
1 Gradient and Hamiltonian systems

1.1 Gradient systems

These are quite special systems of ODEs, Hamiltonian ones arising in conserva-
tive classical mechanics, and gradient systems, in some ways related to them,
arise in a number of applications. They are certainly nongeneric, but in view of
their origin, they are common.

A system of the form
X ′ = −∇V (X) (1)

where V : Rn → R is, say, C∞, is called, for obvious reasons, a gradient system.
A critical point of V is a point where ∇V = 0.

These systems have special properties, easy to derive.

Theorem 1. For the system (1), if V is smooth, we have (i) If c is a regular
point of V , then the vector field is perpendicular to the level hypersurface V −1(c)
along V −1(c).

(ii) A point is critical for V iff it is critical for (1).
(iii) At any equilibrium, the eigenvalues of the linearized system are real.
More properties, related to stability, will be discussed in that context.

Proof.

(i) It is known that the gradient is orthogonal to level surface.
(ii) This is clear essentially by definition.
(iii) The linearization matrix elements are aij = −Vxi,xj (the subscript no-

tation of differentiation is used). Since V is smooth, we have aij = aji, and all
eigenvalues are real.

1.2 Hamiltonian systems

If F is a conservative field, then F = −∇V and the Newtonian equations of
motion (the mass is normalized to one) are

q′ = p (2)

p′ = −∇V (3)

where q ∈ Rn is the position and p ∈ Rn is the momentum. That is

q′ =
∂H

∂p
(4)

p′ = −∂H

∂q
(5)

where

H =
p2

2
+ V (q) (6)
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is the Hamiltonian. In general, the motion can take place on a manifold, and
then, by coordinate changes, H becomes a more general function of q and p. The
coordinates q are called generalized positions, and q are the called generalized
momenta; they are canonical coordinates on the phase on the cotangent manifold
of the given manifold.

An equation of the form (4) is called a Hamiltonian system.

Exercise 1. Show that a system x′ = F (x) is at the same time a Hamiltonian
system and a gradient system iff the Hamiltonian H is a harmonic function.

Proposition 1. (i) The Hamiltonian is a constant of motion, that is, for any
solution X(t) = (p(t), q(t)) we have

H(p(t), q(t)) = const (7)

where the constant depends on the solution.
(ii) The constant level surfaces of a smooth function F (p, q) are solutions of

a Hamiltonian system

q′ =
∂F

∂p
(8)

p′ = −∂F

∂x
(9)

Proof. (i) We have

dH

dt
= ∇pH

dp

dt
+∇q

dq

dt
= −∇pH∇q +∇qH∇p = 0 (10)

(ii) This is obtained very similarly.

1.2.1 Integrability: a few first remarks

Hamiltonian systems (with time-independent Hamiltonian) in one dimension are
integrable: the solution can be written in closed form, implicitly, asH(y(x), x) =
c; in terms of t, once we have y(x) of course we can integrate x′ = G(y(x), x) :=
f(x) in closed form, by separation of variables. Note that for an equation of the
form y′ = G(y, x), this is equivalent to the system having a constant of motion.
The latter is defined as a function K(x, y) defined globally in the phase space,
(perhaps with the exception of some isolated points where it may have “simple”
singularities, such as poles), and with the property that K(y(x), x) = const for
any given trajectory (the constant can depend on the trajectory, but not on x).
Indeed, in this case we have

d

dx
C(y(x), x) =

∂C

∂y
y′ +

∂C

∂x
= 0

or

y′ = −∂C

∂x
/
∂C

∂y
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which is equivalent to the system

ẋ =
∂C

∂y
; ẏ = −∂C

∂x
(11)

which is a Hamiltonian system.

1.2.2 Local versus global

It is important to mention that a system is actually called Hamiltonian if the
function H is defined over a sufficiently large region, preferably the whole phase
space.

Indeed, take any smooth first order ODE, y′ = f(y, x) and differentiate with
respect to the initial condition (we know already that the dependence is smooth;
we let dy/d(y0) = ẏ):

ẏ′ =
∂f

∂y
ẏ (12)

with the solution

ẏ = exp

(∫ x

x0

∂f(y(s), s)

∂y
ds

)
(13)

and thus, in the local solution y = G(x;x0) we have Gx0(x;x0) ̸= 0, if G is
smooth –i.e. the field is regular–, and the implicit function theorem provides
a local function K so that x0 = K(y(x), x), that is a constant of motion! The
big difference between integrable and nonintegrable systems comes from the
possibility to extend K globally.

1.3 Example

As an example for both systems, we study the following problem: draw the
contour plot (constant level curves) of

F (x, y) = y2 + x2(x− 1)2 (14)

and draw the lines of steepest descent of F .
For the first part we use Proposition 1 above and we write

x′ =
∂F

∂y
= 2y (15)

y′ = −∂F

∂x
= −2x(x− 1)(2x− 1) (16)

The critical points are (0, 0), (1/2, 0), (1, 0). It is easier to analyze them using
the Hamiltonian. Near (0, 0) H is essentially x2 + y2, that is the origin is a
center, and the trajectories are near-circles. We can also note the symmetry
x → (1 − x) so the same conclusion holds for x = 1, and the phase portrait is
symmetric about 1/2.

Near x = 1/2 we write x = 1/2 + s, H = y2 + (1/4 − s2)2 and the leading
Taylor approximation gives H ∼ y2−1/2s2. Then, 1/2 is a saddle (check). Now
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we can draw the phase portrait easily, noting that for large x the curves essen-
tially become x4 + y2 = C “flattened circles”. Clearly, from the interpretation
of the problem and the expression of H we see that all trajectories are closed.

Figure 1:

The perpendicular lines solve the equations

x′ = −∂F

∂x
= −2x(x− 1)(2x− 1) (17)

y′ = −∂F

∂y
= −2y (18)

We note that this equation is separated! In any case, the two equation obviously
share the critical points, and the sign diagram can be found immediately from
the first figure.

Exercise 2. Find the phase portrait for this system, and justify rigorously its
qualitative features. Find the expression of the trajectories of (17). I found

y = C

(
1

(x− 1/2)2
− 4

)

2 Flows, revisited

Often in nonlinear systems, equilibria are of higher order (the linearization has
zero eigenvalues). Clearly such points are not hyperbolic and the methods we
have seen so far do not apply.
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Figure 2:

There are no general methods to deal with all cases, but an important one
is based on Lyapunov (or Lyapounov,...) functions.
Definition. A flow is a smooth map

(X, t) → Φt(X)

A differential system
ẋ = F (x) (19)

generates a flow
(X, t) → x(t;X)

where x(t;X) is the solution at time t with initial condition X.
The derivative of a function G along a vector field F is, as usual,

DF (G) = ∇G · F

If we write the differential equation associated to F , (19), then clearly

DFG =
d

dt
G(x(t))|t=0

2.1 Lyapunov stability

Consider the system (19) and assume x = 0 is an equilibrium.
Then
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1. xe = 0 is Lyapunov stable (or simply stable) if starting with initial condi-
tions near 0 the flow remains in a neighborhood of zero. More precisely,
the condition is: for every ϵ > 0 there is a δ > 0 so that if |x0| < δ then
|x(t)| < ϵ for all t > 0.

2. xe = 0 is asymptotically stable if furthermore, trajectories that start close
to the equilibrium converge to the equilibrium. That is, the equilibrium
xe is asymptotically stable if it is Lyapunov stable and if there exists δ > 0
so that if |x0| < δ, then limt→∞ x(t) = 0.

2.2 Lyapunov functions

Let X∗ be a fixed point of (19). A Lyapunov function for (19) is a function
defined in a neighborhood O of X∗ with the following properties

(1) L is differentiable in O.
(2) L(X∗) = 0 (this can be arranged by subtracting a constant).
(3) L(x) > 0 in O \ {X∗}.
(4) DFL ≤ 0 in O.
A strict Lyapunov function is a Lyapunov function for which
(4’) DFL < 0 in O.
Finding a Lyapunov function is often nontrivial. In systems coming from

physics, the energy is a good candidate. In general systems, one may try to find
an exactly integrable equation which is a good approximation for the actual one
in a neighborhood of X∗ and look at the various constants of motion of the
approximation as candidates for Lyapunov functions.

Theorem 2 (Lyapunov stability). Assume X∗ is a fixed point for which there
exists a Lyapunov function L. Then

(i) X∗ is stable.
(ii) If L is a strict Lyapunov function then X∗ is asymptotically stable.

