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Chapter 1

Transseries

Transseries are studied carefully in Chapter 3.
Informally, they are finitely generated asymptotic combinations of powers,

exponentials and logs and are defined inductively. In the case of a power series,
finite generation means that the series is an integer multiseries in µ1, ..., µn

where µj = x−αj ,<(αj) > 0. An example is

log log x +
∞∑

k=0

e−k exp(
P∞

k=0 k!x−k)

A single term in a transseries is a transmonomial.

1. A term of the form m = x−α1k1−...−αnkn with αi > 0 is a level zero
(trans)monomial. We denote −α1k1 − ...− αnkn = α · k.

For the purpose of having a unified construction at all levels, we denote
x−α1k1−...−αnkn by µk, k ∈ Zn.

2. Real transseries of level zero are simply finitely generated asymptotic
power series. That is, given α1, ..., αn with αi > 0 a level zero transseries
is a sum of the form

S =
∑

ki≥Mi

ck1,...,knx−α1k1−...−αnkn :=
∑
k≥M

ckµk (1.1)

where M1, ...,Mn are integers, positive or negative; the terms of S are
therefore nonincreasing in ki and bounded above by O(x−α1M1−...−αnMn).

3. We note that k 7→ µk defines a morphism between Zn and the abelian
multiplicative group with generators µ1, ..., µn.

4. A transseries of level zero can be written (uniquely) in collected form,∑
β∈B

dβµβ (1.2)
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where β1 > β2 > ... > βj > ... and dβ are real (positive or negative)
numbers in the following way:

Note that there can only be finitely many k1, ..., kn so that

α · k = β (1.3)

Indeed, let α1 be the least of the αj , ‖x‖ = max{|x1|, ..., |xn|}, and Q be
the least N so that condition α1N1 > ‖β‖+ ‖α‖ |M| holds. Then, there
are finitely many ki such that Mi ≤ ki ≤ Q and thus no solutions of (1.3)
exist if ki > Q. We then define the corresponding dβ by

dβ =
∑

α·k=β

ck1µk1 + ... + cknµαnkn (1.4)

where therefore the sum contains finitely many terms.

Exercise. Show that the numbers βn can have no accumulation point. In
particular, βn →∞ as n →∞.

5. We assume cβ1 6= 0, unless all cβn = 0.

6. Terminology: The magnitude of a transseries S of level zero is mag(S) =
µβ1 where β1 is the smallest of the βj . The dominance dom(S) = dβ1µβ1 .
We convene to write dom(0) = 0. For Rn 3 α > 0 we write T [0]

α the space
of multiseries generated by x−αi , i = 1, ..., n.

7. The operations are defined in a natural way. If n1 and n2 are in N then we
take the larger between the two, say n1. We embed the second transseries
in the set of transseries indexed by multiindices in Zn by setting in the
second transseries ck1,k2,...,kj ,...kn

= 0 if j > n. Then

S1 + S2 :=
∑
k≥M

(c1;k1 + c2;k2)µk (1.5)

Multiplication is defined, after a similar embedding, as

S1S2 :=
∑

k≥M1+M2

µk
∑

k1+k2=k

c1;kc2;k (1.6)

Exercise: show that for every k there are finitely many k1 ≥ M1 and
k2 ≥ M2 so that k1 + k2 = k. Therefore the sum in (1.6) is well defined.

8. A transseries can be uniquely decomposed as

S = L + c + s =
∑
β<0

dβµβ + d0 +
∑
β>0

dβµβ (1.7)

where L is a purely large transseries, c is a constant and s is a small
transseries. Of course, any of the L, c, s could be zero. The decomposition
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can be written either in collected form or with multiindices, whichever is
more convenient, whenever S originates in a multiindexed transseries of
level zero.

9. We note that by 4 the large part of at transseries only contains finitely
many terms.

10. More general operations. For any small transseries s and coefficients
{ck}k≥M , the sum

s1 =
∑
k≥M

cksk =
∑

γi;i∈N
dγiµγi (1.8)

where
dγi

µγi
= µβ1 · · ·µβr

∑
r∈N,k∈Zr,β1+...+βr=γ

cβ1+...+βr
(1.9)

is well defined: there are finitely many r and βr so that β1 + ... + βr = γ
since βj are positive for all sufficiently large j.

Exercise: Show that s1 is a transseries, that its generators are the same
as the generators of s and that the γ’s have no accumulation point.

11. Product form. We can write uniquely

S = cβ1µβ1

1 +
∑
j>1

cβj c
−1
β1


es = 1 + s + s2/2 + ... (1.10)

It is easy to check that (es)′ = es and all other properties of the usual
exponential hold.

12. A simple instance of transcomposition. If S =
∑

β∈B dβxβ is a transseries
of level zero in collected form, and sβ1 � sβ2 � · · · are transseries with
the same generators then the formal sum

∑
β∈B dβxβsβ defines unambigu-

ously a transseries of level zero, the same generators.

Exercise. Show that this follows from the fact that, since β1 + β2 = β has
finitely many solutions, so does β1 + β2 = β3 + β4.

13. Ordering. There are two types of ordering: they are induced by induced
we write S � 1 if mag(S1) > 1 and S > 0 if cβ1 > 0. It follows from (5)
S = 0 iff all cβ = 0.

14. It follows that S′ = 0 iff S = c.

Exercise. Show that if S1 � S2 are constant-free transseries of level zero,
then S′1 � S′2 and that if S is constant free and positive, then so is S′.
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15. In the sequel, whenever operating with transseries, all small transseries in
exponentials are expanded out as above, to obtain in the end a canonical
form of the transseries.

16. The space of transseries of level zero is

T [0] =
⋃

r∈Z,α>0∈Zr

T [0]
α (1.11)

with the embeddings mentioned before.

17. Note that although there is a continuum of generators in T [0], every par-
ticular transseries has a finite number of generators.

18. With the operations defined thus far, transseries of level zero form a dif-
ferential field.

1.1 Abstracting from this construction

19. Let (G, ·,�) be a finitely generated, totally ordered (any two elements
are comparable) abelian group, with generators µ1, µ2, ...µn, such that �
is compatible with the group operations, that is, g1 � g2 and g3 � g4

implies g1g3 � g2g4, and such that 1 � µ1 � · · · � µn. This is the case
when µi are transmonomials of level zero.

20. We write µk = µk := µk1
1 · · ·µkn

n .

Lemma 1.12 Consider the partial order relation that we introduced before
on Zn, k > m iff ki ≥ mi for all i = 1, 2, ..., n and at least for some j
we have kj > mj. If B ⊂ A = {k ∈ Zn : k ≥ m}, then there is no
infinite nonascending chain in B. That, is there is no infinite sequence in
B, bn 6= bm for n 6= m, and bn+1 6> bn for all n.

Proof. Assume there is an infinite nonascending sequence, {k(m)}m∈N.
Then at least for some i ∈ {1, 2, ..., n} the sequence {ki(m)}m∈N must
have infinitely many distinct elements. Since the ki(m) are bounded be-
low, then the set {ki(m)}m∈N is unbounded above, and we can extract a
strictly increasing subsequence {ki(ml)}l∈N. We now take the sequence
{k(ml)}l∈N. At least for some j 6= i the set kj(ml) needs to have infinitely
many elements too. Indeed if the sets {kj(ml); j 6= i} are finite, we can
split {k(ml)}l∈N into a finite set of subsequences, in each of which all
kj(ml), j 6= i, are constant while ki is strictly increasing. But every such
subsequence would be strictly decreasing, which is impossible. By finite
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induction we can extract a subsequence {k(mt)}t∈N of k(m)}m∈N in which
all kl(mt) are increasing, a contradiction.

Remark. This is a particular, much easier result of Kruskal’s tree theo-
rem. which we briefly mention here. A relation is well-founded if and only
if it contains no countable infinite descending sequence {xj}∈N of elements
of X such that xn+1Rxn for every n ∈ N. The relation R is a quasiorder if
it is reflexive and transitive. Well-quasi-ordering is a well-founded quasi-
ordering such that that there is no sequence {xj}∈N with xi 6≤ xj∀i < j.
A tree is a collection of vertices in which any two vertices are connected
by exactly one line. J. Kruskal’s tree theorem states that the set of finite
trees over a well-quasi-ordered set is well-quasi-ordered.

21. Exercises. (1) Show that the equation k1 + k2 = l has only finitely many
solutions in the set {k : k ≥ m}.
(2) Show that for any l ∈ Rn there can only be finitely many p ∈ N and
kj ∈ Rn, j = 1, ..., p such that k1 + k2 + · · ·kp = l.

Corollary 1.13 For any set B ⊂ A = {k ∈ Zn : k ≥ m} there is a set
B1 = mag(B) with finitely many elements, such that ∀b ∈ B \B1 there
exists b1 ∈ B1 such that b1 < b.

Consider the set of all elements which not greater than other elements of
B, B1 = {b1 ∈ B|b 6= b1 ⇒ b 6> b1}. In particular, no two elements of
B1 can be compared with each-other. But then, by Lemma 1.12 this set
cannot be infinite since it would contain an infinite non-ascending chain.

Now, if b ∈ B \ B1, then by definition there is a b′ > b in B. If b′ ∈ B1

there is nothing to prove. Otherwise there is a b′′ > b′ in B. Eventually
some b(k) must belong to B1, finishing the proof, otherwise b < b′ < ...
would form an infinite nonascending chain.

Corollary 1.14 For any set B ⊂ A = {k ∈ Zn : k ≥ m} there is a set
Mag(B) with finitely many elements, such that ∀b ∈ B \ B1 there exists
b1 ∈ B1 such that b1 < b.

22. For any m ∈ Zn and any set B ⊂ {k|k ≥ m}, the set A = {µk|k ∈ B}
has a largest element with respect to >. Indeed, if such was not the case,
then we would be able to construct an infinitely ascending sequence.

Lemma 1.15 No set of elements of µk ∈ G such that k ≥ m can contain
an infinitely ascending chain, that is a sequence of the form

g1 � g2 � · · ·

Proof. For such a sequence, the corresponding k would be strictly nonascend-
ing, in contradiction with Lemma 1.12.
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23. It follows that for any m every B ⊂ Am = {g ∈ G|g = µk;k ≥ m} is well
ordered (every subset has a largest element) and thus B can be indexed
by ordinals. By this we mean that there exists a set of ordinals Ω (or,
which is the same, an ordinal) which is in one-to-one correspondence with
B and gβ � gβ′ if β > β′.

24. If A is as in 22, and if g ∈ G has a successor in A, that is, there is a
g̃ ∈ A, g � g̃ then it has an immediate successor, the largest element in
the subset of A consisting of all elements less than g. There may not be
an immediate predecessor though, as is the case of e−x in A1 = {x−n, n ∈
N}∪{e−x}. Note also that, although e−x has infinitely many predecessors,
there is no infinite ascending chain in A1.

Lemma 1.16 For any g ∈ G, and m ∈ Zn, there exist finitely many
(distinct) k ≥ m such that µk = g.

Proof. Assume the contrary. Then for at least one i, say i = 1 there are
infinitely many ki in the set of (k)i such that µk = g. As in Lemma 1.23,
we can extract a strictly increasing subsequence. But then, along it,
µk2

1 · · ·µkn
n would form an infinite strictly ascending sequence, a contra-

diction.

Proof: Exercise.

25. For any coefficients ck ∈ R, consider the formal multiseries, which we shall
call transseries over G,

T =
∑

k∈Zn;k≥M

ckµk (1.17)

Transseries actually needed in analysis are constructed in the sequel, with
a particular inductive definition of generators µk.

26. More generally a transseries over G is a sum which can be written in
the form (1.17) for some (fixed) n ∈ N and for some some choice of
generators µk, k ∈ Zn.

27. The fact that a transseries s is small does not mean that the corresponding
µk have positive k; s could contain terms such as xe−x of x

√
2x−2 etc.).

But positiveness can be arranged by a suitable choice of generators as
follows from the next result.

28. Note It is important that a transseries is defined over a set of the form
Am. For instance, in the group G with two generators x−1 and x−

√
2 an

expression of the form ∑
{(m,n)∈Z2|m

√
2+n>0}

x−m
√

2−n (1.18)

6



is not acceptable. The behavior of a function whose “asymptotic expan-
sion” is given by (1.18) is not at all manifest.

Exercise 1.19 Consider the numbers the form m
√

2+n, where m,n ∈ Z.
It can be shown, for instance using continued fractions, that one can choose
a subsequence from this set such that sn ↑ 1. Show that

∑
n x−sn is not a

transseries over any group of monomials of order zero.

Expressions similar to the one in the exercise do appear in some problems
in discrete dynamics. The very fact that transseries are closed under
many operations, including solutions of ODEs, shows that such functions
are “highly transcendental”.

29. Given m ∈ Zn and g ∈ G, the set Sg = {k|µk = g} contains, by
Lemma 1.16 finitely many elements (possibly none). Thus the constant
d(g) =

∑
k∈Sg

ck is well defined. By 22 there is a largest g = g1 in the
set {µk|d(g) 6= 0}, unless all coefficients are zero. We call this g1 the
magnitude of T , g1 = mag(T ), and we write dom(T ) = d(g1)g1 = d1g1.

30. By 23, the set {g = µk|k ≥ m} can be indexed by ordinals, and we write

T =
∑
β∈Ω

dβgβ (1.20)

where gβ � gβ′ if β > β′. By convention, the first element in (1.20),
d1g1 6= 0.

Convention. To simplify the notation and terminology, we will say, with
some abuse of language, that a group element gβ appearing in (1.20) be-
longs to T .

Whenever convenient, we can also select the elements of dβgβ in T with
nonzero coefficients. As a subset of a well ordered set, it is well ordered
too, by a set of ordinals Ω̃ ⊂ Ω and write

T =
∑
β∈Ω̃

dβgβ (1.21)

where all dβ are nonzero.

31. Notation To simplify the exposition we will denote by Am the set {µk|k ≥
m}, Km = {k|k ≥ m} and TAm the set of transseries over Am.

32. Any transseries can be written in the form

T = L + c + s =
∑

β∈Ω;gβ�1

dβgβ + c +
∑

β∈Ω;gβ�1

dβgβ (1.22)
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where L is called a purely large transseries, c is a constant and s is called
a small transseries.

Note that L, c and s are transseries since, for instance, the set {β ∈
Ω; gβ � 1} is a subset of ordinals, thus an ordinal itself.

Lemma 1.23 If G is finitely generated, if Am ⊂ G and s is a small
transseries over Am we can always assume, for an n ≥ n′ that the gener-
ators νk, k ∈ Zn′ are such that for all νk′ ∈ s we have k′ > 0.

s =
∑
k≥m

µkck =
∑
β∈Ω̃

dβgβ =
∑
k′>0

νk′c
′
k′ (1.24)

Proof. In the first sum on the left side we can retain only the set of indices
I such that k ∈ I ⇒ µk = gβ has nonzero coefficient dβ . In particular,
since all gβ � 1, we have µk � 1 ∀k ∈ I. Let I1 = Mag(I). We adjoin
to the generators of G all the νk′ = µk with k′ ∈ I1. The new set of
generators is still finite and for all k ∈ I there is a k′ ∈ Mag(I) such that
k ≥ k′ and µk can be written in the form ν1

k′µl where all l ≥ 0.

Remark. After the construction, generally, there will be nontrivial rela-
tions between the generators. But nowhere do we assume that generators
are relation-free, so this creates no difficulty.

33. An algebra over G can be defined as follows. Let A and Ã be well ordered
sets in Ω. The set of pairs (β, β̃) ∈ A×Ã is well ordered (check!). For every
g, the equation gβ · gβ̃ = g has finitely many solutions. Indeed, otherwise
there would be an infinite sequence of gβ which cannot be ascending,
thus there is a subsequence of them which is strictly descending. But
then, along that sequence, gβ̃ would be strictly ascending; then the set of
corresponding ordinals β̃ would form an infinite strictly descending chain,
which is impossible. Thus, in

T · T̃ :=
∑

γ∈A×Ã

gγ

∑
gβ ·gβ̃=gγ

dβdβ̃ (1.25)

the inner sum contains finitely many terms.

34. We denote be TG the algebra of transseries over G. TG is a commutative
algebra with respect to (+, ·). We will see in the sequel that TG is in fact
a field. We make it an ordered algebra by writing

T1 � T2 ⇔ mag(T1) � mag(T2) (1.26)

and writing
T > 0 ⇔ dom(T ) > 0 (1.27)
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35. Product form. With the convention dom(0) = 0, any transseries can be
written in the form

T = dom(T )(1 + s) (1.28)

where s is small (check).

36. Embeddings. If G1 ⊂ G, we write that TG1 ⊂ TG in the natural way.

37. Topology on TG . We consider a sequence of transseries over a common
set Am of elements of G, indexed by the ordinal Ω.

{T [j]}j∈N; T [j] =
∑
β∈β

d
[j]
β g

[j]
β

Definition. We say that T [j] → 0 as j → ∞ if for any β ∈ Ω there is a
j(β) such that the coefficient d

[j]
β = 0 for all if j > j(β).

Thus the transseries T [j] must be eventually depleted of all coefficients.
This aspect is very important. The mere fact that dom(S) → 0 does not
suffice. Indeed the sequence

∑
k>j x−k+je−x, though “rapidly decreasing”

is not convergent according to the definition, and probably should not be
considered convergent in any reasonable topology.

38. Equivalently, the sequence T [j] → 0 is convergent if there is a representa-
tion such that

T [j] =
∑
k≥m

c
[j]
k µk (1.29)

and in the sum µk = g has only one solution (we know that such a choice
is possible), and min{|k1|+ · · ·+ |kn| : c

[j]
k 6= 0} → 0 as j →∞.

39. Let µ1, ..., µn be any generators for G, m ∈ Zd, as in 23 and Tj ∈ TAm

a sequence of transseries. Let Nj := min{k1 + ... + kn|µp1
1 · · ·µpn

n ∈ Tj}.
Note that we can write min since, by Lemma 1.12, the minimum value is
attained (check this!). If Nj → ∞ then Tj → 0. Indeed, if this was not
the case, then there would exist a gβ such that gβ ∈ Tj with dβ 6= 0 for
infinitely many j. Since Nj → ∞ there is a sequence µk ∈ Am such that
k1+...+kn →∞ and µk = gβ . This would yield an infinite set of solutions
of µk = gβ in Am, which is not possible. The function max{e−|k1|+···+|kn| :∑

µk=g ck 6= 0} is a semimetric (it satisfies all properties of the metric
except the triangle inequality) which induces the same topology.

More generally, transseries are a subset of functions f defined on G with
real values and for which there exists a k0(f) = k0 such that f(gk) = 0
for all k < k0. On these functions we can define a topology by writing
f [j] → 0 if there exists k0(f [j]) does not depend on j and for any gβ there
is an N we have f [n](gβ) = 0 for all n > N and such . The first restriction
is imposed to disallow, say, the convergence of xn to zero, which would
not be compatible with a good structure of transseries.
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40. This topology is metrizable1. For example we can proceed as follows.
Let Am be the common set over which the transseries are defined. The
elements of G are countable. We choose any counting on Am. We then
identify transseries over Am with the space F of real-valued functions
defined on the natural numbers. We define d(f, g) = 1/n where n is the
least integer such that f(n) 6= g(n) and d(f, f) = 0. The only property
that needs to be checked is the triangle inequality. Let h ∈ F . If d(g, h) ≥
1/n, then clearly d(f, g) ≤ d(f, h)+d(h, g). If d(g, h) < 1/n then d(f, h) =
1/n and the inequality holds too.

41. The topology cannot come from a norm, since in general anµ 6→ 0 as
an → 0.

42. We also note that the topology is not compatible with the order relation.
For example sn = x−n + e−x → e−x as n → ∞, sn � e−

√
x for all n

while e−x 6� e−
√

x. The same argument shows that there is no distance
compatible with the order relation.

43. In some sense, there is no “good” topology compatible with the order
relation �. Indeed, if there was one, then the sequences sn = x−n and
tn = x−n + e−x which are interlaced in the order relation should have the
same limit, but then addition would be discontinuous2.

44. Giving up compatibility with asymptotic order allows us to ensure conti-
nuity of most operations of interest.

Exercise. Show that a Cauchy sequence in TAm , is convergent, and TAm

is a topological algebra.

45. If G is finitely generated, then for any small transseries

s =
∑

β∈Ω:gβ�1

dβgβ (1.30)

we have sj → 0 as j →∞.

Proof. Indeed, by Lemma 1.23 we may assume that the generators of G,
µ1, ..., µn, are chosen such that all k > 0 in s. Let g ∈ G. The terms oc-

curring in the formal sum of sj are of the form const.µ
l11+...+lj1
1 · · ·µl1n+···ljn

n

where lsm ≥ 0 and at least one lsj > 0. Therefore l11 + ... + lj1 → ∞ and∑
l=1..M sl → 0 by 39 for any j, M →∞.

As a side remark, finite generation is not needed at this point. More
generally, let A ⊂ G be well ordered. It follows from J. Kruskal’s theorem
that the set Ã ⊃ A of all products of elements of A is also well quasi-
ordered.

1Zhi pointed out difficulties in defining a topology. A similar construction was suggested
by M. Tychonievich.

2This example was pointed out by G. Edgar.
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Note 1.31 The sum
∑∞

k=0 cksk might belong to a space of transseries
defined over a larger, but still finite, number of generators. For instance,
if

1
xex + 1

=
1

xex(1 + xe−x)
=

e−x

x

∞∑
j=0

(−1)jxje−jx (1.32)

then the generators of (1.32) can be taken to be x−1, e−x, xe−x but cer-
tainly cannot stay e−x, x−1 since then the power of x−1 would be un-
bounded below.

