Transseries

G. A. Edgar

May 14, 2007

Contents

1 Multi-indices 1
2 Abstract transseries 4
2.1 Without generators 4
2.2 With generators 6
3 Transseries as $x \rightarrow \infty$ 11
3.1 Without logs 12
3.2 With logs 15
Abstract

An attempt to write consistent definitions and terminology. And no
tation. But probably not the best way for learning.

Introduction

Starred (${ }^{*}$ Example) are examples to illustrate the definitions, but make use of the later notation from Section 3.

The correspondence between multi-indices and transmonomials reverses the ordering. This means terminology that seems right on one side may seem to be backward on the other side. For example, I change my mind on whether $\mathbf{J}_{\mathbf{m}}$ should be called a filter or an ideal. Even with conventional asymptotic series, larger terms are written to the left, smaller terms to the right, reversing the convention for a number line.

1 Multi-indices

Begin with a positive integer n. The set \mathbb{Z}^{n} of n-tuples of integers is a group under componentwise addition. For notation, avoiding subscripts, if $\mathbf{k} \in \mathbb{Z}^{n}$ and $1 \leq i \leq n$, let's write $\mathbf{k}[i]$ for the i th component of \mathbf{k}. The partial order \leq is defined by: $\mathbf{k} \leq \mathbf{p}$ iff $\mathbf{k}[i] \leq \mathbf{p}[i]$ for all i. And $\mathbf{k}<\mathbf{p}$ iff $\mathbf{k} \leq \mathbf{p}$ and $\mathbf{k} \neq \mathbf{p}$. Element $\mathbf{0}=(0,0, \cdots, 0)$ is the identity for addition.

Write $\mathbb{N}=\{0,1,2,3, \cdots\}$ including 0 . Subset \mathbb{N}^{n} is closed under addition.

Definition 1.1. A set $\mathbf{J} \subseteq \mathbb{Z}^{n}$ is a filter iff it is upward-saturated: if $\mathbf{m} \in \mathbf{J}$ and $\mathbf{k} \geq \mathbf{m}$, then $\mathbf{k} \in \mathbf{J}$. The filter generated by a set $E \subseteq \mathbb{Z}^{n}$ is

$$
\mathbf{J}(E)=\left\{\mathbf{k} \in \mathbb{Z}^{n}: \mathbf{k} \geq \mathbf{p} \text { for some } \mathbf{p} \in E\right\}
$$

The strict filter generated by E is

$$
\mathbf{J}^{*}(E)=\left\{\mathbf{k} \in \mathbb{Z}^{n}: \mathbf{k}>\mathbf{p} \text { for some } \mathbf{p} \in E\right\}
$$

The principal filter of \mathbf{m} is the set $\mathbf{J}_{\mathbf{m}}=\mathbf{J}(\{\mathbf{m}\})=\left\{\mathbf{k} \in \mathbb{Z}^{n}: \mathbf{k} \geq \mathbf{m}\right\}$. The strict principal filter of \mathbf{m} is

$$
\mathbf{J}_{\mathbf{m}}^{*}=\mathbf{J}^{*}(\{\mathbf{m}\})=\mathbf{J}_{\mathbf{m}} \backslash\{\mathbf{m}\}=\left\{\mathbf{k} \in \mathbb{Z}^{n}: \mathbf{k}>\mathbf{m}\right\}
$$

Note $\mathbf{J}_{\mathbf{m}}$ is the translate of \mathbb{N}^{n} by $-\mathbf{m}$. That is, $\mathbf{J}_{\mathbf{m}}=\left\{\mathbf{k}-\mathbf{m}: \mathbf{k} \in \mathbb{N}^{n}\right\}$. And $\mathbb{N}^{n}=\mathbf{J}_{\mathbf{0}}$. Translation preserves order.

Proposition 1.2. The set $\mathbf{J}_{\mathbf{m}}$ is well-partially-ordered in the sense: if $E \subseteq \mathbf{J}_{\mathbf{m}}$ and $E \neq \varnothing$, then there is a minimal element: $\mathbf{k}_{0} \in E$ and $\mathbf{k}<\mathbf{k}_{0}$ holds for no element $\mathbf{k} \in E$.

Proof. Because translation preserves order, it suffices to do the case of $\mathbf{J}_{\mathbf{0}}=\mathbb{N}^{n}$. First, $\{\mathbf{k}[1]: \mathbf{k} \in E\}$ is a nonempty subset of \mathbb{N}, so it has a least element, say m_{1}. Then $\left\{\mathbf{k}[2]: \mathbf{k} \in E, \mathbf{k}[1]=m_{1}\right\}$ is a nonempty subset of \mathbb{N}, so it has a least element, say m_{2}. Continue. Then $\mathbf{k}_{0}=\left(m_{1}, \cdots, m_{n}\right)$ is minimal in E.

Proposition 1.3. Let $E \subseteq \mathbf{J}_{\mathbf{m}}$ be infinite. Then there is a sequence $\mathbf{k}_{j} \in E$, $j \in \mathbb{N}$, with $\mathbf{k}_{0}<\mathbf{k}_{1}<\mathbf{k}_{2}<\cdots$.

Proof. Enough to do the case \mathbb{N}^{n}. By induction on n. True if $n=1$. Consider the set $\widetilde{E} \subseteq \mathbb{Z}^{n-1}$ defined by $\{(\mathbf{k}[1], \mathbf{k}[2], \cdots, \mathbf{k}[n-1]): \mathbf{k} \in E\}$. Case 1: \widetilde{E} is finite. Then for some $\mathbf{p} \in \widetilde{E}$, the set $E^{\prime}=\{k \in \mathbb{N}:(\mathbf{p}[1], \cdots, \mathbf{p}[n-1], k) \in E\}$ is infinite. Choose an increasing sequence $k_{j} \in E^{\prime}$ to get the increasing sequence in E.

Case 2: \widetilde{E} is infinite. By induction hypothesis, there is a strictly increasing sequence $\mathbf{p}_{j} \in \widetilde{E}$. So there is a sequence $\mathbf{k}_{j} \in E$ that is increasing in every coordinate except possibly the last. If some last coordinate occurs infinitely often, use it to get an increasing sequence in E. If not, choose a subsequence of these last coordinates that increases.

Proposition 1.4. Let $E \subseteq \mathbf{J}_{\mathbf{m}}$. Then the set $\operatorname{Mag} E$ of all minimal elements of E is finite. For every $\mathbf{k} \in E$, there is $\mathbf{k}_{0} \in \operatorname{Mag} E$ with $\mathbf{k}_{0} \leq \mathbf{k}$.

Proof. No two minimal elements are comparable, so Mag E is finite by Prop. 1.3. If $E=\varnothing$, then $\operatorname{Mag} E=\varnothing$ vacuously satisfies this. Suppose $E \neq \varnothing$. Then $\operatorname{Mag} E \neq \varnothing$ satisfies the required conclusion by Prop. 1.2.

Convergence of sets

Write \triangle for the symmetric difference operation on sets. We will define convergence a sequence of sets $E_{j} \subseteq \mathbb{Z}^{n}$ (or indeed any infinite collection $\left(E_{i}\right)_{i \in I}$ of sets). But we define convergence to \varnothing, and then let $E_{j} \rightarrow E$ mean $E_{j} \triangle E \rightarrow \varnothing$.
Definition 1.5. Let I be an infinite index set, and for each $i \in I$, let $E_{i} \subseteq \mathbb{Z}^{n}$. We say the family $\left(E_{i}\right)_{i \in I}$ is point-finite iff each $\mathbf{p} \in \mathbb{Z}^{n}$ belongs to E_{i} for only finitely many i. Let $\mathbf{m} \in \mathbb{Z}^{n}$. We write $E_{i} \xrightarrow{\mathbf{m}} \varnothing$ iff $E_{i} \subseteq \mathbf{J}_{\mathbf{m}}$ for all i and $\left(E_{i}\right)$ is point-finite. We write $E_{i} \rightarrow \varnothing$ iff there exists \mathbf{m} such that $E_{i} \xrightarrow{\mathbf{m}} \varnothing$. Furthermore, write $E_{i} \xrightarrow{\mathbf{m}} E$ iff $E_{i} \triangle E \xrightarrow{\mathbf{m}} \varnothing$ and write $E_{i} \rightarrow E$ iff $E_{i} \triangle E \rightarrow \varnothing$.

This type of convergence is metrizable when restricted to any $\mathbf{J}_{\mathbf{m}}$. But there is no preferred choice of metric.
Notation 1.6. For $\mathbf{k}=\left(k_{1}, k_{2}, \cdots, k_{n}\right)$, define $|\mathbf{k}|=k_{1}+k_{2}+\cdots+k_{n}$.
Proposition 1.7. Let $\mathbf{m} \in \mathbb{Z}^{n}$. For $E, F \subseteq \mathbf{J}_{\mathbf{m}}$, define

$$
d(E, F)=\sum_{\mathbf{k} \in E \triangle F} 2^{-|\mathbf{k}|}
$$

Then for any sets $E_{i} \subseteq \mathbf{J}_{\mathbf{m}}$, we have $E_{i} \rightarrow E$ if and only if $d\left(E_{i}, E\right) \rightarrow 0$. And d is a metric on subsets of $\mathbf{J}_{\mathbf{m}}$.

Dominating

Definition 1.8. Let E, F be subsets of \mathbb{Z}^{n}. We say E dominates F iff for every $\mathbf{k} \in F$, there is $\mathbf{p} \in E$ with $\mathbf{p}<\mathbf{k}$. Equivalently, in terms of the filters:

$$
F \subseteq \mathbf{J}^{*}(E)
$$

This may seem backward. But correspondingly in the realm of transmonomials, we will say larger monomials dominate smaller ones.

It's transitive: If E_{1} dominates E_{2} and E_{2} dominates E_{3}, then E_{1} dominates E_{3}. Every E dominates \varnothing. Note $\{\mathbf{m}\}$ dominates E if and only if $E \subseteq \mathbf{J}_{\mathbf{m}}^{*}$.

