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Abstract

An attempt to write consistent definitions and terminology. And no-
tation. But probably not the best way for learning.

Introduction

Starred (*Example) are examples to illustrate the definitions, but make use of
the later notation from Section 3.

The correspondence between multi-indices and transmonomials reverses the
ordering. This means terminology that seems right on one side may seem to be
backward on the other side. For example, I change my mind on whether Jm

should be called a filter or an ideal. Even with conventional asymptotic series,
larger terms are written to the left, smaller terms to the right, reversing the
convention for a number line.

1 Multi-indices

Begin with a positive integer n. The set Zn of n-tuples of integers is a group
under componentwise addition. For notation, avoiding subscripts, if k ∈ Zn and
1 ≤ i ≤ n, let’s write k[i] for the ith component of k. The partial order ≤ is
defined by: k ≤ p iff k[i] ≤ p[i] for all i. And k < p iff k ≤ p and k 6= p.
Element 0 = (0, 0, · · · , 0) is the identity for addition.

Write N = {0, 1, 2, 3, · · · } including 0. Subset Nn is closed under addition.
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Definition 1.1. A set J ⊆ Zn is a filter iff it is upward-saturated: if m ∈ J and
k ≥m, then k ∈ J. The filter generated by a set E ⊆ Zn is

J(E) = {k ∈ Zn : k ≥ p for some p ∈ E } .

The strict filter generated by E is

J∗(E) = {k ∈ Zn : k > p for some p ∈ E } .

The principal filter of m is the set Jm = J({m}) = {k ∈ Zn : k ≥m }. The
strict principal filter of m is

J∗m = J∗({m}) = Jm \ {m} = {k ∈ Zn : k > m } .

Note Jm is the translate of Nn by −m. That is, Jm = {k−m : k ∈ Nn }.
And Nn = J0. Translation preserves order.

Proposition 1.2. The set Jm is well-partially-ordered in the sense: if E ⊆ Jm

and E 6= ∅, then there is a minimal element: k0 ∈ E and k < k0 holds for no
element k ∈ E.

Proof. Because translation preserves order, it suffices to do the case of J0 = Nn.
First, {k[1] : k ∈ E } is a nonempty subset of N, so it has a least element, say
m1. Then {k[2] : k ∈ E,k[1] = m1 } is a nonempty subset of N, so it has a least
element, say m2. Continue. Then k0 = (m1, · · · ,mn) is minimal in E.

Proposition 1.3. Let E ⊆ Jm be infinite. Then there is a sequence kj ∈ E,
j ∈ N, with k0 < k1 < k2 < · · · .

Proof. Enough to do the case Nn. By induction on n. True if n = 1. Consider
the set Ẽ ⊆ Zn−1 defined by { (k[1],k[2], · · · ,k[n− 1]) : k ∈ E }. Case 1: Ẽ is
finite. Then for some p ∈ Ẽ, the set E′ = { k ∈ N : (p[1], · · · ,p[n− 1], k) ∈ E }
is infinite. Choose an increasing sequence kj ∈ E′ to get the increasing sequence
in E.

Case 2: Ẽ is infinite. By induction hypothesis, there is a strictly increasing
sequence pj ∈ Ẽ. So there is a sequence kj ∈ E that is increasing in every
coordinate except possibly the last. If some last coordinate occurs infinitely
often, use it to get an increasing sequence in E. If not, choose a subsequence of
these last coordinates that increases.

Proposition 1.4. Let E ⊆ Jm. Then the set MagE of all minimal elements
of E is finite. For every k ∈ E, there is k0 ∈ MagE with k0 ≤ k.

Proof. No two minimal elements are comparable, so MagE is finite by Prop. 1.3.
If E = ∅, then MagE = ∅ vacuously satisfies this. Suppose E 6= ∅. Then
MagE 6= ∅ satisfies the required conclusion by Prop. 1.2.
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Convergence of sets

Write 4 for the symmetric difference operation on sets. We will define conver-
gence a sequence of sets Ej ⊆ Zn (or indeed any infinite collection (Ei)i∈I of
sets). But we define convergence to ∅, and then let Ej → E mean Ej4E → ∅.

Definition 1.5. Let I be an infinite index set, and for each i ∈ I, let Ei ⊆ Zn.
We say the family (Ei)i∈I is point-finite iff each p ∈ Zn belongs to Ei for only
finitely many i. Let m ∈ Zn. We write Ei

m−→ ∅ iff Ei ⊆ Jm for all i and
(Ei) is point-finite. We write Ei → ∅ iff there exists m such that Ei

m−→ ∅.
Furthermore, write Ei

m−→ E iff Ei4E
m−→ ∅ and write Ei → E iff Ei4E → ∅.

This type of convergence is metrizable when restricted to any Jm. But there
is no preferred choice of metric.

Notation 1.6. For k = (k1, k2, · · · , kn), define |k| = k1 + k2 + · · ·+ kn.

Proposition 1.7. Let m ∈ Zn. For E,F ⊆ Jm, define

d(E,F ) =
∑

k∈E4F

2−|k|.

Then for any sets Ei ⊆ Jm, we have Ei → E if and only if d(Ei, E)→ 0. And
d is a metric on subsets of Jm.

Dominating

Definition 1.8. Let E,F be subsets of Zn. We say E dominates F iff for every
k ∈ F , there is p ∈ E with p < k. Equivalently, in terms of the filters:

F ⊆ J∗(E).

This may seem backward. But correspondingly in the realm of transmono-
mials, we will say larger monomials dominate smaller ones.

It’s transitive: If E1 dominates E2 and E2 dominates E3, then E1 dominates
E3. Every E dominates ∅. Note {m} dominates E if and only if E ⊆ J∗m.

Proposition 1.9. Let E,F be subsets of Jm. Then E dominates F if and only
if MagE dominates MagF .