Proof. (i) Consider a small ball B ∋ X∗ contained in O; we denote the boundary
of B (a sphere) by ∂B. Let α be the minimum of L on the ∂B. By the definition
of a Lyapunov function, (3), α > 0. Consider the following subset:

U = {x ⊂ B : L(x) < α} (20)

From the continuity of L, we see that U is an open set. Clearly, X∗ ⊂ U . Let
X ∈ U . Then x(t;X) is a continuous curve, and it cannot have components
outside B without intersecting ∂B. But an intersection is impossible since by
monotonicity, L(x(t)) ≤ L(X) < α for all t. Thus, trajectories starting in U are
confined to U , proving stability.

(ii)

1. Note first that X∗ is the only critical point in O since d
dtL(x(t;X

∗
1 )) = 0

for any fixed point.
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2. Note that trajectories x(t;X) with X ∈ U are contained in a compact set,
and thus they contain limit points. Any limit point x∗ is strictly inside U
since L(x∗) < L(x(t);X) < α.

3. Let x∗ be a limit point of a trajectory x(t;X) whereX ∈ U , i.e. x(tn, X) →
x∗. Then, by 1 and 2, x∗ ∈ U and x∗ is a regular point of the field.

4. We want to show that x∗ = X∗. We will do so by contradiction. Assuming
x∗ ̸= X∗ we have L(x∗) = λ > 0, again by (3) of the definition of L.

5. By 3 the trajectory {x(t;x∗) : t ≥ 0} is well defined and is contained in B.

6. We then have L(x(t;x∗)) < λ∀t > 0.

7. The set
V = {X : L(x(tn+1 − tn;X))} < λ (21)

is open, so
L(x(tn+1 − tn;X1)) < λ (22)

for all X1 close enough to x∗.

8. Let n be large enough so that x(tm;X) ∈ V for all m ≥ n.

9. Note that, by existence and uniqueness of solutions at regular points we
have

x(tn+1;X) = x(tn+1 − tn;x(tn;X)) (23)

10. On the one hand L(x(tn+1)) ↓ λ and on the other hand we got L(x(tn+1)) <
λ. This is a contradiction.

2.3 Examples

Hamiltonian systems, in Cartesian coordinates often assume the form

H(q, p) = p2/2 + V (q) (24)

where p is the collection of spatial coordinates and p are the momenta. If this
ideal system is subject to external dissipative forces, then the energy cannot
increase with time. H is thus a Lyapunov function for the system. If the
external force is F (p, q), the new system is generally not Hamiltonian anymore,
and the equations of motion become

q̇ = p (25)

ṗ = −∇V + F (26)

and thus
dH

dt
= pF (p, q) (27)
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which, in a dissipative system should be nonpositive, and typically negative.
But, as we see, dH/dt = 0 along the curve p = 0.

For instance, in the ideal pendulum case with Hamiltonian

H =
1

2
ω2 + (1− cos θ) (28)

The associated Hamiltonian flow is

θ′ = ω (29)

ω′ = − sin θ (30)

Then H is a global Lyapunov function at (0, 0) for (31) (in fact, this is true
for any system with nonnegative Hamiltonian). This is clear from the way
Hamiltonian systems are defined.

Then (0, 0) is a stable equilibrium. But, clearly, it is not asymptotically
stable since H = const > 0 on any trajectory not starting at (0, 0).

If we add air friction to the system (31), then the equations become

θ′ = ω (31)

ω′ = − sin θ − κω (32)

where κ > 0 is the drag coefficient. Note that this time, if we take L = H, the
same H defined in (28), then

dH

dt
= −κω2 (33)

The functionH is a Lyapunov function, but it is not strict, sinceH ′ = 0 if ω = 0.
Thus the system is stable. It is however intuitively clear that furthermore the
energy still decreases to zero in the limit, since ω = 0 are isolated points on
any trajectory and we expect (0, 0) to still be asymptotically stable. In fact, we
could adjust the proof of Theorem 2 to show this. However, as we see in (27),
this degeneracy is typical and then it is worth having a systematic way to deal
with it. This is one application of Lasalle’s invariance principle that we will
prove next.

3 Some important concepts

We start by introducing some important concepts.

Definition 2. 1. An entire solution x(t;X) is a solution which is defined for
all t ∈ R.

2. A positively invariant set P is a set such that x(t,X) ∈ P for all t ≥ 0
and X ∈ P. Solutions that start in P stay in P. Similarly one defines
negatively invariant sets, and invariant sets.
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3. The basin of attraction of a fixed point X∗ is the set of all X such that
x(t;X) → X∗ when t → ∞.

4. Given a solution x(t;X), the set of all points ξ∗ such that solution x(tn;X) →
ξ∗ for some sequence tn → ∞ is called the set of ω-limit points of x(t;X).
At the opposite end, the set of all points ξ∗ such that solution x(−tn;X) →
ξ∗ for some sequence tn → ∞ is called the set of α-limit points. These
may of course be empty.

Proposition 3. Assume x(t;X) belongs to a closed, positively invariant set P
where the field is defined. The ω-limit set ω(X) is a closed invariant set too; in
particular, trajectories through points in ω(X) are contained in ω(X). A similar
statement holds for the α-set.

Proof. 1. (Closure) We show the complement is open. Let b be in the com-
plement of the set of ω-limit points. Then lim inft→∞ d(x(t,X), b) > a > 0
for some a and for all t > 0. If b′ is close enough to b, then by the triangle
inequality, lim inft→∞ d(x(t,X), b′) > a/2 > 0 for all t.

2. (Invariance) Assume x(tn, X) → x∗. By assumption, the differential equa-
tion is well-defined in a neighborhood of any point in P, and since x∗ ∈ P,
x(t;x∗) exists for all t ≥ 0. By continuity with respect to initial conditions
and of solutions, we have x(t;x(tn)) → x(t;x∗) as n → ∞. Then x(t;x∗)
is an omega-point too for any t ≥ 0 (note that x(tn + t,X) → x(t, x∗) by
the definition of an ω limit point and continuity .

3. Backward invariance is proved similarly: x(tn − t,X) → x(−t, x∗).

4 Lasalle’s invariance principle

Theorem 3. Let X∗ be an equilibrium point for X ′ = F (X) and let L : U → R
be a Lyapunov function at X∗. Let X∗ ∋ P ⊂ U be closed, bounded and positively
invariant. Assume there is no entire trajectory in P − {X∗} along which L is
constant. Then X∗ is asymptotically stable, and P is contained in the basin of
attraction of X∗.

Proof. Since P is compact and positively invariant, every trajectory in P has
ω-limit points. If X∗ is the only limit point, the assumption follows easily
(show that all trajectories must tend to X∗). So, we may assume there is an
x∗ ̸= X∗ which is also an ω-limit point of some x(t;X). We know that the
trajectory x(t;x∗) is entire. Since L is nondecreasing along trajectories, we
have L(x(t;X)) → α = L(x∗) as t → ∞. (This is clear for the subsequence tn,
and the rest follows by inequalities: check!) On the other hand, for any T ∈ R,
positive or negative, x(T ;x∗) is arbitrarily close to x(tn + T,X) if n is large.
Since L(x(T ;x∗)) ≤ α and it is arbitrarily close to L(x(t,X)) ≥ α, it follows
that L(x(T ;x∗)) = α for all t ≥ 0.
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Figure 3:

4.1 Example: analysis of the pendulum with drag

Of course this is a simple example, but the way Lasalle’s invariance principle is
applied is representative of many other problems.

Intuitively, it is clear that any trajectory that starts with ω = 0 and θ ∈
(−π, π) should asymptotically end up at the equilibrium point (0, 0) (other
trajectories, which for the frictionless system would rotate forever, may end up
in a different equilibrium, (2nπ, 0). For zero initial ω, the basin of attraction
of (0, 0) should exactly be (−π, π). In general, the energy should be less than
precisely the one in this marginal case, H = 1 − cos(π) = 2. Then, the region
θ0 ∈ (−π, π), H < 1− cos(π) = 2 should be the basin of attraction of (0, 0).

