1 − tn;X))} < λ (21)

is open, so
L(x(tn+1 − tn;X1)) < λ (22)

for all X1 close enough to x∗.

8. Let n be large enough so that x(tm;X) ∈ V for all m ≥ n.

9. Note that, by existence and uniqueness of solutions at regular points we
have

x(tn+1;X) = x(tn+1 − tn;x(tn;X)) (23)

10. On the one hand L(x(tn+1)) ↓ λ and on the other hand we got L(x(tn+1)) <
λ. This is a contradiction.

2.3 Examples

Hamiltonian systems, in Cartesian coordinates often assume the form

H(q, p) = p2/2 + V (q) (24)

where p is the collection of spatial coordinates and p are the momenta. If this
ideal system is subject to external dissipative forces, then the energy cannot
increase with time. H is thus a Lyapunov function for the system. If the
external force is F (p, q), the new system is generally not Hamiltonian anymore,
and the equations of motion become

q̇ = p (25)

ṗ = −∇V + F (26)

and thus
dH

dt
= pF (p, q) (27)

which, in a dissipative system should be nonpositive, and typically negative.
But, as we see, dH/dt = 0 along the curve p = 0.

For instance, in the ideal pendulum case with Hamiltonian

H =
1

2
ω2 + (1− cos θ) (28)

The associated Hamiltonian flow is

θ′ = ω (29)

ω′ = − sin θ (30)
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Then H is a global Lyapunov function at (0, 0) for (31) (in fact, this is true
for any system with nonnegative Hamiltonian). This is clear from the way
Hamiltonian systems are defined.

Then (0, 0) is a stable equilibrium. But, clearly, it is not asymptotically
stable since H = const > 0 on any trajectory not starting at (0, 0).

If we add air friction to the system (31), then the equations become

θ′ = ω (31)

ω′ = − sin θ − κω (32)

where κ > 0 is the drag coefficient. Note that this time, if we take L = H, the
same H defined in (28), then

dH

dt
= −κω2 (33)

The function H is a Lyapunov function, but it is not strict, since H ′ = 0 if ω = 0.
Thus the system is stable. It is however intuitively clear that furthermore the
energy still decreases to zero in the limit, since ω = 0 are isolated points on
any trajectory and we expect (0, 0) to still be asymptotically stable. In fact, we
could adjust the proof of Theorem 2 to show this. However, as we see in (27),
this degeneracy is typical and then it is worth having a systematic way to deal
with it. This is one application of Lasalle’s invariance principle that we will
prove next.

3 Some important concepts

We start by introducing some important concepts.

Definition 2. 1. An entire solution x(t;X) is a solution which is defined for
all t ∈ R.

2. A positively invariant set P is a set such that x(t,X) ∈ P for all t ≥ 0
and X ∈ P. Solutions that start in P stay in P. Similarly one defines
negatively invariant sets, and invariant sets.

3. The basin of attraction of a fixed point X∗ is the set of all X such that
x(t;X)→ X∗ when t→∞.

4. Given a solution x(t;X), the set of all points ξ∗ such that solution x(tn;X)→
ξ∗ for some sequence tn →∞ is called the set of ω-limit points of x(t;X).
At the opposite end, the set of all points ξ∗ such that solution x(−tn;X)→
ξ∗ for some sequence tn → ∞ is called the set of α-limit points. These
may of course be empty.

Proposition 3. Assume x(t;X) belongs to a closed, positively invariant set P
where the field is defined. The ω-limit set is a closed invariant set too. A similar
statement holds for the α-set.
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Proof. 1. (Closure) We show the complement is open. Let b be in the com-
plement of the set of ω-limit points. Then lim inft→∞ d(x(t,X), b) > a > 0
for some a and for all t > 0. If b′ is close enough to b, then by the triangle
inequality, lim inft→∞ d(x(t,X), b′) > a/2 > 0 for all t.

2. (Invariance) Assume x(tn, X)→ x∗. By assumption, the differential equa-
tion is well-defined in a neighborhood of any point in P, and since x∗ ∈ P,
x(t;x∗) exists for all t ≥ 0. By continuity with respect to initial conditions
and of solutions, we have x(t;x(tn)) → x(t;x∗) as n → ∞. Then x(t;x∗)
is an omega-point too for any t ≥ 0 (note that x(tn + t,X)→ x(t, x∗) by
the definition of an ω limit point and continuity .

3. Backward invariance is proved similarly: x(tn − t,X)→ x(−t, x∗).

4 Lasalle’s invariance principle

Theorem 3. Let X∗ be an equilibrium point for X ′ = F (X) and let L : U → R
be a Lyapunov function at X∗. Let X∗ 3 P ⊂ U be closed, bounded and positively
invariant. Assume there is no entire trajectory in P − {X∗} along which L is
constant. Then X∗ is asymptotically stable, and P is contained in the basin of
attraction of X∗.