Proof. Assume E dominates F . Let k ∈ MagF . Then k ∈ F , so there is k1 ∈ E
with k1 < k. Then there is k0 ∈ MagE with k0 ≤ k1. So k0 < k.

Conversely, assume MagE dominates MagF . Let k ∈ F . Then there is
k1 ∈ MagF with k1 ≤ k. So there is k0 ∈ MagE with k0 < k1. Thus k0 ∈ E
and k0 < k.

Proposition 1.10. If E dominates F , then MagE and MagF are disjoint.

Proof. Assume E dominates F . If k ∈ MagF , then k ∈ F , so there is k1 ∈ E
with k1 < k. So even if k ∈ E, it is not minimal.
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Proposition 1.11. Let Ej ⊆ Jm, j ∈ N, be an infinite sequence such that Ej

dominates Ej+1 for all j. Then the sequence (Ej) is point-finite; Ej → ∅.

Proof. Let p ∈ Jm. Then F = {k ∈ Jm : k < p } is finite. But the sets F ∩
MagEj are disjoint, and for every j with p ∈ Ej , the set F∩MagEj is nonempty.
Therefore, p ∈ Ej for only finitely many j.

Proposition 1.12. Let Ei ⊆ Jm be a point-finite family. Assume Ei dominates
Fi for all i. Then (Fi) is also point-finite.

Proof. Let p ∈ Jm. Then F = {k ∈ Jm : k < p } is finite. But the sets F ∩
MagEj are disjoint, and for every j with p ∈ Fj , the set F∩MagEj is nonempty.
Therefore, p ∈ Fj for only finitely many j.

2 Abstract transseries

We begin with an abelian totally ordered group G. The operation is written
multiplicatively, the identity is 1, the order relation is � and read “far larger
than”. This is a “strict” order relation; that is, g � g is false. We use the field
R of real numbers as “values”, but as far as this section is concerned, any field
would work. Later we do need real numbers as values.

2.1 Without generators

Write RG for the set of functions T : G→ R. For T ∈ RG and g ∈ G, we will use
square brackets T [g] for the value of T at g—because later we will want to use
round brackets T (x) in another sense.

Definition 2.1. The support of a function T ∈ RG is

suppT = { g ∈ G : T [g] 6= 0 } .

Let Γ ⊆ G. We say T is supported by Γ if suppT ⊆ Γ.

Notation 2.2. In fact, T will usually be written as a formal combination of group
elements. That is:

T =
∑
g∈Γ

agg, ag ∈ R

will be used for the function T with T [g] = ag for g ∈ Γ and T [g] = 0 otherwise.
The set Γ may or may not be the actual support of T .

Definition 2.3. If c ∈ R, then c 1 ∈ RG is called a “constant” and identified with
c. (That is, T [1] = c and T [g] = 0 for all g 6= 1.) If g0 ∈ G, then 1 g0 ∈ RG is
called a “transmonomial” (or simply “monomial”) and identified with g0. (That
is, T [g0] = 1 and T [g] = 0 for all g 6= g0.)

In all cases of interest to us, the support will be well ordered (according to
the converse of �). That is, for all Γ ⊆ supp(T ), if Γ 6= ∅, then there is g0 ∈ Γ
such that for all g ∈ Γ, if g 6= g0, then g0 � g.
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Proposition 2.4. Let Γ ⊆ G be well ordered for the converse of �. Every
infinite subset in Γ contains an infinite strictly decreasing sequence g1 � g2 �
· · · . There is no infinite strictly increasing sequence in Γ.

Definition 2.5. Let T 6= 0 be

T =
∑
g∈Γ

agg, ag ∈ R,

with g0 ∈ Γ, g0 � g for all other g ∈ Γ, and ag0 6= 0. Then the magnitude
of T is mag T = g0 and the dominance of T is domT = ag0g0. We say T is
positive if ag0 > 0 and write T > 0. We say T is negative if ag0 < 0 and
write T < 0. We say T is large if mag T � 1 (or T = 0). We say T is small if
mag T � 1 (or T = 0). We say T is purely large if g � 1 for all g ∈ suppT .

Definition 2.6. Addition is defined by components. (S + T )[g] = S[g] + T [g].
The union of two well ordered sets is well ordered. Scalar multiples aT are
also defined by components.

Notation 2.7. We say S > T if S − T > 0. For nonzero S and T we say S � T
iff magS � mag T , and we say S � T iff magS = mag T .

Proposition 2.8. Every T may be written uniquely in the form T = L+ c+ s,
where L is purely large, c is a constant, and s is small.

Definition 2.9. Multiplication is defined by convolution (as suggested by the
formal sum notation).

∑
g∈G

agg ·
∑
g∈G

bgg =
∑
g∈G

( ∑
g1g2=g

ag1bg2

)
g,

or (ST )[g] =
∑

g1g2=g

S[g1]T [g2]

Products are defined at least for S, T with well ordered support.

Proposition 2.10. If Γ1,Γ2 ⊆ G are well ordered sets (for the reverse of �),
then

Γ = { g1g2 : g1 ∈ Γ1, g2 ∈ Γ2 }

is also well ordered. For every g ∈ Γ, the set { (g1, g2) : g1 ∈ Γ1, g2 ∈ Γ2, g1g2 = g }
is finite.

Proof. Let Γ′ ⊆ Γ be nonempty. Assume Γ′ has no greatest element. Then there
exist gj ∈ Γ1 and g′j ∈ Γ2 with g1g

′
1 � g2g

′
2 � · · · . Because Γ1 is well ordered,

taking a subsequence we may assume g1 � g2 � · · · . But then g′1 � g′2 � · · · ,
so Γ2 is not well ordered.