So let c ∈ (0, 2), and let

Pc = {(θ, ω) : H(θ, ω) ≤ c, and |θ| ≤ arccos(1− c) ∈ (−π, π)} (34)

In H, θ coordinates, this is simply a closed rectangle and since (H, θ) is a

10



continuous map, its preimage in the (p, θ) plane is closed too.
Now we show that Pc is closed and forward invariant. If a trajectory were to

exit Pc, it would mean, by continuity, that for some t we have H = c+ δ for a
small δ > 0 (ruled out by Ḣ ≤ 0 along trajectories) or that |θ| = arccos(1−c)+ϵ
for a small ϵ > 0 which implies, from the formula for H the same thing: H > c.

Now there is no nontrivial entire solution (that is, other than X∗ = (0, 0))
along which H = const. Indeed, H = const implies, from (33) that ω = 0
identically along the trajectory. But then, from (30) we see that sin θ = 0
identically, which, within Pc simply means θ = 0 identically. Lasalle’s theorem
applies, and all solutions starting in Pc approach (0, 0) as t → ∞.

Recall that, for a flow, the ω-limit set is defined as

ω(X) := {x : lim
n→∞

x(φ(tn) = x for some sequence tn → +∞} (35)

and, similarly, the α-limit set is defined as

α(X) := {x : lim
n→∞

x(φ(tn) = x for some sequence tn → −∞}. (36)

The phase portrait of the damped pendulum is depicted in Fig. 3

5 Gradient systems and Lyapunov functions

Recall that a gradient system is of the form (1), that is

X ′ = −∇V (X) (37)

where V : Rn → R is, say, C∞ and a critical point of V is a point where ∇V = 0.
We have the following result:

Theorem 4. For the system (1): (i) If c is a regular value of V , then the vector
field is orthogonal to the level set of V −1(c).

(ii) The equilibrium points of the system coincide with the critical points of
V .

(iii) If a critical point X∗ is an isolated minimum of V , V (X) − V (X∗) is
a strict Lyapunov function at X∗, and then X∗ is asymptotically stable.

(iv) Any α− limit point of a solution of (1), and any ω− limit point is an
equilibrium.

(v) The linearized system at any equilibrium has only real eigenvalues.

Note 1. (a) By (v), any solution of a gradient system tends to a limit point or
to infinity.

(b) Thus, descent lines of any smooth manifold have the same property: they
link critical points, or they tend to infinity.

(c) We can use some of these properties to determine for instance that a
system is not integrable. We write the associated gradient system and determine
that it fails one of the properties above, for instance the linearized system at
a critical point has an eigenvalue which is not real. Then there cannot exist a
smooth H so that H(x, y(x)) is constant along trajectories.

11



Figure 4: The Lorenz attractor

Proof. We have already shown (i) and (ii), which are in fact straightforward
from the definition.

(iii) If an equilibrium point is isolated, then ∇V ̸= 0 in a set of the form
|X−X∗| ∈ (0, a). Then −|∇V |2 < 0 in this set. Furthermore, V (X)−V (X∗) >
0 for all X with |X −X∗| ∈ (0, a).

(iv) As in the proof of Lasalle’s invariance principle, we can check V is
constant along any trajectory starting at a limit point. But we see from (iii)
that this implies that the trajectory reduces to a point, which is an equilibrium
point.

(v) Note that for smooth V , the linearization at X∗ is simply the matrix

A; Aij =
−∂2V (X∗)

∂xi∂xj
(38)

which is symmetric.

6 Limit sets, Poincaré maps, the Poincaré Bendix-
son theorem

In two dimensions, there are typically two types of limit sets: equilibria and
periodic orbits (which are thereby limit cycles). Exceptions occur when a limit
set contains a number of equilibria, as we will see in examples.
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The Poincaré-Bendixson theorem states that if ω(X) is a nonempty compact
limit set of a planar system of ODEs containing no equilibria, then Ω is a closed
orbit. We will return to this important theorem and prove it.

Beyond two dimensions however, the possibilities are far vaster and limit
sets can be quite complicated. Fig. 4 depicts a limit set for the Lorenz system,
in three dimensions. Note how the trajectories seem to spiral erratically around
two points. The limit set here has a fractal structure.

We begin the analysis with the two dimensional case, which plays an impor-
tant tole in applications.

We have already studied the system r′ = 1/2(r−r3) in Cartesian coordinates.
There the circle of radius one was a periodic orbit, and a limit cycle. All
trajectories, except for the trivial one (0, 0) tended to it as t → ∞.

We have also analyzed many cases of nodes, saddle points etc, where trajec-
tories have equilibria as limit sets, or else they go to infinity.

A rather exceptional situation is that where the limit sets contain equilibria.
Here is one example

6.1 Example: equilibria on the limit set

Consider the system

x′ = sinx(− cosx− cos y) (39)

y′ = sin y(cosx− cos y) (40)

The phase portrait is depicted in Fig. 5.

Exercise 1. Justify the qualitative elements in Fig. 5.

In the example above, we see that the limit set is a collection of fixed points
and orbits, none of which periodic.

6.1.1 Closed orbits

A closed orbit is a solution whose trajectory is a closed curve (with no equilibria
on it). Let C be such a trajectory.

Note that the flow is always in the direction of the field, since

ẋ(t) = f(x(t))

and furthermore, the speed is, as we see from the above

|ẋ(t)| = |f(x(t))|

Since trajectories and f are smooth and there are no equilibria along C,
|ẋ(t)| = |f(x)| is bounded below, and C is traversed in finite time. That is,
starting at a point x1 ∈ C, after a (finite) time T , then, the solution returns to
x1. From that time on, the solution must repeat itself identically, by uniqueness
of solutions. It then means that the solution is periodic, and there is a smallest
τ so that Φt+τ (x1) = Φ(x1). This τ is called the period of the orbit.
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Figure 5: Phase portrait for (39).

Proposition 4. (i) If x1 and x2 lie on the same solution curve, then ω(x1) =
ω(x2) and α(x1) = α(x2).

(ii) If D is a closed, positively invariant set and x2 ∈ D, then ω(x2) ⊂ D;
similarly for negatively invariant sets and α(x2).

(iii) A closed invariant set, and in particular a limit set, contains the α−limit
and the ω−limit of every point in it.

Proof. Exercise.

Exercise 2. Show that τ is the same for any two points x1, x2 on C.

7 Sections; the flowbox theorem

Consider a differential equation x′ = f(x) with f smooth, and a point x0 such
that f(x0) ̸= 0. A section through x0 is a curve which is transversal to the
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flow, and passes through x0. To be specific, take a unit vector V0 at x0 which
is orthogonal to f(x0), say (−f2(x0), f1(x0))/|f(x0)|. We draw a line segment
in the direction of V0,

S = {h(u) := x0 + uV0|u ∈ (−ϵ, ϵ)} (41)

Once more, since f is continuous, for small δ there is a small ϵ so that we have
V0 · (−f2(h(u)), f1(h(u)))/|f(h(u))| ≥ 1 − δ if u ∈ (−ϵ, ϵ). That is, the field is
transversal to the section in a small neighborhood of x0. By the same estimate,
V0 ·(−f2(h(u)), f1(h(u)))/|f(h(u))| has constant sign along S, which means that
the field, ass well as the flow, cross S in the same direction throughout S. See
the left side of fig. 7.

Definition 5. The segment S defined above is called local section at x0.

7.0.2 The flowbox theorem

There is a diffeomorphic change of coordinates in some neighborhood of x0,
x ↔ z so that in coordinates z the field is simply ż = e1 := (1, 0).

Ψ

Figure 6: Flowbox and transformation

To straighten the field, we construct the following map, from a neighborhood
of x0 of the form

N = {Ψ(t, u) := x(t;h(u)) : |t| < δ, u ∈ (−ϵ, ϵ)}

where ϵ and δ are sufficiently small. Then, (t, u) 7→ x(t;h(u) is a diffeomorphism
since the Jacobian of the transformation at (0, 0) is

det


∂Ψ1

∂t

∂Ψ1

∂u

∂Ψ2

∂t

∂Ψ2

∂u

 = det

(
f1 V1

f2 V2

)
= |f(x0)| ̸= 0 (42)

Clearly, the inverse image of trajectories through Ψ are straight lines, (t, u0), as
depicted. The associated flow in the set Ψ−1(N ) is

dt

dt
= 1;

du

dt
= 0 (43)

15



Figure 7: Time of arrival function

7.1 Time of arrival

We consider all solutions in the domain O where the field is defined. Some of
them intersect S. Since the trajectories are continuous, there is a first time of
arrival, the smallest t so that x(t, z0) ∈ S.