Proof. Since P is compact and positively invariant, every trajectory in P has
ω-limit points. If X∗ is the only limit point, the assumption follows easily
(show that all trajectories must tend to X∗). So, we may assume there is an
x∗ 6= X∗ which is also an ω-limit point of some x(t;X). We know that the
trajectory x(t;x∗) is entire. Since L is nondecreasing along trajectories, we
have L(x(t;X)) → α = L(x∗) as t →∞. (This is clear for the subsequence tn,
and the rest follows by inequalities: check!) On the other hand, for any T ∈ R,
positive or negative, x(T ;x∗) is arbitrarily close to x(tn + T,X) if n is large.
Since L(x(T ;x∗)) ≤ α and it is arbitrarily close to L(x(t,X)) ≥ α, it follows
that L(x(T ;x∗)) = α for all t ≥ 0.

4.1 Example: analysis of the pendulum with drag

Intuitively, it is clear that any trajectory that starts with ω = 0 and θ ∈ (−π, π)
should asymptotically end up at the equilibrium point (0, 0) (other trajectories,
which for the frictionless system would rotate forever, may end up in a different
equilibrium, (2nπ, 0). For zero initial ω, the basin of attraction of (0, 0) should
exactly be (−π, π). In general, the energy should be less than precisely the one
in this marginal case, H = 1 − cos(π) = 2. Then, the region θ0 ∈ (−π, π),
H < 1− cos(π) = 2 should be the basin of attraction of (0, 0).

So let c ∈ (0, 2), and let

Pc = {(θ, ω) : and H(θ, ω) ≤ c, |θ| ≤ arccos(1− c) ∈ (−π, π)} (34)
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Figure 3:

In H, θ coordinates, this is simply a closed rectangle and since (H, θ) is a
continuous map, its preimage in the (p, θ) plane is closed too.

Now we show that Pc is closed and forward invariant. If a trajectory were to
exit Pc, it would mean, by continuity, that for some t we have H = c+ δ for a
small δ > 0 (ruled out by Ḣ ≤ 0 along trajectories) or that |θ| = arccos(1−c)+ε
for a small ε > 0 which implies, from the formula for H the same thing: H > c.

Now there is no nontrivial entire solution (that is, other than X∗ = (0, 0))
along which H = const. Indeed, H = const implies, from (33) that ω = 0
identically along the trajectory. But then, from (30) we see that sin θ = 0
identically, which, within Pc simply means θ = 0 identically. Lasalle’s theorem
applies, and all solutions starting in Pc approach (0, 0) as t → ∞. The phase
portrait of the damped pendulum is depicted in Fig. 3
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5 Gradient systems and Lyapunov functions

Recall that a gradient system is of the form (1), that is

X ′ = −∇V (X) (35)

where V : Rn → R is, say, C∞ and a critical point of V is a point where ∇V = 0.
We have the following result:

Theorem 4. For the system (1): (i) If c is a regular value of V , then the vector
field is orthogonal to the level set of V −1(c).

(ii) The equilibrium points of the system coincide with the critical points of
V .

(iii) V is a Lyapunov function for the system, and given a solution x, we
have d

dtV (x(t)) = 0 iff x(t) ≡ X∗, an equilibrium point.
(iv) If a critical point X∗ is an isolated minimum of V , V (X)−V (X∗) is a

strict Lyapunov function at X∗, and then X∗ is asymptotically stable.
(v) Any α− limit point of a solution of (1), and any ω− limit point is an

equilibrium.
(vi) The linearized system at any equilibrium has only real eigenvalues.

Note 1. (a) By (v), any solution of a gradient system tends to a limit point or
to infinity.

(b) Thus, descent lines of any smooth manifold have the same property: they
link critical points, or they tend to infinity.

(c) We can use some of these properties to determine for instance that a
system is not integrable. We write the associated gradient system and determine
that it fails one of the properties above, for instance the linearized system at
a critical point has an eigenvalue which is not real. Then there cannot exist a
smooth H so that H(x, y(x)) is constant along trajectories.

Proof. We have already shown (i) and (ii), which are in fact straightforward
from the definition.

For (iii) we see that

d

dt
V (x(t)) = ∇V dx

dt
= −|∇V |2 ≤ 0 (36)

whereas, if ∇V = 0 for some point of the trajectory, then of course that point
is an equilibrium, and the whole trajectory is that equilibrium.

(iv) If an equilibrium point is isolated, then ∇V 6= 0 in a set of the form
|X−X∗| ∈ (0, a). Then −|∇V |2 < 0 in this set. Furthermore, V (X)−V (X∗) >
0 for all X with |X −X∗| ∈ (0, a).

(v) Since V is a Lyapunov function for (1), we have shown in the proof of
Lasalle’s invariance principle that V is constant along any trajectory starting at
a limit point. But we see from (iii) that this implies that the trajectory reduces
to a point, which is an equilibrium point.
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Figure 4: The Lorenz attractor

(vi) Note that for smooth V , the linearization at X∗ is simply the matrix

A; Aij =
−∂2V (X∗)

∂xi∂xj
(37)

which is symmetric.

6 Limit sets, Poincaré maps, the Poincaré Bendix-
son theorem

We shall denote the ω−limit set of a solution starting at X by ω(X), and
likewise, its α−limit set by α(X).

In two dimensions, there are typically two types of limit sets: equilibria and
periodic orbits (which are thereby limit cycles). Exceptions occur when a limit
set contains a number of equilibria, as we will see in examples.