Proposition 1.9. Let E, F be subsets of $\mathbf{J}_{\mathbf{m}}$. Then E dominates F if and only if $\operatorname{Mag} E$ dominates $\operatorname{Mag} F$.

Proof. Assume E dominates F. Let $\mathbf{k} \in \operatorname{Mag} F$. Then $\mathbf{k} \in F$, so there is $\mathbf{k}_{1} \in E$ with $\mathbf{k}_{1}<\mathbf{k}$. Then there is $\mathbf{k}_{0} \in \operatorname{Mag} E$ with $\mathbf{k}_{0} \leq \mathbf{k}_{1}$. So $\mathbf{k}_{0}<\mathbf{k}$.

Conversely, assume $\operatorname{Mag} E$ dominates $\operatorname{Mag} F$. Let $\mathbf{k} \in F$. Then there is $\mathbf{k}_{1} \in \operatorname{Mag} F$ with $\mathbf{k}_{1} \leq \mathbf{k}$. So there is $\mathbf{k}_{0} \in \operatorname{Mag} E$ with $\mathbf{k}_{0}<\mathbf{k}_{1}$. Thus $\mathbf{k}_{0} \in E$ and $\mathbf{k}_{0}<\mathbf{k}$.

Proposition 1.10. If E dominates F, then $\operatorname{Mag} E$ and $\operatorname{Mag} F$ are disjoint.
Proof. Assume E dominates F. If $\mathbf{k} \in \operatorname{Mag} F$, then $\mathbf{k} \in F$, so there is $\mathbf{k}_{1} \in E$ with $\mathbf{k}_{1}<\mathbf{k}$. So even if $\mathbf{k} \in E$, it is not minimal.

Proposition 1.11. Let $E_{j} \subseteq \mathbf{J}_{\mathbf{m}}, j \in \mathbb{N}$, be an infinite sequence such that E_{j} dominates E_{j+1} for all j. Then the sequence $\left(E_{j}\right)$ is point-finite; $E_{j} \rightarrow \varnothing$.

Proof. Let $\mathbf{p} \in \mathbf{J}_{\mathbf{m}}$. Then $F=\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \mathbf{k}<\mathbf{p}\right\}$ is finite. But the sets $F \cap$ $\operatorname{Mag} E_{j}$ are disjoint, and for every j with $\mathbf{p} \in E_{j}$, the set $F \cap \operatorname{Mag} E_{j}$ is nonempty. Therefore, $\mathbf{p} \in E_{j}$ for only finitely many j.

Proposition 1.12. Let $E_{i} \subseteq \mathbf{J}_{\mathbf{m}}$ be a point-finite family. Assume E_{i} dominates F_{i} for all i. Then $\left(F_{i}\right)$ is also point-finite.

Proof. Let $\mathbf{p} \in \mathbf{J}_{\mathbf{m}}$. Then $F=\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \mathbf{k}<\mathbf{p}\right\}$ is finite. But the sets $F \cap$ $\operatorname{Mag} E_{j}$ are disjoint, and for every j with $\mathbf{p} \in F_{j}$, the set $F \cap \operatorname{Mag} E_{j}$ is nonempty. Therefore, $\mathbf{p} \in F_{j}$ for only finitely many j.

2 Abstract transseries

We begin with an abelian totally ordered group \mathcal{G}. The operation is written multiplicatively, the identity is 1 , the order relation is \gg and read "far larger than". This is a "strict" order relation; that is, $g \gg g$ is false. We use the field \mathbb{R} of real numbers as "values", but as far as this section is concerned, any field would work. Later we do need real numbers as values.

2.1 Without generators

Write $\mathbb{R}^{\mathcal{G}}$ for the set of functions $T: \mathcal{G} \rightarrow \mathbb{R}$. For $T \in \mathbb{R}^{\mathcal{G}}$ and $g \in \mathcal{G}$, we will use square brackets $T[g]$ for the value of T at g-because later we will want to use round brackets $T(x)$ in another sense.
Definition 2.1. The support of a function $T \in \mathbb{R}^{\mathcal{G}}$ is

$$
\operatorname{supp} T=\{g \in \mathcal{G}: T[g] \neq 0\}
$$

Let $\Gamma \subseteq \mathcal{G}$. We say T is supported by Γ if $\operatorname{supp} T \subseteq \Gamma$.
Notation 2.2 . In fact, T will usually be written as a formal combination of group elements. That is:

$$
T=\sum_{g \in \Gamma} a_{g} g, \quad a_{g} \in \mathbb{R}
$$

will be used for the function T with $T[g]=a_{g}$ for $g \in \Gamma$ and $T[g]=0$ otherwise. The set Γ may or may not be the actual support of T.
Definition 2.3. If $c \in \mathbb{R}$, then $c 1 \in \mathbb{R}^{\mathcal{G}}$ is called a "constant" and identified with c. (That is, $T[1]=c$ and $T[g]=0$ for all $g \neq 1$.) If $g_{0} \in \mathcal{G}$, then $1 g_{0} \in \mathbb{R}^{\mathcal{G}}$ is called a "transmonomial" (or simply "monomial") and identified with g_{0}. (That is, $T\left[g_{0}\right]=1$ and $T[g]=0$ for all $g \neq g_{0}$.)

In all cases of interest to us, the support will be well ordered (according to the converse of $\gg)$. That is, for all $\Gamma \subseteq \operatorname{supp}(T)$, if $\Gamma \neq \varnothing$, then there is $g_{0} \in \Gamma$ such that for all $g \in \Gamma$, if $g \neq g_{0}$, then $g_{0} \gg g$.

Proposition 2.4. Let $\Gamma \subseteq \mathcal{G}$ be well ordered for the converse of \gg. Every infinite subset in Γ contains an infinite strictly decreasing sequence $g_{1} \gg g_{2} \gg$ \cdots. There is no infinite strictly increasing sequence in Γ.

Definition 2.5. Let $T \neq 0$ be

$$
T=\sum_{g \in \Gamma} a_{g} g, \quad a_{g} \in \mathbb{R}
$$

with $g_{0} \in \Gamma, g_{0} \gg g$ for all other $g \in \Gamma$, and $a_{g_{0}} \neq 0$. Then the magnitude of T is $\operatorname{mag} T=g_{0}$ and the dominance of T is $\operatorname{dom} T=a_{g_{0}} g_{0}$. We say T is positive if $a_{g_{0}}>0$ and write $T>0$. We say T is negative if $a_{g_{0}}<0$ and write $T<0$. We say T is large if $\operatorname{mag} T \gg 1$ (or $T=0$). We say T is small if $\operatorname{mag} T \ll 1$ (or $T=0$). We say T is purely large if $g \gg 1$ for all $g \in \operatorname{supp} T$.
Definition 2.6. Addition is defined by components. $(S+T)[g]=S[g]+T[g]$. The union of two well ordered sets is well ordered. Scalar multiples aT are also defined by components.
Notation 2.7. We say $S>T$ if $S-T>0$. For nonzero S and T we say $S \gg T$ iff $\operatorname{mag} S \gg \operatorname{mag} T$, and we say $S \asymp T$ iff $\operatorname{mag} S=\operatorname{mag} T$.

Proposition 2.8. Every T may be written uniquely in the form $T=L+c+s$, where L is purely large, c is a constant, and s is small.

Definition 2.9. Multiplication is defined by convolution (as suggested by the formal sum notation).

$$
\begin{aligned}
& \sum_{g \in \mathcal{G}} a_{g} g \cdot \sum_{g \in \mathcal{G}} b_{g} g=\sum_{g \in \mathcal{G}}\left(\sum_{g_{1} g_{2}=g} a_{g_{1}} b_{g_{2}}\right) g \\
& \text { or } \quad(S T)[g]=\sum_{g_{1} g_{2}=g} S\left[g_{1}\right] T\left[g_{2}\right]
\end{aligned}
$$

Products are defined at least for S, T with well ordered support.
Proposition 2.10. If $\Gamma_{1}, \Gamma_{2} \subseteq \mathcal{G}$ are well ordered sets (for the reverse of \gg), then

$$
\Gamma=\left\{g_{1} g_{2}: g_{1} \in \Gamma_{1}, g_{2} \in \Gamma_{2}\right\}
$$

$i s$ also well ordered. For every $g \in \Gamma$, the set $\left\{\left(g_{1}, g_{2}\right): g_{1} \in \Gamma_{1}, g_{2} \in \Gamma_{2}, g_{1} g_{2}=g\right\}$ is finite.

Proof. Let $\Gamma^{\prime} \subseteq \Gamma$ be nonempty. Assume Γ^{\prime} has no greatest element. Then there exist $g_{j} \in \Gamma_{1}$ and $g_{j}^{\prime} \in \Gamma_{2}$ with $g_{1} g_{1}^{\prime} \ll g_{2} g_{2}^{\prime} \ll \cdots$. Because Γ_{1} is well ordered, taking a subsequence we may assume $g_{1} \gg g_{2} \gg \cdots$. But then $g_{1}^{\prime} \ll g_{2}^{\prime} \ll \cdots$, so Γ_{2} is not well ordered.

Suppose $\left(g_{1}, g_{2}\right),\left(g_{3}, g_{4}\right) \in \Gamma_{1} \times \Gamma_{2}$ with $g_{1} g_{2}=g=g_{3} g_{4}$. If $g_{1} \neq g_{3}$, then $g_{2} \neq g_{4}$. If $g_{1} \gg g_{3}$, then $g_{2} \ll g_{4}$. Any infinite subset of a well ordered set contains an infinite strictly decreasing sequence, but the other well ordered set contains no infinite strictly increasing sequence.

Proposition 2.11. The set of all $T \in \mathbb{R}^{9}$ with well ordered support is an algebra over \mathbb{R} with the operations defined.