This time of arrival is continuous in z0, as shown in the next proposition.

Proposition 6. Let S be a local section at x0 and assume ϕt0(z0) = x0. Let W
be a neighborhood of z0. Then there is an open set U ⊂ W and a differentiable
function τ : U → R such that τ(z0) = t0 and

ϕτ(x)(x) ∈ S (44)

for each x ∈ U .

Note 2. In some sense, a subsegment of the section S is carried backwards
smoothly through the field arbitrarily far, assuming that the flow makes sense,
and that the subsegment is small enough.

Proof. A point x1 belongs to the line ℓ containing S iff x1 = x0 + uV0 for some
u. Since V0 is orthogonal to f(x0) we see that x1 ∈ ℓ iff (x1 − x0) · f(x0) = 0.

We look now at the more general function

G(x, t) = (x(t;x)− x0) · f(x0) (45)

We have, by construction,
G(z0, t0) = 0 (46)

by construction. We want to see whether we can apply the implicit function
theorem to

G(x, t) = 0 (47)
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For this we need to check ∂
∂tG

∣∣
(z0,t0)

. But this equals

x′(t;x) · f(x0) = |f(x0)|2 ̸= 0 (48)

Then, there is a neighborhood of t0 and a differentiable function τ(x) so that

G(x, τ(x)) = 0 (49)

X_{n+1}=P(X_n)

X1

X2
X3

Figure 8: A Poincaré map.

7.2 The Poincaré map

The Poincaré map is a useful tool in determining whether closed trajectories
(that is, periodic orbits) are stable or not. This means that taking an initial
close enough to the periodic orbit, the trajectory thus obtained would approach
the periodic orbit or not.

The basic idea is simple, we look at a section containing a point on the
periodic orbit, and then follow the successive re-intersections of the perturbed
orbit with the section. Now we are dealing with a discrete map xn+1 = P (xn).
If P (xn) → x0, the point on the closed orbit, then the orbit is asymptotically
stable. See Figure 11.

It is often not easy to calculate the Poincaré map; in general it can’t quite be
easier than calculating the trajectories, but it is a very useful concept, and it has
many theoretical applications; furthermore, we often don’t need fully explicit
knowledge of P .

Let’s define the map P rigorously.
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Consider a periodic orbit C and a point x0 ∈ C. We have

x(x0; τ) = x0 (50)

where τ is the period of the orbit. Consider a section S through x0. Then
according to Proposition 6, there is a neighborhood of U of x0 and a continuous
function τ(x) so that x(τ(t), x) ∈ S for all x ∈ U . Then certainly S1 = U ∩ S
is an open set in S in the induced topology. The return map is thus defined on
S1. It means that for each point in x ∈ S1 there is a point P (x) ∈ S, so that
x(τ(x);x) = P (x) and τ(x) is the smallest time with this property. Note that
now τ(x) is not a period, though it is “very close to one”: the trajectory does
not return to the same point.

This is the Poincaré map associated to C and to its section S.
This can be defined for planar systems as well as for higher dimensional ones,

if we now take as a section a subset of a hyperplane through a point x0 ∈ C. The
statement and proof of Proposition 6 generalize easily to higher dimensions.

In two dimensions, we can identify the segments S and S1 with intervals on
the real line, u ∈ (−a, a), and u ∈ (−ϵ, ϵ) respectively, see also Definition 5.
Then P defines an analogous transformation of the interval (−ϵ, ϵ), which we
still denote by P though this is technically a different function, and we have

P (0) = 0

P (u) ∈ (−a, a), ∀u ∈ (−ϵ, ϵ)

We have the following easy result, the proof of which we leave as an exercise.

Proposition 7. Assume that x′ = f(x) is a planar system with a closed orbit
C, let x0 ∈ C and S a section at x0. Define the Poincaré map P on an interval
(−ϵ, ϵ) as above, by identifying the section with a real interval centered at zero.
If |P ′(x0)| < 1 then the orbit C is asymptotically stable.

Example 3. Consider the planar system

r′ = r(1− r) (51)

θ′ = 1 (52)

In Cartesian coordinates it has a fixed point, x = y = 0 and a closed orbit,
x = cos t, y = sin t;x2 + y2 = 1. Any ray originating at (0, 0) is a section of the
flow. We choose the positive real axis as S. Let’s construct the Poincaré map.
Since θ′ = 1, for any x ∈ R+ we have x(2π;x) = x(0, x). We have P (1) = 1 since
1 lies on the unit circle. In this case we can calculate explicitly the solutions,
thus the Poincaré map and its derivative.

We have
ln r(t)− ln(r(t)− 1) = t+ C (53)

and thus

r(t) =
Cet

Cet − 1
(54)
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where we determine C by imposing the initial condition r(0) = x: C = x/(x−1).
Thus,

r(t) =
xet

1− x+ xet
(55)

and therefore we get the Poincaré map by taking t = 2π,

P (x) =
xe2π

1− x+ xe2π
(56)

Direct calculation shows that P ′(1) = e−2π, and thus the closed orbit is stable.
We could have seen this directly from (56) by taking t → ∞.

Note that here we could calculate the orbits explicitly. Thus we don’t quite
need the Poincaré map anyway, we could just look at (55). When explicit solu-
tions, or at least an explicit formula for the closed orbit is missing, calculating
the Poincaré map can be quite a challenge.

8 Monotone sequences in two dimensions

There are two kinds of monotonicity that we can consider. One is monotonicity
along a solution: x1, ..., xn is monotone along the solution if xn = x(tn, x) and
tn is increasing in n. Or, we can consider monotonicity along a segment, or more
generally a piece of a curve. On a piece of a smooth curve, or on an interval
we also have a natural order (or two rather), by arclength parameterization of
the curve: γ2 > γ1 if γ2 is farther from the chosen endpoint. To avoid this
rather trivial distinction (dependence on the choice of endpoint) we say that a
sequence {γn}n is monotone along the curve if γn is inbetween γn−1 and γn+1

for all n. Or we could say that a sequence is monotone if it is either increasing
or else decreasing.

If we deal with a trajectory crossing a curve, then the two types of mono-
tonicity need not coincide, in general. But for sections, they do.

Proposition 8. Assume x(t;x); t ∈ [0, τ ] is a solution of a planar system x′ =
f(x), so that f is regular and nonzero in its neighborhood. Let S be a local
section. Then monotonicity along the solution x(t;x) assumed to intersect S at
x1, x2, ... (finitely or infinitely many intersection) and along S coincide.

Note that all intersections are taken to be with S, along which, by definition,
they are always transversal.

Proof. We assume we have three successive distinct intersections with S, x1,
x2, x3 (if two of them coincide, then the trajectory is a closed orbit and there
is nothing to prove).

We want to show that x3 is not inside the interval (x1, x2) (on the section, or
on its image on R). Consider the curve C1 = {x(t;x1) : t ∈ [0, t2]} where t2 is the
first time of re-intersection of x(t;x1) with S. By definition x(t2 − t1;x1) = x2.
C1 is a smooth curve, with no self-intersection (since the field is assumed regular
along the curve) thus of finite length. If completed with the line segment J
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linking x1 and x2, C1 ∪ J is a closed continuous curve. By Jordan’s lemma, we
can define the inside int C and the outside of the curve, D =ext C. Note that
the field has a definite direction along [x1, x2], by the definition of a section.
Note also that it points towards ext C, since x(t;x1) exits int C at t = t2. Then,

x1

x2

Figure 9: Monotone sequence theorem

no trajectory can enter int C. Indeed, it should intersect either x(t;x1) or else
[x1, x2]. The first option is impossible by uniqueness of solutions. The second
case is ruled out since the field points outwards from J . Thus x(t3, x) = x3

must lie in ext C, thus outside [x1, x2].

The next result shows points towards limiting points being special: parts of
closed curves, or simply infinity.

Proposition 9. Consider a planar system and z ∈ ω(x) (or z ∈ α(x)), assumed
a regular point of the field. Consider a local section S through a regular point
z̃. Then the intersection of {Φt(z) : t > 0}∩S has at most one point (note that
we are dealing with Φt(z) and not Φt(x)).