Beyond two dimensions however, the possibilities are far vaster and limit
sets can be quite complicated. Fig. 4 depicts a limit set for the Lorenz system,
in three dimensions. Note how the trajectories seem to spiral erratically around
two points. The limit set here has a fractal structure.

We begin the analysis with the two dimensional case, which plays an impor-
tant tole in applications.
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We have already studied the system r′ = 1/2(r−r3) in Cartesian coordinates.
There the circle of radius one was a periodic orbit, and a limit cycle. All
trajectories, except for the trivial one (0, 0) tended to it as t→∞.

We have also analyzed many cases of nodes, saddle points etc, where trajec-
tories have equilibria as limit sets, or else they go to infinity.

A rather exceptional situation is that where the limit sets contain equilibria.
Here is one example

6.1 Example: equilibria on the limit set

Consider the system

x′ = sinx(− cosx− cos y) (38)

y′ = sin y(cosx− cos y) (39)

The phase portrait is depicted in Fig. 5.

Exercise 1. Justify the qualitative elements in Fig. 5.

In the example above, we see that the limit set is a collection of fixed points
and orbits, none of which periodic.

6.1.1 Closed orbits

A closed orbit is a solution whose trajectory is a closed curve (with no equilibria
on it). Starting at a point X, after a finite time then, the solution returns to
X since the absolute value of the velocity along the curve is bounded below.
From that time on, the solution must repeat itself identically, by uniqueness of
solutions. It then means that the solution is periodic, that is there is a smallest
τ so that Φt+τ (X) = Φ(X). This τ is called the period of the orbit.

Proposition 4. (i) If X and Z lie on the same solution curve, then ω(X) =
ω(Z) and α(X) = α(Z).

(ii) If D is a closed, positively invariant set and Z ∈ D, then ω(Z) ⊂ D;
similarly for negatively invariant sets and α(Z).

(iii) A closed invariant set, and in particular a limit set, contains the α−limit
and the ω−limit of every point in it.

Proof. Exercise.

7 Sections; the flowbox theorem

Consider a differential equation X ′ = F (X) with F smooth, and a point X0

such that F (X0) 6= 0. Then there is a diffeomorphic change of coordinates in
some neighborhood of X0, X ↔ X− so that in coordinates X− the field is simply
Ẋ− = e1 where e1 = (1, 0).

One way to achieve this is the following. Since F (X0) 6= 0 there is a unit
vector V0 at X0 which is orthogonal to F (X0), say (−F2, F1)/|F (X0)|. we
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Figure 5: Phase portrait for (38).

Ψ

Figure 6: Flowbox and transformation

draw a line segment, h(u) = X0 + uV0, u ∈ (−ε, ε). If ε is small enough, then
F (h(u)) 6= 0 for all u ∈ (−ε, ε) and F is not tangent to u anywhere along the
segment S = {X0 + uV0|u ∈ (−ε, ε)} (that is, (−F2, F1) · V0 6= 0).
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Definition 5. The segment S defined above is called local section at X0.

Note that any solution that intersects S crosses it, in the same direction
relative to S. Indeed, since the field is smooth and (−F2, F1) · V0 6= 0, then
(−F2, F1) · V0 has constant sign throughout S and the trajectories flow towards
the same side of S.

To straighten the field, we construct the following map, from a neighborhood
of X0 of the form N = {(t, u) : |t| < δ, u ∈ S. This is a small enough region
where the flow is smooth and there are no equilibria.

We consider the function from

Ψ(s, u) = Φs(h(u)) := x(s;h(u)) (40)

Note that x(s;h(u)) ∈ R2 lies in a neighborhood ofX0. Note also that x(0;h(u)) =
h(u) and thus the line (0, u) ∈ N is mapped onto the section S.

Finally, we note that x(0, h(u2))−x(0, h(u1)) = h(u2)−h(u1) = (u2−u2)V0.
then Ψ is a diffeomorphism, since the Jacobian of the transformation is

det(J(X0)) = det

(
F1 V1
F2 V2

)
= |F (X0)| (41)

is nonzero in a neighborhood of X0, in fact throughout S, and since we have
assumed that F does not become tangent to V0.

We see that the inverse of Ψ takes a neighborhood of X0 into a neighborhood
of X0.

We saw that (0, u) is mapped onto S. We also see that (s, u0) is mapped to
x(s;h(u0)) which is part of a trajectory. Thus, the inverse image of trajectories
through Ψ are straight lines, as depicted. The new field is the trivial flow we
have mentioned.

Figure 7: Time of arrival function
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7.1 Time of arrival

We consider all solutions in the domain O where the field is defined. Some of
them intersect S. Since the trajectories are continuous, there is a first time of
arrival, the smallest t so that x(t, Z0) ∈ S.

This time of arrival is continuous in Z0, as shown in the next proposition.

Proposition 6. Let S be a local section at X0 and assume φt0(Z0) = X0. Let
W be a neighborhood of Z0. Then there is an open set U ⊂ W and a diffrentiable
function τ : U → R such that τ(Z0) = t0 and

φτ(X)(X) ∈ S (42)

for each x ∈ U .