46. In particular if f(µ) :=
∑∞

k=0 ckµk is a formal series and s is a small
transseries, then

f(s) :=
∞∑

k=0

cksk (1.33)

is well defined.

Exercise 1.34 Show that f is continuous, in the sense that s[n] → 0 im-
plies f(s) → c0.

47. If T1 � T2, T3 � T1 and T4 � T2 then T1 + T3 � T2 + T4. Indeed,
mag(T1 + T3)=mag(T1) and mag(T2 + T4)=mag(T2).

48. It is easily checked that (1 + s) · 1/(1 + s) = 1, where

1
1 + s

:=
∑
j≥0

(−1)jsj (1.35)

More generally we define

(1 + s)a = 1 + a s +
a(a− 1)

2
+ · · ·

49. Writing S = dom(S)(1 + s) we define S−1 = dom(S)−1(1 + s)−1.

50. if µr is defined for a real r (this will be the case for the power-exponential
transseries), then we then adjoin µr to G and define

T r := dr
1g

r
1(1 + s)r

51. If µj 7→ µ′j is a “derivation” defined from the generators µj into TG , where
we assume that derivation is compatible with the relations between the
generators, we can extend it by (g1g2)′ = g′1g2 + g1g

′
2, 1′ = 0 to the whole

of G and by linearity to TG ,(∑
k∈Zn

ckµk

)′
=

n∑
j=1

µ′j
∑
k∈Zn

kjckµk1
1 · · ·µkj−1

j (1.36)

and the latter sum is a well defined finite sum of transseries.

Exercise. Show that with these operations, TG is a differential field.
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52. If s is a small series, we define

es =
∑
k≥0

sk

k!
(1.37)

Exercise. Show that es has the usual properties with respect to multiplica-
tion and differentiation.

53. Transseries are limits of finite sums. We let m ∈ Zn and Mp =
(p, p, ..., p) ∈ Nn. Note that

Tp :=
∑

gβ=µk;m≤k≤Mp;β∈Ω

dβgβ →
p→∞

∑
β∈Ω

dβgβ

Indeed, it can be checked that d(Tp, T ) → 0 as p →∞.

54. More generally, let G be finitely generated and k0 ∈ Z. Assume sk → 0
as k →∞. Then, for any sequence of real numbers ck, the sequence∑

k0≤k≤Mp

cksk (1.38)

where Mp = (p, ..., p), p ∈ N is Cauchy and the limit

lim
p→∞

∑
k0≤k≤Mp

cksk (1.39)

is well defined. In particular, for a given transseries

T / s =
∑

dksk (1.40)

we define the transcomposition

T / s =
∑
k≥k0

dksk (1.41)

55. As an example of transcomposition, we see that transseries are closed
under right pseudo-composition with large (not necessarily purely large)
transseries T = Ti; i = 1, 2, ..., n by

T1(1/T) =
∑
k≥m

ckT−k (1.42)

if
T1 =

∑
k≥m

ckµk

(cf. 45) We should mention that at this level of abstractness pseudo-
composition may not behave as a composition, for instance it may not be
compatible with chain rule in differentiation.

12



56. Contractive operators Contractivity is usually defined in relation to a
metric, but given a topology, contractivity depends on the metric while
convergence does not. There is apparently no natural metric on transseries.

Definition 1.43 Let first J be a linear operator from TAm or from one
of its subspaces, to Ak,

JT = J
∑
k≥m

ckµk =
∑
k≥m

ckJµk (1.44)

Then J is called asymptotically contractive on Ãm if

Jµj =
∑
p>0

cpµj+p (1.45)

Remark 1.46 Contractivity depends on the set of generators.

Remark 1.47 It can be checked that contractivity holds if

Jµj =
∑
p>0

cpµj+p(1 + sj) (1.48)

where sj are small transseries.

Exercise 1.49 Check that for any µj we have

sup
p>0

n+p∑
k=n

Jkµj → 0

as n →∞.

We then have
JT =

∑
k≥m

Jµk (1.50)

Definition 1.51 The linear or nonlinear operator J is (asymptotically)
contractive in the set A ⊂ Am if J : A 7→ A and the following condition
holds. Let T1 and T2 in A be arbitrary and let

T1 − T2 =
∑
k≥m

ckµk (1.52)

Then

J(T1)− J(T2) =
∑
k≥m

c′kµk+pk
(1 + sk) (1.53)

where pk > 0 and sk are small.

13



Remark 1.54 The sum of asymptotically contractive operators is con-
tractive; the composition of contractive operators, whenever defined, is
contractive.

Theorem 1.55 (i) If J is linear and contractive on TAm then for any
T0 ∈ TAm the fixed point equation T = JT + T0 has a unique solution
T ∈ TAm .

(ii) In general, if A ⊂ Am is closed and J : A 7→ A is a (linear or
nonlinear) contractive operator on A, then T = J(T ) has a unique solution
is A.

Proof. For (ii) we define the sequence Tn+1 = J(Tn) is convergent since
for some coefficients cj,k we have

Jq(T )− J(T ) =
∑
k≥m

cj,kµk+qpk
→ 0

as q →∞. Uniqueness is immediate. 2

57. When working with transseries we often encounter this fixed point problem
in the form X = Y + N (X), where Y is given, X is the unknown Y is
given, and N is “small”.

Exercise. Show the existence of a unique inverse of (1 + s) where s is a
small transseries, by showing that the equation T = 1− sT is contractive.

58. For example ∂ is contractive on transseries of level zero. This is clear
since in every monomial the power of x decreases by one. But note that
∂ is not contractive anymore if we add “terms beyond all orders”, e.g.,
(e−x2

)′ = −2xe−x2 � e−x2
.

We cannot expect any contractivity of ∂ in general, since if y1 is the level
zero solution of T = 1/x − T ′ then T + Ce−x is a solution for any C so
uniqueness fails.

This is one reason the WKB method works near irregular singularities,
where exponential behavior is likely, and naive approximations don’t.

59. We take the union

T =
⋃
G
TG

with the natural embeddings. It can be easily checked that T is a differ-
ential field too. The topology is that of inductive limit, namely a sequence
of transseries converges if they all belong to some TG and they converge
there.

14



60. One can check that algebraic operations, exponentiation, composition with
functions for which composition is defined, are continuous wherever the
functions are “C∞”.

Exercise 1.56 Let T ∈ Am. Show that the set {T1 ∈ Am|T1 � T} is closed.

1.2 General logarithmic-free transseries

1.2a Assumption on the inductive step

1. We have already constructed transseries of level zero. Transseries of any
level are constructed inductively, level by level.

Since we have already studied the properties of abstract multiseries, the
construction is relatively simple, all we have to do is essentially watch for
consistency of the definitions at each level.

2. Assume finitely generated transseries of level at most n have already been
constructed. We assume a number of properties, and then build level n+1
transseries and show that these properties are conserved.

(a) Transmonomials µj of order at most N are totally ordered, with
respect to two order relations, � and <. Multiplication is defined
on the transmonomials, it is commutative and compatible with the
order relations.

(b) For a set of n small transmonomials, a transseries of level at most N
is defined as expression of the form (1.17).
It follows that the set {g = µk|k ≥ m} can be indexed by ordinals,
and we can write the transseries in the form (1.20). The decomposi-
tion 1.22 then applies.
It also follows that two transseries are equal iff their corresponding
dβ coincide.
The ordering relation on transseries of level N is defined as before,
T � 1 if, by definition g1 � 1 and T > 0 iff d1 > 0.
Transseries of level at most N are defined as the union of all TAm

where Am is as before.

(c) A transmonomial or order at most N is of the form xaeL where L
is a purely large or null transseries of level N − 1, and eL is defined
recursively. There are no transseries of level −1, so for N = 1 we
take L = 0.
Exercise. Show that any transmonomial is of the form xaeL1eL2 · · · eLj

where Lj are of order exactly j meaning that they are of order j but
not of lower order.

(d) For any transmonomial, (xaeL)r is defined as xarerL where the in-
gredients have already been defined. It may be a adjoined to the
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generators of G and then, as in the previous section, T r is well de-
fined.

(e) By definition, xaeL = eLxa and xa1eL1xa2eL2 = xa1+a2eL1+L2 . Fur-
thermore eL1 � xaeL2 for any a if L1 > 0 is a purely large transseries
of level strictly higher than the level of L2.

(f) There is a differentiation with the usual properties on the gener-
ators, compatible with the group structure and equivalences. We
have (xaeL)′ = axa−1xL + xaL′eL where L′ is a (finitely generated)
transseries of level at most N − 1.
We define

T ′ =
∑

k∈Zn;k≥M

ck
[
(x−k·α)′e−L·β + x−k·α(e−L·β)′

]
(1.57)

where, according to the definition of differentiation, (1.57) is a finite
sum of products of transseries of level at most N .
We have T ′ = 0 iff T = const. If dom(T1,2) 6= const., then T1 � T2

implies T ′1 � T ′2.

3. It can be checked by induction that T > 0, T � 1 implies T ′ > 0. In this
sense, differentiation is compatible with the order relations.

4. It can then be checked that differentiation has the usual properties.

5. if c is a constant, then ec is a constant, the usual exponential of c, and
if L + c + s is the decomposition of a transseries of level N − 1 we write
eL+c+s = eLeces where es is reexpanded according to formula (1.37) and
the result is a transseries of level N .

We convene to write eT , for any T transseries of level at most N only in
this reexpanded form.

Then it is always the case that eT = T1e
L2 where T1 and L2 are transseries

of level N − 1 and L2 is purely large or zero. The transseries eT is finitely
generated, with generators e−L1 , if L1 > 0 or eL1 otherwise, together
with all the generators of L1.

Sometimes it is convenient to adjoin to the generators of T all the genera-
tors in the exponents of the transmonomials in T , and then the generators
in exponents in the exponents of the transmonomials in T etc. Of course,
this process is finite, and we end up with a finite number of generators,
which we will call the complete set of generators of T .

6. This defines the exponential of any transseries of level at most N − 1 if
L 6= 0 and the exponential of any transseries of level at most N if L = 0.
We can check that eT1 = eT2 iff T1 = T2.

7. If all transseries of level N are written in the canonical form (1.20) then
T1 = T2 iff all gβ at all levels have exactly the same coefficients. Transseries,
in this way, have a unique representation in a strong sense.
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8. The space of transseries of level N , T [N ], is defined as the union of all
spaces of transseries over finitely generated groups of transmonomials of
level N .

T [N ] =
⋃
GN

TGN

with the inductive limit topology.

9. The abstract theory of transseries we have developed in the previous
section applies. In particular the definition 1/(1 − s) =

∑
j sj 1/T =

1/ dom(T )(1 + s)−1 and transseries of level N form a differential field
closed under the contractive mappings.

10. Note that transseries of order N are closed under the contractive mapping
principle.

1.2b Passing from step N to step N + 1

1. We now proceed in defining transseries of level at most N + 1. We have
to check that the construction preserves the properties in §1.2a .

2. For any purely large transseries of level N we define xaeL to equal the
already defined transmonomial of order N . If L is a (finitely generated)
purely large transseries of level exactly N we define a new primitive object,
xaeL, a transmonomial of order N + 1, with the properties

(a) e0 = 1.

(b) xaeL = eLxa.

(c) xa1eL1xa2eL2 = xa1+a2eL1+L2 .

(d) If L > 0 is a purely large transseries of level exactly N then we have
eL � xa for any a.
Exercise. Show that if L1 and L1 are purely large transseries and the
level of L1 strictly exceeds the level of L2, then eL1 � xaeL2 for any
a.

Note that L1 ± L2 may be of lower level but it is either purely large or
else zero; L1L2 is purely large.

Note 1.58 At this stage, no meaning is given to eL, or even to ex; they are
treated as primitives. There are possibly many models of this construction.
We will interpret many of them later by finding an extended isomorphism
between a family of transseries and a set of functions. Then ex would cor-
respond to the usual exponential, convergent multiseries will correspond
to their sums etc. Finite generation would play a role throughout that
process, and “good” transseries come as solutions of well defined classes
of problems, with “coefficients“ which are themselves “good” transseries.
We will have (1 − 1/x)−1 =

∑
j x−j but also selected divergent series
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will have a meaning, e.g. ex
∑∞

k=0 n!/xn+1 = PV
∫ x

−∞ t−1etdt The latter
transseries, and its associated sum solve f ′ + f = 1/x. But it is not to be
expected to have a summation process that applies to all series.

3. If α > 0 and L is a positive transseries of level N we define a generator of
order N to be µ = x−αe−L. We choose a number of generators µ1, ..., µn,
and define the abelian multiplicative group generated by them, with the
multiplication rule just defined. We can check that G is a totally ordered,
of course finitely generated, abelian group, and that the order relation is
compatible with the group structure.

4. We can now define transseries over G = G[N+1] as in §1.1.

5. We define transseries of order N + 1 to be the union over all TG[N+1] , with
the natural embeddings. We denote these transseries by T [N+1].

6. Compatibility of differentiation with the order relation. We have already
assumed that this is the case for transseries of level at most N . (i) We
first show that it holds for transmonomials of level N + 1. If L1 − L2 is
a positive transseries, then (xaeL1)′ � (xbeL2)′ follows directly from the
formula of differentiation, the fact that eL1−L2 is large and the induction
hypothesis. If L1 = L2 then a > b and the property follows from the fact
that L1 is either zero, or else L � xβ for some β > 0 for some positive β
(check!).

(ii) For the general case we note that∑
β

dβµβ

′ =
∑

β

dβµ′β

and µ′β1
� µ′β2

if β1 > β2. Then dom(T )′ = ( dom(T ))′ and the property
follows.

7. Differentiation is continuous. Indeed, if T [m] → 0,

T [m] =
∑
k≥m

c
[m]
k xk·ae−k·L → 0 as m →∞

where the transseries L1, ..., Ln are purely large, then

(T [m])′ =
1
x

∑
k≥m

(k · a c
[m]
k )xk·ae−k·L−L′ ·

∑
k≥m

(kc
[m]
k )xk·ae−k·L

and the rest follows from continuity of multiplication and the definition of
convergence.

8. Therefore, if a property of differentiation holds for finite sums of trans-
monomials, then it holds for transseries.
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9. By direct calculation, if µ1, µ2 are transmonomials of order N + 1 then
(µ1µ2)′= µ′1µ2 +µ1µ

′
2. Then, one can check by usual induction, the prod-

uct rule holds for finite sums of transmonomials. Using 8 the product rule
follows for general transseries.

Composition

10. Composition to the right with a large (not necessarily purely large) transseries
T of level m is defined as follows.

The power of a transseries T = xaeL(1+ s) is defined by T p = xapepL(1+
s)p, where the last expression is well defined and (T p)′ = pT ′T p−1 (check).

The exponential of a transseries is defined, inductively, in the following
way.

T = L + c + s ⇒ eT = eLeces = SeLec (1.59)

where S is given in (1.37).

A general exponential-free transseries of level zero has the form

T0 =
∑
k≥m

ckx−k·α (1.60)

where (α1, ..., αn) ∈ R+n for some n.

Then we take T = (Tα1 , ..., Tαn) and define T0(1/T ) by (1.42); T0(1/T )
has level m. If the sum (1.60) contains finitely many terms, it is clear
that [T0(1/T )]′ = T ′0(1/T )T ′. By continuity, this is true for a general T0

of level zero.

11. Assume that composition with T has been defined for all transseries of level
N . It is assumed that this composition is a transseries of level N + m.
Then L(T ) = L1 + c1 + s1 (it is easily seen that L(T ) is not necessarily
purely large). Then

(xaeL) ◦ (T ) := T aeL(T ) = xb(1 + s1(T ))eL1(T ) (1.61)

where L1(T ) is purely large. Since L1 has level N + m, then (xaeL) ◦ (T )
has level N + m + 1. We have (eL1)′ = L′1e

L1 and the chain rule follows
by induction and from the sum and product rules.

Exercise 1.62 If T [n] is a sequence of transseries, then eT [n]
is a not

necessarily a valid sequence of transseries. But if it is, then there is an
L0 such that L[n] = L0 for all large n. If eT [n]

is a sequence of transseries
and T [n] → 0, then eT [n] → 1.
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12. The exponential is continuous. This follows from the Exercise 1.62 and
Exercise 1.34.

13. Take now a general transseries of level N + 1 and write T = xaeL(1 + s)

t =
∑
k≥m

x−k·αe−k·l (1.63)

Then t(T ) is well defined as the limit of the following finite sum with
generators x−|aαj |, x−αj e−lj(T ), e−lj(T ); , j = 1, ..., n:

t(T ) =
∑

Mp≥k≥m

x−a(k·α)e−k·l1(T )(1 + s(T )) (1.64)

14. The chain rule holds by continuity.

15. The general theory we developed in §1.1 applies and guarantees that the
properties listed in §1.2a hold (check!).

Small transseries as infinitesimals; expansions beyond all orders

16. Let T be a transseries of level N over G and dx a small transseries with
dominance e−L where L is a positive large transseries of level N + p,
p > 0. Then (T (x + dx)− T (x))/dx = T ′(x) + s(T ) where s(T ) is a small
transseries of level N + p.

The proof is by induction on the level. By linearity and continuity it is
enough to prove the statement for transmonomials. We have

(x + dx)ae−L1(x+dx) = xa(1 + dx/x)aeL1(x)+L′1(x)dx+s(L)

where L′1dx is a small transseries (since L1e
−L is small) and s(L1) is of

level N + p. The claim follows after reexpansion of the two terms in the
product. Note that dx must be far less than all terms in T ; dx � 1 is not
enough.

Exercise 1.65 Show that, under the same assumptions that

T (x + dx) =
∞∑

j=0

T (n)(x)
dxn

n!
(1.66)

In this sense, transseries behave like analytic functions.

20



An inequality helpful in WKB analysis.

Proposition 1.67 If L � 1 then L′′ � (L′)2 (or, which is the same, L′ � L2).

Proof. If L = xaeL1 where L1 6= 0 then L1 is purely large, then the dominance
of L′ is of the form xbeL1 , whereas the dominance of L is of the form xae2L1

and the property is obvious. If L1 = 0 the property is obvious as well. 2 In
WKB analysis this result is mostly used in the form (1.69 below.

Exercise 1.68 Show that if T � 1, T positive or negative, we have

dom[(eT )(n)] = dom[(T ′)neT ] (1.69)

1.2c General logarithmic-free transseries

These are simply defined as

Te =
⋃

N∈N
T [N ] (1.70)

with the natural embeddings.
The general theory we developed in §1.1 applies to Te as well. Since any

transseries belongs to some level, any finite number of them share some level.
There are no operations defined which involve infinitely many levels, because
they would involve infinitely many generators. Then, the properties listed in
§1.2a hold in Te (check!).

1.2d Écalle’s notation

• —small transmonomial.

• —large transmonomial.

• —any transmonomial, large or small.

• —small transseries.

• —large transseries.

• —any transseries, small or large.

Further properties of transseries

Definition. The level l(T ) of T is n if T ∈ T [n] and T 6∈ T [n−1].
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Further properties of differentiation

We denote D = d
dx

Corollary 1.71 We have DT = 0 ⇐⇒ T = Const.

Proof. We have to show that if T = L + s 6= 0 then T ′ 6= 0. If L 6= 0 then for
some β > 0 we have L + s � xβ + s and then L′ + s′ � xβ−1 6= 0. If instead
L = 0 then (1/T ) = L1 + s1 + c and we see that (L1 + s1)′ = 0 which, by the
above, implies L1 = 0 which gives 1/s = s1, a contradiction. 2

Proposition 1.72 Assume T = L or T = s. Then:
(i) If l( mag(T )) ≥ 1 then l( mag(T−1T ′)) < l( mag(T )).
(ii) dom(T ′) = dom(T )′(1 + s).

Proof. Straightforward induction. 2

Transseries with complex coefficients

Complex transseries TC are constructed in a similar way as real transseries,
replacing everywhere L1 > L2 by <L1 > <L2. Thus there is only one or-
der relation in TC, �. Difficulties arise when exponentiating transseries whose
dominant term is imaginary. Operations with complex transseries are then lim-
ited. We will only use complex transseries in contexts that will prevent these
difficulties.

Differential systems in Te

The theory of differential equations in Te is similar in many ways to the corre-
sponding theory for functions.

Example. The general solution of the differential equation

f ′ + f = 1/x (1.73)

in Te (for x → +∞) is T (x;C) =
∑∞

k=0 k!x−k + Ce−x = T (x; 0) + Ce−x.
The particular solution T (x; 0) is the unique solution of the equation f =

1/x−Df which is manifestly contractive in the space of level zero transseries.
Indeed, the fact that T (x;C) is a solution follows immediately from the

definition of the operations in Te and the fact that e−x is a solution of the
homogeneous equation.

To show uniqueness, assume T1 satisfies (1.73). Then T2 = T1 − T (x; 0) is a
solution of DT + T = 0. Then T2 = exT satisfies DT2 = 0 i.e., T2 = Const.

1.2e The space T of general transseries

We define
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logn(x) = log log ... log(x)︸ ︷︷ ︸
n times

(1.74)

expn(x) = exp exp ... exp(x)︸ ︷︷ ︸
n times

(1.75)

(1.76)

with the convention exp0(x) = log0(x) = x.
We write exp(log x) = x and then any log-free transseries can be written as
T (x) = T ◦ expn(logn(x)). This defines right composition with logn in this
trivial case, as T1 ◦ logn(x)) = (T ◦ expn) ◦ logn(x) := T (x).

