Transseries

G. A. Edgar

May 14, 2007

Contents

1	Multi-indices	1
2	Abstract transseries 2.1 Without generators	4 4
	2.2 With generators	6
3	Transseries as $x \to \infty$	11
	3.1 Without logs	12
	3.2 With logs	15

Abstract

An attempt to write consistent definitions and terminology. And notation. But probably not the best way for learning.

Introduction

Starred (**Example*) are examples to illustrate the definitions, but make use of the later notation from Section 3.

The correspondence between multi-indices and transmonomials reverses the ordering. This means terminology that seems right on one side may seem to be backward on the other side. For example, I change my mind on whether J_m should be called a *filter* or an *ideal*. Even with conventional asymptotic series, larger terms are written to the left, smaller terms to the right, reversing the convention for a number line.

1 Multi-indices

Begin with a positive integer n. The set \mathbb{Z}^n of n-tuples of integers is a group under componentwise addition. For notation, avoiding subscripts, if $\mathbf{k} \in \mathbb{Z}^n$ and $1 \leq i \leq n$, let's write $\mathbf{k}[i]$ for the *i*th component of \mathbf{k} . The partial order \leq is defined by: $\mathbf{k} \leq \mathbf{p}$ iff $\mathbf{k}[i] \leq \mathbf{p}[i]$ for all *i*. And $\mathbf{k} < \mathbf{p}$ iff $\mathbf{k} \leq \mathbf{p}$ and $\mathbf{k} \neq \mathbf{p}$. Element $\mathbf{0} = (0, 0, \dots, 0)$ is the identity for addition.

Write $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ including 0. Subset \mathbb{N}^n is closed under addition.

Definition 1.1. A set $\mathbf{J} \subseteq \mathbb{Z}^n$ is a *filter* iff it is upward-saturated: if $\mathbf{m} \in \mathbf{J}$ and $\mathbf{k} \geq \mathbf{m}$, then $\mathbf{k} \in \mathbf{J}$. The filter *generated* by a set $E \subseteq \mathbb{Z}^n$ is

$$\mathbf{J}(E) = \{ \mathbf{k} \in \mathbb{Z}^n : \mathbf{k} \ge \mathbf{p} \text{ for some } \mathbf{p} \in E \}.$$

The strict filter generated by E is

$$\mathbf{J}^*(E) = \{ \mathbf{k} \in \mathbb{Z}^n : \mathbf{k} > \mathbf{p} \text{ for some } \mathbf{p} \in E \}.$$

The *principal filter* of **m** is the set $\mathbf{J}_{\mathbf{m}} = \mathbf{J}(\{\mathbf{m}\}) = \{\mathbf{k} \in \mathbb{Z}^n : \mathbf{k} \ge \mathbf{m}\}$. The *strict principal filter* of **m** is

$$\mathbf{J}_{\mathbf{m}}^{*} = \mathbf{J}^{*}(\{\mathbf{m}\}) = \mathbf{J}_{\mathbf{m}} \setminus \{\mathbf{m}\} = \{\mathbf{k} \in \mathbb{Z}^{n} : \mathbf{k} > \mathbf{m}\}.$$

Note $\mathbf{J}_{\mathbf{m}}$ is the translate of \mathbb{N}^n by $-\mathbf{m}$. That is, $\mathbf{J}_{\mathbf{m}} = \{\mathbf{k} - \mathbf{m} : \mathbf{k} \in \mathbb{N}^n\}$. And $\mathbb{N}^n = \mathbf{J}_0$. Translation preserves order.

Proposition 1.2. The set $\mathbf{J}_{\mathbf{m}}$ is well-partially-ordered in the sense: if $E \subseteq \mathbf{J}_{\mathbf{m}}$ and $E \neq \emptyset$, then there is a minimal element: $\mathbf{k}_0 \in E$ and $\mathbf{k} < \mathbf{k}_0$ holds for no element $\mathbf{k} \in E$.

Proof. Because translation preserves order, it suffices to do the case of $\mathbf{J}_0 = \mathbb{N}^n$. First, $\{\mathbf{k}[1] : \mathbf{k} \in E\}$ is a nonempty subset of \mathbb{N} , so it has a least element, say m_1 . Then $\{\mathbf{k}[2] : \mathbf{k} \in E, \mathbf{k}[1] = m_1\}$ is a nonempty subset of \mathbb{N} , so it has a least element, say m_2 . Continue. Then $\mathbf{k}_0 = (m_1, \cdots, m_n)$ is minimal in E.

Proposition 1.3. Let $E \subseteq \mathbf{J_m}$ be infinite. Then there is a sequence $\mathbf{k}_j \in E$, $j \in \mathbb{N}$, with $\mathbf{k}_0 < \mathbf{k}_1 < \mathbf{k}_2 < \cdots$.

Proof. Enough to do the case \mathbb{N}^n . By induction on n. True if n = 1. Consider the set $\widetilde{E} \subseteq \mathbb{Z}^{n-1}$ defined by $\{ (\mathbf{k}[1], \mathbf{k}[2], \cdots, \mathbf{k}[n-1]) : \mathbf{k} \in E \}$. Case 1: \widetilde{E} is finite. Then for some $\mathbf{p} \in \widetilde{E}$, the set $E' = \{ k \in \mathbb{N} : (\mathbf{p}[1], \cdots, \mathbf{p}[n-1], k) \in E \}$ is infinite. Choose an increasing sequence $k_j \in E'$ to get the increasing sequence in E.

Case 2: \widetilde{E} is infinite. By induction hypothesis, there is a strictly increasing sequence $\mathbf{p}_j \in \widetilde{E}$. So there is a sequence $\mathbf{k}_j \in E$ that is increasing in every coordinate except possibly the last. If some last coordinate occurs infinitely often, use it to get an increasing sequence in E. If not, choose a subsequence of these last coordinates that increases.

Proposition 1.4. Let $E \subseteq \mathbf{J_m}$. Then the set Mag E of all minimal elements of E is finite. For every $\mathbf{k} \in E$, there is $\mathbf{k}_0 \in \text{Mag } E$ with $\mathbf{k}_0 \leq \mathbf{k}$.

Proof. No two minimal elements are comparable, so Mag E is finite by Prop. 1.3. If $E = \emptyset$, then Mag $E = \emptyset$ vacuously satisfies this. Suppose $E \neq \emptyset$. Then Mag $E \neq \emptyset$ satisfies the required conclusion by Prop. 1.2.

Convergence of sets

Write \triangle for the symmetric difference operation on sets. We will define convergence a sequence of sets $E_j \subseteq \mathbb{Z}^n$ (or indeed any infinite collection $(E_i)_{i \in I}$ of sets). But we define convergence to \emptyset , and then let $E_j \to E$ mean $E_j \triangle E \to \emptyset$. *Definition* 1.5. Let I be an infinite index set, and for each $i \in I$, let $E_i \subseteq \mathbb{Z}^n$. We say the family $(E_i)_{i \in I}$ is **point-finite** iff each $\mathbf{p} \in \mathbb{Z}^n$ belongs to E_i for only finitely many i. Let $\mathbf{m} \in \mathbb{Z}^n$. We write $E_i \xrightarrow{\mathbf{m}} \emptyset$ iff $E_i \subseteq \mathbf{J_m}$ for all i and (E_i) is point-finite. We write $E_i \to \emptyset$ iff there exists \mathbf{m} such that $E_i \xrightarrow{\mathbf{m}} \emptyset$. Furthermore, write $E_i \xrightarrow{\mathbf{m}} E$ iff $E_i \triangle E \xrightarrow{\mathbf{m}} \emptyset$ and write $E_i \to E$ iff $E_i \triangle E \to \emptyset$.

This type of convergence is metrizable when restricted to any J_m . But there is no preferred choice of metric.

Notation 1.6. For $\mathbf{k} = (k_1, k_2, \dots, k_n)$, define $|\mathbf{k}| = k_1 + k_2 + \dots + k_n$.

Proposition 1.7. Let $\mathbf{m} \in \mathbb{Z}^n$. For $E, F \subseteq \mathbf{J}_{\mathbf{m}}$, define

$$d(E,F) = \sum_{\mathbf{k}\in E\triangle F} 2^{-|\mathbf{k}|}.$$

Then for any sets $E_i \subseteq \mathbf{J}_{\mathbf{m}}$, we have $E_i \to E$ if and only if $d(E_i, E) \to 0$. And d is a metric on subsets of $\mathbf{J}_{\mathbf{m}}$.