Note 2. In some sense, a subsegment of the section S is carried backwards
smoothly through the field arbitrarily far, assuming that the flow makes sense,
and that the subsegment is small enough.

Proof. A point X1 belongs to the line ` containing S iff X = X0 +uV0 for some
u, Since V0 is orthogonal to F (X0) we see that X ∈ ` iff X ·F (X0) = X0F (X0).

We look now at the more general function

G(X, t) = x(t;X) · F (X0) (43)

We have
G(Z0, t0) = X0 · F (X0) (44)

by construction. We want to see whether we can apply the implicit function
theorem to

G(X, t)−G(Z0, t0) = 0 (45)

For this we need to check ∂
∂tG(Z0,t0). But this equals

x′(t;X) · F (X0) = |F (X0)|2 6= 0 (46)

Then, there is a neighborhood of t0 and a differentiable function τ(X) so that

G(X, τ(X)) = G(Z0, t0) = X0 · F (X0) (47)

7.2 The Poincaré map

The Poincaré map is a useful tool in determining whether closed trajectories
(that is, periodic orbits) are stable or not. This means that taking an initial
close enough to the periodic orbit, the trajectory thus obtained would approach
the periodic orbit or not.
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X_{n+1}=P(X_n)

X1

X2
X3

Figure 8: A Poincaré map.

The basic idea is simple, we look at a section containing a point on the
periodic orbit, and then follow the successive re-intersections of the perturbed
orbit with the section. Now we are dealing with a discrete map Xn+1 = P (Xn).
If P (Xn)→ X0, the point on the closed orbit, then the orbit is asymptotically
stable. See Figure 10.

It is often not easy to calculate the Poincaré map, but it is a very useful
concept, and it has many theoretical applications.

Let’s define the map rigorously.
Consider a periodic orbit C and a point X0 ∈ C. We have

x(X0;T ) = X0 (48)

where T is the period of the orbit. Consider a section S through X0. Then
according to Proposition 6, there is a neighborhood of U of X0 and a continuous
function τ(X) so that x(τ(t), X) ∈ S for all X ∈ U . Then certainly S1 = U ∩ S
is an open set in S in the induced topology. The return map is thus defined on
S1. It means that for each point in X ∈ S1 there is a point P (X) ∈ S, so that
x(τ(X);X) = P (X) and τ(X) is the smallest time with this property.

This is the Poincaré map associated to C and to its section S.
This can be defined for planar systems as well as for higher dimensional ones,

if we now take as a section a subset of a hyperplane through a point X0 ∈ C. The
statement and proof of Proposition 6 generalize easily to higher dimensions.

In two dimensions, we can identify the segments S and S1 with intervals on
the real line, u ∈ (−a, a), and u ∈ (−ε, ε) respectively, see also Definition 5.
Then P defines an analogous transformation of the interval (−ε, ε), which we
still denote by P though this is technically a different function, and we have

P (0) = 0
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P (u) ∈ (−a, a), ∀u ∈ (−ε, ε)

We have the following easy result, the proof of which we leave as an exercise.

Proposition 7. Assume that X ′ = F (X) is a planar system with a closed orbit
C, let X0 ∈ C and S a section at X0. Define the Poincaré map P on an interval
(−ε, ε) as above, by identifying the section with a real interval centered at zero.
If |P ′(X0)| < 1 then the orbit C is asymptotically stable.

Example 3. Consider the planar system

r′ = r(1− r) (49)

θ′ = 1 (50)

In Cartesian coordinates it has a fixed point, x = y = 0 and a closed orbit,
x = cos t, y = sin t;x2 + y2 = 1. Any ray originating at (0, 0) is a section of
the flow. We choose the positive real axis as S. Let’s construct the Poincaré
map. Since θ′ = 1, for any X ∈ R+ we have x(2π;X) = x(0, X). We have
P (1) = 1 since 1 lies on the unit circle. In this case we can calculate explicitly
the solutions, thus the Poincaré map and its derivative.

We have
ln r(t)− ln(r(t)− 1) = t+ C (51)

and thus

r(t) =
Cet

Cet − 1
(52)

where we determine C by imposing the initial condition r(0) = x: C = x/(x−1).
Thus,

r(t) =
xet

1− x+ xet
(53)

and therefore we get the Poincaré map by taking t = 2π,

P (x) =
xe2π

1− x+ xe2π
(54)

Direct calculation shows that P ′(1) = e−2π, and thus the closed orbit is stable.
We could have seen this directly from (54) by taking t→∞.

Note that here we could calculate the orbits explicitly. Thus we don’t quite
need the Poincaré map anyway, we could just look at (53). When explicit solu-
tions, or at least an explicit formula for the closed orbit is missing, calculating
the Poincaré map can be quite a challenge.

8 Monotone sequences in two dimensions

There are two kinds of monotonicity that we can consider. One is monotonicity
along a solution: X1, ..., Xn is monotone along the solution if Xn = x(tn, X)
and tn is an increasing sequence of times. Or, we can consider monotonicity
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along a segment, or more generally a piece of a curve. On a piece of a smooth
curve, or on an interval we also have a natural order (or two rather), by arclength
parameterization of the curve: γ2 > γ1 if γ2 is farther from the chosen endpoint.
To avoid this rather trivial distinction (dependence on the choice of endpoint)
we say that a sequence {γn}n is monotone along the curve if γn is inbetween
γn−1 and γn+1 for all n. Or we could say that a sequence is monotone if it is
either increasing or else decreasing.