Suppose (g1, g2), (g3, g4) ∈ Γ1 × Γ2 with g1g2 = g = g3g4. If g1 6= g3, then
g2 6= g4. If g1 � g3, then g2 � g4. Any infinite subset of a well ordered set
contains an infinite strictly decreasing sequence, but the other well ordered set
contains no infinite strictly increasing sequence.
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Proposition 2.11. The set of all T ∈ RG with well ordered support is an algebra
over R with the operations defined.

In algebra, this is called the Malcev–Neumann construction. In fact this is
a field. That proof uses the Joe Kruskal theorem (?). But we don’t need that
result.

Proposition 2.12. Every nonzero T with well ordered support may be written
uniquely in the form T = (domT ) · (1 + s) where s is small.

Proposition 2.13. The set of all purely large T (including 0) is a group under
addition. The set of all small T is a group under addition. The set of all purely
large T (with well ordered support) is closed under multiplication. The set of all
small T (with well ordered support) is closed under multiplication.

Definition 2.14. Series are (provisionally) defined by components. If I is an
index set, and for each i ∈ I we are given some Ti ∈ RG, then the series

T =
∑
i∈I

Ti

is defined iff the family (suppTi) of supports is point-finite. Of course, even if
suppTi is well ordered for all i, it will not follow that suppT is well ordered.

Definition 2.15. Limits are (provisionally) defined by components. (And the
topology used for the set R of values is discrete.) That is: Suppose for all n ∈ N,
Tn is given. If, for all g ∈ G there is ng ∈ N such that Tn[g] is the same for all
n ≥ n0, then T = limTn is defined by T [g] = Tng

[g]. Again, this is not enough
to insure suppT well ordered—We will re-define limits again later. For general
infinite index set I, define Ti → 0 iff the family (suppTi) is point-finite. And
Ti → T iff Ti − T → 0.

2.2 With generators

Some definitions will depend on a finite set of “generators”. We will keep track
of the set of generators more than is customary. But it is useful for the proofs,
and essential for Costin’s fixed-point theorem (Prop. 2.47).

Notation 2.16. Gsmall = { g ∈ G : g � 1 }.
We begin with a finite set µ ⊂ Gsmall. If convenient, we may number the

elements of µ in order, µ1 � µ2 � · · · � µn.

Notation 2.17. Let µ = {µ1, · · · , µn} ⊆ Gsmall. For any multi-index k =
(k1, · · · , kn) ∈ Zn, define µk = µk1

1 · · ·µkn
n .

If k > p, then µk � µp. Also µ0 = 1. If k > 0 then µk � 1 (but not in
general conversely).

*Example 2.18. Let µ = {x−1, e−x}. Then 1 � µ−1
1 µ2 = xe−x, even though

(−1, 1) 6> (0, 0).
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*Example 2.19. The correspondence k 7→ µk may fail to be injective. Let
µ = {x−1/3, x−1/2}. Then µ3

1 = µ2
2.

Proposition 2.20. Let µ and m be given. The principal filter of m in Zn

defines a set in G by
Γµ,m =

{
µk : k ≥m

}
.

Then Γµ,m is well ordered in G.

Proof. Let F ⊆ Γµ,m be nonempty. Define E =
{
k ∈ Jm : µk ∈ F

}
. Then the

set MagE of minimal elements of E is finite. So max
{

µk : k ∈ MagE
}

is the
greatest element of F .

Proposition 2.21. Given µ,m, g, there are only finitely many k ∈ Jm with
µk = g.

Proof. Suppose there are infinitely many k ∈ Jm with µk = g. By Prop. 1.3,
this includes k1 < k2. But µk1 � µk2 .

The map k 7→ µk may not be one-to-one, but it is finite-to-one. So: if
(gi)i∈I is a family of monomials in Γµ,m, define Ei =

{
k ∈ Jm : µk = gi

}
, then

(supp gi) is point-finite if and only if (Ei) is point-finite.

Definition 2.22. Transseries generated by µ.

Tµ,m =
{
T ∈ RG : suppT ⊆ Γµ,m

}
,

Tµ =
⋃

m∈Zn

Tµ,m,

TG =
⋃
µ

Tµ.

In this union, all finite sets µ are allowed, so all values of n are allowed. But
each transseries is generated only by a finite set µ. Each is supported by one of
the well ordered sets Γµ,m.

If µ ⊆ µ̃, then Tµ ⊆ Teµ in a natural way. If G is a subgroup of G̃ and inherits
the order, then TG ⊆ T

eG in a natural way.

*Example 2.23. The series

∞∑
j=1

x1/j = x1 + x1/2 + x1/3 + x1/4 + . . . ,

despite having well ordered support, does not belong to TG. It is not finitely
generated.
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Manifestly small

Definition 2.24. If g may be written in the form µk with k > 0, then g is µ-
small, written g �µ 1. [For emphasis, manifestly µ-small.] Let Gµ small be
the set of all µ-small transmonomials. Or: Gµ small = Γµ,0 \ {1}. If suppT ⊆
Gµ small then T is µ-small, written T �µ 1.
Definition 2.25. Limits of transseries. Let Tj , T ∈ TG for j ∈ N. Then:
Tj

µ,m−→ T means: suppTj ⊆ Γµ,m for all j, and Tj → T in the componentwise
sense of Definition 2.15. Tj

µ−→ T means there exists m such that Tj
µ,m−→ T .

Tj → T means there exists µ such that Tj
µ−→ T .

It seems there is no reason for a countable index set, so use this also for
other infinite index sets. The non-provisional definition: Ti → 0 iff there is
µ,m so that suppTi ⊆ Γµ,m for all i, and the family (suppTi) is point-finite.
Also, Ti → T iff Ti − T → 0.
*Example 2.26. The sequence (xj)j∈N converges (to 0) in the sense of Defini-
tion 2.15, but not in this new sense. It is not contained in any well ordered
Γµ,m.