In algebra, this is called the Malcev-Neumann construction. In fact this is a field. That proof uses the Joe Kruskal theorem (?). But we don't need that result.

Proposition 2.12. Every nonzero T with well ordered support may be written uniquely in the form $T=(\operatorname{dom} T) \cdot(1+s)$ where s is small.

Proposition 2.13. The set of all purely large T (including 0) is a group under addition. The set of all small T is a group under addition. The set of all purely large T (with well ordered support) is closed under multiplication. The set of all small T (with well ordered support) is closed under multiplication.

Definition 2.14. Series are (provisionally) defined by components. If I is an index set, and for each $i \in I$ we are given some $T_{i} \in \mathbb{R}^{9}$, then the series

$$
T=\sum_{i \in I} T_{i}
$$

is defined iff the family ($\operatorname{supp} T_{i}$) of supports is point-finite. Of course, even if $\operatorname{supp} T_{i}$ is well ordered for all i, it will not follow that $\operatorname{supp} T$ is well ordered.
Definition 2.15. Limits are (provisionally) defined by components. (And the topology used for the set \mathbb{R} of values is discrete.) That is: Suppose for all $n \in \mathbb{N}$, T_{n} is given. If, for all $g \in G$ there is $n_{g} \in \mathbb{N}$ such that $T_{n}[g]$ is the same for all $n \geq n_{0}$, then $T=\lim T_{n}$ is defined by $T[g]=T_{n_{g}}[g]$. Again, this is not enough to insure supp T well ordered-We will re-define limits again later. For general infinite index set I, define $T_{i} \rightarrow 0$ iff the family ($\operatorname{supp} T_{i}$) is point-finite. And $T_{i} \rightarrow T$ iff $T_{i}-T \rightarrow 0$.

2.2 With generators

Some definitions will depend on a finite set of "generators". We will keep track of the set of generators more than is customary. But it is useful for the proofs, and essential for Costin's fixed-point theorem (Prop. 2.47).
Notation 2.16. $\mathcal{G}^{\text {small }}=\{g \in \mathcal{G}: g \ll 1\}$.
We begin with a finite set $\boldsymbol{\mu} \subset \mathcal{G}^{\text {small }}$. If convenient, we may number the elements of $\boldsymbol{\mu}$ in order, $\mu_{1} \gg \mu_{2} \gg \cdots \gg \mu_{n}$.
Notation 2.17. Let $\boldsymbol{\mu}=\left\{\mu_{1}, \cdots, \mu_{n}\right\} \subseteq \mathcal{G}^{\text {small }}$. For any multi-index $\mathbf{k}=$ $\left(k_{1}, \cdots, k_{n}\right) \in \mathbb{Z}^{n}$, define $\boldsymbol{\mu}^{\mathbf{k}}=\mu_{1}^{k_{1}} \cdots \mu_{n}^{k_{n}}$.

If $\mathbf{k}>\mathbf{p}$, then $\boldsymbol{\mu}^{\mathbf{k}} \ll \boldsymbol{\mu}^{\mathbf{p}}$. Also $\boldsymbol{\mu}^{\mathbf{0}}=1$. If $\mathbf{k}>\mathbf{0}$ then $\boldsymbol{\mu}^{\mathbf{k}} \ll 1$ (but not in general conversely).
${ }^{*}$ Example 2.18. Let $\boldsymbol{\mu}=\left\{x^{-1}, e^{-x}\right\}$. Then $1 \gg \mu_{1}^{-1} \mu_{2}=x e^{-x}$, even though $(-1,1) \ngtr(0,0)$.
*Example 2.19. The correspondence $\mathbf{k} \mapsto \boldsymbol{\mu}^{\mathbf{k}}$ may fail to be injective. Let $\boldsymbol{\mu}=\left\{x^{-1 / 3}, x^{-1 / 2}\right\}$. Then $\mu_{1}^{3}=\mu_{2}^{2}$.

Proposition 2.20. Let $\boldsymbol{\mu}$ and \mathbf{m} be given. The principal filter of \mathbf{m} in \mathbb{Z}^{n} defines a set in \mathcal{G} by

$$
\Gamma^{\boldsymbol{\mu}, \mathbf{m}}=\left\{\boldsymbol{\mu}^{\mathbf{k}}: \mathbf{k} \geq \mathbf{m}\right\}
$$

Then $\Gamma^{\mu, \mathbf{m}}$ is well ordered in \mathcal{G}.
Proof. Let $F \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ be nonempty. Define $E=\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \boldsymbol{\mu}^{\mathbf{k}} \in F\right\}$. Then the set $\operatorname{Mag} E$ of minimal elements of E is finite. $\operatorname{So} \max \left\{\boldsymbol{\mu}^{\mathbf{k}}: \mathbf{k} \in \operatorname{Mag} E\right\}$ is the greatest element of F.

Proposition 2.21. Given $\boldsymbol{\mu}, \mathbf{m}, g$, there are only finitely many $\mathbf{k} \in \mathbf{J}_{\mathbf{m}}$ with $\boldsymbol{\mu}^{\mathbf{k}}=g$.

Proof. Suppose there are infinitely many $\mathbf{k} \in \mathbf{J}_{\mathbf{m}}$ with $\boldsymbol{\mu}^{\mathbf{k}}=g$. By Prop. 1.3, this includes $\mathbf{k}_{1}<\mathbf{k}_{2}$. But $\boldsymbol{\mu}^{\mathbf{k}_{1}} \gg \boldsymbol{\mu}^{\mathbf{k}_{2}}$.

The map $\mathbf{k} \mapsto \boldsymbol{\mu}^{\mathbf{k}}$ may not be one-to-one, but it is finite-to-one. So: if $\left(g_{i}\right)_{i \in I}$ is a family of monomials in $\Gamma^{\boldsymbol{\mu}, \mathbf{m}}$, define $E_{i}=\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \boldsymbol{\mu}^{\mathbf{k}}=g_{i}\right\}$, then ($\left.\operatorname{supp} g_{i}\right)$ is point-finite if and only if $\left(E_{i}\right)$ is point-finite.
Definition 2.22. Transseries generated by $\boldsymbol{\mu}$.

$$
\begin{aligned}
\mathcal{T}^{\mu, \mathbf{m}} & =\left\{T \in \mathbb{R}^{\mathcal{G}}: \operatorname{supp} T \subseteq \Gamma^{\mu, \mathbf{m}}\right\} \\
\mathcal{T}^{\mu} & =\bigcup_{\mathbf{m} \in \mathbb{Z}^{n}} \mathcal{T}^{\mu, \mathbf{m}} \\
\mathcal{T}^{\mathcal{G}} & =\bigcup_{\boldsymbol{\mu}} \mathcal{T}^{\mu}
\end{aligned}
$$

In this union, all finite sets $\boldsymbol{\mu}$ are allowed, so all values of n are allowed. But each transseries is generated only by a finite set $\boldsymbol{\mu}$. Each is supported by one of the well ordered sets $\Gamma^{\mu, \mathbf{m}}$.

If $\boldsymbol{\mu} \subseteq \widetilde{\boldsymbol{\mu}}$, then $\mathcal{T}^{\boldsymbol{\mu}} \subseteq \mathcal{T}^{\widetilde{\mu}}$ in a natural way. If \mathcal{G} is a subgroup of $\widetilde{\mathcal{G}}$ and inherits the order, then $\mathcal{T}^{\mathcal{G}} \subseteq \mathcal{T}^{\widetilde{\mathcal{G}}}$ in a natural way.
*Example 2.23. The series

$$
\sum_{j=1}^{\infty} x^{1 / j}=x^{1}+x^{1 / 2}+x^{1 / 3}+x^{1 / 4}+\ldots
$$

despite having well ordered support, does not belong to $\mathcal{T}^{\mathcal{G}}$. It is not finitely generated.

Manifestly small

Definition 2.24. If g may be written in the form $\boldsymbol{\mu}^{\mathbf{k}}$ with $\mathbf{k}>\mathbf{0}$, then g is $\boldsymbol{\mu}$ small, written $g<^{\boldsymbol{\mu}} 1$. [For emphasis, manifestly $\boldsymbol{\mu}$-small.] Let $\mathcal{G}^{\boldsymbol{\mu} \text { small } \text { be }}$ the set of all $\boldsymbol{\mu}$-small transmonomials. Or: $\mathcal{G}^{\boldsymbol{\mu} \text { small }}=\Gamma^{\boldsymbol{\mu}, \mathbf{0}} \backslash\{1\}$. If $\operatorname{supp} T \subseteq$ $\mathcal{G}^{\boldsymbol{\mu} \text { small }}$ then T is $\boldsymbol{\mu}$-small, written $T \ll{ }^{\boldsymbol{\mu}} 1$.
Definition 2.25. Limits of transseries. Let $T_{j}, T \in \mathcal{T}^{\mathcal{G}}$ for $j \in \mathbb{N}$. Then: $T_{j} \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$ means: $\operatorname{supp} T_{j} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ for all j, and $T_{j} \rightarrow T$ in the componentwise sense of Definition 2.15. $T_{j} \xrightarrow{\boldsymbol{\mu}} T$ means there exists \mathbf{m} such that $T_{j} \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$. $T_{j} \rightarrow T$ means there exists $\boldsymbol{\mu}$ such that $T_{j} \xrightarrow{\mu} T$.

It seems there is no reason for a countable index set, so use this also for other infinite index sets. The non-provisional definition: $T_{i} \rightarrow 0$ iff there is $\boldsymbol{\mu}, \mathbf{m}$ so that $\operatorname{supp} T_{i} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ for all i, and the family $\left(\operatorname{supp} T_{i}\right)$ is point-finite. Also, $T_{i} \rightarrow T$ iff $T_{i}-T \rightarrow 0$.
*Example 2.26. The sequence $\left(x^{j}\right)_{j \in \mathbb{N}}$ converges (to 0) in the sense of Definition 2.15, but not in this new sense. It is not contained in any well ordered $\Gamma^{\mu, \mathbf{m}}$.