Dominating

Definition 1.8. Let E, F be subsets of \mathbb{Z}^n . We say E dominates F iff for every $\mathbf{k} \in F$, there is $\mathbf{p} \in E$ with $\mathbf{p} < \mathbf{k}$. Equivalently, in terms of the filters:

$$F \subseteq \mathbf{J}^*(E).$$

This may seem backward. But correspondingly in the realm of transmonomials, we will say larger monomials dominate smaller ones.

It's transitive: If E_1 dominates E_2 and E_2 dominates E_3 , then E_1 dominates E_3 . Every E dominates \emptyset . Note $\{\mathbf{m}\}$ dominates E if and only if $E \subseteq \mathbf{J}_{\mathbf{m}}^*$.

Proposition 1.9. Let E, F be subsets of J_m . Then E dominates F if and only if Mag E dominates Mag F.

Proof. Assume E dominates F. Let $\mathbf{k} \in \text{Mag } F$. Then $\mathbf{k} \in F$, so there is $\mathbf{k}_1 \in E$ with $\mathbf{k}_1 < \mathbf{k}$. Then there is $\mathbf{k}_0 \in \text{Mag } E$ with $\mathbf{k}_0 \leq \mathbf{k}_1$. So $\mathbf{k}_0 < \mathbf{k}$.

Conversely, assume Mag *E* dominates Mag *F*. Let $\mathbf{k} \in F$. Then there is $\mathbf{k}_1 \in \text{Mag } F$ with $\mathbf{k}_1 \leq \mathbf{k}$. So there is $\mathbf{k}_0 \in \text{Mag } E$ with $\mathbf{k}_0 < \mathbf{k}_1$. Thus $\mathbf{k}_0 \in E$ and $\mathbf{k}_0 < \mathbf{k}$.

Proposition 1.10. If E dominates F, then Mag E and Mag F are disjoint.

Proof. Assume E dominates F. If $\mathbf{k} \in \text{Mag } F$, then $\mathbf{k} \in F$, so there is $\mathbf{k}_1 \in E$ with $\mathbf{k}_1 < \mathbf{k}$. So even if $\mathbf{k} \in E$, it is not minimal.

Proposition 1.11. Let $E_j \subseteq \mathbf{J}_{\mathbf{m}}$, $j \in \mathbb{N}$, be an infinite sequence such that E_j dominates E_{j+1} for all j. Then the sequence (E_j) is point-finite; $E_j \to \emptyset$.

Proof. Let $\mathbf{p} \in \mathbf{J}_{\mathbf{m}}$. Then $F = \{\mathbf{k} \in \mathbf{J}_{\mathbf{m}} : \mathbf{k} < \mathbf{p}\}$ is finite. But the sets $F \cap$ Mag E_j are disjoint, and for every j with $\mathbf{p} \in E_j$, the set $F \cap$ Mag E_j is nonempty. Therefore, $\mathbf{p} \in E_j$ for only finitely many j.

Proposition 1.12. Let $E_i \subseteq \mathbf{J_m}$ be a point-finite family. Assume E_i dominates F_i for all *i*. Then (F_i) is also point-finite.

Proof. Let $\mathbf{p} \in \mathbf{J}_{\mathbf{m}}$. Then $F = \{\mathbf{k} \in \mathbf{J}_{\mathbf{m}} : \mathbf{k} < \mathbf{p}\}$ is finite. But the sets $F \cap$ Mag E_j are disjoint, and for every j with $\mathbf{p} \in F_j$, the set $F \cap$ Mag E_j is nonempty. Therefore, $\mathbf{p} \in F_j$ for only finitely many j.

2 Abstract transseries

We begin with an abelian totally ordered group \mathcal{G} . The operation is written multiplicatively, the identity is 1, the order relation is \gg and read "far larger than". This is a "strict" order relation; that is, $g \gg g$ is false. We use the field \mathbb{R} of real numbers as "values", but as far as this section is concerned, any field would work. Later we do need real numbers as values.

2.1 Without generators

Write $\mathbb{R}^{\mathcal{G}}$ for the set of functions $T: \mathcal{G} \to \mathbb{R}$. For $T \in \mathbb{R}^{\mathcal{G}}$ and $g \in \mathcal{G}$, we will use square brackets T[g] for the value of T at g—because later we will want to use round brackets T(x) in another sense.

Definition 2.1. The **support** of a function $T \in \mathbb{R}^{9}$ is

$$\operatorname{supp} T = \{ g \in \mathcal{G} : T[g] \neq 0 \}$$

Let $\Gamma \subseteq \mathcal{G}$. We say T is **supported by** Γ if supp $T \subseteq \Gamma$.

Notation 2.2. In fact, T will usually be written as a formal combination of group elements. That is:

$$T = \sum_{g \in \Gamma} a_g g, \qquad a_g \in \mathbb{R}$$

will be used for the function T with $T[g] = a_g$ for $g \in \Gamma$ and T[g] = 0 otherwise. The set Γ may or may not be the actual support of T.

Definition 2.3. If $c \in \mathbb{R}$, then $c \in \mathbb{R}^9$ is called a "constant" and identified with c. (That is, T[1] = c and T[g] = 0 for all $g \neq 1$.) If $g_0 \in \mathcal{G}$, then $1 g_0 \in \mathbb{R}^9$ is called a "transmonomial" (or simply "monomial") and identified with g_0 . (That is, $T[g_0] = 1$ and T[g] = 0 for all $g \neq g_0$.)

In all cases of interest to us, the support will be **well ordered** (according to the converse of \gg). That is, for all $\Gamma \subseteq \text{supp}(T)$, if $\Gamma \neq \emptyset$, then there is $g_0 \in \Gamma$ such that for all $g \in \Gamma$, if $g \neq g_0$, then $g_0 \gg g$.

Proposition 2.4. Let $\Gamma \subseteq \mathcal{G}$ be well ordered for the converse of \gg . Every infinite subset in Γ contains an infinite strictly decreasing sequence $g_1 \gg g_2 \gg \cdots$. There is no infinite strictly increasing sequence in Γ .

Definition 2.5. Let $T \neq 0$ be

$$T = \sum_{g \in \Gamma} a_g g, \qquad a_g \in \mathbb{R},$$

with $g_0 \in \Gamma$, $g_0 \gg g$ for all other $g \in \Gamma$, and $a_{g_0} \neq 0$. Then the **magnitude** of T is mag $T = g_0$ and the **dominance** of T is dom $T = a_{g_0}g_0$. We say T is **positive** if $a_{g_0} > 0$ and write T > 0. We say T is **negative** if $a_{g_0} < 0$ and write T < 0. We say T is **negative** if $a_{g_0} < 0$ and write T < 0. We say T is **negative** if $a_{g_0} < 0$ and magnitude T < 0. We say T is **negative** if $a_{g_0} < 0$ and magnitude T < 0. We say T is **negative** if $a_{g_0} < 0$ and magnitude T < 0. We say T is **negative** if $g \gg 1$ for all $g \in \text{supp } T$.

Definition 2.6. Addition is defined by components. (S+T)[g] = S[g] + T[g]. The union of two well ordered sets is well ordered. Scalar multiples aT are also defined by components.

Notation 2.7. We say S > T if S - T > 0. For nonzero S and T we say $S \gg T$ iff mag $S \gg \text{mag } T$, and we say $S \asymp T$ iff mag S = mag T.

Proposition 2.8. Every T may be written uniquely in the form T = L + c + s, where L is purely large, c is a constant, and s is small.

Definition 2.9. Multiplication is defined by convolution (as suggested by the formal sum notation).

$$\sum_{g \in \mathfrak{G}} a_g g \cdot \sum_{g \in \mathfrak{G}} b_g g = \sum_{g \in \mathfrak{G}} \left(\sum_{g_1 g_2 = g} a_{g_1} b_{g_2} \right) g$$

or $(ST)[g] = \sum_{g_1 g_2 = g} S[g_1]T[g_2]$

Products are defined at least for S, T with well ordered support.

Proposition 2.10. If $\Gamma_1, \Gamma_2 \subseteq \mathcal{G}$ are well ordered sets (for the reverse of \gg), then

$$\Gamma = \{ g_1 g_2 : g_1 \in \Gamma_1, g_2 \in \Gamma_2 \}$$

is also well ordered. For every $g \in \Gamma$, the set $\{(g_1, g_2) : g_1 \in \Gamma_1, g_2 \in \Gamma_2, g_1g_2 = g\}$ is finite.