Proof. Assume there are two distinct intersection points x(t1, z) = z1 and
x(t2, z) = z2 in S. By Proposition 3, {Φt(z) : t > 0} ⊂ ω(x); in particular,
z1 and z2 are also in ω(x). There are then infinitely many points on Φt(x)
arbitrarily close to z1 and infinitely many others arbitrarily close to z2, by the
definition of ω(x). Consider the first arrival times at S for the trajectory Φt(z1):
it is clearly zero. Then, by the continuity of τ , if j is large enough, and so that
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Φtj (x) is close to z1, then τ(Φtj (x)) exists by Proposition 6; τ(Φtj (x)) and is
arbitrarily small if j is large enough. Thus, by choosing tj + τ(Φtj (x)) instead
of tj , we can arrange that Φtj (x) ∈ S. Similarly, we can arrange that the points
converging to z2 are on S.

Also w.l.o.g. (rotating and translating the figure) we can assume that S =
(−a, b) ∈ R and [z1, z2] ⊂ (−a, b). We know that x(tj , x), where tj are the
increasing times when x(tj , x) ∈ S, are monotone in S = (−a, b). Thus they
converge. But then, by definition of convergence, they cannot be arbitrarily
close to two distinct points.

9 The Poincaré-Bendixson theorem

Theorem 5 (Poincaré-Bendixson). Let Ω = ω(x) be a nonempty compact limit
set of a planar system of ODEs, containing no equilibria. Then Ω is a closed
orbit.

Proof. First, recall that Ω is invariant. Let y ∈ Ω. Then Φt(y) is contained Ω,
and then Φt(y) has infinitely many accumulation points in Ω. Let z be one of
them. By definition, Φtj (y) tend to z as j → ∞ for a sequence tj → ∞, and,
as in the proof of Proposition 9, w.l.o.g. we can assume that they all belong
to S, where S is a section through z, and we can arrange that the sequence tj
contains all intersection times for t large.

Since we are now dealing with Φt(y) and y ∈ ω(x), Proposition 9 applies and
Φtj (y) must all coincide. Thus Φtj (y) = Φtj+1(y). But this means that Φt(y) is
periodic, and the period T = tj+1 − tj .

Therefore: any point y ∈ ω(x) has a periodic orbit, contained in Ω.
It remains to show that Ω = {Φt(y)|t ∈ [0, T ]}.
We can now assume that tj , an increasing sequence, and it contains all points

of intersection for large t of Φt(x) with Sy, a section through y, y as above. We
know that τ(x) is continuous. If we take a section S through y and look at
Φϵ(y), then τ(Φϵ(y)) = T − o(1). Thus, τ(Φtj (x)) = T − o(1) for large enough
j, since Φtj (x) is arbitrarily close to y if j is large enough, and so is Φϵ(y)
if ϵ is small enough. On the other hand, by continuity with respect to initial
conditions, |Φt(y) − Φtj+t(x)| = o(1) if |t| < 2T and if j is large enough. But
this means that d({Φt(y)|t ∈ [0, T ]},Φt(x)) → 0 as t → ∞.

Exercise 1. Where have we used the fact that the system is planar? Think how
crucial dimensionality is for this proof.

10 Applications of the Poincaré-Bendixson the-
orem

Definition. A limit cycle is a closed orbit γ which is the ω-set, or an α− set
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of a point X /∈ γ. These are called ω limit cycles or α limit cycles respectively.
As we see, closed orbits are limit cycles only if other trajectories approach

them arbitrarily. There are of course closed orbits which are not limit cycles.
For instance, the system x′ = −y, y′ = x with orbits x2 + y2 = C for any C
clearly has no limit cycles.

But when limit cycles exist, they have at least one-sided stability.
Indeed, if γ = ω(X) (X /∈ γ), then we know that dist(x(t,X), γ) → 0 as

t → ∞. If we consider any one-sided neighborhood of γ (on the side of x(t,X)),
then, because of nonintersection of trajectories and a sandwich argument, all
points in that neighborhood are also evolving as t → ∞ towards γ.

Corollary 10. Assume ω(X) = γ, γ ̸∋ X is a limit cycle. Then there exists a
neighborhood O of X so that ∀X ′ ∈ O we have γ = ω(X ′).

Proof. Let t0 be large enough so that Φt(X) ∈ N , the one-sided neighborhood of
stability of γ, for all t ≥ t0. Take any t1 > t0 and a small enough neighborhood
O1 of x1 = Φt1(X), so that, in particular, O1 ⊂ N . Clearly, Φ−t1(x1) =
X. As diam(O1) → 0, we have diam(Φ−t1(O1)) → 0 as well, by continuity
with respect to initial conditions. Also by continuity of Φt, and noting that
Φ−t(Z) = (Φt)

−1(Z), we see that O2 := Φ−t1(O1) is an open set, which clearly
contains X. By construction, ω(X ′) = γ for all X ′ ∈ O2.

Corollary 11. Hamiltonian systems for which the Hamiltonian H is not con-
stant in any open set have no limit cycles.

Proof. Indeed, if γ = ω(X) is a limit cycle for some X, then by Corollary 10
there is a neighborhood OX so that ω(X ′) = γ for all X ′ ∈ OX . We know that
H is constant along any trajectory. Let Y0 ∈ γ. By continuity, H(X ′) = H(Y0)
for any X ′ ∈ OX .

Corollary 12. Let K be a compact positively invariant set. Then K contains
at least a limit cycle or an equilibrium.

Proof. Indeed, K must contain ω(X) for every X ∈ K, and if K has no equilib-
rium, clearly neither does ω(X). But then ω(X) is a closed orbit, by Poincaré-
Bendixson. Assume to get a contradiction that no closed orbit in K is a limit
cycle. Take some closed orbit γ ⊂ K. The compact set γ ∪ intγ is (positively
and negatively) invariant because of nonintersection of orbits. If X ∈ intγ then
ω(X) ̸= γ, otherwise γ would be a limit cycle; thus γX is strictly contained in
γ. We can continue the construction indefinitely by choosing Xn ∈ intγXn−1 .
Clearly, the set of intγXn thus constructed is a nested sequence of sets. We let ν
be the inf of the areas of intγXn , and we note that an=area(γn) is a decreasing
sequence, thus an → inf an ≤ ν. On the other hand, K1 = ∩n(γn ∪ intγn) is an
intersection of compact sets for which no finite intersection is empty; we also
clearly have area(K1) ≤ ν. Let x ∈ K1. Since x ∈ γn ∪ intγn for all n, we have
ω(X) ⊂ (γn ∪ intγn) for all n. Thus ω(X) ⊂ K1 and area(ω(X)) ≤ ν. If ν ̸= 0,
then, since γX ∪ intγX is invariant, it contains (strictly) a closed orbit, which
thus has area < ν, impossible. But area(ω(X)) = 0 means ω(X) contains an
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equilibrium, since otherwise, by Poincaré-Bendixson and the above, it would be
a smooth closed curve, which cannot have zero area).

Note 4. We will see later that in fact K must contain an equilibrium.

Corollary 13. Let γ be a closed orbit and U its interior. Then U contains at
least an equilibrium.

We first prove the following result.

Lemma 14. Then U contains either an equilibrium or a limit cycle γ ∈ int(U).

Proof of the Lemma. The region U ∪ γ = U is both positively and negatively
invariant, since no trajectory can cross γ. If X ∈ U and there are no equilibria
or limit cycles in U then γ itself must be an ω limit cycle, by corollary 12.
Reverting the direction of t, the same argument shows that γ is an α limit cycle
for Φt(X) as well. But then, the monotonicity along a section of any point on
γ would be violated.

Proof of the Corollary. We first show that if there is no equilibrium in U then
there are infinitely many limit cycles. Indeed, assume to get a contradiction,
that there are finitely many limit cycles inside U (and no equilibrium). Then
there is one of minimum area, γ1. But by Lemma 14, there should be a limit
cycle strictly inside it (impossible by assumption) or else an equilibrium.

Thus, that there are infinitely many limit cycles γn in U . We can furthermore
assume they are contained in each other, since each limit cycle contains an
equilibrium or yet another limit cycle (strict inclusion). Now we can repeat the
last part of the proof of Corollary 12, since a limit cycle is, in particular, a closed
orbit. (At the end of that proof, ω(X) cannot be a closed orbit, otherwise, once
more, it would contain an even smaller one.)

Corollary 15. If K is positively (or negatively) invariant, then it contains an
equilibrium.

Proof. Indeed, we know by Corollary 12 that K contains an equilibrium or a
limit cycle. The rest follows from Corollary 13.