Proposition 2.27 (Continuity). Let I be an index set. If $S_{i} \rightarrow S$ and $T_{i} \rightarrow T$, then $S_{i}+T_{i} \rightarrow S+T$ and $S_{i} T_{i} \rightarrow S T$.
Proof. We may increase $\boldsymbol{\mu}$ and decrease \mathbf{m} to arrange $S_{i} \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} S$ and $T_{i} \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} T$ for the same $\boldsymbol{\mu}, \mathbf{m}$. Then $S_{i}+T_{i} \xrightarrow{\boldsymbol{\mu}, \mathbf{m}} S+T$. and $S_{i} T_{i} \xrightarrow{\boldsymbol{\mu}, \mathbf{p}} S T$ for $\mathbf{p}=2 \mathbf{m}$. To see this: let $g \in \Gamma^{\boldsymbol{\mu}, \mathbf{p}}$. There are finitely many pairs $g_{1}, g_{2} \in \Gamma^{\mu, \mathbf{k}}$ such that $g_{1} g_{2}=g$ (Prop. 2.10). So there is a single finite $I_{0} \subseteq I$ outside of which $S_{i}\left[g_{1}\right]=S\left[g_{1}\right]$ and $T_{i}\left[g_{2}\right]=T\left[g_{2}\right]$ for all such g_{1}, g_{2}. For such i, we also have $\left(S_{i} T_{i}\right)[g]=(S T)[g]$.

Definition 2.28. Series of transseries. Let $T_{i}, T \in \mathcal{T}^{\mathcal{G}}$ for i in some index set I. Then

$$
T=\sum_{i \in I} T_{i}
$$

means: there exist $\boldsymbol{\mu}$ and \mathbf{m} such that all $\operatorname{supp} T_{i} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ for all i; for all g, the set $I_{g}=\left\{i \in I: T_{i}[g] \neq 0\right\}$ is finite; and $T[g]=\sum_{i \in I_{g}} T_{i}[g]$.
Proposition 2.29. If $T \in \mathcal{T}^{\mathcal{G}}$, then the "formal combination of group elements" that specifies T in fact converges to T in this sense as well.

Note we have the "Freshman" (or ultrametric) Cauchy criterion: Series $\sum T_{i}$ converges if and only if $T_{i} \rightarrow 0$.
Proposition 2.30. Let $s \in \mathcal{T}^{\boldsymbol{\mu}}$ be $\boldsymbol{\mu}$-small. Then $\left(s^{j}\right)_{j \in \mathbb{N}} \xrightarrow{\boldsymbol{\mu}} 0$.
Proof. Every transmonomial in $\operatorname{supp} s$ can be written in the form $\boldsymbol{\mu}^{\mathbf{k}}$ with $\mathbf{k}>\mathbf{0}$. The product of two of these is again one of these. Let $g_{0} \in \mathcal{G}$. If g_{0} is not $\boldsymbol{\mu}$ small, then $g_{0} \in \operatorname{supp}\left(s^{j}\right)$ for no j. So assume g_{0} is $\boldsymbol{\mu}$-small. Then there are just finitely many $\mathbf{p}>\mathbf{0}$ such that $g_{0}=\boldsymbol{\mu}^{\mathbf{p}}$. Let

$$
N=\max \left\{|\mathbf{p}|: \mathbf{p}>\mathbf{0}, \boldsymbol{\mu}^{\mathbf{p}}=g_{0}\right\}
$$

Now let $j>N$. Since every $g \in \operatorname{supp} s$ is $\boldsymbol{\mu}^{\mathbf{k}}$ with $|\mathbf{k}| \geq 1$, we see that every element of $\operatorname{supp}\left(s^{j}\right)$ is $\boldsymbol{\mu}^{\mathbf{k}}$ with $|\mathbf{k}| \geq j$. So $g_{0} \notin \operatorname{supp}\left(s^{j}\right)$. This shows the family $\left(\operatorname{supp}\left(s^{j}\right)\right)$ is point-finite.

Proposition 2.31. Let $T \in \mathcal{T}^{\mu}$ be small. Then there is a (possibly larger) finite set $\widetilde{\boldsymbol{\mu}} \subseteq \mathcal{G}^{\text {small }}$ such that T is manifestly $\widetilde{\boldsymbol{\mu}}$-small.

Proof. Let $T \in \mathcal{T}^{\boldsymbol{\mu}, \mathbf{m}}$. If $T=0$, there is nothing to do, so assume $T \neq 0$. Then $\operatorname{supp} T \neq \varnothing$. Define $E=\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \boldsymbol{\mu}^{\mathbf{k}} \in \operatorname{supp} T\right\}$. By Prop. 1.4, Mag E is finite. Let $\widetilde{\boldsymbol{\mu}}=\boldsymbol{\mu} \cup\left\{\boldsymbol{\mu}^{\mathbf{k}}: \mathbf{k} \in \operatorname{Mag} E\right\}$. Note $\tilde{\boldsymbol{\mu}} \subset \mathcal{G}^{\text {small. Now for any }}$ $g \in \operatorname{supp} T$, there is $\mathbf{p} \in E$ with $\boldsymbol{\mu}^{\mathbf{p}}=g$, and then there is $\mathbf{k} \in \operatorname{Mag} E$ with $\mathbf{p} \geq \mathbf{k}$, so that $\widetilde{g}=\boldsymbol{\mu}^{\mathbf{k}} \in \widetilde{\boldsymbol{\mu}}$ and $g=\widetilde{g} \boldsymbol{\mu}^{\mathbf{p}-\mathbf{k}}$ which is manifestly $\widetilde{\boldsymbol{\mu}}$-small.

Perhaps call $\tilde{\boldsymbol{\mu}} \backslash \boldsymbol{\mu}$ the addendum, or smallness addendum for T. [Costin suggests: $\tilde{\boldsymbol{\mu}}$ is the resolution of $T ; \widetilde{\boldsymbol{\mu}} \backslash \boldsymbol{\mu}$ the $\boldsymbol{\mu}$-spawn of $T]$
*Example 2.32. The corresponding statement for purely large T is false. The transseries

$$
T=\sum_{j=0}^{\infty} x^{-j} e^{x}
$$

is purely large, but there is no finite set $\boldsymbol{\mu} \subseteq \mathcal{G}^{\text {small }}$ and multi-index \mathbf{m} such that all $x^{-j} e^{x}$ have the form $\boldsymbol{\mu}^{\mathbf{k}}$ with $\mathbf{m} \leq \mathbf{k}<\mathbf{0}$. This is because the set $\{\mathbf{k}: \mathbf{m} \leq \mathbf{k}<\mathbf{0}\}$ is finite.

Proposition 2.33. Let $T \in \mathcal{T}^{\mathcal{G}}$ be small. Then $\left(T^{j}\right)_{j \in \mathbb{N}} \rightarrow 0$.
Proof. First, $T \in \mathcal{T}^{\boldsymbol{\mu}}$ for some $\boldsymbol{\mu}$. Then T is manifestly $\widetilde{\boldsymbol{\mu}}$-small for some $\widetilde{\boldsymbol{\mu}} \supseteq \boldsymbol{\mu}$. Therefore $T^{j} \xrightarrow{\widetilde{\mu}} 0$, so $T^{j} \rightarrow 0$.

Proposition 2.34. Let $\sum_{j=0}^{\infty} c_{j} z^{j}$ be a power series (even one with radius of convergence zero). If s is a small transseries, then $\sum_{j=0}^{\infty} c_{j} s^{j}$ converges.
Proof. Use Prop. 2.31. We need to add the smallness addendum of s to $\boldsymbol{\mu}$.
Proposition 2.35. Let s_{1}, \cdots, s_{m} be $\boldsymbol{\mu}$-small transseries. Let $p_{1}, \cdots, p_{m} \in \mathbb{Z}$. Then the family

$$
\left\{\operatorname{supp}\left(s_{1}^{j_{1}} s_{2}^{j_{2}} \cdots s_{m}^{j_{m}}\right): j_{1} \geq p_{1}, \ldots j_{m} \geq p_{m}\right\}
$$

is point-finite. That is, all multiple series of the form

$$
\sum_{j_{1}=p_{1}}^{\infty} \sum_{j_{2}=p_{2}}^{\infty} \ldots \sum_{j_{m}=p_{m}}^{\infty} c_{j_{1} j_{2} \ldots j_{m}} s_{1}^{j_{1}} \cdots s_{m}^{j_{m}}
$$

are $\boldsymbol{\mu}$-convergent.

Proof. An induction on m shows that we may assume $p_{1}=\cdots=p_{m}=1$, since the series with general p_{i} and the series with all $p_{i}=1$, differ from each other by a finite number of series with fewer summations. So assume $p_{1}=\cdots=p_{m}=1$.

Let $g_{0} \in \mathcal{G}$. If g_{0} is not $\boldsymbol{\mu}$-small, then $g_{0} \in \operatorname{supp}\left(s_{1}^{j_{1}} \cdots s_{m}^{j_{m}}\right)$ for no j_{1}, \cdots, j_{m}. So assume g_{0} is $\boldsymbol{\mu}$-small. There are finitely many $\mathbf{k}>\mathbf{0}$ so that $\boldsymbol{\mu}^{\mathbf{k}}=g_{0}$. Let

$$
N=\max \left\{|\mathbf{k}|: \mathbf{k}>\mathbf{0}, \boldsymbol{\mu}^{\mathbf{k}}=g_{0}\right\} .
$$

Each s_{i} has the form $\boldsymbol{\mu}^{\mathbf{k}}$ with $|\mathbf{k}| \geq 1$. So if $j_{1}+\cdots+j_{m}>N$, we have $g_{0} \notin \operatorname{supp}\left(s_{1}^{j_{1}} \cdots s_{m}^{j_{m}}\right)$.