Proposition 2.27 (Continuity). Let I be an index set. If Si → S and Ti → T ,
then Si + Ti → S + T and SiTi → ST .

Proof. We may increase µ and decrease m to arrange Si
µ,m−→ S and Ti

µ,m−→ T

for the same µ,m. Then Si + Ti
µ,m−→ S + T . and SiTi

µ,p−→ ST for p = 2m.
To see this: let g ∈ Γµ,p. There are finitely many pairs g1, g2 ∈ Γµ,k such
that g1g2 = g (Prop. 2.10). So there is a single finite I0 ⊆ I outside of which
Si[g1] = S[g1] and Ti[g2] = T [g2] for all such g1, g2. For such i, we also have
(SiTi)[g] = (ST )[g].

Definition 2.28. Series of transseries. Let Ti, T ∈ TG for i in some index set I.
Then

T =
∑
i∈I

Ti

means: there exist µ and m such that all suppTi ⊆ Γµ,m for all i; for all g, the
set Ig = { i ∈ I : Ti[g] 6= 0 } is finite; and T [g] =

∑
i∈Ig

Ti[g].

Proposition 2.29. If T ∈ TG, then the “formal combination of group elements”
that specifies T in fact converges to T in this sense as well.

Note we have the “Freshman” (or ultrametric) Cauchy criterion: Series
∑
Ti

converges if and only if Ti → 0.

Proposition 2.30. Let s ∈ Tµ be µ-small. Then (sj)j∈N
µ−→ 0.

Proof. Every transmonomial in supp s can be written in the form µk with k > 0.
The product of two of these is again one of these. Let g0 ∈ G. If g0 is not µ-
small, then g0 ∈ supp(sj) for no j. So assume g0 is µ-small. Then there are
just finitely many p > 0 such that g0 = µp. Let

N = max { |p| : p > 0,µp = g0 } .
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Now let j > N . Since every g ∈ supp s is µk with |k| ≥ 1, we see that every
element of supp(sj) is µk with |k| ≥ j. So g0 6∈ supp(sj). This shows the family
(supp(sj)) is point-finite.

Proposition 2.31. Let T ∈ Tµ be small. Then there is a (possibly larger) finite
set µ̃ ⊆ Gsmall such that T is manifestly µ̃-small.

Proof. Let T ∈ Tµ,m. If T = 0, there is nothing to do, so assume T 6= 0.
Then suppT 6= ∅. Define E =

{
k ∈ Jm : µk ∈ suppT

}
. By Prop. 1.4, MagE

is finite. Let µ̃ = µ ∪
{

µk : k ∈ MagE
}

. Note µ̃ ⊂ Gsmall. Now for any
g ∈ suppT , there is p ∈ E with µp = g, and then there is k ∈ MagE with
p ≥ k, so that g̃ = µk ∈ µ̃ and g = g̃µp−k which is manifestly µ̃-small.

Perhaps call µ̃\µ the addendum, or smallness addendum for T . [Costin
suggests: µ̃ is the resolution of T ; µ̃ \ µ the µ-spawn of T ]

*Example 2.32. The corresponding statement for purely large T is false. The
transseries

T =
∞∑

j=0

x−jex

is purely large, but there is no finite set µ ⊆ Gsmall and multi-index m such
that all x−jex have the form µk with m ≤ k < 0. This is because the set
{k : m ≤ k < 0 } is finite.

Proposition 2.33. Let T ∈ TG be small. Then (T j)j∈N → 0.

Proof. First, T ∈ Tµ for some µ. Then T is manifestly µ̃-small for some µ̃ ⊇ µ.
Therefore T j eµ−→ 0, so T j → 0.

Proposition 2.34. Let
∑∞

j=0 cjz
j be a power series (even one with radius of

convergence zero). If s is a small transseries, then
∑∞

j=0 cjs
j converges.

Proof. Use Prop. 2.31. We need to add the smallness addendum of s to µ.

Proposition 2.35. Let s1, · · · , sm be µ-small transseries. Let p1, · · · , pm ∈ Z.
Then the family {

supp
(
sj1

1 s
j2
2 · · · sjm

m

)
: j1 ≥ p1, . . . jm ≥ pm

}
is point-finite. That is, all multiple series of the form

∞∑
j1=p1

∞∑
j2=p2

...

∞∑
jm=pm

cj1j2...jm
sj1

1 · · · sjm
m

are µ-convergent.
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Proof. An induction on m shows that we may assume p1 = · · · = pm = 1, since
the series with general pi and the series with all pi = 1, differ from each other by
a finite number of series with fewer summations. So assume p1 = · · · = pm = 1.

Let g0 ∈ G. If g0 is not µ-small, then g0 ∈ supp
(
sj1

1 · · · sjm
m

)
for no j1, · · · , jm.

So assume g0 is µ-small. There are finitely many k > 0 so that µk = g0. Let

N = max
{
|k| : k > 0,µk = g0

}
.

Each si has the form µk with |k| ≥ 1. So if j1 + · · · + jm > N , we have
g0 6∈ supp

(
sj1

1 · · · sjm
m

)
.

Proposition 2.36. Let T ∈ Tµ be nonzero. Then there is a (possibly larger)
finite set µ̃ ⊆ Gsmall and S ∈ Teµ such that ST = 1. The set TG of all G-
transseries is a field.

Proof. Write T = aµk (1 + s), where a ∈ R, a 6= 0, k ∈ Zn, and s is small. Then
the inverse S is:

S = a−1µ−k
∞∑

j=0

(−1)jsj .

Now a−1 is computed in the reals. For the series, use Prop. 2.34. Let µ̃ be µ
plus the smallness addendum for s.

We will call µ̃ \ µ the inversion addendum for T .