If we deal with a trajectory crossing a curve, then the two types of mono-
tonicity need not coincide, in general. But for sections, they do.

Proposition 8. Assume x(t;X); t ∈ [0, T ] is a solution so that F is regular and
nonzero in a neighborhood Let S be a local section for a planar system. Then
monotonicity along the solution x(t;X) assumed to intersect S at X1, X2, ...
(finitely or infinitely many intersection) and along S coincide.

Note that all intersections are supposed to be with S, along which, by defi-
nition, they are always transversal.

Proof. We assume we have three successive distinct intersections with S, X1, X2, X3

(if two of them coincide, then the trajectory is a closed orbit and there is nothing
to prove).

We want to show that X3 is not inside the interval (X1, X2) (on the section,
or on its image on R). Consider the curve x(t;X1) t ∈ [0, t2) where t2 is the
first time of re-intersection of x(t;X1) with S. By definition x(t2;X1) = X2.
This is supposed to be a smooth curve, with no self-intersection (since the field
is assumed regular along the curve) thus of finite length. If completed with the
subsegment [X1, X2] ∈ S it evidently becomes a closed curve (with a natural
parameterization even) C. By Jordan’s lemma, we can define the inside int C
and the outside of the curve, D =ext C. Note that the field has a definite
direction along [X1, X2], by the definition of a section. Note also that it points
towards ext C, since x(t;X1) exits int C at t = t2.

Then, no trajectory can enter int C. Indeed, it should intersect either
x(t;X1) or else [X1, X2]. The first option is impossible by uniqueness of so-
lutions (solutions do not intersect at regular points). The second case is ruled
out since [X1, X2] is an exit region, not an entry one. Now we know that
x(t3, X) = X3 where t3 is the first reintersection time. It must lie in ext C, thus
outside [X1, X2.

The next result shows points towards limiting points being special: parts of
closed curves, or simply infinity.

Proposition 9. Consider a planar system and Z ∈ ω(X) (or Z ∈ α(X)),
assumed a regular point of the field. Consider a local section S through Z.
Then either {x(t, Z) : t > 0} ∩ S = Z or else {x(t, Z) : t > 0} ∩ S = ∅.

Proof. Assume there are two distinct intersection points x(t1, Z) = Z1 and
x(t2, Z) = Z2 in S. Since Z1 and Z2 are also in ω(X), as we have shown,
then there are infinitely many points on x(t,X) arbitrarily close to Z1 and
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infinitely many others arbitrarily close to Z1. These nearby points lie on the
same section, since the section at Z1 contains, by definition, an open set around
Z1 and similarly around Z2. Without loss of generality (rotating and translating
the figure) we can assume that S = (−a, b) ∈ R and [Z1, Z2] ⊂ (−a, b). We
know that x(tj , X), where tj are the increasing times when x(tj , X) ∈ S, are
monotone. Thus they converge. But then, by definition of convergence, they
cannot be arbitrarily close to two distinct points.

9 The Poincaré-Bendixson theorem

Theorem 5 (Poincaré-Bendixson). Let Ω = ω(X) be a nonempty compact limit
set of a planar system of ODEs, containing no equilibria. Then Ω is a closed
orbit.

Proof. First, recall that Ω is invariant. Let Y ∈ Ω. Then x(t;Y ) ∈ Ω for all
t ∈ R. Since Ω is compact, x(t;Y ) has (infinitely many) accumulation points
in Ω. Let Z be one of them, and let S be a section through Z. Then x(t;Y )
crosses S infinitely many times. But there is room for only one intersection, by
Proposition 9. Thus x(t1;Y ) = x(t2, Y ) for some t1 6= t2, and this is enough
to guarantee that x(t;Y ) is closed. Then, clearly, ω(Y ) = {x(t;Y ) : t ∈ [0, T ]}
where T is the period of the orbit.

Consider a section S through Y . Since Y is in ω(X), there is a sequence t′n
so that x(t′n, X)→ Y . If we use the flowbox theorem at Y , we see that x(t,X)
crosses S infinitely often, and arbitrarily close to Y (since this is clear for a
straight flow, and initial conditions approaching the image of Y ). Denote this
of successive intersections of S by {tn}n∈N.

***
Consider the sequence x(tn, X) where tn are the successive intersection times

of x(t,X) with S. Since the sequence converges to Y and it is monotone one
way or the other by Proposition 8, it can only be monotonic towards Y .

Since the return time τ is continuous, we must have tn+1 − tn → T . By
continuity with respect to initial conditions, we have x(t′, Xn) − x(t′, Y ) → 0
for any t′ ≤ 2T (say). That is, x(t′ + tn, X) − x(t′, Y ) → 0 as n → ∞ for
any fixed t′ ≤ 2T . But since tn+1 − tn → T , any sufficiently large t can be
written as t′ + tn, t

′ ≤ 2T . Let now Z be any point in ω(X). Then there is
a sequence t′′n so that x(t′′n, X) converges Z. Now, on the one hand we have
x(t′′n, X) − x(t′′n, Y ) → 0 and on the other hand x(t′′n, X) − Z → 0, and thus
dist(Z, ω(Y ) = 0, and since they are both compact sets, we have Z ∈ ω(Y )
completing the proof.