Proposition 2.36. Let $T \in \mathcal{T}^{\mu}$ be nonzero. Then there is a (possibly larger) finite set $\widetilde{\boldsymbol{\mu}} \subseteq \mathcal{G}^{\text {small }}$ and $S \in \mathcal{T}^{\widetilde{\mu}}$ such that $S T=1$. The set $\mathcal{T}^{\mathcal{G}}$ of all \mathcal{G} transseries is a field.
Proof. Write $T=a \boldsymbol{\mu}^{\mathbf{k}}(1+s)$, where $a \in \mathbb{R}, a \neq 0, \mathbf{k} \in \mathbb{Z}^{n}$, and s is small. Then the inverse S is:

$$
S=a^{-1} \boldsymbol{\mu}^{-\mathbf{k}} \sum_{j=0}^{\infty}(-1)^{j} s^{j}
$$

Now a^{-1} is computed in the reals. For the series, use Prop. 2.34. Let $\widetilde{\boldsymbol{\mu}}$ be $\boldsymbol{\mu}$ plus the smallness addendum for s.

We will call $\widetilde{\boldsymbol{\mu}} \backslash \boldsymbol{\mu}$ the inversion addendum for T.

μ-order

Proposition 2.37. The set $\Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ is well-partially-ordered for $>^{\boldsymbol{\mu}}$. That is: if $E \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$, then there is a $\boldsymbol{\mu}$-maximal element: $g_{0} \in E$ and $g>^{\boldsymbol{\mu}} g_{0}$ for no $g \in E$.
Proof. If \mathbf{p} is minimal in $\left\{\mathbf{k} \in \mathbf{J}_{\mathbf{m}}: \boldsymbol{\mu}^{\mathbf{k}} \in E\right\}$, then $\boldsymbol{\mu}^{\mathbf{p}}$ is $\boldsymbol{\mu}$-maximal in E.
Proposition 2.38. Let $E \subseteq \Gamma^{\mu, \mathbf{m}}$ be infinite. Then there is a sqeuence $g_{j} \in E$, $j \in \mathbb{N}$, with $g_{0} \gg^{\boldsymbol{\mu}} g_{1} \gg^{\boldsymbol{\mu}} g_{2} \gg^{\boldsymbol{\mu}} \ldots$.
Proposition 2.39. Let $E \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$. Then the set $\mathrm{Mag}^{\boldsymbol{\mu}} E$ of maximal elements of E is finite. For every $g \in E$ there is $g_{0} \in \mathrm{Mag}^{\mu} E$ with $g \ll^{\mu} g_{0}$.

Definition 2.40. Let $E, F \subseteq \mathcal{G}$. We say $E \boldsymbol{\mu}$-dominates F iff for all $g \in F$ there exists $\widetilde{g} \in E$ such that $\widetilde{g}>^{\boldsymbol{\mu}} g$. We say $S \boldsymbol{\mu}$-contracts to T iff $\operatorname{supp} S$ $\boldsymbol{\mu}$-dominates $\operatorname{supp} T$.

If s is $\boldsymbol{\mu}$-small, then $T \boldsymbol{\mu}$-contracts to $T s$.
Proposition 2.41. Let $E, F \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$. Then $E \boldsymbol{\mu}$-dominates F if and only if $\mathrm{Mag}^{\boldsymbol{\mu}} E \boldsymbol{\mu}$-dominates $\mathrm{Mag}^{\boldsymbol{\mu}} F$.

If $E \boldsymbol{\mu}$-dominates F, then $\mathrm{Mag}^{\boldsymbol{\mu}} E$ and $\mathrm{Mag}^{\mu} F$ are disjoint.
Proposition 2.42. Let $E_{j} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}, j \in \mathbb{N}$, be an infinite sequence such that E_{j} $\boldsymbol{\mu}$-dominates E_{j+1} for all j. Then the sequence $\left(E_{j}\right)$ is point-finite.
Proposition 2.43. Let $E_{i} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$ be a point-finite family. Assume $E_{i} \boldsymbol{\mu}$ dominates F_{i} for all i. Then $\left(F_{i}\right)$ is also point-finite.

Contraction

Definition 2.44. Let J be linear from some subspace of \mathcal{T}^{μ} to itself. Then we say J is $\boldsymbol{\mu}$-contractive iff $T \boldsymbol{\mu}$-contracts to $J(T)$ for all T in the subspace.
Definition 2.45. Let J be possibly non-linear from some subset of \mathcal{T}^{μ} to itself. Then we say J is $\boldsymbol{\mu}$-contractive iff $S-T \boldsymbol{\mu}$-contracts to $J(S)-J(T)$ for all S, T in the subset.

There is an easy way to define a linear $\boldsymbol{\mu}$-contractive map J on $\mathcal{T}^{\mu, \mathbf{m}}$. If J is defined on all monomials $g \in \Gamma \subseteq \Gamma^{\mu, \mathrm{m}}$ and g contracts to $J(g)$ for them, then the family $(\operatorname{supp} J(g))$ is point-finite by Prop. 2.43, so

$$
J\left(\sum c_{g} g\right)=\sum c_{g} J(g)
$$

$\boldsymbol{\mu}$-converges and defines J on the span.
${ }^{*}$ Example 2.46. The set $\boldsymbol{\mu}$ of generators is important. We cannot simply replace " $\boldsymbol{\mu}$-small" by "small" in the definitions. Suppose $J\left(x^{-j}\right)=x^{j} e^{-x}$ for all $j \in \mathbb{N}$, and $J(g)=g x^{-1}$ for all other monomials. Then $g \gg J(g)$ for all g. But $J\left(\sum x^{-j}\right)$ evaluated pointwise is not a legal transseries. Or: Define $J\left(x^{-j}\right)=$ e^{-x} for all $j \in \mathbb{N}$, and $J(g)=g x^{-1}$ for all other monomials. Again $g \gg J(g)$ for all g, but the family $\operatorname{supp} J\left(x^{-j}\right)$ is not point-finite.

Proposition 2.47. (i) If J is linear and $\boldsymbol{\mu}$-contractive on $\mathcal{T}^{\mu, \mathbf{m}}$, then for any $T_{0} \in \mathcal{T}^{\mu, \mathbf{m}}$, the fixed-point equation $T=J(T)+T_{0}$ has a unique solution $T \in$ $\mathcal{T}^{\boldsymbol{\mu}, \mathbf{m}}$. (ii) If $A \subseteq \mathcal{T}^{\mu, \mathbf{m}}$ is closed, and $J: A \rightarrow A$ is $\boldsymbol{\mu}$-contractive on A, then $T=J(T)$ has a unique solution in A.

Proof. (i) follows from (ii), since if J is linear and $\boldsymbol{\mu}$-contractive, then \widetilde{J} defined by $\widetilde{J}(T)=J(T)+T_{0}$ is $\boldsymbol{\mu}$-contractive.
(ii) First note J is $\boldsymbol{\mu}$-continuous: Assume $T_{j} \xrightarrow{\boldsymbol{\mu}} T$. Then $T_{j}-T \xrightarrow{\boldsymbol{\mu}} 0$, so $\left(\operatorname{supp}\left(T_{j}-T\right)\right)$ is point-finite. But supp $\left(T_{j}-T\right) \boldsymbol{\mu}$-dominates $\operatorname{supp}\left(J\left(T_{j}\right)-J(T)\right)$, so $\left(\operatorname{supp}\left(J\left(T_{j}\right)-J(T)\right)\right.$ is also point-finite by Prop. 2.43. And so $J\left(T_{j}\right) \xrightarrow{\mu} J(T)$.

Existence: Define $T_{j+1}=J\left(T_{j}\right)$. We claim T_{j} is $\boldsymbol{\mu}$-convergent. The sequence $E_{j}=\operatorname{supp}\left(T_{j}-T_{j+1}\right)$ satisfies: $E_{j} \boldsymbol{\mu}$-dominates E_{j+1} for all j, so (Prop. 2.42) $\left(E_{j}\right)$ is point-finite, which means $T_{j}-T_{j+1} \xrightarrow{\boldsymbol{\mu}} 0$ and therefore (by Freshman Cauchy) $T_{j} \boldsymbol{\mu}$-converges. Difference preserves $\boldsymbol{\mu}$-limits, so the limit T satisfies $J(T)=T$.

Uniqueness: if T_{1} and T_{2} were two different solutions, then $J\left(T_{1}\right)-J\left(T_{2}\right)=$ $T_{1}-T_{2}$, which contradicts $\boldsymbol{\mu}$-contractivity.

3 Transseries as $x \rightarrow \infty$

We recursively construct the group \mathcal{G} to be used.

3.1 Without logs

A dummy symbol " x " appears in the notation. When we think of a transseries as describing behavior as $x \rightarrow \infty$, then x is supposed to be a large parameter. When we write "compositions" involving transseries, x represents the identity function. But usually it is just a convenient symbol.
Definition 3.1. Group \mathcal{G}_{0} is isomorphic to the reals with addition and the usual ordering. To fit our applications, we write the group element corresponding to $b \in \mathbb{R}$ as x^{b}. Then $x^{a} x^{b}=x^{a+b} ; x^{0}=1 ; x^{-b}$ is the inverse of $x^{b} ; x^{a} \ll x^{b}$ iff $a<b$.

Log-free transseries of level zero are those defined from this group as in Definition 2.22. Write $\mathcal{T}_{0}=\mathcal{T}^{\mathcal{G}_{0}}$. Then the set of purely large transseries in \mathcal{T}_{0} (including 0) is closed under addition.
Definition 3.2. Group \mathcal{G}_{1} consists of ordered pairs (b, L) but written $x^{b} e^{L}$, where $b \in \mathbb{R}$ and $L \in \mathcal{T}_{0}$ is purely large. Define the group operations: $\left(x^{b} e^{L}\right)\left(x^{\tilde{b}} e^{\widetilde{L}}\right)=$ $x^{b+\tilde{b}} e^{L+\widetilde{L}}$. Define order lexicographically: $\left(x^{b} e^{L}\right) \gg\left(x^{\tilde{b}} e^{\widetilde{L}}\right)$ iff either $L>\widetilde{L}$ or $\{L=\widetilde{L}$ and $b>\tilde{b}\}$. Identify \mathcal{G}_{0} as a subgroup of \mathcal{G}_{1}, where x^{b} is identified with $x^{b} e^{0}$.