More generally, we define T , the space of general transseries , as a set of
formal compositions

T = {T ◦ logn : T ∈ Te}

with the algebraic operations and inequalities (symbolized below by �) inherited

from
≈
T by

(T1 ◦ logn)� (T2 ◦ logn+k) = [(T1 ◦ expk)� T2] ◦ logn+k (1.77)

and using (1.77), differentiation is defined by

D(T ◦ logn) = x−1

[
(
n−1∏
k=1

logk)−1

]
(DT ) ◦ logn

Proposition 1.78 T is an ordered differential field, closed under restricted
composition.

Proof. Exercise. 2

The logarithm of a transseries. This is defined by first considering the case
when T ∈ Te and then taking right composition with iterated logs.

If T = cmag(T )(1 + s) = cxaeL(1 + s) then we define

log(T ) = log(mag(T ))+log c+log(1+s) = a log x+L+log c+log(1+s) (1.79)

where log c is the usual log, log(1 + s) is defined by expansion which we know
is well defined on small transseries.

1. If L � 1 is large, then log L � 1 and if s � 1, then log s � 1.
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Restricted composition

Proposition 1.80 T is closed under integration.

Proof. The idea behind the construction of D−1 is the following: we first find
an invertible operator J which is to leading order D−1; then the equation for
the correction will be contractive. Let T =

∑
k≥k0

µk ◦ logn. To unify the
treatment, it is convenient to use the identity∫

x

T (s)ds =
∫

logn+2(x)

(
T ◦ expn+2

)
(t)

∏
j≤n+1

expj(t)dt =
∫

logn+2(x)

T1(t)dt

where the last integrand, T1(t) is a log-free transseries and moreover

T1(t) =
∑
k≥k0

ckµk1
1 · · ·µkM

M =
∑
k≥k0

cke−k1L1−...−kM LM

The case k = 0 is trivial and it thus suffices to find ∂−1e±L, where n = l(L) ≥ 1
where L > 0. We analyse the case ∂−1e±L, the other one being similar. Then
L � xm for any m and thus also ∂L � xm for all m. Therefore, since ∂e−L =
−(∂L)e−L we expect that dom(∂−1e−L) = −(∂L)−1e−L and we look for a ∆
so that

∂−1e−L = −e−L

∂L
(1 + ∆) (1.81)

Then ∆ should satisfy the equation

∆ = − ∂2L

(∂L)2
− ∂2L

(∂L)2
∆ + (∂L)−1∂∆ (1.82)

Since s1 = 1/L′ and s2 = L′′/(L′)2 are small, by Lemma 1.23, there is a
set of generators in which all the magnitudes of s1,2 are of the form µk with
k > 0. By Proposition 1.67 and Exercise 1.56, (1.82) is contractive and has a
unique solution in the space of transseries with the complete set of generators of
L and x−1 and ∆ � L and the generators constructed above. For the last term,
note that if ∆ =

∑
cωe−Lω and L = eL1 , then ∆′/L′ =

∑
cωL′ωe−Lωe−L1 and

L′ωe−L = µω � 1.
2

1. Since the equation is contractive, it follows that mag(∆) = mag(L′′/L′
2).

In the following we also use the notation ∂T = T ′ and we write P for the
antiderivative ∂−1 constructed above.

Proposition 1.83 P is an antiderivative without constant terms, i.e,

PT = L + s

Proof. This follows from the fact that Pe−L � 1 while P (eL) is purely large,
since all small terms are of lower level. Check! 2
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Proposition 1.84 We have

P(T1 + T2) = PT1 + PT2

(PT )′ = T ; PT ′ = T0

P(T1T
′
2) = (T1T2)0 − P(T ′1T2)

T1 � T2 =⇒ PT1 � PT2

T > 0 and T � 1 =⇒ PT > 0
(1.85)

where

T =
∑
k≥k0

ckµk =⇒ T0 =
∑

k≥k0;k6=0

ckµk

Proof. Exercise. 2

There exists only one P with the properties (1.85), for any two would differ
by a constant.

Remark 1.86 Let s0 ∈ T . The operators defined by

J1(T ) = P(e−x(Const. + s0)T (x)) (1.87)

J2(T ) = e±xxσP(x−2x−σe∓x(Const. + s0)T (x)) (1.88)

are contractive on T .

Proof. For (1.87) it is enough to show contractivity of P(e−x·). If we assume
the contrary, that T ′ 6� Te−x it follows that log T 6� 1. We know that if log T
is small then mag(T ) = c, c constant. But if mag(T ) = c then the property is
immediate. The proof of (1.87) is very similar.

2

1.3 Equations in T : examples

Remark 1.89 The general contractivity principle stated in Theorem 1.55, which
we have used in proving closure of transseries with respect to a number of op-
erations can be used to show closure under more general equations. Our main
focus is on differential systems.

Nonlinear ODEs in T

We start with an example, a first order equation:

f ′ + f =
1
x

+
1
x

f + f3 (1.90)
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The analysis however can be easily carried out for higher order systems of the
form

y′ = f(x−1,y) y ∈ Cn (1.91)

see §3.1c . We now address the issue of what is the general solution in transseries
of (1.90).

Proposition 1.92 Eq. (1.90) has exactly a one parameter family of transseries
solutions. They are of the form

∞∑
k=0

Ck(xe−x)kỹk;0 (1.93)

and two zero parameter solutions of the form

±1 + ỹk;± (1.94)

where ỹk;0,± are power series which only depend on the equation while C is a
free parameter.

Proof. At a formal level, we could think of the proof as rigorous asymptotics.
First of all, we show there are no large transseries solutions. Indeed, if such

was the case, then f3 � f and we are left with the dominant balance, or balance
of dominances,

A(xbeL)′ = A3x3Be3L (1.95)

L may contain logs, in which case L = L1(logk(x)) where L1 is log-free. We
can make it of level at least one, of the form eL, by writing L = L2(logk+1(x)).
Then,

L′2 =
k+1∏
j=0

expn(x)e2L (1.96)

Since the product on the right side is much larger than one, we would have
L′ � e2L, a contradiction.

We then see that the dominant part is either of the order of a constant,
Aj ∈ {−1, 0, 1}. We look at the case A = 0 the others cases being very similar,
after substituting f = Aj + yj . For A = 0, f is small. Then, f/x, f3 � f and
the dominance is decided by f, 1/x and possibly f ′.

We have
dom(f) = dom(1/x)− f ′

There three possibilities which we analyze separately: f ′ � 1/x, f ′ ∼ 1/x or
f ′ � 1/x. The last two entail, by applying P, that f is larger or of the order of
lnx. But this is not possible since it gives log x = O(1/x).

Thus f ′ � 1/x. Within level zero transseries, we find immediately a solution
f0, using the contractive equation

f =
1
x
− f ′ − 1

x
f − f3 (1.97)
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We write f = f0 + δ and get

δ′ + δ = o(δ) (1.98)

and thus, as before, dom(δ) = Ce−x for some C. We thus write δ = ∆e−x and
get

∆′ =
1
x

∆ + 3f2
0 ∆ + 3f0∆2e−x + ∆3e−2x (1.99)

where the dominant balance, by (1.98), is between ∆′ and ∆/x. This gives
dom∆ = Cx, still large. If ∆ = xT then T ′ = 3f2

0 T + 3f0xT 2e−x + x3e−2xT 3.
In any contractive formulation, we need to account for the free constant, since
otherwise we would have no uniqueness, preventing contractivity. We write the
equation in integral form:

T = C + P
(
3f2

0 T + 3f0xT 2e−x + x3e−2xT
)

(1.100)

This equation is contractive in the space of small transseries whose generators
include e−x, x−1, 1/xe−x (we can always adjoin them). The rest of the proof is
straightforward. 2

Formal linearization

Let z = Cxβe−x. We have

C(x, δ) = x−βex
∑
k≥1

δkg̃k(x)

A direct calculation shows that C ′ = Cx + Cδδ
′ = 0. The transformation

(x 7→ x; y 7→ C(x, y − f0)) formally linearizes scalar equations of the form
(1.91).
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Chapter 2

Correspondence with
functions

Analyzable functions are constructed in such a way that closure under most
operations is preserved. The only way we know how to proceed is by summing
transseries, which are already closed, in a way that commutes with all operations
defined on transseries. Compatibility with the topolgy is unknown, but at least
a weak form of compatibility is expected to hold.

Not all transseries are summable, but only the minimal space of transseries
that originate in “natural” problems such as ODEs, difference equations etc,
contained in the closure of, say, polynomials at infinity under all operations.
This limitation is probably unavoidable. Some formal series are provably non-
summable by any procedure which preserves elementary properties. Such is the
case of the formal series

S̃ =
∑
q∈Q

1
(x− q)2 + (x− q) + 1

(2.1)

If Σ was a summation procedure compatible with the usual operations, then S =
ΣS̃ would be a function with arbitrarily small oeriods. Since it is constructively
defined it is measurable, thus constant. It is easily seen that this is inconsistent
too since differentiating formally and using the symmetry of the problem, we
have S′ < 0 on all rationals. Furthermore, thus (2.1) cannot arise in any natural
problem as the formal solution.

The limitation is not too serious, since the main purpose of studying transseries
is in solving problems, in a constructive way. Even with this limitation though
some restrictions must be imposed since the equation xn+1 = 2xn has no
transseries solution. The topology on transseries is too weak, since it allows
for any growth of coefficients.
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2.1 Construction of analyzable functions

Analyzable functions are constructed using the following diagram:

Convergent series −→ Summation −→ Analytic functions

−→ −→

operations
“all”
under
C

losure

operations
“all”
under
C

losure

−→ −→

SummableTransseries → E-B Summation −→ Analyzable functions
A few notes are in order, to understand why Borel summation is natural.

1. If a problem has analytic coefficients and is nonsingular, or regularly per-
turbed, the series expansions are convergent. In differential systems, a
problem is singularly perturbed if the highest derivative is formally small,
for instance in problems like f ′ + f = 1/x or, exiting the realm of one
variable, εf ′′ + h(x)f = g.

2. In singularly perturbed problems the highest derivative belongs formally
to the right side. One then iterates upon the highest derivative. For
generic analytic functions, by Cauchy’s formula, f (n) grows roughly like
constnn!

3. It is then natural to diagonalize d/dx.

4. Then, by repeated iteration of d/dx we get geometric rather that factorial
divergence. This is much easier to resolve.

5. The operator d/dx is diagonalized by the Fourier transform. Since it is
often the case that we deal with asymptotic problems, for say a large vari-
able x, we would like to perform it while keeping x large. A Fourier trans-
form on a vertical contour in the complex domain is the inverse Laplace
transform,

L−1f :=
1

2πi

∫ i∞+x0

−i∞+x0

f(t)eptdt (2.2)

6. L−1f ′ = pf thus repeated differentiation means repeated multiplication
by p.Factorial growth is replaced by geometric growth, much easier to
control.

7. The formal inverse Laplace transform (Borel transform, B) of a small zero
level transseries, that is of a small multiseries, is defined, roughly, as the
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term-by-term inverse Laplace transform of the series. It is still a level zero
transseries,

B
∑
k>0

ckx−k·a =
∑
k>0

ckpk·a−1/(k · a− 1)! (2.3)

where the factorial is understood in terms of the Gamma function.

The result of summing a formal series is still a formal series, convergent
or not.

8. One difference between L−1 and B is that L−1x−b−1 = pb/b! for all small
p, not only for < p > 0.

9. A series is classically Borel summable if (a) the series in p in (2.3) is
convergent (as a Puiseux series) for small p, (b) the sum admits ana-
lytic continuation along R+ and (c) the sum is a function f analytic in
a neighborhood of the real line, along which f does not grow faster than
exponentially. The norm can be taken the sup norm with weight e−νp for
some ν, or L1(R+, e−νpdp) etc.

10. The Borel sum is then, by definition the Laplace transform of f . Since, in
some sense, we applied Laplace transform to an inverse Laplace transform,
formally the identity, this summation should preserve all properties. Some
rigorous results follow, preceded by a heuristic argument.

11. We will shortly extend this summation to transseries. In practice however,
rarely does one need to Borel sum several levels of a transseries: once the
lowest level has been summed, usually the remaining object is convergent.

Furthermore, in practice the conditions of Borel summability are not sat-
isfied, and a more general summation replaces it. Even the prototypical
example

∑∞
k=0 k!x−k−1 is not summable since its Borel transform (1−p)−1

is not real-analytic. As we shall see, generic formal solutions which allow
for small real valued exponential corrections are not Borel summable.

12. Higher powers of the factorial can often be easily dealt with by changes
of the independent variable. For instance, in

∑∞
k=0(k!)2x−k+1 we achieve

that by taking x = y2 to get
∑∞

k=0(k!)2y−2k+2. Note that k!2 roughly
behaves like (2k)!. In some special cases however, no single change of
variable suffices, and that is dealt with by multisummability.

13. As a rule of thumb, we pass to the variable in which divergence is facto-
rial. It will turn out that this is intimately linked to the form of small
exponential corrections. If these are of the form e−xq

then divergence is
usually like (n!)1/q. The variable should then be chosen to be t = xq. This
t is the critical time. The Laplace transform leaves room for exponentially
small corrections where the exponent is linear in x. For instance we can
take the Laplace transform of (1− p)−1 along any ray other than R+. An
upper and lower transform differ precisely by a small exponential. Sub or
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super-exponential corrections cannot originate in Borel sums. This will
be proved shortly.

14. For instance, to find the antiderivative of ex2
, g′ = ex2

we can write
g = uex2

and then
2xu′ + u = 1 (2.4)

The freedom is that of an additive constant, g = Pex2
+ C and thus the

correction is roughly e−x2
times the dominant term. The critical time is

t = x2. We then take it is convenient to take g = h(x2)ex2
. The equation

for h is

h′ + h =
1

2
√

t
(2.5)

15. If the transform of the solution of an equation is summable, then it is
expected that the transformed equation should be more regular. In this
sense, Borel summation is a regularizing transformation.

In the case of (2.5) it becomes

−pH + H = p−1/2π−1/2 (2.6)

an algebraic equation, with algebraic singularities. The irregular singular-
ity has been removed.

16. We see though again that the transformed function is not Laplace trans-
formable, since it has a singularity on the real line. This is a situation
we will deal with frequently, and is dealt with by an appropriate Écalle
medianization. This is a suitable universal linear combination of analytic
continuations, chosen in such a way that averaging commutes with Laplace
convolution

f ∗ g =
∫ p

0

f(s)g(p− s)ds (2.7)

and the Borel sum of a product is the product of Borel transforms. We
will return to this. For (2.6) it all amounts to taking the half-sum of the
Laplace transforms along contours from 0 to (1± iε)∞.

17. It is crucial to perform Borel summation in the adequate variable. If
the divergence is not fully compensated, then obviously we are still left
with a divergent series. “Oversummation”, the result of overcompensating
divergence usually leads to superexponential growth of the transformed
function. The presence of singularities in Borel plane is in fact a good
sign.

For equation (2.4), one can check that the divergence is like
√

n!. The
equation is oversummed if we inverse Laplace transform it in x; what we
get is

2H ′ − pH = 0; H(0) = 1/2 (2.8)
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and thus H = 1
2ep2/4. There are no singularities anymore but we have

superexponential growth; this combination is a sign of oversummation.
After oversummation there is no obvious way of taking the Laplace trans-
form close to the real line. In some cases, a simple change of variable,
as we have seen, can cure the problem. Of course, one can mix together
series with different rates of divergence. Then multisummation becomes
needed.

18. Commutation of Borel summation with all operations of natural origin
can be understood heuristically as follows. We can think of

∑
n!(−x)n+1

as the analytic continuation in λ of the series
∑

(λn)!(−x)−n−1, which is
convergent if λ = i and x is large. This analytic continuation is noth-
ing else but the Borel sum! For analytic continuation, commutation with
all operations of natural origin comes under the umbrella of the vaguely
stated “principle of permanence of relations” which cannot be formulated
rigorously in any obvious way without giving up some legitimate “rela-
tions”.

2.1a Laplace transform, Inverse Laplace transform

For convenience we provide some standard results on Laplace transforms.

Lemma 2.9 Assume that c > 0 and f(z) is analytic in Hc := {z : < z > c}.
Assume further that g(t) := supc′>c |f(c′ + it)| ∈ L1(R, dt). Let

F (p) =
1

2πi

∫ c+i∞

c−i∞
epxf(x)dx =: (L−1f)(p) (2.10)

Then for any x ∈ {z : < z > c} we have LF =
∫ ∞

0

e−pxF (p)dp = f(x)

Note that for any x′ = x′1 + iy′1 ∈ {z : < z > c}∫ ∞

0

dp

∫ c+i∞

c−i∞

∣∣∣ep(s−x′)f(s)
∣∣∣ d|s| 6 ∫ ∞

0

dpep(c−x′1)‖g‖1 6
‖g‖1

x′1 − c
(2.11)

and thus, by Fubini we can interchange the orders of integration:

U(x′) =
∫ ∞

0

e−px′ 1
2πi

∫ c+i∞

c−i∞
epxf(x)dx

=
1

2πi

∫ c+i∞

c−i∞
dxf(x)

∫ ∞

0

dpe−px′+px =
1

2πi

∫ c+i∞

c−i∞

f(x)
x′ − x

dx (2.12)

Since g ∈ L1 there exist subsequences {τn}, {−τ ′n} tending to infinity such
that |g(τn)| → 0. Let x′ > <x = x1 and consider the box Bn = {z : <z ∈
[x1, x

′],=z ∈ [−τ ′n, τn]} with positive orientation.∫
Bn

f(s)
x′ − s

ds = −f(x′) (2.13)
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while, by construction,

lim
n→∞

∫
Bn

f(s)
x′ − s

ds =
∫ x′+i∞

x′−i∞

f(s)
x′ − s

ds−
∫ c+i∞

c−i∞

f(s)
x′ − s

dx (2.14)

On the other hand, by dominated convergence, we have∫ x′+i∞

x′−i∞

f(s)
x′ − s

ds → 0 as x′ →∞ (2.15)

Analytic behavior in x versus properties in p

Proposition 2.16 If F ∈ L1(R+) then LF is analytic in the right half plane
H and continuous on the imaginary axis ∂H, and L{F}(x) → 0 as x → ∞ in
H.

Proof. Continuity and analyticity are preserved by integration against a fi-
nite measure (F (p)dp). Equivalently, these properties follow by dominated
convergence, as ε → 0, of

∫∞
0

e−isp(e−ipε − 1)F (p)dp and of
∫∞
0

e−xp(e−pε −
1)ε−1F (p)dp respectively, the last integral for <(x) > 0. The stated limit also
follows easily from dominated convergence, if | arg(x) ± π/2| > δ; the gen-
eral case follows from the case | arg(x)| = π/2 which is a consequence of the
Riemann-Lebesgue lemma. 2

Proposition 2.17 (i) Assume f is analytic in an open sector Hδ := {x :
| arg(x)| < π + δ}, δ ≥ 0 and is continuous on ∂Hδ, and that for some K > 0
and any x ∈ Hδ we have

|f(x)| ≤ K(|x|2 + 1)−1 (2.18)

Then L−1f is well defined by

F = L−1f =
1

2πi

∫ +i∞

−i∞
dt eptf(t) (2.19)

and ∫ ∞

0

dp e−pxF (p) = LL−1f = f(x)

and in addition ‖L−1{f}‖∞ ≤ Kπ and L−1{f} → 0 as p →∞.
(ii) If δ > 0 then F = L−1f is analytic in the sector S = {p 6= 0 : | arg(p)| <

δ}. In addition, F is continuous in S and maxS |F | ≤ Kπ, F (p) → 0 as p →∞
in S.

This also means that growth of F at infinity indicates singularities or change of
asymptotic behavior of f past the right half plane. Of course the half plane can
be shifted right or left by a constant and a similar statement holds.
Proof.
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(i) We have∫ ∞

0

dp e−px

∫ ∞

−∞
ds eipsif(is) =

∫ ∞

−∞
dt f(is)

∫ ∞

0

dp e−pxeips (2.20)

=
∫ i∞

−i∞
f(z)(x− z)−1dz = 2πif(x) (2.21)

where we applied Fubini’s theorem and then pushed the contour of integration
past x to infinity. The norm is obtained by majorizing |feips| by K(|x2|+1)−1.

(ii) We have for any δ′ < δ, by (2.18),

∫ i∞

−i∞
ds epsf(s) =

(∫ 0

−i∞
+
∫ i∞

0

)
ds epsf(s)

=

(∫ 0

−i∞e−iδ′
+
∫ i∞eiδ′

0

)
ds epsf(s) (2.22)

and analyticity is clear in (2.22).
For (ii) we note that (i) applies in

⋃
|δ′|<δ

eiδ′H0. Continuity follows by domi-

nated convergence. 2

Many cases can be reduced to this one after transformations. For instance if
g =

∑N
j=1 ajx

−kj + f(x), with kj > 0 and f satisfying the assumptions above,
then g is inverse Laplace transformable since the finite sum in its definition is
explicitly transformable.

As we shall see, nonanaliticities in p plane, when they are infinitely many,
translate usually in singularities in the “physical” domain x. Likewise, these
singularities, or their absence can be used to show properties fo the inverse
Laplace transform.

Proposition 2.23 Let F be analytic in the open sector Sp = eiφR+ with φ ∈
(−δ, δ) be such that |F (|x|eiφ)| ≤ g(|x|) for some g ∈ L1[0, ε) bounded as x →∞.
Then f = LF is analytic in the sector Sx = {x : | arg(x)| < π/2 + δ} and
f(x) → 0 as |x| → ∞, arg(x) = θ ∈ (−π/2− δ, π/2 + δ).