Proof. Let $\Gamma' \subseteq \Gamma$ be nonempty. Assume Γ' has no greatest element. Then there exist $g_j \in \Gamma_1$ and $g'_j \in \Gamma_2$ with $g_1g'_1 \ll g_2g'_2 \ll \cdots$. Because Γ_1 is well ordered, taking a subsequence we may assume $g_1 \gg g_2 \gg \cdots$. But then $g'_1 \ll g'_2 \ll \cdots$, so Γ_2 is not well ordered.

Suppose $(g_1, g_2), (g_3, g_4) \in \Gamma_1 \times \Gamma_2$ with $g_1g_2 = g = g_3g_4$. If $g_1 \neq g_3$, then $g_2 \neq g_4$. If $g_1 \gg g_3$, then $g_2 \ll g_4$. Any infinite subset of a well ordered set contains an infinite strictly decreasing sequence, but the other well ordered set contains no infinite strictly increasing sequence.

Proposition 2.11. The set of all $T \in \mathbb{R}^{9}$ with well ordered support is an algebra over \mathbb{R} with the operations defined.

In algebra, this is called the Malcev–Neumann construction. In fact this is a field. That proof uses the Joe Kruskal theorem (?). But we don't need that result.

Proposition 2.12. Every nonzero T with well ordered support may be written uniquely in the form $T = (\text{dom } T) \cdot (1 + s)$ where s is small.

Proposition 2.13. The set of all purely large T (including 0) is a group under addition. The set of all small T is a group under addition. The set of all purely large T (with well ordered support) is closed under multiplication. The set of all small T (with well ordered support) is closed under multiplication.

Definition 2.14. Series are (provisionally) defined by components. If I is an index set, and for each $i \in I$ we are given some $T_i \in \mathbb{R}^9$, then the series

$$T = \sum_{i \in I} T_i$$

is defined iff the family $(\operatorname{supp} T_i)$ of supports is point-finite. Of course, even if $\operatorname{supp} T_i$ is well ordered for all i, it will not follow that $\operatorname{supp} T$ is well ordered.

Definition 2.15. Limits are (provisionally) defined by components. (And the topology used for the set \mathbb{R} of values is discrete.) That is: Suppose for all $n \in \mathbb{N}$, T_n is given. If, for all $g \in G$ there is $n_g \in \mathbb{N}$ such that $T_n[g]$ is the same for all $n \geq n_0$, then $T = \lim T_n$ is defined by $T[g] = T_{n_g}[g]$. Again, this is not enough to insure supp T well ordered—We will re-define limits again later. For general infinite index set I, define $T_i \to 0$ iff the family (supp T_i) is point-finite. And $T_i \to T$ iff $T_i - T \to 0$.

2.2 With generators

Some definitions will depend on a finite set of "generators". We will keep track of the set of generators more than is customary. But it is useful for the proofs, and essential for Costin's fixed-point theorem (Prop. 2.47).

Notation 2.16. $\mathcal{G}^{\text{small}} = \{ g \in \mathcal{G} : g \ll 1 \}.$

We begin with a finite set $\boldsymbol{\mu} \subset \mathcal{G}^{\text{small}}$. If convenient, we may number the elements of $\boldsymbol{\mu}$ in order, $\mu_1 \gg \mu_2 \gg \cdots \gg \mu_n$.

Notation 2.17. Let $\boldsymbol{\mu} = \{\mu_1, \cdots, \mu_n\} \subseteq \mathcal{G}^{\text{small}}$. For any multi-index $\mathbf{k} = (k_1, \cdots, k_n) \in \mathbb{Z}^n$, define $\boldsymbol{\mu}^{\mathbf{k}} = \mu_1^{k_1} \cdots \mu_n^{k_n}$.

If $\mathbf{k} > \mathbf{p}$, then $\mu^{\mathbf{k}} \ll \mu^{\mathbf{p}}$. Also $\mu^{\mathbf{0}} = 1$. If $\mathbf{k} > \mathbf{0}$ then $\mu^{\mathbf{k}} \ll 1$ (but not in general conversely).

*Example 2.18. Let $\mu = \{x^{-1}, e^{-x}\}$. Then $1 \gg \mu_1^{-1}\mu_2 = xe^{-x}$, even though $(-1, 1) \neq (0, 0)$.

**Example* 2.19. The correspondence $\mathbf{k} \mapsto \boldsymbol{\mu}^{\mathbf{k}}$ may fail to be injective. Let $\boldsymbol{\mu} = \{x^{-1/3}, x^{-1/2}\}$. Then $\mu_1^3 = \mu_2^2$.

Proposition 2.20. Let μ and \mathbf{m} be given. The principal filter of \mathbf{m} in \mathbb{Z}^n defines a set in \mathcal{G} by

$$\Gamma^{\boldsymbol{\mu},\mathbf{m}} = \left\{ \, \boldsymbol{\mu}^{\mathbf{k}} : \mathbf{k} \ge \mathbf{m} \, \right\}$$

Then $\Gamma^{\mu,\mathbf{m}}$ is well ordered in \mathfrak{G} .

Proof. Let $F \subseteq \Gamma^{\mu,\mathbf{m}}$ be nonempty. Define $E = \{ \mathbf{k} \in \mathbf{J}_{\mathbf{m}} : \mu^{\mathbf{k}} \in F \}$. Then the set Mag E of minimal elements of E is finite. So max $\{ \mu^{\mathbf{k}} : \mathbf{k} \in \operatorname{Mag} E \}$ is the greatest element of F.

Proposition 2.21. Given μ , m, g, there are only finitely many $\mathbf{k} \in \mathbf{J}_{\mathbf{m}}$ with $\mu^{\mathbf{k}} = g$.

Proof. Suppose there are infinitely many $\mathbf{k} \in \mathbf{J}_{\mathbf{m}}$ with $\boldsymbol{\mu}^{\mathbf{k}} = g$. By Prop. 1.3, this includes $\mathbf{k}_1 < \mathbf{k}_2$. But $\boldsymbol{\mu}^{\mathbf{k}_1} \gg \boldsymbol{\mu}^{\mathbf{k}_2}$.

The map $\mathbf{k} \mapsto \boldsymbol{\mu}^{\mathbf{k}}$ may not be one-to-one, but it is finite-to-one. So: if $(g_i)_{i \in I}$ is a family of monomials in $\Gamma^{\boldsymbol{\mu},\mathbf{m}}$, define $E_i = \{ \mathbf{k} \in \mathbf{J}_{\mathbf{m}} : \boldsymbol{\mu}^{\mathbf{k}} = g_i \}$, then $(\operatorname{supp} g_i)$ is point-finite if and only if (E_i) is point-finite.

Definition 2.22. Transseries generated by μ .

$$\begin{aligned} \mathfrak{T}^{\boldsymbol{\mu},\mathbf{m}} &= \left\{ T \in \mathbb{R}^{\mathcal{G}} : \operatorname{supp} T \subseteq \Gamma^{\boldsymbol{\mu},\mathbf{m}} \right\}, \\ \mathfrak{T}^{\boldsymbol{\mu}} &= \bigcup_{\mathbf{m} \in \mathbb{Z}^n} \mathfrak{T}^{\boldsymbol{\mu},\mathbf{m}}, \\ \mathfrak{T}^{\mathcal{G}} &= \bigcup_{\boldsymbol{\mu}} \mathfrak{T}^{\boldsymbol{\mu}}. \end{aligned}$$

In this union, all finite sets μ are allowed, so all values of n are allowed. But each transseries is generated only by a finite set μ . Each is supported by one of the well ordered sets $\Gamma^{\mu,\mathbf{m}}$.

If $\mu \subseteq \tilde{\mu}$, then $\mathfrak{T}^{\mu} \subseteq \mathfrak{T}^{\tilde{\mu}}$ in a natural way. If \mathcal{G} is a subgroup of $\tilde{\mathcal{G}}$ and inherits the order, then $\mathfrak{T}^{\mathcal{G}} \subseteq \mathfrak{T}^{\tilde{\mathcal{G}}}$ in a natural way.

*Example 2.23. The series

$$\sum_{j=1}^{\infty} x^{1/j} = x^1 + x^{1/2} + x^{1/3} + x^{1/4} + \dots,$$

despite having well ordered support, does not belong to $\mathbb{T}^{\mathcal{G}}.$ It is not finitely generated.