Log-free transseries of level 1 are those defined from this group as in Definition 2.22 . Write $\mathcal{T}_{1}=\mathcal{T}^{\mathcal{G}_{1}}$. We may identify \mathcal{T}_{0} as a subset of \mathcal{T}_{1}. Then the set of purely large transseries in \mathcal{T}_{1} (including 0) is closed under addition.
Definition 3.3. Suppose log-free transmonomials \mathcal{G}_{N} and \log-free transseries \mathcal{T}_{N} of level N have been defined. Group \mathcal{G}_{N+1} consists of ordered pairs (b, L) but written $x^{b} e^{L}$, where $b \in \mathbb{R}$ and $L \in \mathcal{T}_{N}$ is purely large. Define the group operations: $\left(x^{b} e^{L}\right)\left(x^{\tilde{b}} e^{\widetilde{L}}\right)=x^{b+\tilde{b}} e^{L+\widetilde{L}}$. Define order $\left(x^{b} e^{L}\right) \gg\left(x^{\tilde{b}} e^{\widetilde{L}}\right)$ iff either $L>\widetilde{L}$ or $\{L=\widetilde{L}$ and $b>\tilde{b}\}$. Identify \mathcal{G}_{N} as a subgroup of \mathcal{G}_{N+1} recursively.

Log-free transseries of level $N+1$ are those defined from this group as in Definition 2.22. Write $\mathcal{T}_{N+1}=\mathcal{T}^{\mathcal{G}_{N+1}}$. We may identify \mathcal{T}_{N} as a subset of \mathcal{T}_{N+1}.
Definition 3.4. The group of log-free transmonomials is

$$
\mathcal{G}_{*}=\bigcup_{N \in \mathbb{N}} \mathcal{G}_{N} .
$$

The space of log-free transseries is

$$
\mathcal{T}_{*}=\bigcup_{N \in \mathbb{N}} \mathcal{T}_{N}
$$

In fact, $\mathcal{T}_{*}=\mathcal{T}^{\mathcal{G}_{*}}$ because each individual transseries is finitely generated.
A set $\boldsymbol{\mu}$ is recursively complete if for every transmonomial $x^{b} e^{L}$ in $\boldsymbol{\mu}$, we also have $\operatorname{supp} L \subseteq \boldsymbol{\mu}$. Of course, given any finite set $\boldsymbol{\mu} \subseteq \mathcal{G}^{\text {small }}$, there is a recursively complete finite set $\widetilde{\boldsymbol{\mu}} \supseteq \boldsymbol{\mu}$. Call $\widetilde{\boldsymbol{\mu}} \backslash \boldsymbol{\mu}$ the completion addendum of $\boldsymbol{\mu}$.

Properties

Proposition 3.5. Let T be a log-free transseries. If $T \gg 1$, then there exists a real number $c>0$ such that $T \gg x^{c}$. If $T \ll 1$, then there exists a real number $c<0$ such that $T \ll x^{c}$.

Proof. Let $\operatorname{mag} T=x^{b} e^{L}$. If $L=0$, then $b>0$, so take $c=b / 2$. If $L>0$, $T \gg x^{1}$, since \gg is defined lexicographically. The other case is similar.

Proposition 3.6. Let $L>0$ be purely large of level N and $\operatorname{not} N-1$, let $b \in \mathbb{R}$, and let T be of level N. Then $x^{b} e^{L} \gg T$.

Proof. By induction on the level. Let $\operatorname{mag} T=x^{b_{1}} e^{L_{1}}$. So $L_{1} \in \mathcal{T}_{N-1}$, and therefore by the induction hypothesis $\operatorname{dom}\left(L-L_{1}\right)=\operatorname{dom}(L)>0$. So $L>L_{1}$ and $x^{b} e^{L} \gg x^{b_{1}} e^{L_{1}}$.

Derivative

Definition 3.7. Derivative (notations $\left.{ }^{\prime}, \partial, \mathcal{D}\right)$ is defined recursively. $\left(x^{a}\right)^{\prime}=$ $a x^{a-1}$, where we may need the addendum of generator x^{-1}. If ∂ has been defined for \mathcal{G}_{N}, define termwise for \mathcal{T}_{N}. (See the next proposition for the proof that this makes sense.) Then, if ∂ has been defined for \mathcal{T}_{N}, define it on \mathcal{G}_{N+1} by

$$
\left(x^{b} e^{L}\right)^{\prime}=b x^{b-1} e^{L}+x^{b} L^{\prime} e^{L}
$$

For the derivative addendum $\tilde{\boldsymbol{\mu}}$: begin with $\boldsymbol{\mu}$, add the completion addendum of $\boldsymbol{\mu}$, and add x^{-1}.

Proposition 3.8. Let $\boldsymbol{\mu}$ be given. Let $\widetilde{\boldsymbol{\mu}}$ be as described. (i) If $T_{i} \xrightarrow{\boldsymbol{\mu}} T$ then $T_{i}^{\prime} \xrightarrow{\widetilde{\mu}} T^{\prime}$. (ii) If $\sum T_{i}$ is $\boldsymbol{\mu}$-convergent, then $\sum T_{i}^{\prime}$ is $\tilde{\boldsymbol{\mu}}$-convergent and $\left(\sum T_{i}\right)^{\prime}=\sum T_{i}^{\prime}$. (iii) If $\Gamma \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}$, then $\sum_{g \in \Gamma} a_{g} g^{\prime}$ is $\widetilde{\boldsymbol{\mu}}$-convergent.

Proof. (iii) is stated equivalently: the family $\left(\operatorname{supp} g^{\prime}\right)$ is point-finite. Or: as g ranges over $\Gamma^{\mu, \mathbf{m}}$, we have $g^{\prime} \xrightarrow{\widetilde{\mu}} 0$.

Proof by induction on the level.
Say $\mu_{1}=x^{-b_{1}} e^{-L_{1}}, \cdots, \mu_{n}=x^{-b_{n}} e^{-L_{n}}$, and $\mathbf{k}=\left(k_{1}, \cdots, k_{n}\right)$. Then

$$
\begin{aligned}
\left(\boldsymbol{\mu}^{\mathbf{k}}\right)^{\prime} & =\left(x^{-k_{1} b_{1}-\cdots-k_{n} b_{n}} e^{-k_{1} L_{1}-\cdots-k_{n} L_{n}}\right)^{\prime} \\
& =\left(-k_{1} b_{1}-\cdots-k_{n} b_{n}\right) x^{-1} \boldsymbol{\mu}^{\mathbf{k}}+\left(-k_{1} L_{1}^{\prime}-\cdots-k_{n} L_{n}^{\prime}\right) \boldsymbol{\mu}^{\mathbf{k}} .
\end{aligned}
$$

So if $T=\sum_{\mathbf{k} \geq \mathbf{m}} a_{\mathbf{k}} \boldsymbol{\mu}^{\mathbf{k}}$, then summing the above transmonomial result, we get

$$
T^{\prime}=x^{-1} T_{0}+L_{1}^{\prime} T_{1}+\cdots+L_{n}^{\prime} T_{n}
$$

where T_{0}, \cdots, T_{n} are transseries with the same support as T, and therefore they exist in $\mathcal{T}^{\mu, \mathbf{m}}$. Derivatives $L_{1}^{\prime}, \cdots, L_{n}^{\prime}$ exist by induction hypothesis. So T^{\prime} exists.

Proposition 3.9. There is no $T \in \mathcal{T}_{*}$ with $T^{\prime}=x^{-1}$.
Proof. In fact, we show: If $g \in \mathcal{G}_{*}$, then $x^{-1} \notin \operatorname{supp} g^{\prime}$. This suffices since

$$
\operatorname{supp} T^{\prime} \subseteq \bigcup_{g \in \operatorname{supp} T} \operatorname{supp} g^{\prime}
$$

Proof by induction on the level. If $g=x^{b}$, then $g^{\prime}=b x^{b-1}$ and $x^{-1} \notin \operatorname{supp} g^{\prime}$. If $g=x^{b} e^{L}$ with L of level $N-1$, then $g^{\prime}=\left(b x^{-1}+L^{\prime}\right) e^{L}$. Now by the induction hypothesis, $b x^{-1}+L^{\prime} \neq 0$, so (by Prop. 3.6) g^{\prime} is far larger than x^{-1} if $L>0$ and far smaller than x^{-1} if $L<0$.

Proposition 3.10. (a) If $g_{1} \gg g_{2}, g_{1} \neq 1$, and $g_{2} \neq 1$, then $g_{1}^{\prime} \gg g_{2}^{\prime}$. (b) If $\operatorname{mag} T \neq 1$, then $T^{\prime} \asymp(\operatorname{mag} T)^{\prime}$ and $\operatorname{dom}\left(T^{\prime}\right)=\operatorname{dom}\left((\operatorname{dom} T)^{\prime}\right)$. (c) If $\operatorname{mag} T_{1} \neq$ 1 and $T_{1} \gg T_{2}$, then $T_{1}^{\prime} \gg T_{2}^{\prime}$.