Proof. Because of the analyticity of F and the decay conditions for large p, the
path of Laplace integration can be rotated by any angle φ ∈ (−δ, δ) without
changing (LF )(x) (see also the next example). This means Proposition 2.16
applies in ∪|φ|<δe

iφH.
Note that without further assumptions on LF , F is not necessarily analytic

at p = 0.

Uniqueness

Remark 2.24 (Uniqueness) Assume F ∈ L1(R+) and LF = 0 for a set of x
with an accumulation point. Then F = 0 a.e.
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Proof. By analyticity, LF = 0 in the open right half plane and by continuity,
for s ∈ R, LF (is) = 0 = F̂F where F̂F is the Fourier transform of F (extended
by zero for negative values of p). Since F ∈ L1 and 0 = F̂F ∈ L1, by the known
Fourier inversion formula [15], F = 0. 2

2.1b Asymptotic properties. Watson’s Lemma

Since solutions of a vast class of solutions are analyzable, therefore representable
as combinations of Laplace transforms, the asymptotic behavior of these trans-
forms is important to us.

Lemma 2.25 Let F ∈ L1(R+), x = ρeiφ, ρ > 0, φ ∈ (−π/2, π/2) and assume

F (p) ∼ pβ as p → 0+

with <(β) > −1. Then∫ ∞

0

F (p)e−pxdp ∼ Γ(β + 1)x−β−1 (ρ →∞)

Proof. If U(p) = p−βF (p) we have limp→0 U(p) = 1. Let χA be the charac-
teristic function of the set A and φ = arg(x). We choose C and a positive so
that |F (p)| < C|pβ | on [0, a]. Since

∣∣∣∣∫ ∞

a

F (p)e−pxdp

∣∣∣∣ ≤ e−xa‖F‖1 (2.26)

we have by dominated convergence, and after the change of variable s = p/|x|,

xβ+1

∫ ∞

0

F (p)e−pxdp = eiφ(β+1)

∫ ∞

0

sβU(s/|x|)χ[0,a](s/|x|)e
−seiφ

ds

+ O(|x|β+1e−xa) → Γ(β + 1) (|x| → ∞) (2.27)

Watson’s Lemma
This important tool states that the asymptotic series at infinity of (LF )(x) is
obtained by formal term-by-term integration of the asymptotic series of F (p)
for small p, provided F has such a series.

Lemma 2.28 Let F ∈ L1(R+) and assume F (p) ∼
∑∞

k=0 ckpkβ1+β2−1 as p →
0+ for some constants βi with <(βi) > 0, i = 1, 2. Then

LF ∼
∞∑

k=0

ckΓ(kβ1 + β2)x−kβ1−β2

along any ray ρ in the open right half plane H.

Proof. Induction, using Lemma 2.25. 2
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2.1c Uniqueness results

Proposition 2.29 Assume that F and G are real-analytic and Laplace trans-
formable (for instance, they are in L1(R+)) and that LF and LG have the same
asymptotic series. Then F ≡ G.

Proof. This follows from Watson’s lemma, which implies that F and G have the
same (convergent) series at the origin, thus they coincide everywhere. 2

Corollary 2.30 If F is analytic and LF (xn) = 0 for xn in the right half plane
with an accumulation point, possibly ∞eiφ, φ ∈ (−π/2, π/2), then F ≡ 0.

Lemma 2.31 Assume F ∈ L1(R+) and for some ε > 0 we have

LF (x) = O(e−εx) as x → +∞ (2.32)

Then F = 0 a.e. on [0, ε]. (The result is sharp as discussed after the proof.)

Corollary 2.33 Assume F ∈ L1 and LF = O(e−ax) as x → +∞ for all a > 0.
Then F = 0 a.e. on R+.

This shows that representability by Laplace transforms of (mostly) analytic
functions is a good way to take into account exponentially small terms. No
other freedom is possible except for exponentially small terms which are visible
as nonanalyticities of the integrand. All this, as we see, assuming we deal with
analytic functions of exponential order one at +∞.

Proof of Lemma 2.31

We write ∫ ∞

0

e−pxF (p)dp =
∫ ε

0

e−pxF (p)dp +
∫ ∞

ε

e−pxF (p)dp (2.34)

we note that∣∣∣ ∫ ∞

ε

e−pxF (p)dp
∣∣∣ 6 e−εx

∫ ∞

ε

|F (p)|dp 6 e−pε‖F‖1 = O(e−εx) (2.35)

Therefore

g(x) =
∫ ε

0

e−pxF (p)dp = O(e−εx) as x → +∞ (2.36)

The function g is manifestly entire. Let h(x) = eεxg(x). Then by assumption
h is entire and uniformly bounded for x ∈ R (since by assumption, for some x0

and all x > x0 we have |h| 6 C and by continuity max |h| < ∞ on [0, x0]). The
function is bounded by ‖F‖1 for x ∈ iR. By Phragmén-Lindelöf’s theorem (first
applied in the first quadrant and then in the fourth quadrant, with β = 1, α = 2)
h is bounded in the closed right half plane. Now, for x = −s < 0 we have

e−sε

∫ ε

0

espF (p)dp 6
∫ ε

0

|F (p)| 6 ‖F‖1 (2.37)
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Again by Phragmén-Lindelöf (and again applied twice) h is bounded in the
closed left half plane thus bounded in C, and it is therefore a constant. But, by
the Riemann-Lebesgue lemma, h → 0 for x = is when s → +∞. Thus h ≡ 0.
Therefore, with χA the characteristic function of A,∫ ε

0

F (p)e−ispdp = F̂(χ[0,ε]F ) = 0 (2.38)

for all s ∈ R entailing the conclusion.

Note 2.39 In the opposite direction, by Laplace’s method it is easy to check

that for any small ε > 0 we have Le−p−
1−ε

ε = o
(
e−x1−ε

)
and for any n

L
(
e−En+1(1/p)

)
= o(e−x/Ln(x)) where En is the n-th composition of the ex-

ponential with itself and Ln is the n-th composition of the log with itself. 2.

2.1d Definition of Borel summation and basic properties

Series of the form f̃ =
∑∞

k=0 ckx−β1k1−...−βmkm−r with <(βj) > 0 frequently
arise as formal solutions of differential systems. We will first analyze the case
m = 1, r = 1, β = 1 but the theory extends without difficulty to more general
series.

Borel summation is relative to a direction, see Remark 2.57. The same
formal series f̃ may yield different functions by Borel summation in different
directions.

Borel summation along R+ consists in three operations, assuming they are
possible:

1. Borel Transform, f̃ 7→ B{f̃}.
2. Summation of the series B{f̃} and analytic continuation along R+; denote

this function by F .
3. Laplace Transform, F 7→

∫∞
0

F (p)e−pxdp =: LB{f̃}, which requires
exponential bounds on F , defined in some half plane <(x) > x0.

The domain of Borel summation is the subspace SB of series for which the
conditions for the steps 1-3 above are met. For 3 we can require that for some
constants CF , νF we have |F (p)| ≤ CF eνF p. Or we can require that ‖F‖ν < ∞
where, for ν > 0 we define

‖F‖ν :=
∫ ∞

0

e−νp|F (p)|dp (2.40)

Exercise 2.41 Show, using dominated convergence, Morera’s and Fubini’s the-
orems that if F ∈ L1

ν then LF is analytic in x in the half plane <(x) ≥ ν.

Note 2.42 Equivalently we can say that the series f̃ is Borel summable if it is
the asymptotic series as x → +∞ of LF with F analytic in a neighborhood DR+

of R+ (in particular, we say such a function is real-analytic on [0,+∞)) and
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exponentially bounded at infinity. The domain DR+ as well as the bounds may
depend on F . The definition is unambiguous since on the one hand the asymp-
totic series of a function is unique, and, by Watson’s Lemma, if the asymptotic
series of LF is zero, then the Taylor series of F at p = 0 is zero as well, and
then F ≡ 0.

Definition 2.43 (Inverse Laplace space convolution) If f, g ∈ L1
loc then

(f ∗ g)(p) :=
∫ p

0

f(s)g(p− s)ds (2.44)

Lemma 2.45 The space of functions which are in L1[0, ε) for some ε > 0 and
real-analytic on (0,∞) is closed under convolution. If F and G are exponentially
bounded then so is F ∗G. If F,G ∈ L1

ν then F ∗G ∈ L1
ν .

Proof. The statement about L1 follows easily from Fubini’s theorem. Analyticity
follows by writing∫ p

0

f1(s)f2(p− s)ds = p

∫ 1

0

f1(pt)f2(p(1− t))dt (2.46)

which is manifestly analytic in p. Clearly, if |F1| ≤ C1e
ν1p and |F2| ≤ C2e

ν2p,
then

|F1 ∗ F2| ≤ C1C2p e(ν1+ν2)p ≤ C1C2 e(ν1+ν2+1)p

Finally, we note that∫ ∞

0

e−νp

∣∣∣∣∫ p

0

F (s)G(p− s)ds

∣∣∣∣ dp ≤
∫ ∞

0

e−νse−ν(p−s)

∫ p

0

|F (s)||G(p−s)|dsdp

=
∫ ∞

0

∫ ∞

0

e−νs|F (s)|e−ντ |G(τ)|dτ = ‖F‖ν‖G‖ν (2.47)

by Fubini.

Remark 2.48 The results above can be rephrased for more general series of the
form

∑∞
k=0 ckx−k−r by noting that for <(ρ) > −1 we have

Lp ρ = x−ρ−1Γ(ρ + 1)

and thus

B

( ∞∑
k=0

ckx−k−r

)
= c0

pr−1

Γ(r)
+

pr−1

Γ(r)
∗ B

( ∞∑
k=1

ckx−k

)
Furthermore, Borel summation naturally extends to series of the form

∞∑
k=−M

ckx−k−r
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where M ∈ N by defining

LB

( ∞∑
k=−M

ckx−k−r

)
=

0∑
k=−M

ckx−k−r + LB

( ∞∑
k=0

ckx−k−r

)
(2.49)

and more general powers can be allowed, replacing analyticity in p with analyt-
icity in pβ1 , ..., pβm .

Proposition 2.50 (i) SB is a differential field,1 and LB : SB 7→ LBSB is a
differential algebra isomorphism.

(ii) If Sc ⊂ SB denotes the differential algebra of convergent power series,
and we identify a convergent power series with its sum, then LB is the identity
on Sc.

(iii) In addition, for f̃ ∈ SB, LB{f̃} ∼ f̃ as |x| → ∞, <(x) > 0.

Proof. (i) Clearly SB is a linear space; furthermore, f̃ = 0 ⇐⇒ Bf̃ =
0 ⇐⇒ LB{f̃} = 0 (the last step follows from the injectivity of L which, in our
case also follows from Watson’s Lemma as in Note 2.42 above.)

Exercise 2.51 Show that if Bf̃ = F and Bg̃ = G then Bf̃ g̃ is the power series
in p of F ∗G.

To show multiplicativity, we use Note 2.42. Analyticity and exponential
bounds of |F ∗ G| follow from Lemma 2.45. Consequently, F ∗ G is Laplace
transformable, and by elementary properties of Laplace transforms (or by per-
forming a simple change of variables in a double integral) we see that

L(F ∗G) = LF LG

We have to show that if f̃ is a Borel summable series, so is 1/f̃ . We have
f = Cxm(1 + s) for some m where s is a small series.

We want to show that

1− s + s2 − s3 + · · · (2.52)

is Borel summable, or that

−s + s2 − s3 + · · · (2.53)

is Borel summable. Let Bs = H. We examine the series

S = −H + H ∗H −H∗3 + · · · (2.54)

where H∗n is the self convolution of H n times. Each term of the series is
analytic, by Lemma 2.45. If maxp∈D |H(p)| = m, then it is easy to see that

|H∗n| ≤ mn1∗n = mn pn−1

(n− 1)!
(2.55)

1with respect to formal addition, multiplication, and differentiation of power series.
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Thus the function series in (2.54) is absolutely and uniformly convergent in D
and the limit is analytic. Let now ν be large enough so that ‖H‖ν < 1. (The
fact that this is possible follows from dominated convergence.) Then the series
in (2.54) is norm convergent, thus an element of L1

ν .

Exercise 2.56 Check that (1 + LH)(1 + LS) = 1.

It remains to show that the asymptotic expansion of L(F ∗ G) is indeed the
product of the asymptotic series of LF and LG, which is a consequence of the
more general fact that the asymptotic series of a product is the product of the
corresponding asymptotic series.

(ii) Since f̃1 = f̃ =
∑∞

k=0 ckx−k−1 is convergent, then |ck| ≤ CRk for some
C,R and F (p) =

∑∞
k=0 ckpk/k! is entire, |F (p)| ≤

∑∞
k=0 CRkpk/k! = CeRp and

thus F is Laplace transformable for |x| > R. By dominated convergence we
have for |x| > R,

L
{ ∞∑

k=0

ckpk/k!
}

= lim
N→∞

L
{ N∑

k=0

ckpk/k!
}

=
∞∑

k=0

ckx−k−1 = f(x)

(iii) This part follows simply from Watson’s lemma, cf. § 2.1b . 2

Remark 2.57 We note that in the last step in Borel summation we may take
the integral in p along a different half-line in C, as long as <(xp) > 0, and the
algebraic properties are preserved. But it is also easy to check that the path
matters, in general. For instance, if x ∈ R+ and Bf̃ = (1 − p)−1, the half line
can be any ray in the open right half plane, other than R+. But∫ ∞ei0+

0

e−xp

1− p
dp−

∫ ∞ei0−

0

e−xp

1− p
dp = 2πie−x

thus a convention for a choice of ray is needed.
Definition. The Borel sum of a series in the direction φ (arg x = φ), (LB)φf̃

is by convention, the Laplace Transform of Bf̃ in the direction that ensures
xp ∈ R+,

(LB)φ f̃ =
∫ ∞e−iφ

0

e−pxF (p)dp = L−φF = LF (·e−iφ) (2.58)

We can also say that Borel summation of f̃ along the ray arg(x) = φ is defined
as the (real) Borel summation of f̃(xeiφ).

Since in most cases of interest Bf̃ has singularities in the complex plane,
different functions LBφf̃ are obtained for different φ. For example, we have

LBφ

∞∑
k=0

k!
xk+1

= L−φ{(1− p)−1} =
{

e−x (Ei(x)− πi) for φ ∈ (−π, 0)
e−x (Ei(x) + πi) for φ ∈ (0, π)

(2.59)
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while the series is not classically Borel summable along R+, because of the pole
at p = 1.

(iv) On the other hand it can be seen by deforming the contour in L that if Bf̃
is analytic and has uniform exponential bounds at infinity for arg(p) ∈ (−δ1, δ2),
then the function LBφf̃ is the same for all arg(x) ∈ (−δ2, δ1), in contrast to
(2.59).

Note 2.60 (Connection between rate of divergence and exponential
freedom) If f is a solution of some linear problem and f = LF where F
is analytic except for nonaccumulating singularities and exponentially bounded
then, by the shown isomorphism, LF is a solution of the problem (not necessarily
satisfying the initial conditions) for any direction of integration. The integrals
differ if the function is not entire. It means that there is freedom in the general
solution of the problem. This freedom is visible as singularities in p, and it is
exponentially small: if the singularity of F closest to the origin is at p0, then the
difference between the integrals is roughly e−p0x. Since F is analytic at zero,
assuming it is not entire, the asymptotic series of f diverges exactly factorially
(up to geometric corrections). Factorial divergence is linked to the presence of
exponentially small corrections.

Recovering exact solutions from formal series.

If a differential equation has a formal solution f̃ ∈ SB then LBf̃ is an actual
solution of the same equation. For example

f ′ − f = x−1 (2.61)

for x →∞ has the series solution f̃ =
∑∞

k=0(−x)−k−1k! and B{f̃} =
∑∞

k=0(−p)k

sums to the Laplace transformable function (1+p)−1. Now, for any f̃ ∈ SB and
f ∈ LB(SB) we have

f̃ ′ − f̃ − x−1 = 0 ⇐⇒ LB
(
f̃ ′ − f̃ − x−1

)
= 0 (2.62)

⇐⇒
(
LB{f̃}

)′ − LB{f̃} − x−1 = 0 (2.63)

In particular,

LB{f̃} =
∫ ∞

0

e−pxdp

1 + p
= f (2.64)

is an actual solution of (2.61). Solving the analytic problem (2.61) in LB(SB)
has reduced thus to an essentially algebraic question, that of finding f̃ .
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Stokes phenomena: first examples

Dependence of Borel summation on the angle is reflected in changes of behavior
of the summed function.

We illustrate this on a simple case:

y(x) :=
∫ ∞

0

e−px

1 + p
dp (2.65)

and the question is to find the asymptotic behavior in the x complex plane (or,
in fact, on a Riemann surface) of y. A simple estimate of the integral over an
arc of radius R shows that for x ∈ R+ y(x) also equals

y(x) =
∫ ∞e−iπ/4

0

e−px

1 + p
dp (2.66)

Then the functions given in (2.65) and (2.66) agree in R+ thus they agree
everywhere they are analytic. Furthermore, the expression (2.66) is analytic
for arg x ∈ (−π/4, 3π/4) and by the very definition of analytic continuation f
admits analytic continuation in a sector arg(x) ∈ (−π/2, 3π/4). Now we take x
with arg x = π/4 and note that along this ray, by the same argument as before,
the integral equals

y(x) =
∫ ∞e−πi/2

0

e−px

1 + p
dp (2.67)

we can continue this rotation process until arg(x) = π− ε in which case we have

y(x) =
∫ ∞e−πi+iε

0

e−px

1 + p
dp (2.68)

which is now manifestly analytic for arg(x) ∈ (π/2 − ε, 3π/2 − ε). To proceed
further, we relate the integral below the pole to the integral above the pole,
noting that their difference is simply calculated in terms of the at the pole:∫ ∞e−πi−iε

0

e−px

1 + p
dp−

∫ ∞e−πi+iε

0

e−px

1 + p
dp = 2πiex (2.69)

and thus

f(x) =
∫ ∞e−πi−iε

0

e−px

1 + p
dp− 2πiex (2.70)

which is manifestly analytic for arg(x) ∈ (π/2+ ε, 3π/2+ ε). We can now freely
proceed with the analytic continuation in similar steps until arg(x) = 2π and
get

f(xe2πi) = f(x)− 2πiex (2.71)

The function has nontrivial monodromy at infinity. We also note that by Wat-
son’s Lemma, as long as f can be written as a pure Laplace-like integral, f has
an asymptotic series in a half-plane. The relation (2.70) shows that this ceases
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to be the case when arg(x) = π. This line is called a Stokes line. The expo-
nential, “born” there is smaller than the terms of the series until arg(x) = 3π/2
when it becomes the dominant term of the expansion. This line is called an
Antistokes line. The fact that the function itself is not single-valued in a
neighborhood of infinity is also seen from the calculation (take first x ∈ R+)

f(x) = e−x

∫ ∞

1

e−xt

t
dt = e−x

∫ ∞

x

e−s

s
ds = e−x

(∫ 1

x

e−s

s
ds +

∫ ∞

1

e−s

s
ds

)
= e−x

(
C1 +

∫ 1

x

e−s

s
ds

)
= e−x

(
C1 +

∫ 1

x

e−s − 1
s

ds− lnx

)
= e−x (entire− lnx) (2.72)

The Stokes phenomenon however is not due to the multivaluedness of the func-
tion but to the divergence of the asymptotic series, as seen from the following
simple remark.

Remark 2.73 Assume f is analytic outside a compact set and is asymptotic
to f̃ as |x| → ∞ (in all directions). Then f̃ is convergent.

Proof. By the change of variable x = 1/z we move the analysis at zero. The
existence of an asymptotic series as z → 0 implies in particular that f is bounded
at zero. Since it is analytic in C \ {0} then zero is a removable siungularity of
f , and thus the asymptotic series, which as we know is unique, must coincide
with the Taylor series of f at zero, a convergent series. 2 The exercise below
also shows that the Stokes phenomenon is not due to multivaluedness.

Exercise 2.74 * (1) Show that the function f(x) =
∫∞

x
e−s2

ds is entire.
(2) Note that∫ ∞

x

e−s2
ds =

1
2

∫ ∞

x2

e−t

√
t
dt =

1
2x

∫ ∞

1

e−x2u

√
u

du =
e−x2

2x

∫ ∞

0

e−x2p

√
1 + p

dp (2.75)

Do a similar analysis to the one in the text and identify the Stokes and antistokes
lines for f . Note that the critical time now is x2.

2.2 Gevrey classes, least term truncation, and
Borel summation

A function is asymptotic to f̃ if the difference between it and the truncates of
the series is smaller than any prescribed power of x−1. Such information cannot
see exponentially small corrections, which are natural to factorially divergent
series. We can attempt to obtain more information from the series by optimizing
the truncation index in a way which depends on x, to minimize the errors. The
errors cannot be expected to be smaller than the smallest term of the series, but
they can be of the same order of magnitude. If this is possible for a series in a
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wide enough sector, then, perhaps surprisingly, for that series there is a unique
function with this property.