µ-order

Proposition 2.37. The set Γµ,m is well-partially-ordered for �µ. That is: if
E ⊆ Γµ,m, then there is a µ-maximal element: g0 ∈ E and g �µ g0 for no
g ∈ E.

Proof. If p is minimal in
{
k ∈ Jm : µk ∈ E

}
, then µp is µ-maximal in E.

Proposition 2.38. Let E ⊆ Γµ,m be infinite. Then there is a sqeuence gj ∈ E,
j ∈ N, with g0 �µ g1 �µ g2 �µ · · · .
Proposition 2.39. Let E ⊆ Γµ,m. Then the set MagµE of maximal elements
of E is finite. For every g ∈ E there is g0 ∈ MagµE with g �µ g0.

Definition 2.40. Let E,F ⊆ G. We say E µ-dominates F iff for all g ∈ F
there exists g̃ ∈ E such that g̃ �µ g. We say S µ-contracts to T iff suppS
µ-dominates suppT .

If s is µ-small, then T µ-contracts to Ts.

Proposition 2.41. Let E,F ⊆ Γµ,m. Then E µ-dominates F if and only if
MagµE µ-dominates Magµ F .

If E µ-dominates F , then MagµE and Magµ F are disjoint.

Proposition 2.42. Let Ej ⊆ Γµ,m, j ∈ N, be an infinite sequence such that Ej

µ-dominates Ej+1 for all j. Then the sequence (Ej) is point-finite.

Proposition 2.43. Let Ei ⊆ Γµ,m be a point-finite family. Assume Ei µ-
dominates Fi for all i. Then (Fi) is also point-finite.
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Contraction

Definition 2.44. Let J be linear from some subspace of Tµ to itself. Then we
say J is µ-contractive iff T µ-contracts to J(T ) for all T in the subspace.

Definition 2.45. Let J be possibly non-linear from some subset of Tµ to itself.
Then we say J is µ-contractive iff S − T µ-contracts to J(S) − J(T ) for all
S, T in the subset.

There is an easy way to define a linear µ-contractive map J on Tµ,m. If J is
defined on all monomials g ∈ Γ ⊆ Γµ,m and g contracts to J(g) for them, then
the family (suppJ(g)) is point-finite by Prop. 2.43, so

J
(∑

cgg
)

=
∑

cgJ(g)

µ-converges and defines J on the span.

*Example 2.46. The set µ of generators is important. We cannot simply replace
“µ-small” by “small” in the definitions. Suppose J(x−j) = xje−x for all j ∈ N,
and J(g) = gx−1 for all other monomials. Then g � J(g) for all g. But
J(
∑
x−j) evaluated pointwise is not a legal transseries. Or: Define J(x−j) =

e−x for all j ∈ N, and J(g) = gx−1 for all other monomials. Again g � J(g)
for all g, but the family supp J(x−j) is not point-finite.

Proposition 2.47. (i) If J is linear and µ-contractive on Tµ,m, then for any
T0 ∈ Tµ,m, the fixed-point equation T = J(T ) + T0 has a unique solution T ∈
Tµ,m. (ii) If A ⊆ Tµ,m is closed, and J : A → A is µ-contractive on A, then
T = J(T ) has a unique solution in A.

Proof. (i) follows from (ii), since if J is linear and µ-contractive, then J̃ defined
by J̃(T ) = J(T ) + T0 is µ-contractive.

(ii) First note J is µ-continuous: Assume Tj
µ−→ T . Then Tj − T

µ−→ 0, so
(supp(Tj−T )) is point-finite. But supp(Tj−T ) µ-dominates supp(J(Tj)−J(T )),
so (supp(J(Tj)−J(T )) is also point-finite by Prop. 2.43. And so J(Tj)

µ−→ J(T ).
Existence: Define Tj+1 = J(Tj). We claim Tj is µ-convergent. The sequence

Ej = supp(Tj − Tj+1) satisfies: Ej µ-dominates Ej+1 for all j, so (Prop. 2.42)
(Ej) is point-finite, which means Tj − Tj+1

µ−→ 0 and therefore (by Freshman
Cauchy) Tj µ-converges. Difference preserves µ-limits, so the limit T satisfies
J(T ) = T .

Uniqueness: if T1 and T2 were two different solutions, then J(T1)− J(T2) =
T1 − T2, which contradicts µ-contractivity.

3 Transseries as x→∞
We recursively construct the group G to be used.
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3.1 Without logs

A dummy symbol “x” appears in the notation. When we think of a transseries
as describing behavior as x → ∞, then x is supposed to be a large parameter.
When we write “compositions” involving transseries, x represents the identity
function. But usually it is just a convenient symbol.

Definition 3.1. Group G0 is isomorphic to the reals with addition and the usual
ordering. To fit our applications, we write the group element corresponding to
b ∈ R as xb. Then xaxb = xa+b; x0 = 1; x−b is the inverse of xb; xa � xb iff
a < b.

Log-free transseries of level zero are those defined from this group as in
Definition 2.22. Write T0 = TG0 . Then the set of purely large transseries in T0

(including 0) is closed under addition.

Definition 3.2. Group G1 consists of ordered pairs (b, L) but written xbeL, where
b ∈ R and L ∈ T0 is purely large. Define the group operations: (xbeL) (xb̃e

eL) =
xb+b̃ eL+eL. Define order lexicographically: (xbeL) � (xb̃e

eL) iff either L > L̃ or
{L = L̃ and b > b̃}. Identify G0 as a subgroup of G1, where xb is identified with
xbe0.

Log-free transseries of level 1 are those defined from this group as in Defini-
tion 2.22. Write T1 = TG1 . We may identify T0 as a subset of T1. Then the set
of purely large transseries in T1 (including 0) is closed under addition.