Proof. (a) If $g_{1}=x^{b_{1}} e^{L_{1}} \gg g_{2}=x^{b_{2}} e^{L_{2}}$, then $L_{2}<L_{1}$ or $\left\{L_{2}=L_{1}\right.$ and $\left.b_{2}<b_{1}\right\}$. Then $g_{1}^{\prime}=\left(b_{1} x^{-1}+L_{1}^{\prime}\right) x^{b_{1}} e^{L_{1}}$ and $g_{2}^{\prime}=\left(b_{2} x^{-1}+L_{2}^{\prime}\right) x^{b_{2}} e^{L_{2}}$. By Prop. 3.9 the factors $\left(b_{1} x^{-1}+L_{1}^{\prime}\right)$ and $\left(b_{2} x^{-1}+L_{2}^{\prime}\right)$ are not zero. If $L_{2}<L_{1}$, then by Prop. $3.6 g_{1}^{\prime} \gg g_{2}^{\prime}$. If $L_{2}=L_{1}$, then $L_{2}^{\prime}=L_{1}^{\prime}$ and $x^{b_{1}-1} \gg x^{b_{2}-1}$, so we get $g_{1}^{\prime} \gg g_{2}^{\prime}$.
(b), (c) follow from (a).

Proposition 3.11. (i) If $s \ll 1$, then $s^{\prime} \ll 1$. (ii) If $T \gg 1$ and $T>0$, then $T^{\prime}>0$. (iii) If $T \gg 1$ and $T<0$, then $T^{\prime}<0$. (iv) If $T \gg 1$ then $x T^{\prime} \gg 1$. (v) If $T \gg 1$, then $T^{2} \gg T^{\prime}$.

Proof. (i) Assume $s \ll 1$. Then $s \ll x^{c}$ for some $c<0$, and $s^{\prime} \ll c x^{c-1} \ll 1$.
(ii) Assume $T \gg 1$ and $T>0$. Let $\operatorname{dom} T=a x^{b} e^{L}$. So $T^{\prime} \asymp\left(b x^{-1}+L^{\prime}\right) x^{b} e^{L}$. If $L>0$, then this is far larger than 1 by Prop. 3.6. If $L=0, b>0$, then $\operatorname{dom} T^{\prime}=a b x^{b-1}>0$. In both cases, $x T^{\prime} \gg 1$. That's (iv). (iii) is similar.
(v) Again $\operatorname{dom} T=a x^{b} e^{L}$, so $\operatorname{dom} T^{2}=a^{2} x^{2 b} e^{2 L}$. We claim this is far larger than $\left(b x^{-1}+L^{\prime}\right) x^{b} e^{L}$. If $L \neq 0$, this is true by Prop. 3.6. If $L=0, b>0$ this is true because $2 b>b-1$.

If $T \gg x^{2}$, then $T^{\prime} \gg 1$. In particular, if $T \gg 1$ and T is of level ≥ 1, then $T^{\prime} \gg 1$.

Proposition 3.12. If $L \neq 0$ is purely large, then $\operatorname{dom}\left(a x^{b} e^{L}\right)^{\prime}=a x^{b} e^{L} \operatorname{dom} L^{\prime}$.
Proof. Since $L \gg 1$, there is $c>0$ with $L \gg x^{c}$, so $L^{\prime} \gg x^{c-1} \gg x^{-1}$. So $\left(a x^{b} e^{L}\right)^{\prime}=a x^{b} e^{L}\left(b x^{-1}+L^{\prime}\right) \asymp a x^{b} e^{L} L^{\prime}$.

Proposition 3.13. If $T^{\prime}=0$, then T is a constant.
Proof. Assume $T^{\prime}=0$. Write $T=L+c+s$. If $L \neq 0$ then $\operatorname{mag} T^{\prime}=\operatorname{mag} L^{\prime} \gg 1$, so $T^{\prime} \neq 0$. If $L=0$ and $s \neq 0$, then $\operatorname{mag} T^{\prime}=\operatorname{mag} s^{\prime} \ll 1$ so $L^{\prime} \neq 0$. Therefore $L=c$.

The set \mathcal{T}_{N} is a differential field with constants \mathbb{R}.

Compositions

Definition 3.14. We define T^{b}, where $T \in \mathcal{T}_{*}$ is positive, and $b \in \mathbb{R}$. First, write $T=c x^{a} e^{L}(1+s)$ as usual, with $c>0$. Then define $T^{b}=c^{b} x^{a b} e^{b L}(1+s)^{b}$. Constant c^{b}, with $c>0$, is computed in the reals. Next, $x^{a b}$ is a transseries, but may require addendum of a generator. Also, $(1+s)^{b}$ is a convergent binomial series, again we may require the smallness addendum for s. Finally, since L is purely large, so is $b L$, and thus $e^{b L}$ is a transseries, but may require addendum of a generator.
Definition 3.15. We define e^{T}, where $T \in \mathcal{T}_{*}$. Write $T=L+c+s$, with L purely large, c a constant, and s small. Then $e^{T}=e^{L} e^{c} e^{s}$. Constant e^{c} is computed in the reals-note that $e^{T}>0$. Next, e^{s} is a convergent power series; we may need the smallness addedum for s. And of course e^{L} is a transseries, but may not already be a generator, so e^{L} or e^{-L} may be required as addendum.

Of course, if T is purely large, then this definition of e^{T} agrees with the notation e^{T} used before.

Definition 3.16. Let $T_{1}, T_{2} \in \mathcal{T}_{*}$ with T_{2} positive and large (but not necessarily purely large). We want to define the composition $T_{1} \circ T_{2}$. This is done by induction on the level of T_{1}. When $T_{1}=x^{b} e^{L}$ is a transmonomial, define $T_{1} \circ T_{2}=T_{2}^{b} e^{L \circ T_{2}}$. Both T_{2}^{b} and $e^{L \circ T_{2}}$ may require addenda. And $L \circ T_{2}$ exists by the induction hypothesis. In general, when $T_{1}=\sum c_{g} g$, define $T_{1} \circ T_{2}=$ $\sum c_{g}\left(g \circ T_{2}\right)$. The next proposition is required. If $T_{1} \gg 1$, then $T_{1} \circ T_{2} \gg 1$. If $T_{1} \ll 1$, then $T_{1} \circ T_{2} \ll 1$.

Proposition 3.17. Let $\boldsymbol{\mu}, \mathbf{m}$ and $T_{2} \in \mathcal{T}_{*}$ be given with $\operatorname{supp} T_{2} \subseteq \Gamma^{\boldsymbol{\mu}, \mathbf{m}}, T_{2} \gg$ 1. Then there exist $\widetilde{\boldsymbol{\mu}}$ and $\widetilde{\mathbf{m}}$ so that $g \circ T_{2} \in \mathcal{T}^{\boldsymbol{\mu}}, \widetilde{\mathbf{m}}$ for all $g \in \bar{\Gamma}^{\boldsymbol{\mu}, \mathbf{m}}$, and the family $\left(\operatorname{supp}\left(g \circ T_{2}\right)\right)$ is point-finite.

Proof. First, add the completion addendum of $\boldsymbol{\mu}$. Now for all these generators $\left\{\mu_{1}, \cdots, \mu_{n^{\prime}}\right\}$, write $\mu_{i}=x^{-b_{i}} e^{-L_{i}}, 1 \leq i \leq n^{\prime}$. Arrange the list so that for all i, $\operatorname{supp} L_{i} \subseteq\left\{\mu_{1}, \cdots, \mu_{i-1}\right\}$. Then take the μ_{i} in order. Each $T_{2}^{-b_{i}}$ may require an addendum. Each $L_{i} \circ T_{2}$ may require an addendum, which has been added before. So all $\mu_{i} \circ T_{2}$ exist. They are small. Add smallness addenda for these (Is that needed?). So finally we get $\tilde{\boldsymbol{\mu}}$.

Now for each $\mu_{i} \in \boldsymbol{\mu}$, we have $\mu_{i} \circ T_{2}$ is $\widetilde{\boldsymbol{\mu}}$-small. So by Prop. 2.35 we have $\left(g \circ T_{2}\right)_{g \in \Gamma^{\mu, \mathrm{m}}} \xrightarrow{\widetilde{\mu}} 0$.

Example 3.18. For composition $T_{1} \circ T_{2}$, we need T_{2} large. Example: $T_{1}=$ $\sum_{j=0}^{\infty} x^{-j}, T_{2}=x^{-1}$ small. Then $T_{1} \circ T_{2}=\sum_{j=0}^{\infty} x^{j}$ is not a valid transseries.

3.2 With logs

Transseries with logs are obtained by composing with \log on the right.
Notation 3.19. If $m \in \mathbb{N}$, we write formally $\log _{m}$ to represent the m-fold composition of the natural logarithm with itself. $\log _{0}$ will have no effect. Sometimes we may write $\log _{m}=\exp _{-m}$, especially when $m<0$.

Definition 3.20. Let $M \in \mathbb{N}$. A transseries with depth M is a formal expression $Q=T \circ \log _{M}$, where $T \in \mathcal{T}_{*}$.