Manifestly small

Definition 2.24. If g may be written in the form $\mu^{\mathbf{k}}$ with $\mathbf{k} > \mathbf{0}$, then g is μ small, written $g \ll^{\mu} 1$. [For emphasis, manifestly μ -small.] Let $\mathcal{G}^{\mu \text{ small}}$ be the set of all μ -small transmonomials. Or: $\mathcal{G}^{\mu \text{ small}} = \Gamma^{\mu,\mathbf{0}} \setminus \{1\}$. If $\operatorname{supp} T \subseteq \mathcal{G}^{\mu \text{ small}}$ then T is μ -small, written $T \ll^{\mu} 1$.

Definition 2.25. Limits of transseries. Let $T_j, T \in \mathfrak{T}^{\mathfrak{G}}$ for $j \in \mathbb{N}$. Then: $T_j \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$ means: $\operatorname{supp} T_j \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ for all j, and $T_j \to T$ in the componentwise sense of Definition 2.15. $T_j \xrightarrow{\boldsymbol{\mu}} T$ means there exists \mathbf{m} such that $T_j \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$. $T_j \to T$ means there exists $\boldsymbol{\mu}$ such that $T_j \xrightarrow{\boldsymbol{\mu}} T$.

It seems there is no reason for a countable index set, so use this also for other infinite index sets. The non-provisional definition: $T_i \to 0$ iff there is $\boldsymbol{\mu}, \mathbf{m}$ so that supp $T_i \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ for all i, and the family $(\text{supp } T_i)$ is point-finite. Also, $T_i \to T$ iff $T_i - T \to 0$.

*Example 2.26. The sequence $(x^j)_{j \in \mathbb{N}}$ converges (to 0) in the sense of Definition 2.15, but not in this new sense. It is not contained in any well ordered $\Gamma^{\mu,\mathbf{m}}$.

Proposition 2.27 (Continuity). Let I be an index set. If $S_i \to S$ and $T_i \to T$, then $S_i + T_i \to S + T$ and $S_iT_i \to ST$.

Proof. We may increase $\boldsymbol{\mu}$ and decrease \mathbf{m} to arrange $S_i \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} S$ and $T_i \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$ for the same $\boldsymbol{\mu}, \mathbf{m}$. Then $S_i + T_i \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} S + T$. and $S_i T_i \xrightarrow{\boldsymbol{\mu}, \mathbf{p}} ST$ for $\mathbf{p} = 2\mathbf{m}$. To see this: let $g \in \Gamma^{\boldsymbol{\mu}, \mathbf{p}}$. There are finitely many pairs $g_1, g_2 \in \Gamma^{\boldsymbol{\mu}, \mathbf{k}}$ such that $g_1g_2 = g$ (Prop. 2.10). So there is a single finite $I_0 \subseteq I$ outside of which $S_i[g_1] = S[g_1]$ and $T_i[g_2] = T[g_2]$ for all such g_1, g_2 . For such i, we also have $(S_iT_i)[g] = (ST)[g]$.

Definition 2.28. Series of transseries. Let $T_i, T \in \mathcal{T}^{\mathcal{G}}$ for *i* in some index set *I*. Then

$$T = \sum_{i \in I} T_i$$

means: there exist $\boldsymbol{\mu}$ and \mathbf{m} such that all supp $T_i \subseteq \Gamma^{\boldsymbol{\mu},\mathbf{m}}$ for all i; for all g, the set $I_g = \{i \in I : T_i[g] \neq 0\}$ is finite; and $T[g] = \sum_{i \in I_g} T_i[g]$.

Proposition 2.29. If $T \in T^{\mathcal{G}}$, then the "formal combination of group elements" that specifies T in fact converges to T in this sense as well.

Note we have the "Freshman" (or ultrametric) Cauchy criterion: Series $\sum T_i$ converges if and only if $T_i \to 0$.

Proposition 2.30. Let $s \in \mathfrak{I}^{\mu}$ be μ -small. Then $(s^j)_{j \in \mathbb{N}} \xrightarrow{\mu} 0$.

Proof. Every transmonomial in supp s can be written in the form $\mu^{\mathbf{k}}$ with $\mathbf{k} > \mathbf{0}$. The product of two of these is again one of these. Let $g_0 \in \mathcal{G}$. If g_0 is not μ -small, then $g_0 \in \text{supp}(s^j)$ for no j. So assume g_0 is μ -small. Then there are just finitely many $\mathbf{p} > \mathbf{0}$ such that $g_0 = \mu^{\mathbf{p}}$. Let

$$N = \max \{ |\mathbf{p}| : \mathbf{p} > \mathbf{0}, \mu^{\mathbf{p}} = g_0 \}.$$

Now let j > N. Since every $g \in \operatorname{supp} s$ is $\mu^{\mathbf{k}}$ with $|\mathbf{k}| \ge 1$, we see that every element of $\operatorname{supp}(s^j)$ is $\mu^{\mathbf{k}}$ with $|\mathbf{k}| \ge j$. So $g_0 \notin \operatorname{supp}(s^j)$. This shows the family $(\operatorname{supp}(s^j))$ is point-finite.

Proposition 2.31. Let $T \in \mathfrak{T}^{\mu}$ be small. Then there is a (possibly larger) finite set $\tilde{\mu} \subseteq \mathfrak{G}^{\text{small}}$ such that T is manifestly $\tilde{\mu}$ -small.

Proof. Let $T \in \mathfrak{T}^{\mu,\mathbf{m}}$. If T = 0, there is nothing to do, so assume $T \neq 0$. Then $\operatorname{supp} T \neq \emptyset$. Define $E = \{ \mathbf{k} \in \mathbf{J_m} : \boldsymbol{\mu^k} \in \operatorname{supp} T \}$. By Prop. 1.4, Mag E is finite. Let $\tilde{\boldsymbol{\mu}} = \boldsymbol{\mu} \cup \{ \boldsymbol{\mu^k} : \mathbf{k} \in \operatorname{Mag} E \}$. Note $\tilde{\boldsymbol{\mu}} \subset \mathcal{G}^{\operatorname{small}}$. Now for any $g \in \operatorname{supp} T$, there is $\mathbf{p} \in E$ with $\boldsymbol{\mu^p} = g$, and then there is $\mathbf{k} \in \operatorname{Mag} E$ with $\mathbf{p} \geq \mathbf{k}$, so that $\tilde{g} = \boldsymbol{\mu^k} \in \tilde{\boldsymbol{\mu}}$ and $g = \tilde{g} \boldsymbol{\mu^{p-k}}$ which is manifestly $\tilde{\boldsymbol{\mu}}$ -small. \Box

Perhaps call $\tilde{\mu} \setminus \mu$ the *addendum*, or *smallness addendum* for *T*. [Costin suggests: $\tilde{\mu}$ is the *resolution* of *T*; $\tilde{\mu} \setminus \mu$ the μ -spawn of *T*]

**Example 2.32.* The corresponding statement for purely large T is false. The transseries

$$T = \sum_{j=0}^{\infty} x^{-j} e^{z}$$

is purely large, but there is no finite set $\mu \subseteq \mathcal{G}^{\text{small}}$ and multi-index **m** such that all $x^{-j}e^x$ have the form $\mu^{\mathbf{k}}$ with $\mathbf{m} \leq \mathbf{k} < \mathbf{0}$. This is because the set $\{\mathbf{k} : \mathbf{m} \leq \mathbf{k} < \mathbf{0}\}$ is finite.

Proposition 2.33. Let $T \in \mathbb{T}^{\mathfrak{G}}$ be small. Then $(T^j)_{j \in \mathbb{N}} \to 0$.

Proof. First, $T \in \mathfrak{T}^{\mu}$ for some μ . Then T is manifestly $\tilde{\mu}$ -small for some $\tilde{\mu} \supseteq \mu$. Therefore $T^j \xrightarrow{\tilde{\mu}} 0$, so $T^j \to 0$.

Proposition 2.34. Let $\sum_{j=0}^{\infty} c_j z^j$ be a power series (even one with radius of convergence zero). If s is a small transseries, then $\sum_{j=0}^{\infty} c_j s^j$ converges.