The formal series in the polynomial

f̃(x) =
∞∑

k=0

ckx−k, x →∞

is by definition Gevrey of order 1/m, or Gevrey-(1/m) if |ck| ≤ C1C
k
2 (k!)m

for some C1, C2. Taking x = ym and g̃(y) = f̃(x), then g̃ is Gevrey-1 (albeit
not necessarily an integer power series, the generalization to noninteger power
series is immediate) and we will focus on this case. Also, the corresponding
classification for series in z, z → 0 is obtained by taking z = 1/x. A very useful
approach is due to Gevrey (see e.g. [18]).

Remarks 2.76 (a) The Gevrey order of the series
∑

k(k!)rx−k r > 0, is the
same as that of

∑
k(rk)!x−k. Indeed, if ε > 0 we have, by Stirling’s formula,

Const (1 + ε)−k ≤ (rk)!/(k!)r ∼ Const k
1
2−r ≤ Const (1 + ε)k

(b) There is a simple connection between the Gevrey order of formal power
series solutions of a differential equation at an irregular singular point and the
type of exponentials of the associated homogeneous equation. For illustration
consider the example of the equation zq+1y′−ay = 1 in a neighborhood of zero,
with q ∈ N. The coefficients ck of a formal power series solution ỹ =

∑
k≥0 ckzk

satisfy the recurrence a0 = 0 and (k − q)ck−q + ack = 0 if k − q > 0. If q ≥ 1
we get cjq+q = ajj!, the series diverges and x = 0 is an irregular singularity.
Using part (a) above we see that the series is Gevrey-q. On the other hand, the
solution of the homogeneous equation zq+1y′ − ay = 0 is C exp

(
−a

q z−q
)
.

Exercise. Formulate and prove a more general result in the spirit of Remark
2.76 (b) for n-th order linear differential equations.

*
Let f̃ be Gevrey-1. A function f is Gevrey-1 asymptotic to f̃ as x →∞ in a

sector S if for some C3, C4, C5, and all x ∈ S with |x| > C5 and all N we have

|f(x)− f̃ [N ]| ≤ C1C
N+1
2 |x|−N−1(N + 1)! (2.77)

i.e. the error f − f̃ [N ] is of the same form as the first omitted term in f̃ .

Remark 2.78 If f̃ is Gevrey-1 and f is Gevrey-1 asymptotic to f̃ then f can
be approximated by f̃ with exponential precision in the following sense. Let
N = b |x/C2| c (b·c is the integer part) then for any C > C2 we have

f(x)− f̃ [N ](x) = O(|x|−1/2e−|x|/C) |x| large) (2.79)
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Indeed, letting |x| = NC2 + ε with ε ∈ ([0, 1) and applying Stirling’s formula we
have

N !(N + 1)CN
2 |NC2 + ε|−N−1 = O(|x|1/2e−|x|/C2)

2

It is also interesting that when there is (a unique) f in Sπ+ with the prop-
erty (2.79), then f̃ is Borel summable, and f is precisely the Borel sum of f̃
(Theorem 2.80 below).2

(c) However the same theorem suggests that unless the series f̃ is trivial,
there must exist some Sπ+ in which no f is Gevrey−1-asymptotic to f̃ and
where this method of associating an f to f̃ fails.

(d) Summation to the least term as will be detailed in the Chapter 4, is in
a sense a refined version of Gevrey asymptotics. It requires optimal constants
in addition to an improved form of Rel. (2.77). In this way the imprecision of
approximation of f by f̃ turns out to be smaller than the largest exponentially
small “possible” term beyond all orders, and thus the cases in which uniqueness
is ensured are more numerous.

Connection between Gevrey asymptotics and Borel summation

Theorem 2.80 Let f̃ =
∑∞

k=2 ckx−k be a Gevrey-1 series and assume the func-
tion f is analytic for large x in Sπ+ = {x : | arg(x)| < π/2 + δ} for some δ > 0
and Gevrey-1 asymptotic to f̃ in Sπ+. Then

(i) f is unique.
(ii) f̃ is Borel summable in any direction eiθR+ with |θ| < δ and f = LBθf̃ .
(iii) B(f̃) is analytic (at p = 0 and) in the sector Sδ = {p : arg(p) ∈ (−δ, δ)},

and Laplace transformable in any closed subsector.
(iv) Conversely, if f̃ is Borel summable along any ray in the sector Sδ;ε =

| arg(p)| < δ or p : |p| < ε}, and if Bf̃ is uniformly bounded in any closed
subsector of Sδ;ε, then f is Gevrey-1 with respect to its asymptotic series f̃ in
the sector | arg(x)| ≤ π/2 + δ..

Notes. (i) In particular, when the assumptions of the theorem are met, Borel
summability follows using only asymptotic estimates.

(ii) We also see that the cases described in Theorem 2.80 in which Gevrey
estimates ensure uniqueness of the association between f̃ and f are weaker than
those in which f̃ is Borel summable, since Borel summability requires analyticity
in some neighborhood of R+ and not in a sector.

Proof of Theorem 2.80. Let us note first a possible pitfall. Inverse Laplace
transformability of f follows immediately from the assumptions. What doesn’t
follow is analyticity of the transform at zero. On the other hand, the formal
inverse Laplace of f̃ trivially converges to an analytic function. But there is
no guarantee that this analytic function has anything to do with the inverse
Laplace transform of f ! This is where Gevrey estimates enter.

2Borel summability is clearly not ensured by the Gevrey character of f̃ alone, since such
estimates give no information about

P
Bf̃ beyond the implied disk of convergence.
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(iii) By Proposition 2.17, the function F = L−1f is analytic for |p| >
0, | arg(p)| < δ, and F (p) is analytic and uniformly bounded if | arg(p)| < δ1 < δ.

(iv) Let |φ| < δ and a′′ < a′ < a < 1 We have

|f(x)− f̃N+1| =
∣∣∣ ∫ a′

0

(F (p)− FN (p))e−xpdp

+
∫ ∞

a′
(F (p)− F [N ](p))e−xpdp

∣∣∣ ≤ C1(a′)−N+1 N !
|x|N+1

+ O(e−a′<(px))

W
≤C2(a′′)−N+1 N !

|x|N+1
(2.81)

where W indicates usage of Watson’s lemma.
(i)–(ii) By (iii) it remains to show that that F is analytic for amall |p|.

Indeed, if the inverse Laplace transform of any such function is analytic in
a neighborhood of R+ ∪ {0}, this proves both existence and uniqueness, by
Theorems 2.29 and 2.28, and uniqueness of the asymptotic series of a function.
By a simple change of variables we arrange C1 = C2 = 1. We let f̃ [N ] denote
the truncate of the power series f̃ to o(x−N ). Let x be real, N = bxc, and F1

the convergent Borel transform of f̃ , and f1 = L(F1χ[0, a′′]). As in (2.81) we
have, for real x, using Remark 2.78

|f(x) − f1(x)| ≤ |f̃N+1(x) − f(x)| + |f̃N+1(x) − f1(x)| ≤ Cx1/2e−|
x

a′′ |

By Corollary 2.30 and Proposition 2.17, F = F1 on [0, a′′] thus F is analytic on
[0, a′′]. 2

Regularizing the heat equation

When the solutions of a problem are Borel summable, then factorial divergence
is replaced by geometric divergence and it follows that the Borel transform of
the problem is more regular, and thus the trnsformed problem must be more
regular. Often, it is then convenient to Borel transform the equation even before
finding formal solutions, solve the transformed problem and Laplace transform
its solutions. This is particularly useful in PDEs, where finding solutions, and
even more, a sufficient family of solutions, formal or not, may be quite challeng-
ing. We analyze now a rather trivial example, the heat equation.

fxx − ft = 0 (2.82)

Since (2.82) is parabolic, power series solutions

f =
∞∑

k=0

tkFk(x) =
∞∑

k=0

F
(2k)
0

k!
tk (2.83)

are divergent even if F0 is analytic (but not entire). Nevertheless, under suit-
able assumptions, Borel summability results of such formal solutions have been
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shown by Lutz, Miyake, and Schäfke [14] and more general results of multi-
summability of linear PDEs have been obtained by Balser [2].

Since the expansion is in one variable only, we may think of the other as
being a parameter, so we are not departing too much from the theory that we
developed.

The heat equation can be regularized by a suitable Borel summation. The
divergence implied, under analyticity assumptions, by (2.83) is Fk = O(k!)
which indicates that the critical time is t−1. Indeed, the substitution

t = 1/τ ; f(t, x) = t−1/2g(τ, x) (2.84)

yields

gxx + τ2gτ +
1
2
τg = 0

which becomes after formal inverse Laplace transform (Borel transform) in τ ,

pĝpp +
3
2
ĝp + ĝxx = 0 (2.85)

which is brought, by the substitution ĝ(p, x) = p−
1
2 u(x, 2p

1
2 ); y = 2p

1
2 , to the

wave equation, which is hyperbolic, thus regular

uxx − uyy = 0. (2.86)

Existence and uniqueness of solutions to regular equations is guaranteed by
Cauchy-Kowalevsky theory. For this simple equation the general solution is
certainly available in explicit form: u = f1(x−y)+f2(x+y) with f1, f2 arbitrary
twice differentiable functions. Since the solution of (2.86) is related to a solution
of (2.82) through (2.84), to ensure that we do get a solution it is easy to check
that we need to choose f1 = f2 =: u (up to an irrelevant additive constant which
can be absorbed into u) which yields,

f(t, x) = t−
1
2

∫ ∞

0

y−
1
2

[
u
(
x + 2 y

1
2

)
+ u

(
x− 2 y

1
2

)]
exp

(
−y

t

)
dy (2.87)

which, after splitting the integral and making the substitutions x± 2 y
1
2 = s is

transformed into the usual Heat kernel solution,

f(t, x) = t−
1
2

∫ ∞

−∞
u(s) exp

(
− (x− s)2

4t

)
ds (2.88)

*
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Chapter 3

Borel summability of
nonlinear systems of ODEs

3.1a Convolutions: elementary properties

The spaces below are well suited for the study of convolution algebras.
(1) Let ν ∈ R+ and define L1

ν := {f : R+ : f(p)e−νp ∈ L1(R+)}; then the
norm ‖f‖ν is defined as ‖f(p)e−νp‖1 where ‖ · ‖1 denotes the L1 norm.

Proposition 3.1 L1
ν is a Banach algebra with respect to convolution and L is

a Banach algebra isomorphism onto L(L1
ν) endowed with (+, ·) and the induced

toplogy.

Note 3.2 It follows in particular that ∗ is not distinguished, algebraically or
topologically, from usual multiplication.

Proof. Note first that if f ∈ L1
ν then the Laplace transform of f exists for

<(x) ≥ ν. If f and g are positive, then L(f ∗ g) = LfLg (since convolution is
the inverse Laplace image of multiplication or by direct calculation ). In general,
it is easy to check that |f ∗ g| ≤ |f | ∗ |g|.

Commutativity, associativity, distributivity of ∗ follow from the fact that the
kernel of L is {0} and the fact that multiplication has all these properties. For
instance,

L(f ∗ (g + h)) = Lf(Lg + Lh) = LfLg + LfLh = L(f ∗ g + f ∗ h)

2

(2) A generalization is to allow p to be complex. We say that f ∈ L1
ν(R+eiφ)

(along the ray {p = teiφ : t ∈ R+}) if f(p) := f(teiφ) ∈ L1
ν . Convolution is

defined as

(f ∗ g)(p) =
∫ p

0

f(s)g(p− s)ds = eiφ(fφ ∗ gφ)(|p|eiφ) (3.3)
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and it is clear that L1
ν(R+eiφ) is also a Banach algebra with respect to convo-

lution.
Similarly, we define f ∈ L1

ν(S) for a domain S ∈ C with the norm

‖f‖ν
ν;S := sup

S
‖fχ(S)‖1ν

L1
ν(S) is also a Banach algebra.

Proposition 3.4 The space of analytic functions in f ∈ L1
ν(S) which are ana-

lytic in A ⊂ S is a closed subspace of L1
ν(S).

Proof. Convergence of {fn}n∈N in the norm ‖ · ‖ν
ν;S entails uniform convergence

of
∫ p

a
fn on compact sets, if a, p ∈ S, which by standard complex analytic

arguments, entails the uniform convergence of fn, and thus the limit is analytic.
2

Spaces of sequences of functions

In Borel summing not simply series but transseries it is convenient to look at
sequences of functions belonging to one ore more of the spaces introduced before.
We let

L1
νµ = {Y ∈ (L1

ν)Nd

:
∞∑

k≥0

µ−|k|‖Yk‖ν < ∞} (3.5)

We introduce the following convolution on L1
νµ

(Y∗∗G)k =
n−1∑
j=1

Fj ∗Gk−j (3.6)

Exercise 3.7 * Show that

‖F∗∗G‖ν,µ ≤ ‖F‖ν,µ‖G‖ν,µ (3.8)

(L1
ν,µ,+,∗∗ , ‖ ‖ν,µ) where ‖ ‖ν,µ is the norm introduced in (3.5) is a Banach alge-

bra.

Focal (contractive) spaces and algebras

An important property of the norms introduced, on the spaces L1
ν and AK,ν;0

is that for any f in these spaces ‖f‖ → 0 as ν → ∞. In the case L1
ν this is an

immediate consequence of dominated convergence.
More generally, we say that a family of norms ‖‖ν depending on a parameter

ν ∈ R+ is contractive if for any f with ‖f‖ν0 < ∞

‖f‖ν ↓ 0 as ν ↑ ∞ (3.9)
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Let E be a linear space and {‖‖ν} a family of norms satisfying (3.9). For
each ν we define a Banach space Bν as the completion of {f ∈ E : ‖f‖ν < ∞}.
Enlarging E if needed, we may assume that Bν ⊂ E . For α < β, (3.9) shows
that the identity is an embedding of Bα in Bβ . Let F ⊂ E be the inductive limit
of the Bν . That is to say

F := lim
−→

Bν (3.10)

is endowed with the topology in which a sequence is convergent if it converges
in some Bν . We call F a focal space.

Consider now the case when (Bν ,+, ∗, ‖‖ν) are commutative Banach alge-
bras. Then F inherits a structure of a commutative algebra, in which ∗ (“con-
volution”) is continuous. We say that (F , ∗, ‖‖ν) is a focal algebra.

Examples.
L1

ν→
:= lim

−→
ν>0

L1
ν ; L1

µν
→

:= lim
−→

µ,ν>0

L1
νµ; (3.11)

The last space is focal as ν →∞ and/or µ →∞.

Remark 3.12 The following result is immediate. Let A,B be any sets and
assume that the equation f(x) = 0 is well defined and has a unique solution
x1 in A, a unique solution x2 in B and a unique solution x3 in A ∩ B. Then
x1 = x2 = x3 = x. In particular, if A ⊂ B then x ∈ A ∩B.

3.1b Convolution calculus

To simplify the notation, from now on, unless otherwise indicated, a function
or series in the original space is denoted with a small letter; when capitalized,
it denotes its inverse Laplace or Borel transform.

We have seen that there is an isomorphism between the Banach algebra
with convolution L1

ν and a Banach algebra of analytic functions with usual
multiplication. The isomorphism can be pushed further. Let

g(z) =
∞∑

k=0

gkzk (3.13)

be an analytic function in a polydisk of radia r near the origin. We endow this
space with the norm

∑
k |gk|r−k. This is a slightly stronger norm than the usual

sup norm, it defines a Banach space (since it is a weighted L1) and it contains as
a closed subspace analytic functions continuous to the boundary. Let Y ∈ L1

ν→
.

Then

g(∗Y) =
∞∑

k=0

gkY∗k (3.14)

is well defined in L1
ν→

since it converges in all L1
ν if ν is large enough. It is

∗analytic function of Y.
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More generally, if we have g(1/x, z) an analytic function of 1/x and z we
write, by Taylor expanding in 1/x,

g(1/x, z) = g0(z) + x−1g1(z) + g2(x−1, z)

where g2 = O(x−2); in this case we write

G(p, ∗Y ) =
∑
k≥0

gkY ∗k +
∑
k≥0

gkY ∗k ∗ 1 + G2(p)(∗Y ) (3.15)

where the last term is defined as in (3.14).
We have

g(p, ∗(Y + dY)) = g(p, ∗Y) + ∇zg(p, ∗Y) ∗ dY + o(dY) (3.16)

where ∇ is the usual gradient.

Lemma 3.17 Let Y ∈ L1
ν→

and g = O(Y∗2) be ∗-analytic. Then ∇zg(p, ∗Y) =

O(Y) → 0 as ν →∞.

Proof. Straightforward. 2

Convergent series composed with Borel summable series

Proposition 3.18 Assume A is an analytic function in the disk of radius ρ
centered at the origin, ak = A(k)(0)/k!, and s̃ =

∑
skx−k is a small series

which is Borel summable along R+. Then the formal power series obtained by
reexpanding ∑

aksk

in powers of x is Borel summable along R+.

Proof. Let S = Bs and choose ν be large enough so that ‖S‖ν < ρ−1 in L1
ν .

Then

‖F‖ν := ‖A(∗S)‖ν := ‖
∞∑

k=0

akS∗k‖ν ≤
∞∑

k=0

ak‖S‖k
ν ≤

∞∑
k=0

akρk < ∞ (3.19)

thus A(∗S) ∈ L1
ν . Similarly, A(∗S) is in L1

ν([0, a)), in AK,νν([0, a)) for any a.
2

3.1c Analytic systems of ODEs at rank one singularities

Consider the differential system

y′ = f(x−1,y) y ∈ Cn (3.20)

We look at solutions y such that y(x) → 0 as x → ∞ along some direction
d = {x ∈ C : arg(x) = φ}. The following conditions are assumed
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(a1) The function f is analytic at (0, 0).
(a2) Nonresonance: the eigenvalues λi of the linearization

Λ̂ := −
(

∂fi

∂yj
(0, 0)

)
i,j=1,2,...n

(3.21)

are linearly independent over Z (in particular nonzero) and such that arg λi

are different from each other (i.e., the Stokes lines are distinct; we will require
somewhat less restrictive conditions, see § 3.1).

Many systems can be brought to this form by chamges of variables, or to
a ramified form tractable by the same approach. The cases when this is not
possible, notably those in which the linearized system has a resonant matrix,
require other tools, for instance Écalle multisummation.

By elementary changes of variables, the system (3.20) can be brought to the
normalized form [8],

y′ = −Λ̂y +
1
x

Ây + g(x−1,y) (3.22)

where Λ̂ = diag{λj}, Â = diag{αj} are constant matrices, g is analytic at (0,0)
and g(x−1,y) = O(x−2) + O(|y|2) as x →∞ and y → 0. Performing a further
transformation of the type y 7→ y −

∑M
k=1 akx−k (which takes out M terms of

the formal asymptotic series solutions of the equation), makes

g(|x|−1,y) = O(x−M−1; |y|2; |x−2y|) (x →∞; y → 0) (3.23)

where
M ≥ max

j
<(αj)

and O(a; b; c) means (at most) of the order of the largest among a, b, c.
Our analysis applies to solutions y(x) such that y(x) → 0 as x → ∞ along

some arbitrarily chosen direction d = {x ∈ C : arg(x) = φ}. We shall exemplify
some of these transformations in the sequel.

Given a direction d in the complex x-plane the transseries (on d), are, in
our context, those exponential series (3.25) which are formally asymptotic on d,
i.e. the terms Cke−λ·kxxα·kx−r (with k ∈ (N∪ {0})n, r ∈ N∪ {0}) form a well
ordered set with respect to � on d (see also [8]). In other words, indices i for
which the corresponding term e−λix is not formally small in d do not appear,
that is, they must be associated with Ci = 0.

Exercise 3.24 Justify the following description (most steps require no more
than straightforward calculation). Let d be a ray in C. There is m ≤ n-
parameter of level one transseries solutions (1.91) (under the assumptions men-
tioned)

ỹ(x) =
∑

k∈(N∪{0})n

Cke−λ·kxxα·kỹk(x) (3.25)
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where indices i for which the corresponding term e−λix is not formally small in
d must be absent, that is, they must be associated with Ci = 0. There is no
other formal transseries solution, of any level.

3.1d How do we normalize a system?

A first order nonintegrable Abel equation

Consider the equation

u′ = u3 − z (3.26)

Formal solutions provide a good guide in finding the normalization transforma-
tions. A transformation bringing the equation to its normal form also brings
its transseries solutions to the form (3.25). It is simpler to look for substitu-
tions with this latter property, and then the first step is to find the transseries
solutions of (3.26).

Power series solutions. Since at this stage we are merely looking for useful
transformation hints, rigor is naturally not required. Substituting of u ∼ Azp

in (3.26) and looking for maximal balance [3] give p = 1/3, A3 = 1. Then
u ∼ Az1/3 + Bzq with q < 1/3 determines B = 1

9A2, q = −4/3. Inductively,
one obtains a power series formal solution ũ0 = Az1/3(1 +

∑∞
k=1 ũ0,kz−5k/3).