We identify transseries of depth M as a subset of transseries of depth $M+1$ by identifying $T \circ \log _{M}$ with $(T \circ \exp) \circ \log _{M+1}$. Composition on the right with exp is defined in Def. 3.16. Using this idea, we define operations on transseries from the operations in \mathcal{T}_{*}.
Definition 3.21. Let $Q_{j}=T_{j} \circ \log _{M}$, where $T_{j} \in \mathcal{T}_{*}$. Define $Q_{1}+Q_{2}=$ $\left(T_{1}+T_{2}\right) \circ \log _{M} ; Q_{1} Q_{2}=\left(T_{1} T_{2}\right) \circ \log _{M} ; Q_{1}>Q_{2}$ iff $T_{1}>T_{2} ; Q_{1} \gg Q_{2}$ iff $T_{1} \gg T_{2} ; Q_{j} \rightarrow Q_{0}$ iff $T_{j} \rightarrow T_{0} ; \sum Q_{j}=\left(\sum T_{j}\right) \circ \log _{M} ; Q_{1}^{b}=\left(T_{1}^{b}\right) \circ \log _{M}$; $\exp \left(Q_{1}\right)=\left(\exp \left(T_{1}\right)\right) \circ \log _{M}$; and so on.
Definition 3.22. Transseries.

$$
\begin{aligned}
\mathcal{T}_{N M} & =\left\{T \circ \log _{M}: T \in \mathcal{T}_{N}\right\} \\
\mathcal{T}_{* M} & =\bigcup_{N \in \mathbb{N}} \mathcal{T}_{N M}=\left\{T \circ \log _{M}: T \in \mathcal{T}_{*}\right\} \\
\mathcal{T}_{* *} & =\bigcup_{M \in \mathbb{N}} \mathcal{T}_{* M}
\end{aligned}
$$

When $M<0$ we also write $\mathcal{T}_{* M}$. So $\mathcal{T}_{*,-1}=\left\{T \circ \exp : T \in \mathcal{T}_{*}\right\}$.
If $T=\sum c_{g} g$ we may write $T \circ \log _{M}$ as a series

$$
\left(\sum c_{g} g\right) \circ \log _{M}=\sum c_{g}\left(g \circ \log _{M}\right)
$$

Simplifications along these lines may be carried out: $\exp (\log x)=x ; e^{b \log x}=x^{b}$; etc. As usual we sometimes use x as a variable and sometimes as the identity function. On monomials we can write

$$
\left(x^{b} e^{L}\right) \circ \log =(\log x)^{b} e^{L \circ \log }
$$

but just consider this an abbreviation?
Definition 3.23. $Q \in \mathcal{T}_{* *}$ has exact depth M iff $Q=T \circ \log _{M}, T \in \mathcal{T}_{*}$ and T cannot be written in the form $T=T_{1} \circ \exp$ for $T_{1} \in \mathcal{T}_{*}$. This will also make sense for negative M.
Definition 3.24. Logarithm. If $T \in \mathcal{T}_{*}, T>0$, write $T=a x^{b} e^{L}(1+s)$ as usual. Define $\log T=\log a+b \log x+L+\log (1+s)$. Now $\log a, a>0$ is computed in the reals. $\log (1+s)$ is a series. The term $b \log x$ gives this depth 1 ; if $b=0$ then we remain log-free.

For general $Q \in \mathcal{T}_{* *}$: if $Q=T \circ \log _{M}$, then $\log (Q)=\log (T) \circ \log _{M}$, which could have depth $M+1$.
Definition 3.25. Differentiation is done as expected from the usual rules.

$$
(T \circ \log)^{\prime}=\left(T^{\prime} \circ \log \right) \cdot x^{-1}=\left(T^{\prime} e^{-x}\right) \circ \log
$$

So ∂ maps $\mathcal{T}_{* M}$ into itself.

Check usual properties.
We now have an antiderivative for x^{-1}.

$$
(\log x)^{\prime}=(x \circ \log)^{\prime}=\left(1 \cdot e^{-x}\right) \circ \log =\left(x^{-1}\right) \circ \exp \circ \log =x^{-1}
$$

Aside. Would it be better to write these out as if they were functions? Should

$$
T=x^{-1 / 2} e^{x^{2}-2 x} \circ \log
$$

be written as

$$
T(x)=(\log x)^{-1 / 2} e^{(\log x)^{2}-2(\log x)}=(\log x)^{-1 / 2} e^{(\log x)^{2}} x^{-2}
$$

and let this be understood as an abbreviation? Or should we use some symbol other than x for the dummy identity function?

$$
T=\square^{-1 / 2} e^{\square^{2}-2 \square} \circ \log
$$

Contraction

Contraction (for the fixed-point theorem) is formulated for a particular $\boldsymbol{\mu}$. So to apply it in $\mathcal{T}_{* *}$, either we will have to convert problems to \mathcal{T}_{*}, or else write out what to do with generating sets involving logs.

Integral

This is an example where we convert the problem to a log-free case to apply the contraction argument. The general integration problem (3.29) is reduced to one (3.26) where contraction can be easily applied.

Proposition 3.26. Let $T \in \mathcal{T}_{*}$ with $T \gg 1$. Then there is $S \in \mathcal{T}_{*}$ with $S^{\prime}=e^{T}$.
Proof. Either T is positive or negative. We will do the positive case, the negative one is similar. If

$$
S=\frac{e^{T}}{T^{\prime}}(1+\Delta)
$$

where Δ satisfies

$$
\Delta=\frac{T^{\prime \prime}}{\left(T^{\prime}\right)^{2}}+\frac{T^{\prime \prime}}{\left(T^{\prime}\right)^{2}} \Delta-\frac{\Delta^{\prime}}{T^{\prime}}
$$

then it is a computation to see that $S^{\prime}=e^{T}$. So it suffices to exhibit an appropriate $\boldsymbol{\mu}$ and show that the linear map $J: \mathcal{T}^{\boldsymbol{\mu}, \mathbf{0}} \rightarrow \mathcal{T}^{\boldsymbol{\mu}, \mathbf{0}}$ defined by

$$
J(\Delta)=\frac{T^{\prime \prime}}{\left(T^{\prime}\right)^{2}} \Delta-\frac{\Delta^{\prime}}{T^{\prime}}
$$

is $\boldsymbol{\mu}$-contractive, then apply Prop. 2.47(i).
Say T is of exact level N, so e^{T} is of exact level $N+1$. By Prop. 3.11, $T^{\prime \prime} \ll\left(T^{\prime}\right)^{2}$ and $x T^{\prime} \gg 1$. So $T^{\prime \prime} /\left(T^{\prime}\right)^{2}$ and $1 /\left(x T^{\prime}\right)$ are small. Let $\boldsymbol{\mu}$ be the least set of generators including x^{-1}, the generators for T, the inversion addendum
for T^{\prime}, the smallness addenda for $T^{\prime \prime} /\left(T^{\prime}\right)^{2}$ and $1 /\left(x T^{\prime}\right)$, and is recursively complete. Check: all generators in $\boldsymbol{\mu}$ are (at most) of level N. (That is, none of the addenda mentioned will increase the level.) And all derivatives $T^{\prime}, T^{\prime \prime}$ belong to $\mathcal{T}^{\boldsymbol{\mu}}$. If $g \in \Gamma^{\boldsymbol{\mu}, \mathbf{0}}$ then $g^{\prime} \in \mathcal{T}^{\boldsymbol{\mu}, \mathbf{0}}$. So for this $\boldsymbol{\mu}$, the function J maps $\mathcal{T}^{\mu, 0}$ into itself.

Since J is linear, we just have to check that it $\boldsymbol{\mu}$-contracts monomials $g \in$ $\operatorname{supp} \Delta$. Now $T^{\prime \prime} /\left(T^{\prime}\right)^{2}$ is $\boldsymbol{\mu}$-small so $g \boldsymbol{\mu}$-contracts to $\left(T^{\prime \prime} /\left(T^{\prime}\right)^{2}\right) g$. For the second term: If $g=x^{b} e^{L}$ with L of level $N-1$, then

$$
\frac{g^{\prime}}{T^{\prime}}=\frac{b x^{b-1} e^{L}+L^{\prime} x^{b} e^{L}}{T^{\prime}}=\frac{b x^{-1}+L^{\prime}}{T^{\prime}} g=\frac{b+x L^{\prime}}{x T^{\prime}} g .
$$

But $x T^{\prime} \gg 1$ has exact level N while $b+x L^{\prime}$ has level $N-1$, and thus the factor $\left(b+x L^{\prime}\right) /\left(x T^{\prime}\right)$ is $\boldsymbol{\mu}$-small. [Wait: do I need an explicit addendum for $\left(b+x L^{\prime}\right) /\left(x T^{\prime}\right)$?] So $g \boldsymbol{\mu}$-contracts to g^{\prime} / T^{\prime}.

Definition 3.27. We say $x^{b} e^{L} \in \mathcal{G}_{*}$ is power-free iff $b=0$. We say $T \in \mathcal{T}_{*}$ is power-free iff all transmonomials in supp T are power-free.

Since $\left(x^{b} e^{L}\right) \circ \exp =e^{b x} e^{L \circ e x p}$, it follows that all $T \in \mathcal{T}_{*,-1}$ are power-free.
Proposition 3.28. Let $T \in \mathcal{T}_{*}$ be a power-free transseries. Then there is $S \in \mathcal{T}_{*}$ with $S^{\prime}=T$.

Proof. For monomials $g=e^{L}$ with large L, write $\mathcal{P}(g)$ for the transseries constructed in Prop. 3.26 with $\mathcal{P}(g)^{\prime}=g$. Then we must show that the family (supp $\mathcal{P}(g))$ is point-finite, so we can define $\mathcal{P}\left(\sum c_{g} g\right)=\sum c_{g} \mathcal{P}(g)$. For large L we have $x L^{\prime} \gg 1$ (Prop. 3.11), so the formula

$$
\frac{\mathcal{P}\left(e^{L}\right)}{x}=\frac{e^{L}}{x L^{\prime}}(1+\Delta)
$$

shows that e^{L} contracts to $\mathcal{P}\left(e^{L}\right) / x$. So the family of all of these $\operatorname{supp} \mathcal{P}\left(e^{L}\right) / x$ is point-finite and thus the family of $\operatorname{supp} \mathcal{P}\left(e^{L}\right)$ is point-finite. [Do we need x^{-1} to be a generator?]

Proposition 3.29. Let $Q \in \mathcal{T}_{* *}$. Then there exists $\mathcal{P}(Q) \in \mathcal{T}_{* *}$ with $\mathcal{P}(Q)^{\prime}=Q$.
Proof. Say $Q \in \mathcal{T}_{* M}$. Then $Q=T_{1} \circ \log _{M+1}$, where $T_{1} \in \mathcal{T}_{*,-1}$. Let $T=$ $T_{1} \cdot \exp _{M+1} \cdot \exp _{M} \cdots \exp _{2} \cdot \exp _{1}$. Now T is power-free, so by Prop. 3.28, there exists $S \in \mathcal{T}_{*}$ with $S^{\prime}=T$. Then let $\mathcal{P}(Q)=S \circ \log _{M+1}$ and check that $\mathcal{P}(Q)^{\prime}=Q$. Note that $\mathcal{P}(Q) \in \mathcal{T}_{*, M+1}$.