11 The Painlevé property

As mentioned on p.2, Hamiltonian systems (with time-independent Hamilto-
nian) in one dimension are integrable: the solution can be written in closed
form, implicitly, as H(y(x), x) = c; in terms of t, once we have y(x) of course
we can integrate x′ = G(y(x), x) := f(x) in closed form, by separation of vari-
ables. The classification of equations into integrable and nonintegrable, and in
the latter case finding out whether the behavior is chaotic plays a major role in
the study of dynamical systems.
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As usual, for an n−th order differential equation x′ = f(x), a constant of
motion is a function K(u1, ..., un, t) with a predefined degree of smoothness
(analytic, meromorphic, Cn etc.) and with the property that for any solution
y(t) we have

d

dt
K(y(t), y′(t), ..., y(n−1)(t), t) = 0

There are multiple precise definitions of integrability, and no one perhaps is
comprehensive enough to be widely accepted. For us, let us think of a system as
being integrable, relative to a certain regularity class of first integrals, if there
are sufficiently many global constants of motion so that a particular solution
can be found by knowledge of the values of the constants of motion.

If f is analytic, it is usually required that K is analytic too, except perhaps
for isolated singularities (in particular, single-valued; e.g., the log does not have
an isolated singularity at zero, whereas e1/x does).

We note once more that an integral of motion needs to be defined in a wide
region. The existence of local constants along trajectories follows immediately
either from the flowbox theorem, or from the implicit function theorem: indeed,
if x′ = f(x) is a system of equations near a regular point, x0, then evidently there
exists a local solution x(t;x0) = ϕt(x0). It is easy to check that Dx0x|t=0 = I,
so we can write, near x0, t = 0, x0 = K(x, t) = Φ−t(x). Clearly K is constant
along trajectories. Not a very explicit function, admittedly, but smooth, at
least locally. Given x(t) it asks, where did it start, when t was zero. K is thus
obtained by integrating the equation backwards in time.

Is this an integral of motion?
Not really. This cannot be defined for t which is not small enough, in general

since we cannot integrate backwards from any t to zero, without running into
singularities.

Assume now that f is an analytic function, so that it makes sense to extend
the equation to Cn.

If we think of t in the complex domain, we may think of circumventing pos-
sible singularities, and define K by analytic continuation around singularities.
But what does that mean? If the singularities are always isolated, and in par-
ticular solutions are single valued, it does not matter which way we go. But if
these are, say, square root branch points, if we avoid the singularity on one side
we get +

√
and on the other −√

. There is no consistency.
But we see, if we impose the condition that the equation have only isolated

singularities (at least, those depending on the initial condition, or movable,
then we have a single valued global constant of motion, take away some lower
dimensional singular manifolds in C2.

Such equations are said to have the Painlevé property (PP) and are inte-
grable, at least in the sense above. But it turns out, in those considered so far in
applications, that more is true: they were all ultimately re-derived from linear
equations.
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11.1 The Painlevé equations

11.2 Spontaneous singularities: The Painlevé’s equation
PI

Let us analyze local singularities of the Painlevé equation PI,

y′′ = y2 + x (57)

In a neighborhood of a point where y is large, keeping only the largest terms
in the equation (dominant balance) we get y′′ = y2 which can be integrated
explicitly in terms of elliptic functions and its solutions have double poles. Al-
ternatively, we may search for a power-like behavior

y ∼ A(x− x0)
p

where p < 0 obtaining, to leading order, the equation Ap(p− 1)xp−2 = A2(x−
x0)

2 which gives p = −2 and A = 6 (the solution A = 0 is inconsistent with our
assumption). Let’s look for a power series solution, starting with 6(x− x0)

−2 :
y = 6(x−x0)

−2+c−1(x−x0)
−1+c0+ · · · . We get: c−1 = 0, c0 = 0, c1 = 0, c2 =

−x0/10, c3 = −1/6 and c4 is undetermined, thus free. Choosing a c4, all others
are uniquely determined. To show that there indeed is a convergent such power
series solution we substitute y(x) = 6(x−x0)

−2+ δ(x) where for consistency we
should have δ(x) = o((x− x0)

−2) and taking x = x0 + z we get the equation

δ′′ =
12

z2
δ + z + x0 + δ2 (58)

Note now that our assumption δ = o(z−2) makes δ2/(δ/z2) = z2δ = o(1) and
thus the nonlinear term in (58) is relatively small. Thus, to leading order, the
new equation is linear. This is a general phenomenon: taking out more and more
terms out of the local expansion, the correction becomes less and less important,
and the equation is better and better approximately by a linear equation. It is
then natural to separate out the large terms from the small terms and write a
fixed point equation for the solution based on this separation. We write (58) in
the form

δ′′ − 12

z2
δ = z + x0 + δ2 (59)

and integrate as if the right side was known. This leads to an equivalent integral
equation. Since all unknown terms on the right side are chosen to be relatively
smaller, by construction this integral equation is expected to be contractive.

Click here for Maple file of the formal calculation (y′′ = y2 + x)
The indicial equation for the Euler equation corresponding to the left side

of (59) is r2 − r − 12 = 0 with solutions 4,−3. By the method of variation of
parameters we thus get

δ =
D

z3
− 1

10
x0z

2 − 1

6
z3 + Cz4 − 1

7z3

∫ z

0

s4δ2(s)ds+
z4

7

∫ z

0

s−3δ2(s)ds

= − 1

10
x0z

2 − 1

6
z3 + Cz4 + J(δ) (60)
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the assumption that δ = o(z−2) forces D = 0; C is arbitrary. To find δ formally,
we would simply iterate (60) in the following way: We take r := δ2 = 0 first
and obtain δ0 = − 1

10x0z
2 − 1

6z
3 + Cz4. Then we take r = δ20 and compute δ1

from (60) and so on. This yields:

δ = − 1

10
x0z

2 − 1

6
z3 + Cz4 +

x2
0

1800
z6 +

x0

900
z7 + ... (61)

This series is actually convergent. To see that, we scale out the leading power
of z in δ, z2 and write δ = z2u. The equation for u is

u = −x0

10
− z

6
+ Cz2 − z−5

7

∫ z

0

s8u2(s)ds+
z2

7

∫ z

0

su2(s)ds

= −x0

10
− z

6
+ Cz2 + J(u) (62)

It is straightforward to check that, given C1 large enough (compared to x0/10
etc.) there is an ϵ such that this is a contractive equation for u in the ball
∥u∥∞ < C1 in the space of analytic functions in the disk |z| < ϵ. We conclude
that δ is analytic and that y is meromorphic near x = x0.
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Figure 10: The six Painlevé equations, all equations of the form y′′ = R(y′, y, x),
with R rational, having the PP.

The equation y′′ = y2 + x2 does not have the Painlevé property.
Click here for Maple file of the formal calculation, for y′′ = y2 + x2

12 Asymptotics of ODEs: first examples

Asymptotic behavior typically refers to behavior near an irregular singular point.
Remember from Frobenius theory that regular singular points (say z = 0)

of an nth order ODE are characterized by the order of the poles relative to the
order of differentiation. Homogeneous equations with regular singularities are
of the form

y(n) +
A1(z)

z
y(n−1) + · · · Aj(z)

zj
y(n−j) + · · · An(z)

zn
y = 0 (63)

where Aj(z) are analytic at zero (note once more n − j + j = n; note that
removing the first j terms of the equation still leaves you with a Frobenius type
equation).

There is a fundamental system of solutions in the form of a finite combination
of terms of the form za,A(z), lnj z where a may be complex, j ≤ n−1. Written
in terms of (generalized) series, these series are convergent.

Two new things happen near irregular singular points.

· Solutions can have exponential behavior.

· Series can be divergent.

Consider first the very simple ODE

y′ = y/zp; p > 1 (64)

near z = 0. The general solution is

y = C exp(−z−p+1/(p− 1)) (65)
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Note that this function has no power series at z = 0, and the behavior is
exponential.

Most often, irregular singularities are placed at infinity (to characterize a
singularity at infinity, make the substitution z = 1/x). Then, in first order
equations a singularity is irregular at infinity if the equation is of the form
y′ = Axq(1 + o(1))y, q > −1.

For the second new phenomenon, consider the equation

y′ = −y + 1/x; y → ∞ (66)

We can make it homogeneous by multiplying by x and differentiating once more.
By taking z = 1/x you convince yourself that the resulting equation is second
order with a fourth order pole at zero.