Proof. Use Prop. 2.31. We need to add the smallness addendum of s to μ . \Box

Proposition 2.35. Let s_1, \dots, s_m be μ -small transseries. Let $p_1, \dots, p_m \in \mathbb{Z}$. Then the family

$$\left\{ \operatorname{supp}\left(s_{1}^{j_{1}}s_{2}^{j_{2}}\cdots s_{m}^{j_{m}}\right): j_{1} \geq p_{1}, \dots j_{m} \geq p_{m} \right\}$$

is point-finite. That is, all multiple series of the form

$$\sum_{j_1=p_1}^{\infty} \sum_{j_2=p_2}^{\infty} \dots \sum_{j_m=p_m}^{\infty} c_{j_1 j_2 \dots j_m} s_1^{j_1} \dots s_m^{j_m}$$

are μ -convergent.

Proof. An induction on m shows that we may assume $p_1 = \cdots = p_m = 1$, since the series with general p_i and the series with all $p_i = 1$, differ from each other by a finite number of series with fewer summations. So assume $p_1 = \cdots = p_m = 1$.

Let $g_0 \in \mathcal{G}$. If g_0 is not μ -small, then $g_0 \in \text{supp}(s_1^{j_1} \cdots s_m^{j_m})$ for no j_1, \cdots, j_m . So assume g_0 is μ -small. There are finitely many $\mathbf{k} > \mathbf{0}$ so that $\mu^{\mathbf{k}} = g_0$. Let

$$N = \max\left\{ \left| \mathbf{k} \right| : \mathbf{k} > \mathbf{0}, \boldsymbol{\mu}^{\mathbf{k}} = g_0 \right\}.$$

Each s_i has the form $\boldsymbol{\mu}^{\mathbf{k}}$ with $|\mathbf{k}| \geq 1$. So if $j_1 + \cdots + j_m > N$, we have $g_0 \notin \operatorname{supp} \left(s_1^{j_1} \cdots s_m^{j_m} \right)$.

Proposition 2.36. Let $T \in \mathfrak{T}^{\mu}$ be nonzero. Then there is a (possibly larger) finite set $\tilde{\mu} \subseteq \mathfrak{S}^{\text{small}}$ and $S \in \mathfrak{T}^{\tilde{\mu}}$ such that ST = 1. The set $\mathfrak{T}^{\mathfrak{G}}$ of all \mathfrak{G} -transferies is a field.

Proof. Write $T = a\mu^{\mathbf{k}} (1+s)$, where $a \in \mathbb{R}, a \neq 0$, $\mathbf{k} \in \mathbb{Z}^n$, and s is small. Then the inverse S is:

$$S = a^{-1} \boldsymbol{\mu}^{-\mathbf{k}} \sum_{j=0}^{\infty} (-1)^j s^j.$$

Now a^{-1} is computed in the reals. For the series, use Prop. 2.34. Let $\tilde{\mu}$ be μ plus the smallness addendum for s.

We will call $\widetilde{\mu} \setminus \mu$ the *inversion addendum* for *T*.

μ -order

Proposition 2.37. The set $\Gamma^{\mu,\mathbf{m}}$ is well-partially-ordered for \gg^{μ} . That is: if $E \subseteq \Gamma^{\mu,\mathbf{m}}$, then there is a μ -maximal element: $g_0 \in E$ and $g \gg^{\mu} g_0$ for no $g \in E$.

Proof. If **p** is minimal in $\{ \mathbf{k} \in \mathbf{J}_{\mathbf{m}} : \boldsymbol{\mu}^{\mathbf{k}} \in E \}$, then $\boldsymbol{\mu}^{\mathbf{p}}$ is $\boldsymbol{\mu}$ -maximal in E. \Box

Proposition 2.38. Let $E \subseteq \Gamma^{\mu,\mathbf{m}}$ be infinite. Then there is a squence $g_j \in E$, $j \in \mathbb{N}$, with $g_0 \gg^{\mu} g_1 \gg^{\mu} g_2 \gg^{\mu} \cdots$.

Proposition 2.39. Let $E \subseteq \Gamma^{\mu,\mathbf{m}}$. Then the set $\operatorname{Mag}^{\mu} E$ of maximal elements of E is finite. For every $g \in E$ there is $g_0 \in \operatorname{Mag}^{\mu} E$ with $g \ll^{\mu} g_0$.

Definition 2.40. Let $E, F \subseteq \mathcal{G}$. We say $E \mu$ -dominates F iff for all $g \in F$ there exists $\tilde{g} \in E$ such that $\tilde{g} \gg^{\mu} g$. We say $S \mu$ -contracts to T iff supp $S \mu$ -dominates supp T.

If s is μ -small, then T μ -contracts to Ts.

Proposition 2.41. Let $E, F \subseteq \Gamma^{\mu, \mathbf{m}}$. Then $E \mu$ -dominates F if and only if $\operatorname{Mag}^{\mu} E \mu$ -dominates $\operatorname{Mag}^{\mu} F$.

If $E \mu$ -dominates F, then $\operatorname{Mag}^{\mu} E$ and $\operatorname{Mag}^{\mu} F$ are disjoint.

Proposition 2.42. Let $E_j \subseteq \Gamma^{\mu,\mathbf{m}}$, $j \in \mathbb{N}$, be an infinite sequence such that E_j μ -dominates E_{j+1} for all j. Then the sequence (E_j) is point-finite.

Proposition 2.43. Let $E_i \subseteq \Gamma^{\mu,\mathbf{m}}$ be a point-finite family. Assume E_i μ -dominates F_i for all *i*. Then (F_i) is also point-finite.

Contraction

Definition 2.44. Let J be linear from some subspace of \mathcal{T}^{μ} to itself. Then we say J is μ -contractive iff T μ -contracts to J(T) for all T in the subspace.

Definition 2.45. Let J be possibly non-linear from some subset of \mathcal{T}^{μ} to itself. Then we say J is μ -contractive iff S - T μ -contracts to J(S) - J(T) for all S, T in the subset.

There is an easy way to define a linear μ -contractive map J on $\mathfrak{T}^{\mu,\mathbf{m}}$. If J is defined on all monomials $g \in \Gamma \subseteq \Gamma^{\mu,\mathbf{m}}$ and g contracts to J(g) for them, then the family (supp J(g)) is point-finite by Prop. 2.43, so

$$J\left(\sum c_g g\right) = \sum c_g J(g)$$

 μ -converges and defines J on the span.

*Example 2.46. The set μ of generators is important. We cannot simply replace " μ -small" by "small" in the definitions. Suppose $J(x^{-j}) = x^j e^{-x}$ for all $j \in \mathbb{N}$, and $J(g) = gx^{-1}$ for all other monomials. Then $g \gg J(g)$ for all g. But $J(\sum x^{-j})$ evaluated pointwise is not a legal transseries. Or: Define $J(x^{-j}) = e^{-x}$ for all $j \in \mathbb{N}$, and $J(g) = gx^{-1}$ for all other monomials. Again $g \gg J(g)$ for all g, but the family supp $J(x^{-j})$ is not point-finite.

Proposition 2.47. (i) If J is linear and μ -contractive on $\mathcal{T}^{\mu,\mathbf{m}}$, then for any $T_0 \in \mathcal{T}^{\mu,\mathbf{m}}$, the fixed-point equation $T = J(T) + T_0$ has a unique solution $T \in \mathcal{T}^{\mu,\mathbf{m}}$. (ii) If $A \subseteq \mathcal{T}^{\mu,\mathbf{m}}$ is closed, and $J: A \to A$ is μ -contractive on A, then T = J(T) has a unique solution in A.

Proof. (i) follows from (ii), since if J is linear and μ -contractive, then \widetilde{J} defined by $\widetilde{J}(T) = J(T) + T_0$ is μ -contractive.

(ii) First note J is μ -continuous: Assume $T_j \xrightarrow{\mu} T$. Then $T_j - T \xrightarrow{\mu} 0$, so $(\operatorname{supp}(T_j - T))$ is point-finite. But $\operatorname{supp}(T_j - T) \mu$ -dominates $\operatorname{supp}(J(T_j) - J(T))$, so $(\operatorname{supp}(J(T_j) - J(T)))$ is also point-finite by Prop. 2.43. And so $J(T_j) \xrightarrow{\mu} J(T)$.

Existence: Define $T_{j+1} = J(T_j)$. We claim T_j is μ -convergent. The sequence $E_j = \operatorname{supp}(T_j - T_{j+1})$ satisfies: $E_j \ \mu$ -dominates E_{j+1} for all j, so (Prop. 2.42) (E_j) is point-finite, which means $T_j - T_{j+1} \xrightarrow{\mu} 0$ and therefore (by Freshman Cauchy) $T_j \ \mu$ -converges. Difference preserves μ -limits, so the limit T satisfies J(T) = T.