General transseries solutions of (3.26). In order to determine the form of the
exponentials in the transseries of u, the method is to look for transcendentally
small corrections beyond ũ0, by linear perturbation theory. Substituting u =
ũ0 + δ in (3.26) yields to leading order in δ, the equation

δ′ =
(

3A2z2/3 +
2
3z

)
δ (3.27)

whence δ ∝ z2/3 exp
(

9
5A2z5/3

)
. In (3.25) the exponentials have linear ex-

ponent, with negative real part. The independent variable should thus be
x = −(9/5)A2z5/3 and <(x) > 0. Then ũ0 = x1/5

∑∞
k=0 u0;kx−k, which suggests

the change of dependent variable u(z) = Kx1/5h(x). Choosing for convenience
K = A3/5(−135)1/5 yields

h′ +
1
5x

h + 3h3 − 1
9

= 0 (3.28)

The next step is to achieve leading behavior O(x−2). This is easily done by
subtracting out the leading behavior of h (which can be found by maximal
balance, as above). With h = y + 1/3− x−1/15 we get the normal form

y′ = −y +
1
5x

y + g(x−1, y) (3.29)
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where

g(x−1, y) = −3(y2 + y3) +
3y2

5x
− 1

15x2
− y

25x2
+

1
3253x3

(3.30)

The Painlevé equation PI

The Painlevé functions were studied asymptotically in terms of doubly periodic
functions by Boutroux (see, for example, [11]). Solutions of the PI equation
turn out to have arrays of poles and they can be asymptotically represented by
elliptic functions whose parameters change with the direction in the complex
plane. We consider solutions of the Painlevé PI equation (in the form of [6],
which by rescaling gives the form in [11])

d2y

dz2
= 6y2 + z (3.31)

in a region centered on a Stokes line, say d = {z : arg z = π}.
To bring (3.31) to a normal form the transformations are suggested by the

general methodology explained in §3.1d . There is a one parameter family of
solutions for each of the behaviors y ∼ ±

√
−z
6 for large z along d. We will

study the family with y ∼ +
√

−z
6 , since the other can be treated similarly. Its

transseries can be obtained as in the previous example, namely determining first
the asymptotic series ỹ0, then by linear perturbation theory around it one finds
the form of the small exponential, and notices the exponential is determined up
to one multiplicative parameter. We get the transseries solution

ỹ =

√
−z

6

∞∑
k=0

ξkỹk (3.32)

where

ξ = ξ(z) = Cx−1/2e−x; with x = x(z) =
(−24z)5/4

30
(3.33)

and ỹk are power series, in particular

ỹ0 = 1− 1
8
√

6(−z)5/2
− 72

28 · 3
1
z5
− ...− ỹ0;k

(−z)5k/2
− ...

We note that in the sector | arg(z)− π| < 2
5π the constant C of a particular

solution y (see (3.123)) changes only once, on the Stokes line arg(z) = π [8].
As in Example 1, the form of the transseries solution (3.32), (3.33) suggests

the transformation

x =
(−24z)5/4

30
; y(z) =

√
−z

6
Y (x)
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which, in fact, coincides with Boutroux’s (cf. [11]); PI becomes

Y ′′(x) − 1
2

Y 2(x) +
1
2

= − 1
x

Y ′(x) +
4
25

1
x2

Y (x) (3.34)

To fully normalize the equation, we subtract the O(1) and O(x−1) terms
of the asymptotic behavior of Y (x) for large x. It is convenient to subtract
also the O(x−2) term (since the resulting equation becomes simpler). Then the
substitution

Y (x) = 1− 4
25x2

+ h(x)

transforms PI to

h′′ +
1
x

h′ − h− 1
2
h2 − 392

625x4
= 0 (3.35)

Written as a system, with y = (h, h′) this equation is now in normal form.

3.1e Summary of summability results

The results proven for this type of equations may be, informally, summarized
as follows.

Proposition 3.36 All ỹk are generalized Borel summable at the same time.

i) The Borel sum LBỹk = yk
1 exist if <x > |x0| and x is outside a

compact set in polar complements of any sector 2 contained outside a
neighborhood of two successive Stokes lines in p plane. The minimal
x0 = <(x) does not depend on k. Furthermore,

yk(x) ∼ ỹk(x) (3.37)

ii) There exists a constant c independent of k so that supx∈H |yk| ≤
ck. Thus, the new series,

y =
∑

k∈(N∪{0})n

Cke−λ·kxxα·kyk(x) ≡ LB
∑

k∈(N∪{0})n

Cke−λ·kxxα·kỹk(x)

(3.38)

is convergent for any C for which the corresponding expansion (3.25)
is a transseries, in a region given by the condition |Cie

−λixxαi | < c−1
i

(remember that Ci is zero if |e−λix| is not small).

1Here and in the following we allow ỹk to start with a constant, understanding summability
in the more general sense as in (2.49).

2The polar is the larger sector obtained by drawing perpendiculars to the edges of a given
sector.

56



iii) The function y obtained in this way is a solution of the differential
equation (3.20).

iv) Any solution of the differential equation (3.20) which tends to
zero in some direction d can be written in the form (3.38) for a
unique C, this constant depending usually on the sector where d
is. This dependence is a manifestation of the Stokes phenomenon.
Two different representations may yield the same solution, and this
happens iff the LB summation direction for the two reprentations
are on different sides of a Stokes line.

v) The Borel summation operator LB is the usual Borel summation
in any direction d of x which is not a Stokes direction. However LB
is still an isomorphism, whether d is a Stokes direction or not.

Characterization of solutions in the ”x” plane

Proposition 3.39 i) Let y be a solution of (3.20) which goes to zero as x →∞
in some direction d. Then y ∼ ỹ0.

(ii) Let y1 and y2 be solutions of (3.20) so that y1,2 ∼ ỹ0 for large x in
some direction d; then

y1 − y2 =
∑

j

Cje
−λij

xx−βij (eij + o(1)) (3.40)

for some constants Cj, where the indices run over the eigenvalues λij
with the

property <(λij x) > 0 in S (or d).
(iii) If y1 − y2 = o(e−λij

xx−βij ) for all j, then y1 = y2.
iv) Let y1 and y2 be solutions of (3.20) and assume that y1 − y2 has differ-

entiable asymptotics of the form Ka exp(−ax)xb(1 + o(1)) with <(ax) > 0 and
K 6= 0, for large x. Then a = λi for some i.

v) Let Uk ∈ T{·} for all k, |k| > 1. Assume in addition that for large ν there
is a function δ(ν) vanishing as ν →∞ such that

sup
k

δ−|k|
∫

d

∣∣Uk(p)e−νp
∣∣ d|p| < K < ∞ (3.41)

Then, if y1,y2 are solutions of (3.20) in S where in addition

y1 − y2 =
∑
|k|>1

e−λ·kxxα·k+1

∫
d

Uk(p) exp(−xp)dp (3.42)

3 where λ, x are as in (c1), then y1 = y2, and Uk = 0 for all k, |k| > 1.
3We have added 1 to the power of x since by Watson’s lemma, the Laplace transform of

an analytic function if O(1/x). See the footnote in Proposition 3.36, 1.
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Corollary 3.43 Any solution that goes to zero in a direction d can be written
uniquely in the form (3.38) if the direction of summation is the same.

Proof. (of the corollary). If we take any solution ys which vanishes as x →∞,
and a solution ys1 of the form (3.38) then their difference is necessarily of the
form (3.40). But it is easy to check that for any right-hand side of the form (3.40)
we can find yet another solution ys2 of the form (3.38) for which the difference
is also given by (3.40). Then, by Proposition 3.39 (iii), we have ys = ys2.

2

Proof. (of the proposition) (i), (ii) and (iii) are classical results (see [7] for the
general treatment and [23] for a brief presentation of special cases and further
references). However, what is actually needed for our purposes can be reduced
to the more familiar linear asymptotic theory in the following way. Let d be a
direction in the complex plane.

Let ys → 0. Then

y′s = v(x) + Λ̂ys +
1
x

Âys +
1
x2

g1(x−1,ys) + ysg2(x−1,ys) (3.44)

where g1 is bounded and g2 → 0 as x → ∞,y → 0 is also a small solution of
the equation

y′ = v(x) + Λ̂y +
1
x

Ây +
1
x2

g1(x−1,ys) + yg2(x−1,ys)

= v(x) + Λ̂y + g3(x)y (3.45)

where g3 → 0 as x → ∞. Of course, this new equation may have unintended
solutions, but our solution is one of them. Everything now follows from linear
asymptotic theory.

The proof of (ii) is very similar. Let y0, y1 be solutions of (3.20) such that
y0,1 ∼ ỹ0 for large x along d. Then, by (3.23), y0,1(x) = O(x−M ) and for any
j, g(ej)(x,y0,1(x)) = O(x−M ). If δ = y1−y0 then by hypothesis δ(x) = o(x−l)
along d, for all l. The function δ is locally analytic and satisfies the equation

δ′ = −Λ̂δ − 1
x

B̂δ +
∑
|k|=1

g(k)(x,y0)δk +
∑
|k|>1

g(k)(x,y0)δk =

− Λ̂δ − 1
x

B̂δ +
1

xM

n∑
j=1

(δ)jhej
(x) (3.46)

where hk(x) are bounded along d. Obviously, because of the link between δ
and hk, the δ we started with might be the only solution of (3.46) which is
also a difference of solutions of (3.20). The asymptotic characterization we
need holds nevertheless for all decaying solutions solutions of (3.46): since no
two eigenvalues are equal, there exists by the well-known linear asymptotic
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theory [23] a fundamental set {δi}1≤i≤n of solutions of (3.46) such that δi ∼
e−λixx−βi(ei + o(1)). Thus δ =

∑n
i=1 Ciδi =

∑n
i=1 Cie−λixx−βi(ei + o(1)).

Since <(−βi) > 0 and the λi are distinct we must have Ci = 0 for all i for which
<(−λix) ≥ 0, otherwise |δ(x)| would be unbounded for large x; the first part of
(i) is proven. If on the other hand δ = o(e−λij

xx−βij ) for all j, again because
the λi are independent, it follows that Ci = 0 for all i = 1, 2, . . . , n, thus δ = 0.

(iv) is now obvious.
For (v), note first that by (3.41) and (c1) the right-hand side of (3.42) con-

verges uniformly for large x in some open sector. In addition, by an arbitrarily
small change in ξ = arg(x), we can make the set {<(xλi)}i Z-independent (the
existence of k(ξ) 6= 0 s.t. <(eiξk · λ) = 0 for ξ in an interval of would im-
ply the existence of a common k for a set of ξ with an accumulation point,
giving kλ = 0). We choose such a ξ. Assume now there exist k so that
Uk 6= 0; among them let k0 have the least <(xk · λ). By (3.41) for large
x, y1 − y2 ∼ e−λ·k0xxα·k0LφUk0(1 + o(1)). Because Uk0 ∈ T{·}, and by (3.41),
LφUk0 has a differentiable power series asymptotics which is the term-by-term
Laplace transform of the Puiseux series at the origin of Uk0 , and thus non-
zero. This contradicts (i) because with |k0| > 1 we have λ · k0 6= λj for all j
(Z−independence). Thus Uk = 0 for all k.

2

Borel plane equations

We write |f | := maxi{|fi|}.
The logic of the approach is approximately as follows. We write the formal

inverse Laplace transform of the equation for y0 and of the equations of the
yk (formal in the sense that no assumptions are yet made on t the transform
to be justified). We then solve the transformed equations, and show that these
”p” plane solutions are Laplace transformable to actual solutions. We then use
Proposition 3.39 to show that these are in fact all solutions. We then go on to
explore the analytic structure in p space.

The inverse Laplace transform of (3.20) is the convolution equation:

− pY = F0 − Λ̂Y + Â(1 ∗Y) + G(p, ∗Y) (3.47)

Let dj :=
∑

l≥j

(
l
j

)
gl(x)yl−j

0 . Straightforward calculation shows that the
components ỹk of the transseries satisfy the hierarchy of differential equations

y′k +
(

Λ̂ +
1
x

(
−Â + k ·α

)
− k · λ

)
yk +

∑
|j|=1

dj(yk)j = tk−

(3.48)

where tk− = tk−
(
y0, {yk′}0<k′<k

)
is a polynomial in {yk′}0<k′<k and in {dj}j≤k

(compare with (3.140)), with t(y0, ∅) = 0; tk− satisfies the homogeneity relation
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tk−
(
y0,
{

Ck′yk′

}
0≺k′≺k

)
= Cktk−

(
y0, {yk′}0≺k′≺k

)
(3.49)

It is convenient to note the following. Consider the generators µj = xaj e−xλj .As
in 20 Page 4 we write µk = xk·ae−kλ. We let µk = Ckµk. We see that

g
(
x−1,

∑
k∈(N∪{0})n

Cke−λ·kxxα·kyk(x)
)

= g
(
x−1,y0 + yc(x−1,µ)

)
(3.50)

where
yc(x−1,µ) =

∑
k>0

yk(x)µk (3.51)

Then, noting that
dµk

dx
= −

(
k · λ +

1
x
k · a

)
µk (3.52)

and expanding in powers of µ, treated as independent (since the monomials are
additively independent) we see that for the the coefficient of µk to be zero we
must have, using D̂k

µ as in the usual multinomial expansion in µ,

y′k +
(
−k · λ +

1
x
k · a + Λ̂− 1

x
Â−∇y0g(x−1,y0)

)
yk

= D̂k
µg
(
x−1,y0 + yc(x−1,µ)

)∣∣∣
x−1,y0,µ=1

= Tk−(∗Y) (3.53)

We also note that Tk is a convolution polynomial in Y = ym, −k indicates that
all m < k. This polynomial is k-homogeneous, that is, replacing yj by cyj, the
new polynomial gets simply multiplied by cyk (since this amounts to replacing
µ by cµ).

For a more explicit form of these equations, see Appendix 3.2e We also note
an important feature: all equations, except the one for y0, which will be treated
in §3.1f , are linear.

3.1f Borel summation of ỹ0 away from Stokes directions

Stokes directions are the p directions along which Λ̂− p is not invertible. There
are of course n of them, the directions of the eigenvalues of Λ̂. We write (3.47)
in the form

Proposition 3.54 The Borel transform Y0 is analytic and belongs to L1
ν for

large enough ν in any connected region which contains a neighborhood of the
origin and is at a distance ε > 0 from the rays originating at the λj, in the
direction of λj. The value of ν may depend on ε.
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Proof. We have

Y0 = (p− Λ̂)−1
(
F0 − Λ̂Y0 − B̂Y0 ∗ 1 + G(p, ∗Y0)

)
(3.55)

By Lemma 3.17, Eq. (3.55) is contractive in L1
ν→

and thus it has a unique

solution there. It is also contractive, for the same reason, in any L1
ν→
(S) if S

contains no eigenvalue of Λ̂, ensuring analyticity of Y0 in C \ {λit : t ∈ R+}
where we made (arbitrary) cuts at the eigenvalues.

2

3.1g The equations with |k| = 1

The equations with |k| = 1 are also special, in that the right side is zero (and also
many terms on the left side cancel out). Thus, if there are acceptable solutions,
and indeed this is the case, there is necessarily more than one. This degree
of freedom has to be eliminated (it is only then that a contractive mapping
approach can succeed), for instance by writing the equations in integral form
with specific constants of integration. We first write the equations. We let ej

be the unit vector in the direction j.

y′j = [∇y0g(x−1,y0)yk]j =: aj · yk, |k| = 1 (3.56)

or
yj = cj +

∫ ∞

x

aj · ykdx, |k| = 1 (3.57)

At this stage there is one more step before taking the inverse Laplace transform
(ILT), namely to make all terms small; the constant (and thus y) is not. There
are several ways to achieve this, and they lead to the same result. The question
is really one of simplicity of the transformation. Probably the easiest one here
is to subtract out the constant out of y. We write yj = cj + uj . The equations
for the us are

uj =
∫ ∞

x

aj · ykcdx +
∫ ∞

x

aj · ukdx, |k| = 1

= Cjfj +
∫ ∞

x

aj · ukdx, |k| = 1 (3.58)

We note that by our assumptions the matrix ĥ is O(x−M+1, x−2y0,y2
0) thus

O(x−M+1) since y0 is also O(x−M+1), where M is chosen by us since it is of
the order of magnitude

After ILT the equation becomes is

Uj = CjFj(p) + p−1Ĥ ∗ uk, |k| = 1 (3.59)

where Fj = pM−1F̌j and H = pM−1Ȟ where the “∨” functions are bounded.
In any compact set, f is bounded and in L1

ν , we can write

p−1

∫ p

0

sMf(s)g(p− s)ds = pM

∫ 1

0

tMf(t)g(p(1− t)ds
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which manifestly preserves analyticity and is contractive for small p. It is also
contractive in L1

ν for large enough ν.
Thus uk is Borel summable. We see that the solution depends on C. With

slight abuse of notation we write the ILT of this solution as CU.

3.1h The set of equations with |k| > 1

Now the sysyem of equations in ILT space, with

K = (Ck)k>1, L−1 = K(−k · λ + Λ̂)−1
k , Y = (Yk)k, T = (Tk)k (3.60)

where k ∈ Zn; ‖k| > 1, can be written as

Y = KL−1T(Y) (3.61)

Lemma 3.62 (i) Equation (3.61) is contractive in L1
µν for large enough µ, ν in

the same regions as Y0.
(ii) Thus (3.60) is contractive, and all the yk are summable, in a common

domain <x > ν with sup norm |yk| < ν|k|. The whole summed transseries
converges, as a function series, provided∏

j

∣∣∣xajCe−λjx
∣∣∣ < 1/µ (3.63)

Again, µ and ν may depend on the region.

Proof. This is straightforward and left as an exercise. 2

We also note that y0 is analytic in any direction which is not a Stokes
direction. However, the condition (3.63) can fail before reaching a Stokes line!
Then the function series diverges geometrically, and, as we shall see, this means
formation of singularities in the x plane.

3.1i Analytic structure along R+

Two lemmas on analytic structure

Lemma 3.64 Let f be analytic in the unit disc cut along the positive axis and
let 0 < g(x) ∈ C1[0, 1]. Assume that limε↓0 f(x ± iεg(x)) = f±(x) in L1[0, 1]
and

f+(x)− f−(x) = fδ(x) = xrA(x) (3.65)

with <(r) > −1, where A(ξ) extends to an analytic function for |ξ| < a ≤ 1.
Then there exists a function B analytic in |ξ| < a so that

f(ξ) =
1

1− e2πir
ξrA(ξ) + B(ξ) (r /∈ N)
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f(ξ) =
i

2π
ln(ξ)ξrA(ξ) + B(ξ) (r ∈ N)

(3.66)

If f+(x) − f−(x) is a linear combination
∑N

i=1 xriAi(x) (under the same as-
sumptions on ri and Ai), then f is given by the corresponding superposition of
terms of the form (3.66).

Note 3.67 This is a simple setting similar to a Riemann-Hilbert problem; it
has an elementary proof.

Proof. Take first r /∈ Z. Choose a1, a2 so that 0 < a1 < a2 < a and consider the
closed contour C going along the upper cut from ξ = 0 to ξ = a2, continuing
towards the lower cut anticlockwise along the circle C(a2) of radius a2 centered
at origin, and finally coming from ξ = a2 back to ξ = 0 along the lower cut. For
|ξ| < a1 we have, by the assumptions of the lemma,

2πif(ξ) =
∮

C

f(s)
s− ξ

ds =
∮

C(a2)

f(s)
s− ξ

ds +
∫ a2

0

srA(s)
s− ξ

ds

(3.68)

On the other hand, defining zrA(z) in the interior of C(a) cut along the positive
axis (with the usual convention arg(z) = 0 on the upper cut), we have, for the
same contour as above and ξ ∈ Va1

2π iξrA(ξ) =
∮

C(a2)

A(s)
s− ξ

ds +
(
1− e2πir

) ∫ a2

0

srA(s)
s− ξ

ds

(3.69)

Comparing (3.68) to (3.69) we get:

f(ξ) =
1

1− e2πir
ξrA(ξ)

− 1
2πi(1− e2πir)

∮
C(a2)

A(s)
s− ξ

ds +
1

2πi

∮
C(a2)

f(s)
s− ξ

ds

(3.70)

As integrals of analytic functions with respect to complex absolutely continuous
measures (A(s)ds and f(s)ds), the last two terms in (3.70) are analytic in ξ for
|ξ| < a1. Since a1 can be chosen arbitrarily close to a, the case r /∈ Z is proven.
For r ∈ Z the argument is essentially the same, in terms of A(ξ)ξr ln ξ instead
of ξrA(ξ). The proof generalizes immediately to linear combinations of ξrA(ξ).
2

63



Study of the analytic structure

We let C ∈ (C\{0})n1 be an arbitrary constant vector. As before, we can
assume that by a rescaling of the independent variable we arranged that the
Stokes line in R+ and that λ1 = 1.
For x large enough, we let y+, a solution of (3.20), be defined by taking the
Laplace transform slightly above (below,resp.) the real line. We now use
Lemma 3.62 to write a same solution y (3.38) in terms of functions analytic
in p in the first and fourth quadrant. We denote these representations4 of the
same solution y by

y+ = L−Y0 +
∑
|k|=1

Ck
−e−λ·kxxα·k+1L−Yk +

∑
|k|>1

Ck
−e−λ·kxxα·k+1L−Yk(3.71)

y− = L+Y0 +
∑
|k|=1

Ck
+e−λ·kxxα·k+1L+Yk +

∑
|k|>1

Ck
+e−λ·kxxα·k+1L+Yk(3.72)

5

We have thus

L−Y0 +
∑
|k|=1

Ck
−e−λ·kxxα·kL−Yk

= L+Y0 +
∑
|k|=1

Ck
+e−λ·kxxα·kL+Yk + o(xα·ke−λ·kx) (3.73)

We note however that Yk are analytic at the origin. Thus in fact,

(L− − L+)Y0 =
∑
|k|=1

(Ck
− −Ck

+)e−λ·kxxα·kLtYk + o(xα·ke−λ·kx) (3.74)

where we denoted by Lt the truncated Laplace transform
∫ t

0
for some small t.

Here we can drop the ± from Yk, |k| = 1, since the functions are analytic in
this region. The contribution of the integrals on the right-hand side from t to
infinity is exponentially smaller that Lt.