Definition 3.3. Suppose log-free transmonomials GN and log-free transseries TN

of level N have been defined. Group GN+1 consists of ordered pairs (b, L) but
written xbeL, where b ∈ R and L ∈ TN is purely large. Define the group
operations: (xbeL) (xb̃e

eL) = xb+b̃ eL+eL. Define order (xbeL)� (xb̃e
eL) iff either

L > L̃ or {L = L̃ and b > b̃}. Identify GN as a subgroup of GN+1 recursively.

Log-free transseries of level N + 1 are those defined from this group as in
Definition 2.22. Write TN+1 = TGN+1 . We may identify TN as a subset of TN+1.

Definition 3.4. The group of log-free transmonomials is

G∗ =
⋃

N∈N
GN .

The space of log-free transseries is

T∗ =
⋃

N∈N
TN .

In fact, T∗ = TG∗ because each individual transseries is finitely generated.

A set µ is recursively complete if for every transmonomial xbeL in µ, we
also have suppL ⊆ µ. Of course, given any finite set µ ⊆ Gsmall, there is a
recursively complete finite set µ̃ ⊇ µ. Call µ̃ \ µ the completion addendum
of µ.
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Properties

Proposition 3.5. Let T be a log-free transseries. If T � 1, then there exists a
real number c > 0 such that T � xc. If T � 1, then there exists a real number
c < 0 such that T � xc.

Proof. Let mag T = xbeL. If L = 0, then b > 0, so take c = b/2. If L > 0,
T � x1, since � is defined lexicographically. The other case is similar.

Proposition 3.6. Let L > 0 be purely large of level N and not N−1, let b ∈ R,
and let T be of level N . Then xbeL � T .

Proof. By induction on the level. Let mag T = xb1eL1 . So L1 ∈ TN−1, and
therefore by the induction hypothesis dom(L − L1) = dom(L) > 0. So L > L1

and xbeL � xb1eL1 .

Derivative

Definition 3.7. Derivative (notations ′, ∂, D) is defined recursively. (xa)′ =
axa−1, where we may need the addendum of generator x−1. If ∂ has been
defined for GN , define termwise for TN . (See the next proposition for the proof
that this makes sense.) Then, if ∂ has been defined for TN , define it on GN+1

by (
xbeL

)′
= bxb−1eL + xbL′eL.

For the derivative addendum µ̃: begin with µ, add the completion ad-
dendum of µ, and add x−1.

Proposition 3.8. Let µ be given. Let µ̃ be as described. (i) If Ti
µ−→ T

then T ′i
eµ−→ T ′. (ii) If

∑
Ti is µ-convergent, then

∑
T ′i is µ̃-convergent and(∑

Ti

)′ =
∑
T ′i . (iii) If Γ ⊆ Γµ,m, then

∑
g∈Γ agg

′ is µ̃-convergent.

Proof. (iii) is stated equivalently: the family (supp g′) is point-finite. Or: as g

ranges over Γµ,m, we have g′
eµ−→ 0.

Proof by induction on the level.
Say µ1 = x−b1e−L1 , · · · , µn = x−bne−Ln , and k = (k1, · · · , kn). Then(

µk
)′ =

(
x−k1b1−···−knbne−k1L1−···−knLn

)′
= (−k1b1 − · · · − knbn)x−1µk + (−k1L

′
1 − · · · − knL

′
n)µk.

So if T =
∑

k≥m akµk, then summing the above transmonomial result, we get

T ′ = x−1T0 + L′1T1 + · · ·+ L′nTn,

where T0, · · · , Tn are transseries with the same support as T , and therefore
they exist in Tµ,m. Derivatives L′1, · · · , L′n exist by induction hypothesis. So T ′

exists.
. . .
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Proposition 3.9. There is no T ∈ T∗ with T ′ = x−1.

Proof. In fact, we show: If g ∈ G∗, then x−1 6∈ supp g′. This suffices since

suppT ′ ⊆
⋃

g∈supp T

supp g′.

Proof by induction on the level. If g = xb, then g′ = bxb−1 and x−1 6∈ supp g′. If
g = xbeL with L of level N − 1, then g′ = (bx−1 +L′)eL. Now by the induction
hypothesis, bx−1 + L′ 6= 0, so (by Prop. 3.6) g′ is far larger than x−1 if L > 0
and far smaller than x−1 if L < 0.

Proposition 3.10. (a) If g1 � g2, g1 6= 1, and g2 6= 1, then g′1 � g′2. (b) If
mag T 6= 1, then T ′ � (mag T )′ and dom(T ′) = dom((domT )′). (c) If mag T1 6=
1 and T1 � T2, then T ′1 � T ′2.

Proof. (a) If g1 = xb1eL1 � g2 = xb2eL2 , then L2 < L1 or {L2 = L1 and
b2 < b1}. Then g′1 = (b1x−1 + L′1)xb1eL1 and g′2 = (b2x−1 + L′2)xb2eL2 . By
Prop. 3.9 the factors (b1x−1 + L′1) and (b2x−1 + L′2) are not zero. If L2 < L1,
then by Prop. 3.6 g′1 � g′2. If L2 = L1, then L′2 = L′1 and xb1−1 � xb2−1, so we
get g′1 � g′2.

(b), (c) follow from (a).

Proposition 3.11. (i) If s � 1, then s′ � 1. (ii) If T � 1 and T > 0, then
T ′ > 0. (iii) If T � 1 and T < 0, then T ′ < 0. (iv) If T � 1 then xT ′ � 1.
(v) If T � 1, then T 2 � T ′.

Proof. (i) Assume s� 1. Then s� xc for some c < 0, and s′ � cxc−1 � 1.
(ii) Assume T � 1 and T > 0. Let domT = axbeL. So T ′ � (bx−1+L′)xbeL.