Uniqueness: if T_1 and T_2 were two different solutions, then $J(T_1) - J(T_2) = T_1 - T_2$, which contradicts μ -contractivity.

3 Transseries as $x \to \infty$

We recursively construct the group \mathcal{G} to be used.

3.1 Without logs

A dummy symbol "x" appears in the notation. When we think of a transseries as describing behavior as $x \to \infty$, then x is supposed to be a large parameter. When we write "compositions" involving transseries, x represents the identity function. But usually it is just a convenient symbol.

Definition 3.1. Group \mathcal{G}_0 is isomorphic to the reals with addition and the usual ordering. To fit our applications, we write the group element corresponding to $b \in \mathbb{R}$ as x^b . Then $x^a x^b = x^{a+b}$; $x^0 = 1$; x^{-b} is the inverse of x^b ; $x^a \ll x^b$ iff a < b.

Log-free transseries of level zero are those defined from this group as in Definition 2.22. Write $\mathcal{T}_0 = \mathcal{T}^{\mathcal{G}_0}$. Then the set of purely large transseries in \mathcal{T}_0 (including 0) is closed under addition.

Definition 3.2. Group \mathcal{G}_1 consists of ordered pairs (b, L) but written $x^b e^L$, where $b \in \mathbb{R}$ and $L \in \mathcal{T}_0$ is purely large. Define the group operations: $(x^b e^L) (x^{\tilde{b}} e^{\tilde{L}}) = x^{b+\tilde{b}} e^{L+\tilde{L}}$. Define order lexicographically: $(x^b e^L) \gg (x^{\tilde{b}} e^{\tilde{L}})$ iff either $L > \tilde{L}$ or $\{L = \tilde{L} \text{ and } b > \tilde{b}\}$. Identify \mathcal{G}_0 as a subgroup of \mathcal{G}_1 , where x^b is identified with $x^b e^0$.

Log-free transseries of level 1 are those defined from this group as in Definition 2.22. Write $\mathcal{T}_1 = \mathcal{T}^{\mathcal{G}_1}$. We may identify \mathcal{T}_0 as a subset of \mathcal{T}_1 . Then the set of purely large transseries in \mathcal{T}_1 (including 0) is closed under addition.

Definition 3.3. Suppose log-free transmonomials \mathcal{G}_N and log-free transseries \mathcal{T}_N of level N have been defined. Group \mathcal{G}_{N+1} consists of ordered pairs (b, L) but written $x^b e^L$, where $b \in \mathbb{R}$ and $L \in \mathcal{T}_N$ is purely large. Define the group operations: $(x^b e^L) (x^{\tilde{b}} e^{\tilde{L}}) = x^{b+\tilde{b}} e^{L+\tilde{L}}$. Define order $(x^b e^L) \gg (x^{\tilde{b}} e^{\tilde{L}})$ iff either $L > \tilde{L}$ or $\{L = \tilde{L} \text{ and } b > \tilde{b}\}$. Identify \mathcal{G}_N as a subgroup of \mathcal{G}_{N+1} recursively.

Log-free transseries of level N + 1 are those defined from this group as in Definition 2.22. Write $\mathcal{T}_{N+1} = \mathcal{T}^{\mathcal{G}_{N+1}}$. We may identify \mathcal{T}_N as a subset of \mathcal{T}_{N+1} . Definition 3.4. The group of log-free transmonomials is

$$\mathfrak{G}_* = \bigcup_{N \in \mathbb{N}} \mathfrak{G}_N$$

The space of log-free transseries is

$$\mathfrak{T}_* = \bigcup_{N \in \mathbb{N}} \mathfrak{T}_N.$$

In fact, $\mathcal{T}_* = \mathcal{T}^{\mathcal{G}_*}$ because each individual transseries is finitely generated.

A set μ is *recursively complete* if for every transmonomial $x^b e^L$ in μ , we also have supp $L \subseteq \mu$. Of course, given any finite set $\mu \subseteq \mathcal{G}^{\text{small}}$, there is a recursively complete finite set $\tilde{\mu} \supseteq \mu$. Call $\tilde{\mu} \setminus \mu$ the *completion addendum* of μ .

Properties

Proposition 3.5. Let T be a log-free transseries. If $T \gg 1$, then there exists a real number c > 0 such that $T \gg x^c$. If $T \ll 1$, then there exists a real number c < 0 such that $T \ll x^c$.

Proof. Let mag $T = x^b e^L$. If L = 0, then b > 0, so take c = b/2. If L > 0, $T \gg x^1$, since \gg is defined lexicographically. The other case is similar. \Box

Proposition 3.6. Let L > 0 be purely large of level N and not N-1, let $b \in \mathbb{R}$, and let T be of level N. Then $x^b e^L \gg T$.

Proof. By induction on the level. Let mag $T = x^{b_1} e^{L_1}$. So $L_1 \in \mathfrak{T}_{N-1}$, and therefore by the induction hypothesis dom $(L - L_1) = \text{dom}(L) > 0$. So $L > L_1$ and $x^b e^L \gg x^{b_1} e^{L_1}$.

Derivative

Definition 3.7. **Derivative** (notations ', ∂ , \mathcal{D}) is defined recursively. $(x^a)' = ax^{a-1}$, where we may need the addendum of generator x^{-1} . If ∂ has been defined for \mathcal{G}_N , define termwise for \mathcal{T}_N . (See the next proposition for the proof that this makes sense.) Then, if ∂ has been defined for \mathcal{T}_N , define it on \mathcal{G}_{N+1} by

$$\left(x^{b}e^{L}\right)' = bx^{b-1}e^{L} + x^{b}L'e^{L}$$

For the *derivative addendum* $\tilde{\mu}$: begin with μ , add the completion addendum of μ , and add x^{-1} .

Proposition 3.8. Let μ be given. Let $\tilde{\mu}$ be as described. (i) If $T_i \xrightarrow{\mu} T$ then $T'_i \xrightarrow{\tilde{\mu}} T'$. (ii) If $\sum T_i$ is μ -convergent, then $\sum T'_i$ is $\tilde{\mu}$ -convergent and $(\sum T_i)' = \sum T'_i$. (iii) If $\Gamma \subseteq \Gamma^{\mu,\mathbf{m}}$, then $\sum_{g \in \Gamma} a_g g'$ is $\tilde{\mu}$ -convergent.

Proof. (iii) is stated equivalently: the family (supp g') is point-finite. Or: as g ranges over $\Gamma^{\mu,\mathbf{m}}$, we have $g' \xrightarrow{\tilde{\mu}} 0$.

Proof by induction on the level.

Say $\mu_1 = x^{-b_1} e^{-L_1}, \cdots, \mu_n = x^{-b_n} e^{-L_n}$, and $\mathbf{k} = (k_1, \cdots, k_n)$. Then

$$(\boldsymbol{\mu}^{\mathbf{k}})' = (x^{-k_1b_1 - \dots - k_nb_n} e^{-k_1L_1 - \dots - k_nL_n})'$$

= $(-k_1b_1 - \dots - k_nb_n)x^{-1}\boldsymbol{\mu}^{\mathbf{k}} + (-k_1L'_1 - \dots - k_nL'_n)\boldsymbol{\mu}^{\mathbf{k}}$.

So if $T = \sum_{k \ge m} a_k \mu^k$, then summing the above transmonomial result, we get

$$T' = x^{-1}T_0 + L'_1T_1 + \dots + L'_nT_n,$$

where T_0, \dots, T_n are transseries with the same support as T, and therefore they exist in $\mathcal{T}^{\mu,\mathbf{m}}$. Derivatives L'_1, \dots, L'_n exist by induction hypothesis. So T' exists.

Proposition 3.9. There is no $T \in \mathcal{T}_*$ with $T' = x^{-1}$.

Proof. In fact, we show: If $g \in \mathcal{G}_*$, then $x^{-1} \notin \operatorname{supp} g'$. This suffices since

$$\operatorname{supp} T' \subseteq \bigcup_{g \in \operatorname{supp} T} \operatorname{supp} g'.$$

Proof by induction on the level. If $g = x^b$, then $g' = bx^{b-1}$ and $x^{-1} \notin \operatorname{supp} g'$. If $g = x^b e^L$ with L of level N-1, then $g' = (bx^{-1} + L')e^L$. Now by the induction hypothesis, $bx^{-1} + L' \neq 0$, so (by Prop. 3.6) g' is far larger than x^{-1} if L > 0 and far smaller than x^{-1} if L < 0.