Eq. (66) has a power series solution. Indeed, inserting

y =
∞∑
k=0

ck/x
k (67)

in (66) we get ck = (k − 1)ck−1; c1 = 1 ⇒ ck = (k − 1)! and thus

y =
∞∑
k=0

k!/xk+1 (68)

The domain of convergence of this expansion in empty.
Many equations for special functions have an irregular singularity at infinity.
Typical equations

1. Bessel:
y′′ + x−1y′ + (1− α2/x2)y = 0 (69)

2. Parabolic cylinder functions

y′′ + (ν + 1
2 − 1

4z
2)y = 0 (70)

3. Airy functions

y′′ = xy (71)

as well as many nonlinear ones

4. Elliptic functions
y′′ = y2 + 1 (72)

5. Painlevé P1

y′′ = 6y2 + x (73)

etc.
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It is important to understand the behavior of irregular singularities. Start
again from the example (64). It is clear that the singularity remains irregular
if z−p is replaced by z−p + · · · where · · · are terms with higher powers of z.

Given the exponential behavior exp(Az−b), it is natural to make an exponen-
tial substitution y = ew. Of course, at the end, we re-obtain the solution we had
before. Only, the equation for w′ will admit power-like, instead of exponential
behavior.

This substitution works in much more generality, and it is behind what is
known as the WKB method.

12.1 A brief discussion of the WKB method

This method works for homogeneous, linear equations with meromorphic coeffi-
cients but it can be adapted no non-homogeneous, or even nonlinear ones. But
more about this later.

It turns out (and it is not extremely hard to show, but it is beyond our
scope now) that solutions of equations of the form

∑n
k=0 y

(k)Pk(x) where Pk

are polynomials have exponential behavior at infinity (eAxp
1+···) where p1 > 0

and “· · · ” are lower powers of x, and the whole expansion (the “· · · ”) might
have zero domain of convergence.

Note that if we write y = ew, then w′′/w′2 → 0 as x → ∞. Indeed, to leading

order, w′′/w′2 ∼ Cx2p−1/x2p−2. A a WKB substitution leads to approximate
reduction of the order of the equation. In fact, to leading order, the new equation
is always first order.

Let’s take as an example (71). Substituting y = ew we get

w′′ + w′2 = x (74)

Here we expect that w′2 ≫ w′′ and thus w′2 ∼ x which also means

x ≫ w′′ (75)

w′ = ±
√
x− w′′ (76)

Let’s take one of the signs,
w′ =

√
x− w′′ (77)

By (75) we have

w′ =
√
x− w′′ =

√
x− w′′

2
√
x
− w′′2

8x3/2
+ · · · (78)

It is convenient o write w′ = f ; then, (78) becomes

f =
√
x− f ′ =

√
x− f ′

2
√
x
− f ′2

8x3/2
+ · · · (79)
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where, at a formal level for now, we iterate the equality a la Picard, by first
discarding f ′ on the right side,

f [0] =
√
x (80)

then write

f [1] =
√
x− f [0]′

2
√
x

(81)

etc.
This gives the following sequence of approximations:

f [0] =
√
x (82)

f [1] =
√
x− 1

4x
(83)

f [2]
√
x− 1

4x
− 5

32x5/2
(84)

etc. In terms of w, we get

w = C1 +
2

3
x3/2 − 1

4 lnx+ 5
48x3/2 (85)

and thus

y ∼ Ce
2
3x

3
2
x−1/4(1 + 5

48x3/2 + · · · ) (86)

We will justify this procedure in the next subsection.

12.2 WKB: rigorous justification of the asymptotics

Theorem 6. There exist two linearly independent solutions of (71) with the
(two) asymptotic behaviors (corresponding to different choices of sign)

y± ∼ e±
2
3x

3
2
x−1/4(1 + o(1)) as x → +∞ (87)

A similar analysis can be performed for x → −∞.

Note 5. The notation above simply means that

y±

e±
2
3x

3
2
x−1/4

→ 1 as x → +∞ (88)

Proof. It is enough to show that w±−[± 2
3x

3
2 − 1

4 lnx] → 0 as x → ∞. We choose
the sign +, for which the analysis is slightly more involved. Define w =

√
x+ g

and consider the equation for g,

g′ + 2
√
xg = − 1

2
√
x
− g2 (89)
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or, more generally
g′ + 2

√
xg = H(x) (90)

The differential equation (90) with initial condition g(x0) = 0 (chosen for sim-
plicity) where x0 > 0 will be chosen large, is equivalent to

g (x) = e−4/3 x3/2

∫ x

x0

H (s) e4/3 s3/2ds (91)

In our specific case, we have

H(x) := − 1

2
√
x
− g(x)2 (92)

and thus

g (x) = −e−4/3 x3/2

∫ x

x0

1

2
√
s
e4/3 s3/2ds− e−4/3 x3/2

∫ x

x0

g2(s)e4/3 s3/2ds (93)

What is the expected behavior of the first integral? We can see this by L’Hospital
(which, you can check, applies). We have(∫ x

x0

1

2
√
s
e4/3 s3/2ds

)′

(
e4/3 x3/2

4x

)′ =
1

1− 2x−3/2
→ 1 (x → +∞) (94)

and thus

= −e−4/3 x3/2

∫ x

x0

1

2
√
s
e4/3 s3/2ds ∼ − 1

4x
x → +∞ (95)

Let’s more generally, look at the behavior of

e−4/3 x3/2

∫ x

x0

s−ae4/3 s3/2ds (96)

We can apply the same method. We look at the value of b for which, by
L’Hospital, we get(∫ x

x0

s−ae4/3 s3/2ds

)′

(
s−be4/3 x3/2

)′ =
xb+a−1

2x3/2 − (a− 1/2)x−3/2
→ C (97)

where C ̸= 0 is some constant. Clearly, for that, we have to choose b = a+ 1/2
which gives

e−4/3 x3/2

∫ x

x0

s−ae4/3 s3/2ds ∼ 1

2xa+1/2
, x → +∞ (98)
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Since the behavior of the first term of (91) is −1/(4x), consistent with our formal
WKB analysis and thus g should be O(1/x), this suggests we write g = u/x.
We get

u (x)

= −xe−4/3 x3/2

∫ x

x0

1

2
√
s
e4/3 s3/2ds− xe−4/3 x3/2

∫ x

x0

u2(s)s−2e4/3 s3/2ds =: Nu

(99)

We analyze this equation in L∞[x0,∞). We first need bounds on the main
ingredients of (99), that is on integrals of the form

e−4/3 x3/2

∫ x

x0

s−ae4/3 s3/2ds (100)

which are valid on [x0,∞) and not merely as x → ∞. The asymptotic infor-
mation (98) is still useful, but we have to use it wisely. For instance, we expect
that for any A > 1, if x0 is large enough, we should have

e−4/3 x3/2

∫ x

x0

s−ae4/3 s3/2ds < A
1

2xa+1/2
, (101)

We can check this by monotonicity. We look at

f(x) =

∫ x

x0

s−ae4/3 s3/2ds−Ae4/3 x3/2 1

2xa+1/2
(102)

We note that f(x0) < 0. Calculating f ′, we get

f ′(x) = x−ae4/3 x3/2

−Ax−ae4/3 x3/2

(
1− a+ 1/2

2x3/2

)
= −x−ae4/3 x3/2

[
A− 1− A(a+ 1/2)

2x3/2

]
(103)

It is clear that f ′ < 0 if x > x0 where

x
3/2
0 =

A(1 + 2a)

4(A− 1)
(104)

Thus we proved

Lemma 16. If A > 1 and x0 is given in (104), then∫ x

x0

s−ae4/3 s3/2ds < Ae4/3 x3/2 1

2xa+1/2
(105)

for all x > x0.
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We will now write (99) in contractive form in a suitable ball in L∞[x0,∞).
We will make some choices of A, x0 etc, to write down something specific. The
proof of the theorem is completed by the following result.

Lemma 17. Let A = 2 and x0 ≥ max{(10A(1+ 4)/4)2/3, 2}. Consider the ball

B = {u : sup
x≥x0

|u(x)| ≤ 1} (106)

Then N is contractive in B, and thus (99) has a unique solution u0 there.