If L > 0, then this is far larger than 1 by Prop. 3.6. If L = 0, b > 0, then
domT ′ = abxb−1 > 0. In both cases, xT ′ � 1. That’s (iv). (iii) is similar.

(v) Again domT = axbeL, so domT 2 = a2x2be2L. We claim this is far larger
than (bx−1 + L′)xbeL. If L 6= 0, this is true by Prop. 3.6. If L = 0, b > 0 this is
true because 2b > b− 1.

If T � x2, then T ′ � 1. In particular, if T � 1 and T is of level ≥ 1, then
T ′ � 1.

Proposition 3.12. If L 6= 0 is purely large, then dom(axbeL)′ = axbeL domL′.

Proof. Since L � 1, there is c > 0 with L � xc, so L′ � xc−1 � x−1. So
(axbeL)′ = axbeL(bx−1 + L′) � axbeLL′.

Proposition 3.13. If T ′ = 0, then T is a constant.

Proof. Assume T ′ = 0. Write T = L+c+s. If L 6= 0 then mag T ′ = magL′ � 1,
so T ′ 6= 0. If L = 0 and s 6= 0, then mag T ′ = mag s′ � 1 so L′ 6= 0. Therefore
L = c.

The set TN is a differential field with constants R.
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Compositions

Definition 3.14. We define T b, where T ∈ T∗ is positive, and b ∈ R. First, write
T = cxaeL(1 + s) as usual, with c > 0. Then define T b = cbxabebL(1 + s)b.
Constant cb, with c > 0, is computed in the reals. Next, xab is a transseries, but
may require addendum of a generator. Also, (1 + s)b is a convergent binomial
series, again we may require the smallness addendum for s. Finally, since L is
purely large, so is bL, and thus ebL is a transseries, but may require addendum
of a generator.

Definition 3.15. We define eT , where T ∈ T∗. Write T = L+c+s, with L purely
large, c a constant, and s small. Then eT = eLeces. Constant ec is computed
in the reals—note that eT > 0. Next, es is a convergent power series; we may
need the smallness addedum for s. And of course eL is a transseries, but may
not already be a generator, so eL or e−L may be required as addendum.

Of course, if T is purely large, then this definition of eT agrees with the
notation eT used before.

Definition 3.16. Let T1, T2 ∈ T∗ with T2 positive and large (but not necessarily
purely large). We want to define the composition T1 ◦ T2. This is done by
induction on the level of T1. When T1 = xbeL is a transmonomial, define
T1 ◦ T2 = T b

2 e
L◦T2 . Both T b

2 and eL◦T2 may require addenda. And L ◦ T2 exists
by the induction hypothesis. In general, when T1 =

∑
cgg, define T1 ◦ T2 =∑

cg(g ◦ T2). The next proposition is required. If T1 � 1, then T1 ◦ T2 � 1. If
T1 � 1, then T1 ◦ T2 � 1.

Proposition 3.17. Let µ,m and T2 ∈ T∗ be given with suppT2 ⊆ Γµ,m, T2 �
1. Then there exist µ̃ and m̃ so that g ◦ T2 ∈ Teµ, em for all g ∈ Γµ,m, and the
family

(
supp(g ◦ T2)

)
is point-finite.

Proof. First, add the completion addendum of µ. Now for all these generators
{µ1, · · · , µn′}, write µi = x−bie−Li , 1 ≤ i ≤ n′. Arrange the list so that for all i,
suppLi ⊆ {µ1, · · · , µi−1}. Then take the µi in order. Each T−bi

2 may require
an addendum. Each Li ◦ T2 may require an addendum, which has been added
before. So all µi ◦ T2 exist. They are small. Add smallness addenda for these
(Is that needed?). So finally we get µ̃.

Now for each µi ∈ µ, we have µi ◦ T2 is µ̃-small. So by Prop. 2.35 we have
(g ◦ T2)g∈Γµ,m

eµ−→ 0.

Example 3.18. For composition T1 ◦ T2, we need T2 large. Example: T1 =∑∞
j=0 x

−j , T2 = x−1 small. Then T1 ◦ T2 =
∑∞

j=0 x
j is not a valid transseries.

3.2 With logs

Transseries with logs are obtained by composing with log on the right.

Notation 3.19. If m ∈ N, we write formally logm to represent the m-fold com-
position of the natural logarithm with itself. log0 will have no effect. Sometimes
we may write logm = exp−m, especially when m < 0.
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Definition 3.20. Let M ∈ N. A transseries with depth M is a formal expression
Q = T ◦ logM , where T ∈ T∗.

We identify transseries of depth M as a subset of transseries of depth M + 1
by identifying T ◦ logM with (T ◦ exp) ◦ logM+1. Composition on the right with
exp is defined in Def. 3.16. Using this idea, we define operations on transseries
from the operations in T∗.

Definition 3.21. Let Qj = Tj ◦ logM , where Tj ∈ T∗. Define Q1 + Q2 =
(T1 + T2) ◦ logM ; Q1Q2 = (T1T2) ◦ logM ; Q1 > Q2 iff T1 > T2; Q1 � Q2

iff T1 � T2; Qj → Q0 iff Tj → T0;
∑
Qj = (

∑
Tj) ◦ logM ; Qb

1 = (T b
1 ) ◦ logM ;

exp(Q1) = (exp(T1)) ◦ logM ; and so on.

Definition 3.22. Transseries.

TNM = {T ◦ logM : T ∈ TN } ,

T∗M =
⋃

N∈N
TNM = {T ◦ logM : T ∈ T∗ } ,

T∗∗ =
⋃

M∈N
T∗M .

When M < 0 we also write T∗M . So T∗,−1 = {T ◦ exp : T ∈ T∗ }.
If T =

∑
cgg we may write T ◦ logM as a series(∑

cgg
)
◦ logM =

∑
cg(g ◦ logM ).