Proposition 3.10. (a) If $g_1 \gg g_2$, $g_1 \neq 1$, and $g_2 \neq 1$, then $g'_1 \gg g'_2$. (b) If $\max T \neq 1$, then $T' \asymp (\max T)'$ and $\operatorname{dom}(T') = \operatorname{dom}((\operatorname{dom} T)')$. (c) If $\max T_1 \neq 1$ and $T_1 \gg T_2$, then $T'_1 \gg T'_2$.

Proof. (a) If $g_1 = x^{b_1}e^{L_1} \gg g_2 = x^{b_2}e^{L_2}$, then $L_2 < L_1$ or $\{L_2 = L_1 \text{ and } b_2 < b_1\}$. Then $g'_1 = (b_1x^{-1} + L'_1)x^{b_1}e^{L_1}$ and $g'_2 = (b_2x^{-1} + L'_2)x^{b_2}e^{L_2}$. By Prop. 3.9 the factors $(b_1x^{-1} + L'_1)$ and $(b_2x^{-1} + L'_2)$ are not zero. If $L_2 < L_1$, then by Prop. 3.6 $g'_1 \gg g'_2$. If $L_2 = L_1$, then $L'_2 = L'_1$ and $x^{b_1-1} \gg x^{b_2-1}$, so we get $g'_1 \gg g'_2$.

(b), (c) follow from (a).

Proposition 3.11. (i) If $s \ll 1$, then $s' \ll 1$. (ii) If $T \gg 1$ and T > 0, then T' > 0. (iii) If $T \gg 1$ and T < 0, then T' < 0. (iv) If $T \gg 1$ then $xT' \gg 1$. (v) If $T \gg 1$, then $T^2 \gg T'$.

Proof. (i) Assume $s \ll 1$. Then $s \ll x^c$ for some c < 0, and $s' \ll cx^{c-1} \ll 1$.

(ii) Assume $T \gg 1$ and T > 0. Let dom $T = ax^b e^L$. So $T' \simeq (bx^{-1} + L')x^b e^L$. If L > 0, then this is far larger than 1 by Prop. 3.6. If L = 0, b > 0, then dom $T' = abx^{b-1} > 0$. In both cases, $xT' \gg 1$. That's (iv). (iii) is similar.

(v) Again dom $T = ax^b e^L$, so dom $T^2 = a^2 x^{2b} e^{2L}$. We claim this is far larger than $(bx^{-1} + L')x^b e^L$. If $L \neq 0$, this is true by Prop. 3.6. If L = 0, b > 0 this is true because 2b > b - 1.

If $T \gg x^2$, then $T' \gg 1$. In particular, if $T \gg 1$ and T is of level ≥ 1 , then $T' \gg 1$.

Proposition 3.12. If $L \neq 0$ is purely large, then $\operatorname{dom}(ax^b e^L)' = ax^b e^L \operatorname{dom} L'$.

Proof. Since $L \gg 1$, there is c > 0 with $L \gg x^c$, so $L' \gg x^{c-1} \gg x^{-1}$. So $(ax^b e^L)' = ax^b e^L (bx^{-1} + L') \asymp ax^b e^L L'$.

Proposition 3.13. If T' = 0, then T is a constant.

Proof. Assume T' = 0. Write T = L + c + s. If $L \neq 0$ then mag $T' = \max L' \gg 1$, so $T' \neq 0$. If L = 0 and $s \neq 0$, then mag $T' = \max s' \ll 1$ so $L' \neq 0$. Therefore L = c.

The set \mathcal{T}_N is a differential field with constants \mathbb{R} .

Compositions

Definition 3.14. We define T^b , where $T \in \mathcal{T}_*$ is positive, and $b \in \mathbb{R}$. First, write $T = cx^a e^L(1+s)$ as usual, with c > 0. Then define $T^b = c^b x^{ab} e^{bL}(1+s)^b$. Constant c^b , with c > 0, is computed in the reals. Next, x^{ab} is a transseries, but may require addendum of a generator. Also, $(1+s)^b$ is a convergent binomial series, again we may require the smallness addendum for s. Finally, since L is purely large, so is bL, and thus e^{bL} is a transseries, but may require addendum of a generator.

Definition 3.15. We define e^T , where $T \in \mathfrak{T}_*$. Write T = L + c + s, with L purely large, c a constant, and s small. Then $e^T = e^L e^c e^s$. Constant e^c is computed in the reals—note that $e^T > 0$. Next, e^s is a convergent power series; we may need the smallness addedum for s. And of course e^L is a transseries, but may not already be a generator, so e^L or e^{-L} may be required as addendum.

Of course, if T is purely large, then this definition of e^T agrees with the notation e^T used before.

Definition 3.16. Let $T_1, T_2 \in \mathcal{T}_*$ with T_2 positive and large (but not necessarily purely large). We want to define the **composition** $T_1 \circ T_2$. This is done by induction on the level of T_1 . When $T_1 = x^b e^L$ is a transmonomial, define $T_1 \circ T_2 = T_2^b e^{L \circ T_2}$. Both T_2^b and $e^{L \circ T_2}$ may require addenda. And $L \circ T_2$ exists by the induction hypothesis. In general, when $T_1 = \sum c_g g$, define $T_1 \circ T_2 =$ $\sum c_g (g \circ T_2)$. The next proposition is required. If $T_1 \gg 1$, then $T_1 \circ T_2 \gg 1$. If $T_1 \ll 1$, then $T_1 \circ T_2 \ll 1$.

Proposition 3.17. Let μ , \mathbf{m} and $T_2 \in \mathcal{T}_*$ be given with $\operatorname{supp} T_2 \subseteq \Gamma^{\mu, \mathbf{m}}, T_2 \gg 1$. 1. Then there exist $\tilde{\mu}$ and $\tilde{\mathbf{m}}$ so that $g \circ T_2 \in \mathcal{T}^{\tilde{\mu}, \tilde{\mathbf{m}}}$ for all $g \in \Gamma^{\mu, \mathbf{m}}$, and the family $(\operatorname{supp}(g \circ T_2))$ is point-finite.

Proof. First, add the completion addendum of μ . Now for all these generators $\{\mu_1, \cdots, \mu_{n'}\}$, write $\mu_i = x^{-b_i} e^{-L_i}$, $1 \le i \le n'$. Arrange the list so that for all i, supp $L_i \subseteq \{\mu_1, \cdots, \mu_{i-1}\}$. Then take the μ_i in order. Each $T_2^{-b_i}$ may require an addendum. Each $L_i \circ T_2$ may require an addendum, which has been added before. So all $\mu_i \circ T_2$ exist. They are small. Add smallness addenda for these (Is that needed?). So finally we get $\tilde{\mu}$.

Now for each $\mu_i \in \mu$, we have $\mu_i \circ T_2$ is $\tilde{\mu}$ -small. So by Prop. 2.35 we have $(g \circ T_2)_{a \in \Gamma^{\mu, \mathbf{m}}} \xrightarrow{\tilde{\mu}} 0.$

Example 3.18. For composition $T_1 \circ T_2$, we need T_2 large. Example: $T_1 = \sum_{j=0}^{\infty} x^{-j}$, $T_2 = x^{-1}$ small. Then $T_1 \circ T_2 = \sum_{j=0}^{\infty} x^j$ is not a valid transference.

3.2 With logs

Transseries with logs are obtained by composing with log on the right.

Notation 3.19. If $m \in \mathbb{N}$, we write formally \log_m to represent the *m*-fold composition of the natural logarithm with itself. \log_0 will have no effect. Sometimes we may write $\log_m = \exp_{-m}$, especially when m < 0.

Definition 3.20. Let $M \in \mathbb{N}$. A transseries with depth M is a formal expression $Q = T \circ \log_M$, where $T \in \mathcal{T}_*$.

We identify transseries of depth M as a subset of transseries of depth M + 1 by identifying $T \circ \log_M$ with $(T \circ \exp) \circ \log_{M+1}$. Composition on the right with exp is defined in Def. 3.16. Using this idea, we define operations on transseries from the operations in \mathcal{T}_* .

Definition 3.21. Let $Q_j = T_j \circ \log_M$, where $T_j \in \mathcal{T}_*$. Define $Q_1 + Q_2 = (T_1 + T_2) \circ \log_M$; $Q_1 Q_2 = (T_1 T_2) \circ \log_M$; $Q_1 > Q_2$ iff $T_1 > T_2$; $Q_1 \gg Q_2$ iff $T_1 \gg T_2$; $Q_j \to Q_0$ iff $T_j \to T_0$; $\sum Q_j = (\sum T_j) \circ \log_M$; $Q_1^b = (T_1^b) \circ \log_M$; $\exp(Q_1) = (\exp(T_1)) \circ \log_M$; and so on.