***

1. Let CY be the trajectory through Y (this is nothing else but ω(Y ), since
x(t;Y ) is periodic). It is a compact set.

2. We found that x(tn;X) → Y . Since the return time τ is continuous, we
must have tn+1 − tn → T .
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3. By continuity with respect to initial conditions,

sup
τ∈[0,2T ]

d(x(tn + τ ;X), x(τ ;Y ))→ 0

as n→∞.

4. Let t′j be any increasing sequence, t′j →∞. Then for every j there exists
n(j) so that t′j ∈ (tn(j), tn(j)+1). Thus 0 ≤ t′j − tn(j) ≤ 2T for large j.

5. By 3,
d(x(t′j ;X), x(t′j − tn(j);Y ))→ 0 as j →∞

6. Of course, x(t′j − tn(j);Y ) ∈ CY . It follows thus that

d(x(t′j ;X), CY ) ≤ d(x(t′j ;X), x(t′j − tn(j);Y ))→ 0

7. By the above, any sequence x(t′j) which converges, has the limit in CY .
By definition then, ω(X) ⊂ CY . Since ω(X) is invariant and there is no
strict subset of CY which is invariant (why?), we have ω(X) = CY .

Exercise 1. Where have we used the fact that the system is planar? Think how
crucial dimensionality is for this proof.

10 Applications of the Poincaré-Bendixson the-
orem

A limit cycle is a closed orbit γ which is the ω-set of a point X /∈ γ. There
are of course closed orbits which are not limit cycles. For instance, the system
x′ = −y, y′ = x with orbits x2 + y2 = C for any C clearly has no limit cycles.

But when limit cycles exist, they have at least one-sided stability.

Corollary 10. Assume ω(X) = γ and X /∈ γ is a limit cycle. Then there exists
a neighborhood N of X so that ∀X ′ ∈ N we have γ = ω(X ′).

Proof. Let Y ∈ γ and let S be a section through Y . Then, as we know, there
is a sequence tn →∞ so that the points x(tn, X) ∈ S and x(tn, X)→ Y . Take
for instance a small enough open neighborhood O of X2 ∈ (x(t2;X), x(t3, X)).
As we have shown, all points X ′′ ∈ O have the property that x(t′′;X ′′) ∈ S
for some t′′ > 0 (which, in fact, is small if O is small, and, in fact, x(t′′;X ′′) ∈
(x(t2;X), x(t3, X)) as well.

We know, by continuity with respect to initial conditions, that x(−t2;X ′′)
exist, if O is small enough. Consider the open set (by continuity) O1 =
{x(−t2;X ′′), X ′′ ∈ O}. Since for anyX1 ∈ O1 we have x(t,X1) ∈ (x(t2;X), x(t3, X))
for some t, by monotonicity, we have ω(X1) = ω(X).
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11 The Painlevé property

The classification of equations into integrable and nonintegrable, and in the
latter case finding out whether the behavior is chaotic plays a major role in the
study of dynamical systems.

As usual, for an n−th order differential equation, a constant of motion is a
function Φ(u1, ..., un, t) with a predefined degree of smoothness (analytic, mero-
morphic, Cn etc.) and with the property that for any solution y(t) we have

d

dt
Φ(y(t), y′(t), ..., y(n−1)(t), t) = 0

There are multiple precise definitions of integrability, and no one perhaps is
comprehensive enough to be widely accepted. For us, let us think of a system as
being integrable, relative to a certain regularity class of first integrals, if there
are sufficiently many global constants of motion so that a particular solution
can be found by knowledge of the values of the constants of motion.

We note once more that an integral of motion needs to be defined in a wide
region. The existence of local constants along trajectories follows immediately
either from the flowbox theorem, or from the implicit function theorem: indeed,
if Y′ = F(Y) is a system of equations near a regular point, Y0, then evidently
there exists a local solution Y(t; Y0). It is easy to check that DY0

Y|t=0 = I,
so we can write, near Y0, t = 0, Y0 = Φ(Y, t). Clearly = Φ is constant along
trajectories.

In general, we have an integral of motion Φ(Y, t) = Y(−t; Y(t)). This
brings back the solution to where it started, so it must be a constant along
trajectories. Not a very explicit function, admittedly, but smooth, at least
locally. Given Y(t) it asks, where did it start, when t was zero. Φ is thus
obtained by integrating the equation backwards in time.

Is this an integral of motion?
Not really. This cannot be defined for t which is not small enough, in gen-

eral since we cannot integrate backwards from any t to zero, without running
into singularities. If we think of t in the complex domain, we may think of
circumventing singularities, and define Φ by analytic continuation around sin-
gularities. But what does that mean? If the singularities are always isolated,
and in particular solutions are single valued, it does not matter which way we
go. But if these are, say, square root branch points, if we avoid the singularity
on one side we get +

√
and on the other −√. There is no consistency.