Proof of the lemma. It is straightforward to check that NB ⊂ B. We have

|N (u2 − u1)| =
∣∣∣∣xe−4/3 x3/2

∫ x

x0

(u2 − u1)(u2 + u1)s
−2e4/3 s3/2ds

∣∣∣∣
≤ ∥u2 − u1∥

2|x|
|x|5/2

≤ 2

|x0|3/2
∥u2 − u1∥ ≤ 2−1/2∥u2 − u1∥ (107)

On the other hand, as x → ∞, using (98) and the fact that ∥u0∥ < 1, we
have

g = − 1

4x
+ o(1/x) as x → ∞ (108)

13 Elements of eigenfunction theory–material com-
plementary to Coddington-Levinson

13.1 Properties of the Wronskian of a system

Lemma 18. Let A be a matrix on Cn. We have

det (I + εA) = 1 + εTr A+O(ϵ2) as ε → 0 (109)

Proof 1. The property is obvious for(
1 + εa11 εa12
εa21 1 + εa22

)
(110)

For the general case, use induction and row expansion.

Proof 2. Note that detB =
∏

j(1 + bj), where bj are the eigenvalues of B
(repeated if the multiplicity is not one). If (I + εA)v = µv then εAv = (µ− 1)v
that is, v = vj is an eigenvector ofA: Avj = ajv. Thus (1+εaj)vj = (I+εA)vj =
µvj ⇒ µ = (1 + εaj). The property now follows.
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13.1.1 The Wronskian

The definition is

W [f1, ..., fn] =

∣∣∣∣∣∣∣∣
f1 ... fn
f ′
1 ... f ′

n

· · · · · · · · ·
f
(n−1)
1 ... f

(n−1)
n

∣∣∣∣∣∣∣∣ (111)

Lemma 19. Let
M ′ = AM (112)

be a matrix equation in Cn. We have

detM(t) = detM(0) exp

(∫ t

0

TrA(s)ds

)
(113)

Proof. We have (just by differentiability)

M(t+ ε)−M(t) = A(t)M(t)ε+ o(ε) (114)

and thus

M−1(t)M(t+ ε) = I +M−1(t)A(t)M(t)ε+ o(ε)

⇒ det
(
M−1(t)M(t+ ε)

)
= det

(
I +M−1(t)A(t)M(t)ε+ o(ε)

)
= 1 + Tr (A)ε+ o(ε) (115)

and thus

detM(t+ ε)

detM(t)
= 1 + Tr (A)ε+ o(ε) ⇒ detM(t+ ε)− detM(t)

ε

= detM(t)Tr (A(t)) + o(1) ⇒ (detM(t))
′
= detM(t)Tr (A(t)) (116)

and the result follows by integration.

Note that an equation of the kind we are considering,

Lf = p0(t)f
(n) + p1(t)f

(n−1) + · · ·+ pn(t)f = λf (117)

has the matrix equation counterpart

M ′ = AM (118)

where

A =


0 1 0 ... 0
0 0 1 ... 0
· · · · · · · · · · · ·
−pn

p0
−pn−1

p0
−pn−2

p0
... −p1

p0

 (119)
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and

M =


f1 ... fn
f ′
1 ... f ′

n

· · · · · · · · ·
f
(n−1)
1 ... f

(n−1)
n

 (120)

Clearly, TrA = −p1/p0. Thus we have

Corollary 20. The Wronskian W of a fundamental system for (117) satisfies

W (t) = W (0) exp

(
−
∫ t

0

p1(s)

p0(s)
ds

)
(121)

14 Discrete dynamical systems

Figure 11:

The study of the Poincaré map leads naturally to the study of discrete dy-
namics. In this case we have closed trajectory, x0 a point on it, S a section
through x0 and we take a point x1 near x0, on the section. If x1 is sufficiently
close to x, it must cross again the section, at x′

1, still close to x1, after the return
time which is then close to the period of the orbit. The application x1 → x′

1

defines the Poincaré map, which is smooth on the manifold near x0.
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The study of the behavior of differential systems is near closed orbits is often
more easily understood by looking at the properties of the Poincaré map.

In one dimension first, we are dealing with a smooth function f , where the
iterates of f are what we want to understand.

We write fn(x) = f(f(...(f(x)))) n times. The orbit of a point x0 is the
sequence {fn(x0)}n∈N, assuming that fn(x0) is defined for all n. In particular,
we may assume that f : J → J , where J ⊂ R is an interval, possibly the whole
line.

The effects of the iteration are often easy to see on the graph of the iteration,
in which we use the bisector y = x to conveniently determine the new point. We
have (x0, 0) → (x0, f(x0)) → (f(x0), f(x0)) → (f(x0), f(f(x0)), where the two-
dimensionality and the “intermediate” step helps in fact drawing the iteration
faster: we go from x0 up to the graph, horizontally to the bisector, vertically
back to the graph, and repeat this sequence.

There are simple iterations, for which the result is simple to understand
globally, such as

f(x) = x2

where it is clear that x = 1 is a fixed point, if |x0| < 1 the iteration goes to zero,
and it goes to infinity if |x0| > 1.

Local behavior near a fixed point is also, usually, not difficult to understand,
analytically and geometrically.

Theorem 7. (a) Assume f is smooth, f(x0) = x0 and |f ′(x0)| < 1. Then x0

is a sink, that is, for x1 in a neighborhood of x0 we have fn(x1) → x0.
(b) If instead we have |f ′(x0)| > 1, then x0 is a source, that is, for x1 in a

small neighborhood O of x0 we have fn(x1) /∈ O for some n (this does not mean
that fm(x1) cannot return “later” to O, it just means that points very nearby
are repelled, in the short run.)

Proof. We show (a), (b) being very similar. Without loss of generality, we take
x0 = 0. There is a λ < 1 and ϵ small enough so that |f ′(x)| < λ for |x| < ϵ.
If we take x1 with |x1| < ϵ, we have |f(x1)| = |f ′(c)||x1| < λ|x1|(< ϵ), so the
inequality remains true for f(x1) : |f(f(x1))| < λ|f(x1)| < λ2|x1| and in general
fn(x1) = O(λn) → 0 as n → ∞.

In fact, it is not hard to show that, for smooth f , the evolution is essentially
geometric decay.

When the derivative is one, in absolute value, the fixed point is called neutral
or indifferent. It does not mean that it can’t still be a sink or a source, just that
we cannot resort to an argument based on the derivative, as above.

Example 6. We can examine the following three cases:
(a) f(x) = x+ x3.
(b) f(x) = x− x3

(c) f(x) = x+ x2.
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It is clear that in the first case, any positive initial condition is driven to
+∞. Indeed, the sequence fn(x1) is increasing, and it either goes to infinity or
else it has a limit. But the latter case cannot happen, because the limit should
satisfy l = l + l3, that is l = 0, whereas the sequence was increasing.

The other cases are analyzed similarly: in (a), if x0 < 0 then the sequence
still diverges. Case (c) is more interesting, since the sequence converges to zero
if x1 < 0 is small enough and to ∞ for all x1 > 0. We leave the details to the
reader.

It is useful to see what the behavior of such sequences is, in more detail.
Let’s take the case (c), where x1 < 0. We have

xn+1 = xn + x2
n

where we expect the evolution to be slow, since the relative change is vanishingly
small. We then approximate the true evolution by a differential equation

(d/dn)x = x2

giving
xn = (C − n)−1

We can show rigorously that this is the behavior, by taking xn = −1/(n+c0)+δ,
δn0

= 0 and we get

δn+1 − δn =
1

n2(n+ 1)
− 2

n
δn + δ2n (122)

and thus

δn =
n∑

j=n0

(
1

j2(j + 1)
− 2

j
δj + δ2j

)
(123)

Exercise 1. Show that (123) defines a contraction in the space of sequences
with the property |δn| < C/n2, where you choose C carefully.

Exercise 2. Find the behavior for small positive x1 in (b), and then prove
rigorously what you found.

14.1 Bifurcations

The local number of fixed points can only change when f ′(x0) = 1. As before,
we can assume without loss of generality that x0 = 0.

We have

Theorem 8. Assume f(x, λ) is a smooth family of maps, that f(0, 0) = 0 and
that fx(0, 0) ̸= 1. Then, for small enough λ there exists a smooth function
φ(λ), also small, so that f(φ(λ), λ) = φ(λ), and the character of the fixed point
(source or sink) is the same as that for λ = 0.

Exercise 3. Prove the theorem, using the implicit function theorem.
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