Definition 3.22. Transseries.

$$\begin{split} \mathfrak{T}_{NM} &= \left\{ T \circ \log_M : T \in \mathfrak{T}_N \right\}, \\ \mathfrak{T}_{*M} &= \bigcup_{N \in \mathbb{N}} \mathfrak{T}_{NM} = \left\{ T \circ \log_M : T \in \mathfrak{T}_* \right\}, \\ \mathfrak{T}_{**} &= \bigcup_{M \in \mathbb{N}} \mathfrak{T}_{*M}. \end{split}$$

When M < 0 we also write \mathfrak{T}_{*M} . So $\mathfrak{T}_{*,-1} = \{ T \circ \exp : T \in \mathfrak{T}_* \}.$

If $T = \sum c_g g$ we may write $T \circ \log_M$ as a series

$$\left(\sum c_g g\right) \circ \log_M = \sum c_g (g \circ \log_M).$$

Simplifications along these lines may be carried out: $\exp(\log x) = x$; $e^{b \log x} = x^b$; etc. As usual we sometimes use x as a variable and sometimes as the identity function. On monomials we can write

$$(x^b e^L) \circ \log = (\log x)^b e^{L \circ \log x}$$

but just consider this an abbreviation?

Definition 3.23. $Q \in \mathfrak{T}_{**}$ has **exact depth** M iff $Q = T \circ \log_M, T \in \mathfrak{T}_*$ and T cannot be written in the form $T = T_1 \circ \exp$ for $T_1 \in \mathfrak{T}_*$. This will also make sense for negative M.

Definition 3.24. Logarithm. If $T \in \mathcal{T}_*$, T > 0, write $T = ax^b e^L(1+s)$ as usual. Define $\log T = \log a + b \log x + L + \log(1+s)$. Now $\log a$, a > 0 is computed in the reals. $\log(1+s)$ is a series. The term $b \log x$ gives this depth 1; if b = 0then we remain log-free.

For general $Q \in \mathcal{T}_{**}$: if $Q = T \circ \log_M$, then $\log(Q) = \log(T) \circ \log_M$, which could have depth M + 1.

Definition 3.25. Differentiation is done as expected from the usual rules.

$$(T \circ \log)' = (T' \circ \log) \cdot x^{-1} = (T'e^{-x}) \circ \log.$$

So ∂ maps \mathcal{T}_{*M} into itself.

Check usual properties.

We now have an antiderivative for x^{-1} .

$$\left(\log x\right)' = \left(x \circ \log \right)' = \left(1 \cdot e^{-x}\right) \circ \log = (x^{-1}) \circ \exp \circ \log = x^{-1}.$$

Aside. Would it be better to write these out as if they were functions? Should

$$T = x^{-1/2} e^{x^2 - 2x} \circ \log x$$

be written as

$$T(x) = (\log x)^{-1/2} e^{(\log x)^2 - 2(\log x)} = (\log x)^{-1/2} e^{(\log x)^2} x^{-2}$$

and let this be understood as an abbreviation? Or should we use some symbol other than x for the dummy identity function?

$$T = \Box^{-1/2} e^{\Box^2 - 2\Box} \circ \log.$$

Contraction

Contraction (for the fixed-point theorem) is formulated for a particular μ . So to apply it in \mathcal{T}_{**} , either we will have to convert problems to \mathcal{T}_{*} , or else write out what to do with generating sets involving logs.

Integral

This is an example where we convert the problem to a log-free case to apply the contraction argument. The general integration problem (3.29) is reduced to one (3.26) where contraction can be easily applied.

Proposition 3.26. Let $T \in \mathcal{T}_*$ with $T \gg 1$. Then there is $S \in \mathcal{T}_*$ with $S' = e^T$.

Proof. Either T is positive or negative. We will do the positive case, the negative one is similar. If

$$S = \frac{e^T}{T'} \left(1 + \Delta\right),$$

where Δ satisfies

$$\Delta = \frac{T''}{(T')^2} + \frac{T''}{(T')^2} \Delta - \frac{\Delta'}{T'},$$

then it is a computation to see that $S' = e^T$. So it suffices to exhibit an appropriate μ and show that the linear map $J: \mathbb{T}^{\mu,0} \to \mathbb{T}^{\mu,0}$ defined by

$$J(\Delta) = \frac{T^{\prime\prime}}{(T^\prime)^2} \Delta - \frac{\Delta^\prime}{T^\prime}$$

is μ -contractive, then apply Prop. 2.47(i).

Say T is of exact level N, so e^T is of exact level N + 1. By Prop. 3.11, $T'' \ll (T')^2$ and $xT' \gg 1$. So $T''/(T')^2$ and 1/(xT') are small. Let μ be the least set of generators including x^{-1} , the generators for T, the inversion addendum

for T', the smallness addenda for $T''/(T')^2$ and 1/(xT'), and is recursively complete. Check: all generators in μ are (at most) of level N. (That is, none of the addenda mentioned will increase the level.) And all derivatives T', T''belong to \mathfrak{T}^{μ} . If $g \in \Gamma^{\mu,0}$ then $g' \in \mathfrak{T}^{\mu,0}$. So for this μ , the function J maps $\mathfrak{T}^{\mu,0}$ into itself.

Since J is linear, we just have to check that it μ -contracts monomials $g \in \operatorname{supp} \Delta$. Now $T''/(T')^2$ is μ -small so $g \mu$ -contracts to $(T''/(T')^2)g$. For the second term: If $g = x^b e^L$ with L of level N - 1, then

$$\frac{g'}{T'} = \frac{bx^{b-1}e^L + L'x^be^L}{T'} = \frac{bx^{-1} + L'}{T'}g = \frac{b + xL'}{xT'}g$$

But $xT' \gg 1$ has exact level N while b + xL' has level N - 1, and thus the factor (b + xL')/(xT') is μ -small. [Wait: do I need an explicit addendum for (b + xL')/(xT')?] So $g \ \mu$ -contracts to g'/T'.

Definition 3.27. We say $x^b e^L \in \mathcal{G}_*$ is **power-free** iff b = 0. We say $T \in \mathcal{T}_*$ is power-free iff all transmonomials in supp T are power-free.

Since $(x^b e^L) \circ \exp = e^{bx} e^{L \circ \exp}$, it follows that all $T \in \mathcal{T}_{*,-1}$ are power-free.

Proposition 3.28. Let $T \in \mathcal{T}_*$ be a power-free transseries. Then there is $S \in \mathcal{T}_*$ with S' = T.

Proof. For monomials $g = e^L$ with large L, write $\mathcal{P}(g)$ for the transseries constructed in Prop. 3.26 with $\mathcal{P}(g)' = g$. Then we must show that the family $(\operatorname{supp} \mathcal{P}(g))$ is point-finite, so we can define $\mathcal{P}(\sum c_g g) = \sum c_g \mathcal{P}(g)$. For large L we have $xL' \gg 1$ (Prop. 3.11), so the formula

$$\frac{\mathcal{P}(e^L)}{x} = \frac{e^L}{xL'}(1+\Delta)$$

shows that e^L contracts to $\mathcal{P}(e^L)/x$. So the family of all of these supp $\mathcal{P}(e^L)/x$ is point-finite and thus the family of supp $\mathcal{P}(e^L)$ is point-finite. [Do we need x^{-1} to be a generator?]

Proposition 3.29. Let $Q \in \mathcal{T}_{**}$. Then there exists $\mathcal{P}(Q) \in \mathcal{T}_{**}$ with $\mathcal{P}(Q)' = Q$.

Proof. Say $Q \in \mathfrak{T}_{*M}$. Then $Q = T_1 \circ \log_{M+1}$, where $T_1 \in \mathfrak{T}_{*,-1}$. Let $T = T_1 \cdot \exp_{M+1} \cdot \exp_M \cdots \exp_2 \cdot \exp_1$. Now T is power-free, so by Prop. 3.28, there exists $S \in \mathfrak{T}_*$ with S' = T. Then let $\mathcal{P}(Q) = S \circ \log_{M+1}$ and check that $\mathcal{P}(Q)' = Q$. Note that $\mathcal{P}(Q) \in \mathfrak{T}_{*,M+1}$.