But we see, if we impose the condition that the equation have only isolated
singularities (at least, those depending on the initial condition, or movable,
then we have a single valued global constant of motion, take away some lower
dimensional singular manifolds in C2.

Such equations are said to have the Painlevé property (PP) and are inte-
grable, at least in the sense above. But it turns out, in those considered so far in
applications, that more is true: they were all ultimately re-derived from linear
equations.
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11.1 The Painlevé equations

11.2 Spontaneous singularities: The Painlevé’s equation
PI

Let us analyze local singularities of the Painlevé equation PI,

y′′ = y2 + x (55)

In a neighborhood of a point where y is large, keeping only the largest terms
in the equation (dominant balance) we get y′′ = y2 which can be integrated
explicitly in terms of elliptic functions and its solutions have double poles. Al-
ternatively, we may search for a power-like behavior

y ∼ A(x− x0)p

where p < 0 obtaining, to leading order, the equation Ap(p− 1)xp−2 = A2(x−
x0)2 which gives p = −2 and A = 6 (the solution A = 0 is inconsistent with our
assumption). Let’s look for a power series solution, starting with 6(x− x0)−2 :
y = 6(x−x0)−2 +c−1(x−x0)−1 +c0 + · · · . We get: c−1 = 0, c0 = 0, c1 = 0, c2 =
−x0/10, c3 = −1/6 and c4 is undetermined, thus free. Choosing a c4, all others
are uniquely determined. To show that there indeed is a convergent such power
series solution we substitute y(x) = 6(x−x0)−2 + δ(x) where for consistency we
should have δ(x) = o((x− x0)−2) and taking x = x0 + z we get the equation

δ′′ =
12

z2
δ + z + x0 + δ2 (56)

Note now that our assumption δ = o(z−2) makes δ2/(δ/z2) = z2δ = o(1) and
thus the nonlinear term in (56) is relatively small. Thus, to leading order, the
new equation is linear. This is a general phenomenon: taking out more and more
terms out of the local expansion, the correction becomes less and less important,
and the equation is better and better approximately by a linear equation. It is
then natural to separate out the large terms from the small terms and write a
fixed point equation for the solution based on this separation. We write (56) in
the form

δ′′ − 12

z2
δ = z + x0 + δ2 (57)

and integrate as if the right side was known. This leads to an equivalent integral
equation. Since all unknown terms on the right side are chosen to be relatively
smaller, by construction this integral equation is expected to be contractive.

Click here for Maple file of the formal calculation (y′′ = y2 + x)
The indicial equation for the Euler equation corresponding to the left side

of (57) is r2 − r − 12 = 0 with solutions 4,−3. By the method of variation of
parameters we thus get

δ =
D

z3
− 1

10
x0z

2 − 1

6
z3 + Cz4 − 1

7z3

∫ z

0

s4δ2(s)ds+
z4

7

∫ z

0

s−3δ2(s)ds

= − 1

10
x0z

2 − 1

6
z3 + Cz4 + J(δ) (58)
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the assumption that δ = o(z−2) forces D = 0; C is arbitrary. To find δ formally,
we would simply iterate (58) in the following way: We take r := δ2 = 0 first
and obtain δ0 = − 1

10x0z
2 − 1

6z
3 + Cz4. Then we take r = δ20 and compute δ1

from (58) and so on. This yields:

δ = − 1

10
x0z

2 − 1

6
z3 + Cz4 +

x20
1800

z6 +
x0
900

z7 + ... (59)

This series is actually convergent. To see that, we scale out the leading power
of z in δ, z2 and write δ = z2u. The equation for u is

u = −x0
10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0
10
− z

6
+ Cz2 + J(u) (60)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ε such that this is a contractive equation for u in the ball
‖u‖∞ < C1 in the space of analytic functions in the disk |z| < ε. We conclude
that δ is analytic and that y is meromorphic near x = x0.

Figure 9: The six Painlevé equations, all equations of the form y′′ = R(y′, y, x),
with R rational, having the PP.

The equation y′′ = y2 + x2 does not have the Painlevé property.
Click here for Maple file of the formal calculation, for y′′ = y2 + x2

12 Discrete dynamical systems

The study of the Poincaré map leads naturally to the study of discrete dynamics.
In this case we have closed trajectory, x0 a point on it, S a section through x0
and we take a point x1 near x0, on the section. If x1 is sufficiently close to x, it
must cross again the section, at x′1, still close to x1, after the return time which
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Figure 10:

is then close to the period of the orbit. The application x1 → x′1 defines the
Poincaré map, which is smooth on the manifold near x0.

The study of the behavior of differential systems is near closed orbits is often
more easily understood by looking at the properties of the Poincaré map.

In one dimension first, we are dealing with a smooth function f , where the
iterates of f are what we want to understand.

We write fn(x) = f(f(...(f(x)))) n times. The orbit of a point x0 is the
sequence {fn(x0)}n∈N, assuming that fn(x0) is defined for all n. In particular,
we may assume that f : J → J , where J ⊂ R is an interval, possibly the whole
line.