Simplifications along these lines may be carried out: exp(log x) = x; eb log x = xb;
etc. As usual we sometimes use x as a variable and sometimes as the identity
function. On monomials we can write

(xbeL) ◦ log = (log x)beL◦log

but just consider this an abbreviation?

Definition 3.23. Q ∈ T∗∗ has exact depth M iff Q = T ◦ logM , T ∈ T∗ and T
cannot be written in the form T = T1 ◦ exp for T1 ∈ T∗. This will also make
sense for negative M .

Definition 3.24. Logarithm. If T ∈ T∗, T > 0, write T = axbeL(1+s) as usual.
Define log T = log a + b log x + L + log(1 + s). Now log a, a > 0 is computed
in the reals. log(1 + s) is a series. The term b log x gives this depth 1; if b = 0
then we remain log-free.

For general Q ∈ T∗∗: if Q = T ◦ logM , then log(Q) = log(T ) ◦ logM , which
could have depth M + 1.

Definition 3.25. Differentiation is done as expected from the usual rules.(
T ◦ log

)′ = (T ′ ◦ log) · x−1 =
(
T ′e−x

)
◦ log .

So ∂ maps T∗M into itself.
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Check usual properties.
We now have an antiderivative for x−1.(

log x
)′ =

(
x ◦ log

)′ =
(
1 · e−x

)
◦ log = (x−1) ◦ exp ◦ log = x−1.

Aside. Would it be better to write these out as if they were functions?
Should

T = x−1/2ex2−2x ◦ log

be written as

T (x) = (log x)−1/2e(log x)2−2(log x) = (log x)−1/2e(log x)2x−2

and let this be understood as an abbreviation? Or should we use some symbol
other than x for the dummy identity function?

T = �−1/2e�2−2� ◦ log .

Contraction

Contraction (for the fixed-point theorem) is formulated for a particular µ. So
to apply it in T∗∗, either we will have to convert problems to T∗, or else write
out what to do with generating sets involving logs.

Integral

This is an example where we convert the problem to a log-free case to apply
the contraction argument. The general integration problem (3.29) is reduced to
one (3.26) where contraction can be easily applied.

Proposition 3.26. Let T ∈ T∗ with T � 1. Then there is S ∈ T∗ with S′ = eT .

Proof. Either T is positive or negative. We will do the positive case, the negative
one is similar. If

S =
eT

T ′
(1 + ∆),

where ∆ satisfies

∆ =
T ′′

(T ′)2
+

T ′′

(T ′)2
∆− ∆′

T ′
,

then it is a computation to see that S′ = eT . So it suffices to exhibit an
appropriate µ and show that the linear map J : Tµ,0 → Tµ,0 defined by

J(∆) =
T ′′

(T ′)2
∆− ∆′

T ′

is µ-contractive, then apply Prop. 2.47(i).
Say T is of exact level N , so eT is of exact level N + 1. By Prop. 3.11,

T ′′ � (T ′)2 and xT ′ � 1. So T ′′/(T ′)2 and 1/(xT ′) are small. Let µ be the least
set of generators including x−1, the generators for T , the inversion addendum
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for T ′, the smallness addenda for T ′′/(T ′)2 and 1/(xT ′), and is recursively
complete. Check: all generators in µ are (at most) of level N . (That is, none
of the addenda mentioned will increase the level.) And all derivatives T ′, T ′′

belong to Tµ. If g ∈ Γµ,0 then g′ ∈ Tµ,0. So for this µ, the function J maps
Tµ,0 into itself.

Since J is linear, we just have to check that it µ-contracts monomials g ∈
supp ∆. Now T ′′/(T ′)2 is µ-small so g µ-contracts to (T ′′/(T ′)2)g. For the
second term: If g = xbeL with L of level N − 1, then

g′

T ′
=
bxb−1eL + L′xbeL

T ′
=
bx−1 + L′

T ′
g =

b+ xL′

xT ′
g.

But xT ′ � 1 has exact level N while b + xL′ has level N − 1, and thus the
factor (b + xL′)/(xT ′) is µ-small. [Wait: do I need an explicit addendum for
(b+ xL′)/(xT ′)?] So g µ-contracts to g′/T ′.

Definition 3.27. We say xbeL ∈ G∗ is power-free iff b = 0. We say T ∈ T∗ is
power-free iff all transmonomials in suppT are power-free.

Since (xbeL) ◦ exp = ebxeL◦exp, it follows that all T ∈ T∗,−1 are power-free.

Proposition 3.28. Let T ∈ T∗ be a power-free transseries. Then there is
S ∈ T∗ with S′ = T .

Proof. For monomials g = eL with large L, write P(g) for the transseries con-
structed in Prop. 3.26 with P(g)′ = g. Then we must show that the family
(supp P(g)) is point-finite, so we can define P

(∑
cgg
)

=
∑
cgP(g). For large L

we have xL′ � 1 (Prop. 3.11), so the formula

P(eL)
x

=
eL

xL′
(1 + ∆)

shows that eL contracts to P(eL)/x. So the family of all of these supp P(eL)/x
is point-finite and thus the family of supp P(eL) is point-finite. [Do we need x−1

to be a generator?]

Proposition 3.29. Let Q ∈ T∗∗. Then there exists P(Q) ∈ T∗∗ with P(Q)′ = Q.

Proof. Say Q ∈ T∗M . Then Q = T1 ◦ logM+1, where T1 ∈ T∗,−1. Let T =
T1 · expM+1 · expM · · · exp2 · exp1. Now T is power-free, so by Prop. 3.28, there
exists S ∈ T∗ with S′ = T . Then let P(Q) = S ◦ logM+1 and check that
P(Q)′ = Q. Note that P(Q) ∈ T∗,M+1.
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