We now claim that only (C−)1 and (C+)1 may be different; for all the other
indices the constants are the same. Indeed, by assumption, the directions of the
λ′s are different. On the other hand, by Proposition 3.36 (i), all Yk are analytic,
say, above the real line and until the first eigenvalue direction, say that of λ2.
We now look at the eigenvalue which is is represented in the transseries, with
nonzero constant and is the farthest in angle as measured clockwise, down from

4According to the definition, xp must be real and positive. Therefore, y− corresponds to
summation in the first quadrant etc.

5We do have LBỹk = yk, but with the convention LB1 = 1. If we want to write the
solutions in terms of classical Laplace transforms, we had to multiply by another power of
x, to allow for the fact that, by Watson’s Lemma, the transform of an analytic function is
O(x−1.
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the real line, say λq. This λq has to be in the fourth quadrant to generate a
small exponential in the transseries along R+.

The direction perpendicular to it in the upper half plane is an antistokes
direction for it and the transseries representation remains valid until we reach a
direction, in the upper half plane, where Condition 3.63 breaks. It clearly breaks
because of λq, which is, by construction the first one to give rise to oscillatory
exponentials in the upper half plane. But for large enough x and close enough
to the breakdown of (3.63), the terms containing Cq in (3.73) become dominant,
larger than even x−M , the leading term of Y0, and the classical asymptotics of
y will have, as a leading term,

(C−)qe−λqxxαqLYq(1 + o(1)) = (C+)qe−λqxxαqLYq(1 + o(1)) (3.75)

This equality holds because we are dealing with the same solution y. But this,
as it is easy to see, can only happen if

(C−)q = (C+)q (3.76)

We can proceed (finite)-inductively to show that

(C−)l = (C+)l; l 6= 1. (3.77)

We denote
(C−)1 − (C+)1 = S1 (3.78)

Note 3.79 The Stokes constant S1 (and similarily, all others, do not depend
on the solution but only on the equation, since Y0 is unique.

Now we take m > <α− 1, say m is even, and write

∂

∂xm
(L− − L+)t

[
∂−mY0 − S1x

α1+mYe1(p− 1)χ(p > 1)
]

= o(e−x−txα1) (3.80)

Therefore, in a neighborhood of the real line it is easy to see that we have

(L− − L+)t Y0 = S1e
−xxα1LtYe1 + o(e−x−txα1) (3.81)

At this stage we make use of Lemma 2.31 to conclude that

∆Y0 = S1Y(m)
e1

(3.82)

where ∆ denoted the difference between the analytic continuations of Y0 above
and below p = 1.

This is a resurgence relation. It shows that Y0 contains all the information
about Ye1 ! In fact, as it is clear, the index “1” is not important here, and it
follwows that Y0 contains the information about all Yek

.
Now Lemma 3.64 gives the complete information about the singularity na-

ture of Y0 at p = 1. But it can be seen by the same type of arguments,
inductivrly, by straightforward though perhaps at places tedious calculations,
that all Y′s are linked to each other in a similar fashion. The net result is:
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Theorem 3.83 (i) Y0 = Bỹ0 is analytic in R∪ {0}.
The singularities of Y0 (which are contained in the set {lλj : l ∈ N+, j =

1, 2, . . . , n}) are described as follows. For l ∈ N+ and small z

Y±
0 (z + lλj) = ±

[
(±Sj)l(ln z)0,1Ylej (z)

](lmj)

+ Blj(z) =[
zlβ′j−1(ln z)0,1 Alj(z)

](lmj)

+ Blj(z) (l = 1, 2, . . .) (3.84)

where the power of ln z is one iff lβj ∈ Z, and Alj ,Blj are analytic for small z.
The functions Yk are, exceptionally, analytic at p = lλj, l ∈ N+, iff,

Sj = rjΓ(β′j) (A1,j)j (0) = 0 (3.85)

where rj = 1−e2πi(β′j−1) if lβj /∈ Z and rj = −2πi otherwise. The Sj are Stokes
constants.

(ii) Yk = Bỹk, |k| > 1, are analytic in R\{−k′ ·λ+λi : k′ ≤ k, 1 ≤ i ≤ n}.
For l ∈ N and p near lλj, j = 1, 2, . . . , n there exist A = Akjl and B = Bkjl

analytic at zero so that (z is as above)

Y±
k (z + lλj) = ±

[
(±Sj)l

(
kj + l

l

)
(ln z)0,1Yk+lej (z)

](lmj)

+ Bklj(z) =[
zk·β′+lβ′j−1(ln z)0,1 Aklj(z)

](lmj)

+ Bklj(z) (l = 0, 1, 2, . . .) (3.86)

where the power of ln z is 0 iff l = 0 or k ·β + lβj−1 /∈ Z and Ak0j = ej/Γ(β′j).
Near p ∈ {λi − k′ · λ : 0 < k′ ≤ k}, (where Y0 is analytic) Yk, k 6= 0 have
convergent Puiseux series.

Remark: The fact that the singular part of Yk(p+ lλj) in (3.84) and (3.86)
is a multiple of Yk+lej (p) is the effect of resurgence and provides a way of deter-
mining the Yk given Y0 provided the Sj are nonzero. Since, generically, the Sj

are nonzero this is a surprising upshot: given one formal solution, (generically)
an n parameter family of solutions can be constructed out of it, without using
(3.20) in the process; the differential equation itself is then recoverable.

3.1j Heuristic discussion of transasymptotic matching

There is a sharp distinction between linear and nonlinear systems with respect to
the behavior beyond Strans, the region where the formal or summed transseries
is valid, namely

Strans =
{
x ∈ C ; if Cj 6= 0 then xaj eλj = o(1), j = 1, ..., n

}
(3.87)

This sector might be the whole C if all Cj = 0; otherwise it lies between two
antistokes lines, and has opening at most π.
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If we have normalized the equation in such a way that λ1 = 1, and λm is the
eigenvalue in the fourth quadrant (if there is such an eigenvalue) with the most
negative angle, then in the upper half plane, Strans will be controlled, roughly,
by the condition <(λmx) > 0. If there is no such eigenvalue, then the rigion in
the first quadrant will be determined by λ1 = 1, namely xa1e−x = o(1). If we
examine the first quadrant, it is now convenient to rotate again the independent
variable so that λm = 1, since this eigenvalue is the determining one. Since
originally no exponentials associated with λj belonging to the second or third
quadrant were allowed, then after this new rotation there will be no eigenvalue
in the fourth quadrant, and the region of validity in the first quadrant would
be, roughly, up to the imaginary line.

In the linear case there are only finitely many (at most n) nonzero yk in (3.38)
and thus the function series is valid in a full (possibly ramified) neighborhood
of infinity, except for jumps in the components of C, one at each Stokes line
(see [20], [8], [22] and the references therein). The map LB is continuous at
the antistokes lines, and thus the transseries ỹ of y is the same on both sides
of an antistokes line. The phenomenon that does take place in these directions
is an interchange of dominance between the components of the transseries, and
since classical asymptotics only retains the dominant series in ỹ, the classical
asymptotic expansion of y changes. But from the point of view of exponential
asymptotics, when the whole transseries is considered, the behavior of solutions
of linear equations at antistokes lines is relatively simple.

Now we note that if we decide to perform Écalle-Borel summation of the
transseries in a direction above but not too far from the real line, no Yk will
be singular, thus, in the summed transseries, the corresponding yk will be well
defined, bounded and analytic in a sector whose upper edge has an angle strictly
greater than π/2. Thus, the transseries, summed or not, becomes invalid (the
terms become rapidly growing due to the simpler ingredient xae−x.

The divergence of (3.38) turns out to mark an actual change in the behavior
of y(x), which usually develops singularities in this region. The information
about the singularities is contained in (3.38).

The key to understanding the behavior of y(x) for x beyond the sector of
analyticity is to look carefully at the borderline region where (3.38) converges
but barely so. Because of nonresonance, for arg(x) = π/2 we have <(λjx) >
0, j = 2, ..., n1.6 By (3.37) all terms in (3.25) with k not a multiple of e1 =
(1, 0, ..., 0) are subdominant (small). Thus, for x near iR+ we only need to look
at

y[1](x) =
∑
k≥0

Ck
1 e−kxxkM1yke1(x) (3.88)

The region of convergence of (3.88) (thus of (3.38)) is then determined by the
effective variable ξ = C1e−xxα1 (since yke1 ∼ ỹke1 = e1 + o(1)). Convergence

6We have Cj = 0 for j > n1.
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is marginal along curves such that ξ is small enough but, as |x| → ∞, is never-
theless larger than all negative powers of x. In this case, any term of the form
Ck

1 e−kxxkM1yke1;0 is much larger than the terms Cl
1e
−lxxlα1yle1 if k, l ≥ 0 and

r > 0. Hence the leading behavior of y[1] is expected to be

y[1](x) ∼
∑
k≥0

(C1e−xxα1)ks̃ke1;0 ≡ F0(ξ) (3.89)

moreover, taking into account all terms in s̃ke1 we get

y[1](x) ∼
∞∑

r=0

x−r
∞∑

k=0

ξkỹke1;r ≡
∞∑

j=0

Fj(ξ)
xj

(3.90)

Expansion (3.90) has a two-scale structure, with the scales ξ and x.
It may come as a surprise that each Fj is a convergent series in ξ (though

the whole expansion (3.90) is still divergent).
It turns out that the reshuffling (3.90) is meaningful and yields the correct

asymptotic representation of y[1], and therefore of y, beyond the upper edge of
Stranss. In fact, (3.90) extends y(x) ∼ ỹ0 right into the regions in C where y
is singular. Once these two scales are known and once the validity of (3.90) is
proved for our class of systems (Theorems 1 and 3 below), it is easier to calculate
the Fj by direct substitution of (3.90) in (1.91) and identification of the powers
of x. The exact form of the second scale ξ is decisive for the domain of validity
of the expansion, see §3.1d .

3.1k The recursive system for Fm

The functions are Fm recursively, from their differential equation. Formally the
calculation is the following.

The series F̃ =
∑

m≥0 x−mFm(ξ) is a formal solution of (1.91); substitution
in the equation and identification of coefficients of x−m yields the recursive
system

d
dξ

F0 = ξ−1
(
Λ̂F0 − g(0,F0)

)
(3.91)

d
dξ

Fm + N̂Fm = α1
d
dξ

Fm−1 + Rm−1 for m ≥ 1 (3.92)

where N̂ is the matrix

ξ−1(∂yg(0,F0)− Λ̂) (3.93)

and the function Rm−1(ξ) depends only on the Fk with k < m:
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ξRm−1 = −
[
(m− 1)I + Â

]
Fm−1 −

1
m!

dm

dzm
g

z;
m−1∑
j=0

zjFj

∣∣∣∣∣∣
z=0

(3.94)

For more detail see [4] Section 4.3.
To leading order we have y ∼ F0 (see also (3.89)) where F0 satisfies the

autonomous (after a substitution ξ = eζ) equation

F′0 = Λ̂F0 − g(0,F0)

which can be solved in closed form for first order equations (n = 1) (the equation
for F0 is separable, and for k ≥ 1 the equations are linear), as well as in other
interesting cases (see e.g. §3.1d , §3.2c ).

(3.91), (3.92). To determine the Fm’s associated to y we first note that these
functions are analytic at ξ = 0 (cf. Theorem 3.101). Denoting by Fm,j , j =
1, .., n the components of Fm, a simple calculation shows that (3.91) has a
unique analytic solution satisfying F0,1(ξ) = ξ + O(ξ2) and F0,j(ξ) = O(ξ2) for
j = 2, ..., n. For m = 1, there is a one parameter family of solutions of (3.92)
having a Taylor series at ξ = 0, and they have the form F1,1(ξ) = c1ξ + O(ξ2)
and F1,j(ξ) = O(ξ2) for j = 2, ..., n. The parameter c1 is determined from the
condition that (3.92) has an analytic solution for m = 2. For this value of c1

there is a one parameter family of solutions F2 analytic at ξ = 0 and this new
parameter is determined by analyzing the equation of F3. The procedure can
be continued to any order in m, in the same way; in particular, the constant cm

is only determined at step m + 1 from the condition of analyticity of Fm+1.

3.1l Notation

Let d be a direction in the x-plane which is not not an antistokes line. Consider
a solution y(x) of (1.91) satisfying the assumptions in §3.1c . We define

San = San (y(x); ε) = S+
ε ∪ S−ε (3.95)

where

S±ε =
{

x ; |x| > R , arg(x) ∈ [−π

2
∓ ε,

π

2
∓ ε] and∣∣C−

j e−λjxx−βj
∣∣ < δ−1 for j = 1, ..., n

}
(3.96)

We use be the representation of y as summation of its transseries ỹ(x) (3.38)
in the direction d. Let

pj;k = λj − k · λ , j = 1, ..., n1 , k ∈ Zn1
+ (3.97)

For simplicity we assume, what is generically the case, that no pj;k lies on the
antistokes lines bounding Strans.
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We assume that not all parameters Cj are zero, say C1 6= 0. Then Strans is
bounded by two antistokes lines and its opening is at most π.

We arrange that
(a) arg(λ1) < arg(λ2) < ... < arg(λn1)
and, by construction,
(b) =λk ≥ 0.
The solution y(x) is then analytic in a region San.
The locations of singularities of y(x) depend on the constant C1 (constant

which may change when we cross the Stokes line R+). We need its value in the
sector between R+ and iR+, the next Stokes line.

Fix some small, positive δ and c. Denote

ξ = ξ(x) = C1e−xxα1 (3.98)

and

E =
{

x ; arg(x) ∈
[
−π

2
+ δ,

π

2
+ δ
]

and

<(λjx/|x|) > c for all j with 2 ≤ j ≤ n1} (3.99)

Also let

Sδ1 = {x ∈ E ; |ξ(x)| < δ1} (3.100)

The sector E contains Strans, except for a thin sector at the lower edge of
Strans (excluded by the conditions <(λjx/|x|) > c for 2 ≤ j ≤ n1, or, if n1 = 1,
by the condition arg(x) ≥ −π

2 + δ), and may extend beyond iR+ since there is
no condition on <(λ1x)—hence <(λ1x) = <(x) may change sign in E and Sδ1 .

Figure 1 is drawn for n1 = 1; E contains the gray regions and extends beyond
the curved boundary.

π/2+δarg(x)=-

0
|x|=x

1   1|ξ |=δ

Fig. 1 Region Dx where (3.103) holds, when n1 = 1. The dark gray
subregion is Sδ1 . Curves like the spiraling gray curves surround points in X
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(close to singularities of y) generate the region Dx. The picture is drawn with
n1 = 1, λ = 1

10 , α = − 1
2 , δ1 = 3 · 106, x0 = 40. In this case Strans is a sector

where | arg(x)| < π
2 − 0.

Theorem 3.101 (i) The functions Fm(ξ); m ≥ 1, are analytic in D (note that
by construction F0 is analytic in D) and for some positive B,K we have

|Fm(ξ)| ≤ Km!Bm, ξ ∈ D (3.102)

(ii) For large enough R, the solution y(x) is analytic in Dx and has the
asymptotic representation

y(x) ∼
∞∑

m=0

x−mFm(ξ(x)) (x ∈ Dx, |x| → ∞) (3.103)

In fact, the following Gevrey-like estimates hold

∣∣∣∣∣∣y(x)−
m−1∑
j=0

x−jFj(ξ(x))

∣∣∣∣∣∣ ≤ K2m!Bm
2 |x|−m (m ∈ N+, x ∈ Dx) (3.104)

(iii) Assume F0 has an isolated singularity at ξs ∈ Ξ and that the projection
of D on C contains a punctured neighborhood of (or an annulus of inner radius
r around) ξs.

Then, if C1 6= 0, y(x) is singular at a distance at most o(1) (r + o(1),
respectively) of xn ∈ ξ−1({ξs}) ∩ Dx, as xn →∞.
The collection {xn}n∈N forms a nearly periodic array

xn = 2nπi + α1 ln(2nπi) + lnC1 − ln ξs + o(1) (3.105)

as n →∞.

Some of the conclusions of the theorem hold with D noncompact, under some
natural restrictions, see Proposition 3.106.

Comments. 1. The singularities xn satisfy C1e
−xnxα1

n = ξs(1 + o(1)) (for
n →∞). Therefore, the singularity array lies slightly to the left of the antistokes
line iR+ if <(α1) < 0 (this case is depicted in Figure 1) and slightly to the right
of iR+ if <(α1) > 0.

2. In practice it is useful to normalize the system (1.91) so that α1 is as
small as possible (see the Comment 1. in § 3.1d and § 3.1d ).

3. By (3.104) a truncation of the two-scale series (3.103) at an m dependent
on x (m ∼ |x|/B) is seen to produce exponential accuracy o(e−|x/B|), see e.g.
[18].

4. Theorem 3.101 can also be used to determine precisely the nature of the
singularities of y(x). In effect, for any n, the representation (3.103) provides
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o(e−K|xn|) estimates on y down to an o(e−K|xn|) distance of an actual singularity
xn. In most instances this is more than sufficient to match to a suitable local
integral equation, contractive in a tiny neighborhood of xn, providing rigorous
control of the singularity. See also §3.2.

General comments. 1. The expansion scales, x and x−1/2e−x are crucial.
Only for this choice one obtains an expansion which is valid both in Strans

and near poles of (3.35). For instance, the more general second scale xae−x

introduces logarithmic singularities in Hj , except when a ∈ − 1
2 + Z. With

these logarithmic terms, the two scale expansion would only be valid in an O(1)
region in x, what is sometimes called a “patch at infinity”, instead of more
than a sector. Also, a ∈ −1

2 − N introduces obligatory singularities at ξ = 0
precluding the validity of the expansion in Strans. The case a ∈ − 1

2 +N produces
instead an expansion valid in Strans but not near poles. Indeed, the
so that

λ1 = 1, α1 = −1
2
− 3

2
Bα

A

implying

ξ2F ′′
0 + ξF ′

0 − F0 = 3BF 2
0 − F 3

0

and, with the same initial condition as above, we now have

F0 =
2ξ(1 + Bξ)

ξ2 + 2

The first normalization applies for the manifold of solutions such that y ∼
−α

x (for α = 0 y is exponentially small and behaves like an Airy function) while
the second one corresponds to y ∼ −B − α

2 x−3/2.
The following is an extension, in some respects, of Theorem 3.101 (ii).

Proposition 3.106 Assume D is not necessarily compact, Γ is a curve of pos-
sibly infinite length in D with the following properties:
(a) For some ε > 0, T1,2(z, δ) and N̂(z) are analytic for z in an ε neighborhood
of Γ and for |δ| < ε and in addition T1,2(z, δ) = O(zδ, δ2)
(b) M̂(ξ, ξ1,0) is bounded in an ε neighborhood of Γ and for some K and all

ξ ∈ Γ we have
∫ ξ

ξ1,0

∣∣∣M̂(ξ, ξ1,0)
∣∣∣ d|s| < K (where |M̂ | is some Euclidian norm of

the matrix M̂(ξ, ξ1,0)).
Then the conclusions of Theorem 3.101 (ii) hold in the x domain Dx corre-

sponding to D.

3.1m Proof of Theorem 3.101 (iii)

We need the following result which is in some sense a converse of Morera’s
theorem.

To show Theorem 3.101 (iii), assume ξs is an isolated singularity of F0 (thus
ξs 6= 0) and X = {x : ξ(x) = ξs}. By lemma 1.15 there is a circle C around ξs
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and a function g(ξ) analytic in Br(ξ − ξs) such that
∮
C F0(ξ)g(ξ)dξ = 1. In a

neighborhood of xn ∈ X the function f(x) = e−xxα1 is conformal and for large
xn

∮
f−1(C)

y(x)
g(f(x))
f(x)

dx

= −
∮
C
(1 + O(x−1

n ))(F0(ξ) + O(x−1
n ))g(ξ)dξ = 1 + O(x−1

n ) 6= 0 (3.107)

It follows from lemma 1.15 that for large enough xn y(x) is not analytic inside
C either. Since the radius of C can be taken o(1) Theorem 3.101 (iii) follows.

Note. In many cases the singularity of y is of the same type as the singularity
of F0. See §3.2 for further comments.

In the following we will make rigorous these intuitive arguments and then
proceed to explore further properties and consequences.

3.2 Examples

3.2a Equation (3.26)

1. We look again at ; we easily see that We see that

λ = 1, α = 1/5, and thus ξ = Cx1/5e−x (3.108)

Finding the two-scale expansion (3.103)

Having the second scale given by (3.108) and all the conditions of Theorem ??
satisfied, the simplest way to calculate the functions Fk in ỹ =

∑∞
k=0 x−kFk(ξ)

is by substituting y = ỹ in (3.29) and solving the differential equations, as in
the proof of Theorem 3.101 (i); the equation for F0(ξ) is, cf. (3.91),

ξF ′
0 = F0(1 + 3F0 + 3F 2

0 ); F ′
0(0) = 1 (3.109)

and, cf. (3.92),

ξF ′
k = (3F0 + 1)2Fk + Rk(F0, ..., Fk−1)

( for k ≥ 1 and where R1 =
3
5
F 3

0 ) (3.110)

The first term F0 of the expansion of u is then given by

ξ = ξ0F0(ξ)(F0(ξ) + ω0)−θ(F0(ξ) + ω0)−θ (3.111)
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with ξ0 = 3−1/2 exp(− 1
6π
√

3), ω0 = 1
2 + i

√
3

6 and θ = 1
2 + i

√
3

2 . The functions
Fk, k ≥ 1 can also be obtained in closed form, order by order.