The effects of the iteration are often easy to see on the graph of the iteration,
in which we use the bisector y = x to conveniently determine the new point. We
have (x0, 0)→ (x0, f(x0))→ (f(x0), f(x0))→ (f(x0), f(f(x0)), where the two-
dimensionality and the “intermediate” step helps in fact drawing the iteration
faster: we go from x0 up to the graph, horizontally to the bisector, vertically
back to the graph, and repeat this sequence.

There are simple iterations, for which the result is simple to understand
globally, such as
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f(x) = x2

where it is clear that x = 1 is a fixed point, if |x0| < 1 the iteration goes to zero,
and it goes to infinity if |x0| > 1.

Local behavior near a fixed point is also, usually, not difficult to understand,
analytically and geometrically.

Theorem 6. (a) Assume f is smooth, f(x0) = x0 and |f ′(x0)| < 1. Then x0
is a sink, that is, for x1 in a neighborhood of x0 we have fn(x1)→ x0.

(b) If instead we have |f ′(x0)| > 1, then x0 is a source, that is, for x1 in a
small neighborhood O of x0 we have fn(x1) /∈ O for some n (this does not mean
that fm(x1) cannot return “later” to O, it just means that points very nearby
are repelled, in the short run.)

Proof. We show (a), (b) being very similar. Without loss of generality, we take
x0 = 0. There is a λ < 1 and ε small enough so that |f ′(x)| < λ for |x| < ε.
If we take x1 with |x1| < ε, we have |f(x1)| = |f ′(c)||x1| < λ|x1|(< ε), so the
inequality remains true for f(x1) : |f(f(x1))| < λ|f(x1)| < λ2|x1| and in general
fn(x1) = O(λn)→ 0 as n→∞.

In fact, it is not hard to show that, for smooth f , the evolution is essentially
geometric decay.

When the derivative is one, in absolute value, the fixed point is called neutral
or indifferent. It does not mean that it can’t still be a sink or a source, just that
we cannot resort to an argument based on the derivative, as above.

Example 4. We can examine the following three cases:
(a) f(x) = x+ x3.
(b) f(x) = x− x3
(c) f(x) = x+ x2.

It is clear that in the first case, any positive initial condition is driven to
+∞. Indeed, the sequence fn(x1) is increasing, and it either goes to infinity or
else it has a limit. But the latter case cannot happen, because the limit should
satisfy l = l + l3, that is l = 0, whereas the sequence was increasing.

The other cases are analyzed similarly: in (a), if x0 < 0 then the sequence
still diverges. Case (c) is more interesting, since the sequence converges to zero
if x1 < 0 is small enough and to ∞ for all x1 > 0. We leave the details to the
reader.

It is useful to see what the behavior of such sequences is, in more detail.
Let’s take the case (c), where x1 < 0. We have

xn+1 = xn + x2n

where we expect the evolution to be slow, since the relative change is vanishingly
small. We then approximate the true evolution by a differential equation

(d/dn)x = x2

26



giving
xn = (C − n)−1

We can show rigorously that this is the behavior, by taking xn = −1/(n+c0)+δ,
δn0 = 0 and we get

δn+1 − δn =
1

n2(n+ 1)
− 2

n
δn + δ2n (61)

and thus

δn =

n∑
j=n0

(
1

j2(j + 1)
− 2

j
δj + δ2j

)
(62)

Exercise 1. Show that (62) defines a contraction in the space of sequences with
the property |δn| < C/n2, where you choose C carefully.

Exercise 2. Find the behavior for small positive x1 in (b), and then prove
rigorously what you found.

12.1 Bifurcations

The local number of fixed points can only change when f ′(x0) = 1. As before,
we can assume without loss of generality that x0 = 0.

We have

Theorem 7. Assume f(x, λ) is a smooth family of maps, that f(0, 0) = 0 and
that fx(0, 0) 6= 1. Then, for small enough λ there exists a smooth function
ϕ(λ), also small, so that f(ϕ(λ), λ) = ϕ(λ), and the character of the fixed point
(source or sink) is the same as that for λ = 0.

Exercise 3. Prove the theorem, using the implicit function theorem.

References

[1] E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equa-
tions, McGraw-Hill, New York, (1955).

[2] M.W.Hirsch, S. Smale and R.L. Devaney, Differential Equations, Dynami-
cal Systems & An Introduction to Chaos, Academic Press, New York (2004).

[3] D. Ruelle, Elements of Differentiable Dynamics and Bifurcation theory,
Academic Press, Ney York , (1989)

27


	Gradient and Hamiltonian systems
	Gradient systems
	Hamiltonian systems
	Integrability: a few first remarks
	Local versus global

	Example

	Flows, revisited
	Lyapunov stability
	Lyapunov functions
	Examples

	Some important concepts
	Lasalle's invariance principle
	Example: analysis of the pendulum with drag

	Gradient systems and Lyapunov functions
	Limit sets, Poincaré maps, the Poincaré Bendixson theorem
	Example: equilibria on the limit set
	Closed orbits


	Sections; the flowbox theorem
	Time of arrival
	The Poincaré map

	Monotone sequences in two dimensions
	The Poincaré-Bendixson theorem
	Applications of the Poincaré-Bendixson theorem
	The Painlevé property
	The Painlevé equations
	Spontaneous singularities: The Painlevé's equation PI

	Discrete dynamical systems
	Bifurcations