By Theorem ??, the relation y ∼ ỹ holds in the sector

Sδ1 = {x ∈ C : arg(x) ≥ −π

2
+ δ, |Cx1/5e−x| < δ1}

for some δ1 > 0 and any small δ > 0.
Theorem 3 insures that y ∼ ỹ holds in fact on a larger region, surrounding

singularities of F0 (and thus of y). To apply this result we need the surface of
analyticity of F0 and an estimate for the location of its singularities.

Lemma 3.112 (i) The function F0 is analytic on the universal covering RΞ of
C \ Ξ where

Ξ = {ξp = (−1)p1ξ0 exp(p2π
√

3) : p1,2 ∈ Z} (3.113)

and its singularities are algebraic of order −1/2, located at points lying above
Ξ.

(ii) (The first Riemann sheet) The function F0 is analytic in C\
(
(−∞, ξ0]∪

[ξ1,∞)
)
.

(iii) The Riemann surface associated to F0 is represented in Fig. 2.

Proof
Singularities of F0. The RHS of (3.109) is analytic except at F0 = ∞, thus

F0 is analytic except at points where F0 → ∞. From (3.111) it follows that
limF0→∞ ξ ∈ Ξ and (i) follows straightforwardly; in particular, as ξ → ξp ∈ Ξ
we have (ξ − ξp)1/2F0(ξ) →

√
−ξp/6.

(ii) We now examine on which sheets in RΞ these singularities are located,
and start with a study of the first Riemann sheet (where F0(ξ) = ξ + O(ξ2) for
small ξ). Finding which of the points ξp are singularities of F0 on the first sheet
can be rephrased in the following way. On which constant phase (equivalently,
steepest ascent/descent) paths of ξ(F0), which extend to |F0| = ∞ in the plane
F0, is ξ(F0) uniformly bounded?

Constant phase paths are governed by the equation =(d ln ξ) = 0. Thus,
denoting F0 = X + iY , since ξ′/ξ =

(
F0 + 3F 2

0 + 3F 3
0

)−1 one is led to the real
differential equation =(ξ′/ξ)dX + <(ξ′/ξ)dY = 0, or

Y (1 + 6X + 9X2 − 3Y 2)dX

− (X + 3X2 − 3Y 2 + 3X3 − 9XY 2)dY = 0 (3.114)

We are interested in the field lines of (3.114) which extend to infinity. Noting
that the singularities of the field are (0, 0) (unstable node, in a natural param-
eterization) and P± = (−1/2,±

√
3/6) (stable foci, corresponding to −ω0 and

−ω0), the phase portrait is easy to draw (see Fig. 2) and there are only two
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curves starting at (0, 0) so that |F0| → ∞, ξ bounded, namely ±R+, along
which ξ → ξ0 and ξ → ξ1, respectively.

(iii) Thus Fig. 2 encodes the structure of singularities of F0 on RΞ in the
following way. A given class γ ∈ RΞ can be represented by a curve composed of
rays and arcs of circle. In Fig. 2, in the F0-plane, this corresponds to a curve γ′

composed of constant phase (dark gray) lines or constant modulus (light gray )
lines. Curves in RΞ terminating at singularities of F0 correspond in Fig 2. to
curves so that |F0| → ∞ (the four dark gray separatrices S1, ..., S4). Thus to
calculate where, on a particular Riemann sheet of RΞ, is F0 singular, one needs
to find the limit of ξ in (3.111), as F0 →∞ along along γ′ followed by Si. This
is straightforward, since the branch of the complex powers θ, θ, is calculated
easily from the index of γ′ with respect to P±. 2

Theorem 3.101 can now be applied on relatively compact subdomains of RΞ

and used to determine a uniform asymptotic representation y ∼ ỹ in domains
surrounding singularities of y(x), and to obtain their asymptotic location. Going
back to the original variables, similar information on u(z) follows. For example,
using Theorem 3.101 for the first Riemann sheet (cf. Lemma 3.112 (ii))

D = {|ξ| < K | ξ 6∈ (−∞, ξ1) ∪ (ξ0,+∞) , |ξ − ξ0| > ε, |ξ − ξ1| > ε, }

(for any small ε > 0 and large positive K) the corresponding domain in the
z-plane is shown in Fig. 3.

In general, we fix ε > 0 small, and some K > 0 and define AK = {z :
arg z ∈

(
3
10π − 0, 9

10π + 0
)
, |ξ(z)| < K} and let RK,Ξ be the universal covering

of Ξ ∩ AK and Rz;K,ε the corresponding Riemann surface in the z plane, with
ε– neighborhoods of the points projecting on z(x(Ξ)) deleted.

Proposition 3.115 (i) The solutions u = u(z;C) described in the beginning of
§3.2 have the asymptotic expansion

u(z) ∼ z1/3

(
1 +

1
9
z−5/3 +

∞∑
k=0

Fk (Cξ(z))
z5k/3

)
(as z →∞; z ∈ Rz;K,ε) (3.116)

where

ξ(z) = x(z)1/5e−x(z), and x(z) = −9
5
z5/3 (3.117)

(ii) In the “steep ascent” strips arg(ξ) ∈ (a1, a2), |a2 − a1| < π starting in
AK and crossing the boundary of AK , the function u has at most one singularity,
when ξ(z) = ξ0 or ξ1, and u(z) = z1/3e±2πi/3(1 + o(1)) as z → ∞ (the sign is
determined by arg(ξ)).

(iii) The singularities of u(z;C), for C 6= 0, are located within O(ε) of the
punctures of Rz;K,0.
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Figure 3.1: The dark lines represent the phase portrait of (3.114), as well as
the lines of steepest variation of |ξ(u)|. The light gray lines correspond to the
orthogonal field, and to the lines |ξ(u)| = const.

Applying Theorem 3.101 to (3.29) it follows that for n →∞, a given solution
y is singular at points x̃p,n such that ξ(x̃p,n)/ξp = 1 + o(1) (|x̃p,n| large).

Now, y can only be singular if |y| → ∞ (otherwise the r.h.s. of (3.29) is
analytic). If x̃p,n is a point where y is unbounded, with δ = x − x̃p,n and
v = 1/y we have

dδ

dv
= vFs(v, δ) (3.118)

where Fs is analytic near (0, 0). It is easy to see that this differential equation
has a unique solution with δ(0) = 0 and that δ′(0) = 0 as well.

The result is then that the singularities of u are also algebraic of order −1/2.

Proposition 3.119 If z0 is a singularity of u(z;C) then in a neighborhood of
z0 we have

u = ±
√
−1/2(z − z0)−1/2A0((z − z0)1/2) (3.120)

where A0 is analytic at zero and A0(0) = 1.

Notes. 1. The local behavior near a singularity could have been guessed by
local Painlevé analysis and the method of dominant balance, with the standard
ansatz near a singularity, u ∼ Const.(z− z0)p. Our results however are global:
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5

50

Figure 3.2: Singularities on the boundary of Strans for (3.26). The gray region
lies in the projection on C of the Riemann surface where (3.116) holds. The
short dotted line is a generic cut delimiting a first Riemann sheet.

Proposition 3.115 gives the behavior of a fixed solution at infinitely many sin-
gularities, and gives the position of these singularities as soon as C1 (or the
position of only one of these singularities) is known (and in addition show that
the power behavior ansatz is correct in this case).

2. By the substitution y = v/(1 + v) in (3.29) we get

v′ = −v − 27
v3

1 + v
− 10 v2 +

1
5t

v + g[1](t−1, v) (3.121)

where g[1] is a now an O(t−2, v−2) polynomial of total degree 5. The singularities
of v are at the points where v(t) = −1.

3.2b PI.

Proposition 3.122 below shows, in (i), how the constant C beyond all orders is
associated to a truncated solution y(z) of PI for arg(z) = π (formula (3.123))
and gives the position of one array of poles zn of the solution associated to
C (formula (3.124)), and in (ii) provides uniform asymptotic expansion to all
orders of this solution in a sector centered on arg(z) = π and one array of poles
(except for small neighborhoods of these poles) in formula (3.126).
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Proposition 3.122 (i) Let y be a solution of (3.31) such that y(z) ∼
√
−z/6

for large z with arg(z) = π. For any φ ∈ (π, π + 2
5π) the following limit de-

termines the constant C (which does not depend on φ in this range) in the
transseries ỹ of y:

lim
|z|→∞

arg(z)=φ

ξ(z)−1

√ 6
−z

y(z)−
∑

k≤|x(z)|

ỹ0;k

z5k/2

 = C (3.123)

(Note that the constants ỹ0;k do not depend on C). With this definition, if
C 6= 0, the function y has poles near the antistokes line arg(z) = π + 2

5π at all
points zn, where, for large n

zn = − (60πi)4/5

24

(
n

4
5 + iLnn−

1
5 +

(
L2

n

8
− Ln

4π
+

109
600π2

)
n−

6
5

)
+ O

(
(lnn)3

n
11
5

)
(3.124)

with Ln = 1
5π ln

(
πiC2

72 n
)
, or, more compactly,

ξ(zn) = 12 +
327

(−24zn)5/4
+ O(z−5/2

n ) (zn →∞) (3.125)

(ii) Let ε ∈ R+ and define

Z = {z : arg(z) >
3
5
π; |ξ(z)| < 1/ε; |ξ(z)− 12| > ε}

(the region starts at the antistokes line arg(z) = 3
5π and extends slightly beyond

the next antistokes line, arg(z) = 7
5π). If y ∼

√
−z/6 as |z| → ∞, arg(z) = π,

then for z ∈ Z we have

y ∼
√
−z

6

(
1− 1

8
√

6(−z)5/2
+
∞∑

k=0

30kHk(ξ)
(−24z)5k/4

)
(|z| → ∞, z ∈ Z) (3.126)

The functions Hk are rational, and H0(ξ) = ξ(ξ/12 − 1)−2. The expansion
(3.126) holds uniformly in the sector π−1 arg(z) ∈ (3/5, 7/5) and also on one of
its sides, where H0 becomes dominant, down to an o(1) distance of the actual
poles of y if z is large.

Proof. We prove the corresponding statements for the normal form (3.35).
To go back to the variables of (3.31) mere substitutions are needed, which we
omit.
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Most of Proposition 3.122 is a direct consequence of Theorems 1 and 2. For
the one-parameter family of solutions which are small in the right half plane we
then have

h ∼
∞∑

k=0

x−kHk(ξ(x)) (3.127)

As in the first example we find Hk by substituting (3.127) in (3.35).
The equation of H0 is

ξ2H ′′
0 + ξH ′

0 = H0 +
1
2
H2

0

The general solution of this equation are the Weierstrass elliptic functions of
ln ξ, as expected from the general knowledge of the asymptotic behavior of the
Painlevé solutions (see [11]). For our special initial condition, H0 analytic at
zero and H0(ξ) = ξ(1 + o(1)), the solution is a degenerate elliptic function,
namely,

H0(ξ) =
ξ

(ξ/12− 1)2

Next, one of the two free constants in the general solution H1 is determined
by the condition of analyticity at zero of H1 (this constant multiplies terms in
ln ξ). It is interesting to note that the remaining constant is only determined
in the next step, when solving the equation for H2! This pattern is typical (see
§3.1k ). Continuing this procedure we obtain successively:

H1 =
(

216 ξ + 210 ξ2 + 3 ξ3 − 1
60

ξ4

)
(ξ − 12)−3 (3.128)

H2 =
(

1458ξ + 5238ξ2 − 99
8

ξ3 − 211
30

ξ4 +
13
288

ξ5 +
ξ6

21600

)
(ξ − 12)−4

(3.129)

We omit the straightforward but quite lengthy inductive proof that all Hk

are rational functions of ξ. The reason the calculation is tedious is that this
property holds for (3.35) but not for its generic perturbations, and the last
potential obstruction to rationality, successfully overcome by (3.35), is at k = 6.
On the positive side, these calculations are algorithmic and are very easy to
carry out with the aid of a symbolic language program.

In the same way as in Example 1 one can show that the corresponding sin-
gularities of h are double poles: all the terms of the corresponding asymptotic
expansion of 1/h are analytic near the singularity of h! All this is again straight-
forward, and lengthy because of the potential obstruction at k = 6. We prefer
to rely on an existing direct proof, see [5].
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–10
x

Figure 3.3: Poles of (3.35) for C = −12 (�) and C = 12 (+), calculated via
(3.130). The light circles are on the second line of poles for to C = −12.

Let ξs correspond to a zero of 1/h. To leading order, ξs = 12, by Theo-
rem 3.101 (iii). To find the next order in the expansion of ξs one substitutes
ξs = 12 + A/x + O(x−2), to obtain

1/h(ξs) =
(A− 109/10)2

123x2
+ O(1/x3)

whence A = 109/10 (because 1/h is analytic at ξs) and we have

ξs = 12 +
109
10x

+ O(x−2) (3.130)

Given a solution h, its constant C in ξ for which (3.127) holds can be calcu-
lated from asymptotic information in any direction above the real line by near
least term truncation, namely

C = lim
x→∞

arg(x)=φ

exp(x)x1/2

h(x)−
∑

k≤|x|

h̃0,k

xk

 (3.131)

(this is a particular case of much more general formulas [9]) where
∑

k>0 h̃0,kx−k

is the common asymptotic series of all solutions of (3.35) which are small in the
right half plane.

2
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General comments. 1. The expansion scales, x and x−1/2e−x are crucial.
Only for this choice one obtains an expansion which is valid both in Strans

and near poles of (3.35). For instance, the more general second scale xae−x

introduces logarithmic singularities in Hj , except when a ∈ − 1
2 + Z. With

these logarithmic terms, the two scale expansion would only be valid in an O(1)
region in x, what is sometimes called a “patch at infinity”, instead of more
than a sector. Also, a ∈ − 1

2 − N introduces obligatory singularities at ξ = 0
precluding the validity of the expansion in Strans. The case a ∈ − 1

2 +N produces
instead an expansion valid in Strans but not near poles. Indeed, the substitution
h(x) = g(x)/xn, n ∈ N has the effect of changing α to α+n in the normal form.
This in turn amounts to restricting the analysis to a region far away from the
poles, and then all Hj will be entire. In general we need thus to make (by
substitutions in (1.91)) a = α minimal compatible with the assumptions (a1)
and (a2), as this ensures the widest region of analysis.

2. The pole structure can be explored beyond the first array, in much of
the same way: For large ξ induction shows that Hn ∼ Constn.ξn, suggesting a
reexpansion for large ξ in the form

h ∼
∞∑

k=0

H
[1]
k (ξ2)
xk

; ξ2 = C [1]ξx−1 = C C [1]x−3/2e−x (3.132)

By the same techniques it can be shown that (3.132) holds and, by matching
with (3.127) at ξ2 ∼ x−2/3, we get H

[1]
0 = H0 with C [1] = −1/60. Hence, if xs

belongs to the first line of poles, i.e. ξ(xs) = ξs cf. (3.130), the second line of
poles is given by the condition

x
−3/2
1 e−x1 = −60 · 12C

i.e., it is situated at a logarithmic distance of the first one:

x1 − xs = − lnxs + (2n + 1)πi− ln(60) + o(1)

(see Fig. 4). Similarly, on finds xs,3 and in general xs,n. The second scale for
the n−th array is x−n−1/2e−x.

The expansion (3.127) can be however matched directly to an adiabatic
invariant-like expansion valid throughout the sector where h has poles, simi-
lar to the one in [10]. In this language, the successive expansions of the form
(3.132) pertain to the separatrix crossing region. We will not pursue this issue
here.

3.2c The Painlevé equation P2

This equation reads:

y′′ = 2y3 + xy + α (3.133)
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(Incidentally, this example also shows that for a given equation distinct solu-
tion manifolds associated to distinct asymptotic behaviors may lead to different
normalizations.) After the change of variables

x = (3t/2)2/3; y(x) = x−1(t h(t)− α)

one obtains the normal form equation

h′′ +
h′

t
−
(

1 +
24α2 + 1

9t2

)
h− 8

9
h3 +

8α

3t
h2 +

8(α3 − α)
9t3

= 0 (3.134)

and

λ1 = 1, α1 = −1/2; ξ =
e−t

√
t
; ξ2F ′′

0 + ξF ′
0 = F0 +

8
9
F 3

0

The initial condition is (always): F0 analytic at 0 and F ′
0(0) = 1. This implies

F0(ξ) =
ξ

1− ξ2/9

Distinct normalizations (and sets of solutions) are provided by

x = (At)2/3; y(x) = (At)1/3
(
w(t)−B +

α

2At

)
if A2 = −9/8, B2 = −1/2. In this case,

w′′ +
w′

t
+ w

(
1 +

3Bα

tA
− 1− 6α2

9t2

)
w

−
(

3B − 3α

2tA

)
w2 + w3 +

1
9t2

(
B(1 + 6α2)− t−1α(α2 − 4)

)
(3.135)

so that

λ1 = 1, α1 = −1
2
− 3

2
Bα

A

implying

ξ2F ′′
0 + ξF ′

0 − F0 = 3BF 2
0 − F 3

0

and, with the same initial condition as above, we now have

F0 =
2ξ(1 + Bξ)

ξ2 + 2

The first normalization applies for the manifold of solutions such that y ∼
−α

x (for α = 0 y is exponentially small and behaves like an Airy function) while
the second one corresponds to y ∼ −B − α

2 x−3/2.
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3.2d Singularity analysis

We now focus on singularities of y(x) and their connection with singularities of
F0.

Definitions (cf. Figure 1)

Since

ỹ0 =
∞∑

r=2

ỹ0;r

xr
, ( |x| → ∞) (3.136)

we have F0(0) = 0. Both F0 and y turn out to be analytic in Sδ1 (Theorems
??(i) and 3.101(i)); the interesting region is then E \ Sδ1 (containing the light
grey region in Figure 1).

Denote by P a polydisk

P = {(x−1,y) : |x−1| < ρ1, |y| < ρ2} (3.137)

where g is analytic and continuous up to the boundary.
Let Ξ be a finite set (possibly empty) of points in the ξ-plane. This set will

consist of singular points of F0 thus we assume dist(Ξ, 0) ≥ δ1.
Denote by RΞ the Riemann surface above C \Ξ. More precisely, we assume

that RΞ is realized as equivalence classes of simple curves Γ : [0, 1] 7→ C with
Γ(0) = 0 modulo homotopies in C\Ξ.

Let D ⊂ RΞ be open, relatively compact, and connected, with the following
properties:

(1) F0(ξ) is analytic in an εD–neighborhood of D with εD > 0,
(2) supD |F0(ξ)| := ρ3 with ρ3 < ρ2

(3) D contains {ξ : |ξ| < δ1}.7
It is assumed that there is an upper bound on the length of the curves joining

points in D: dD = supa,b∈D infΓ⊂D;a,b∈Γ length(Γ) < ∞.
We also need the x-plane counterpart of this domain.
Let R > 0 (large) and let X = ξ−1(Ξ) ∩ {x ∈ E : |x| > R}.
Let Γ be a curve in D. There is a countable family of curves γN in the

x-plane with ξ(γN ) = Γ. The curves are smooth for |x| large enough and satisfy

γN (t) = 2Nπi + α1 ln(2πiN) − ln Γ(t) + lnC1 + o(1) (N → ∞) (3.138)

(For a proof see [4]).
To preserve smoothness, we will restrict to |x| > R with R large enough, so

that along (a smooth representative of) each Γ ∈ D, the branches of ξ−1 are
analytic.

If the curve Γ is a smooth representative in D we then have ξ−1(Γ) =
∪N∈N γN where γN are smooth curves in {x : |x| > 2R}\X.

7 Conditions (2),(3) can be typically satisfied since F0(ξ) = ξ + O(ξ2) and δ1 < ρ2 (see
also the examples in §3.2); borderline cases may be treated after choosing a smaller δ1.
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We define Dx as the equivalence classes modulo homotopies in {x ∈ E : |x| >
R} \X (with ∞ fixed point) of those curves γN which are completely contained
in E ∩ {x : |x| > 2R}.
Noting that

∣∣∣M̂(ξ, ξ1,0)
∣∣∣ d|s| is a finite measure along Γ, the proof is virtually

identical to the proof of Theorem 3.101.

3.2e Appendix

Taking L−1 in (3.48) we get, with

Dj(∗Y) =
∑
l≥j

(
l
j

)[
Gl ∗Y∗(l−j)

0 + g0,l ∗Y∗(l−j)
0

]

(
−p + Λ̂− k · λ

)
Yk +

(
B̂ + k ·α

)
1 ∗Yk + Dj(∗Y) = Tk(∗Y) (3.139)

Tk is now a convolution polynomial,

Tk(∗Y) = T (Y0, {Yk′}0≺k′≺k)

Tk(∗Y) =
∑

j≤k; |j|>1

Dj(∗Y) ∗
∑

(imp;k)

n1∗∏
m=1

jm∗∏
p=1

(
Yimp

)
m

(3.140)

where
(
l
j

)
=
∏n

j=1

(
li
ji

)
, (v)m means the component m of v, and

∑
(imp:k) stands

for the sum over all vectors imp ∈ Nn, with p ≤ jm,m ≤ n, such that imp > 0
and

∑n
m=1

∑jm

p=1 imp = k;
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[10] N. Joshi, M. Kruskal The Painlevé connection problem:an asymptotic ap-
proach Stud.Appl. Math. 86 (1992), no. 4, 315-376

[11] E. Hille Ordinary differential equations in the complex domain, John Wiley
& sons, 1976

[12] A Its, A R Fokas and A S Kapaev On the asymptotic analysis of the
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